
Conditional Generative Models are Sufficient to
Sample from Any Causal Effect Estimand

Md Musfiqur Rahman * 1 Matt Jordan * 2 Murat Kocaoglu 1

Abstract

Causal inference from observational data has re-
cently found many applications in machine learn-
ing. While sound and complete algorithms ex-
ist to compute causal effects, many of them as-
sume access to conditional likelihoods, which is
difficult to estimate for high-dimensional (par-
ticularly image) data. Researchers have alle-
viated this issue by simulating causal relations
with neural models. However, no existing works
can effectively deal with causal graphs on im-
age data containing latent confounders, or ob-
tain conditional interventional samples. In this
work, we show how to sample from any iden-
tifiable interventional distribution given an arbi-
trary causal graph through a sequence of push-
forward computations of conditional generative
models, such as diffusion models. Our proposed
algorithm follows the recursive steps of the ex-
isting likelihood-based identification algorithms
to train a set of feed-forward models, and con-
nect them in a specific way to sample from the
desired distribution. We conduct experiments on
a Colored MNIST dataset having both the treat-
ment (X) and the target variables (Y) as images
and sample from P (y|do(x)). Our algorithm also
enables us to conduct a causal analysis to eval-
uate spurious correlations among input features
of generative models pre-trained on the CelebA
dataset. Finally, we generate high-dimensional
interventional samples from the MIMIC-CXR
dataset involving text and image variables.

*Equal contribution 1School of Electrical and Computer En-
gineering, Purdue University 2Department of Computer Science,
University of Texas at Austin. Correspondence to: Md Musfiqur
Rahman <rahman89@purdue.edu>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

1. Introduction
Causal inference has recently attracted significant attention
in machine learning (ML) due to its application in fairness,
invariant prediction, and explainability (Xin et al., 2022;
Zhang et al., 2020; Subbaswamy et al., 2021). Existing ML
models show notable predictive performance by optimizing
the likelihood of the training data, but are prone to failure
when the covariate distribution changes in the test domain.
For example, Fig. 1a represents a medical scenario where
the goal is to generate X-ray images X from the prescrip-
tion report R. One might train an ML model to directly
predict X from R by learning a mapping f : R → X ,
with maximum likelihood estimation (MLE). f then mim-
ics the conditional distribution P (x|r) (Boecking et al.,
2022; Chambon et al., 2022). However, the hospital loca-
tions (H) the training data were collected from, act as a
common factor for both R and X and have influence on
P (x|r). When the model is deployed in a new location,
its MLE-based prediction accuracy may drop since P (x|r)
shifts in that location. On the other hand, if we first re-
move the location bias R↔ X with an intervention on the
report variable, i.e, do(R), and train the model with the in-
terventional data, our model prediction would be invariant
to domain shifts. Thus, intervention in high-dimensional
distribution plays critical role in domain generalization.

Structural causal models (SCM) (Pearl, 2009) enable a
data-driven approach to estimate interventional distribu-
tions (Shalit et al., 2017; Louizos et al., 2017). Given the
qualitative causal relations, summarized in a causal graph,
we now have a complete understanding of which causal ef-
fects/queries can be uniquely identified from the observa-
tional distribution and which require further assumptions or
experimental data (Pearl, 1995; Tian, 2002; Huang & Val-
torta, 2006; Shpitser & Pearl, 2008; Bareinboim & Pearl,
2012; Lee et al., 2020). More precisely, if all conditional
probability tables are available, sound and complete identi-
fication algorithms (Tian & Pearl, 2002; Shpitser & Pearl,
2008) can perform exact inference to estimate causal ef-
fects or (Bhattacharyya et al., 2020; 2022; Jung et al.,
2020) sample from the interventional distribution, using a
combination of marginalization and product operators ap-
plied to those conditional distributions. For example, for

1

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Symptoms
(W2)

Aging
(W3)

Past
illness
(W4)

Xray
Scan (X)

Prescription
Report (R)

Detection &
Diagnosis
(W1)

Fa
m

ily
Hist

or
y (F

)

Hospital

Location (H
)

(a) ML model failure scenario

MW3
MW2

do(R = r)

P (w2, w3|do(r))

MW4

P (w4|do(w3))

MX

P (x|do(v \ {x, r}))

MW1

P (w1|do(w2, w3, w4))

W3

W3

W2

W3

W4

W2

W4

W3

W1

(b) Train and build sampling network.

MW3
MW2

do(R = r)

MW4

MX

MW1

X
W3

W3

W2

W
2

W4

W1
W4

W
3

(c) Merge and sample P (y|do(x)).

Figure 1. do(R = r) removes the R ↔ X bias and makes prediction of X domain invariant. ID-GEN factorizes P (v|do(r)) into four
factors and trains conditional models ({MVi}i) for each (blue shades). The intervened value R = r is propagated through the merged
network to generate all other variables.

the graph in Fig. 1a, we could intervene on report R and
estimate its effect on the whole system as, P (v|do(r)),
which can be written as a complicated function of the ob-
servational distribution (Equation 1). One term in that ex-
pression is

∑
r′P (w1|r′, w2, w3, w4)P (r′|w3, w4), which

requires marginalization over the “Report” variable. How-
ever, exact Bayesian inference methods used for calculat-
ing the conditional distributions are infeasible for high-
dimensional variables since marginalization over their non-
parametric distributions is generally intractable (Bishop,
2006). Deep generative models with variational inference
methods approximate the intractable marginalization and
can sample from such high-dimensional distributions (Ho
et al., 2020; Song et al., 2020; Croitoru et al., 2023).

Recent works such as Xia et al. (2023); Chao et al. (2023);
Rahman & Kocaoglu (2024) employ deep generative mod-
els to match joint distribution of the system by learning the
conditional generation of each variable from its causal par-
ents. Nonetheless, it is highly non-trivial for these works
to mimic any arbitrary causal model with high-dimensional
variables, specially when there are unobserved confounders
in the (semi-Markovian) causal model. Consider the R ↔
X relation in Fig. 1a where R and X are correlated through
unobserved hospital location. To learn the joint distribu-
tion P (r, x), the above approaches need to synchronously
train their generative models. For that purpose, Xia et al.
(2023); Rahman & Kocaoglu (2024) train two GAN net-
works by feeding the same prior noise. However, it is non-
trivial to design a loss function for the joint distribution bal-
ancing multiple high-dimensional variables making it chal-
lenging for the discriminator to detect true/false sampled
pairs. Thus, the high-dimensional interventional sampling
problem still requires a more effective approach.

In this paper, we propose a novel algorithm ID-GEN that
can utilize any state-of-the-art generative models (such as
GANs or diffusion models) to perform high-dimensional
interventional sampling in the presence of latent con-

founders. For this purpose, we resort to the sound and com-
plete identification algorithm (Tian, 2002; Shpitser & Pearl,
2008) and design our algorithm on top of its structure to
sample from any identifiable causal query with arbitrarily
complex expression. More precisely, given a causal graph,
training data, and a causal query, our algorithm i) follows
the recursive trace of the ID algorithm to factorize the query
ii) trains a set of conditional models for each factor, iii) con-
nects them to build a new structure called sampling network
and generate interventional samples from this network. For
example, to sample from P (v|do(r)) in Fig. 1, we i) utilize
ID to obtain the factors P (w2, w3|do(r)), P (w4|do(w3)),
P (w1|do(v \ {w1, x})), P (x|do(v \ {x})), ii) train con-
ditional models {MW2

,MW3
}, {MW4

}, {MW1
}, {MX} in

four different phases (Fig. 1b) and iii) merge all models
as shown in Fig.1c to sample according to the topologi-
cal order. To the best of our knowledge, we are the first
to show that conditional generative/feedforward models are
sufficient to sample from any identifiable causal effect es-
timand. Our contributions are as follows:

• We propose a recursive algorithm called ID-GEN that
trains a set of conditional generative models on ob-
servational data to sample from high-dimensional in-
terventional distributions. We are the first to use
diffusion models as conditional models for semi-
Markovian SCMs.

• We show that ID-GEN is sound and complete, estab-
lishing that conditional generative models are suffi-
cient to sample from any identifiable interventional
and conditional interventional query. The latter is es-
pecially challenging for the existing GAN-based deep
causal models.

• We demonstrate ID-GEN’s performance on three
datasets containing image and text variables. We per-
form image intervention with diffusion models for the
Colored-MNIST dataset, we quantify spurious corre-
lations in pre-trained models for the CelebA dataset,

2

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

and we make the report to X-ray image generation task
domain invariant for the MIMIC-CXR dataset.

2. Related work
Shalit et al. (2017); Louizos et al. (2017); Zhang et al.
(2021); Vo et al. (2022) propose novel approaches to solve
the causal effect estimation problem using variational au-
toencoders. Their proposed solution and theoretical guar-
antees are tailored for specific causal graphs containing
treatment, effect, and covariates (or observed proxy vari-
ables), where they can apply the backdoor adjustment for-
mula. Sanchez & Tsaftaris (2022) employ DDPMs (Ho
et al., 2020) to generate high-dimensional interventional
samples, but only for bivariate models. Kocaoglu et al.
(2018) perform adversarial training on a collection of con-
ditional generative models following the topological or-
der to sample from interventional distributions. Pawlowski
et al. (2020) employ a conditional normalizing flow-based
approach to offer high-dimensional interventional sam-
pling as part of their solution. Chao et al. (2023) designs
diffusion-based causal models for arbitrary causal graphs
with classifier-free guidance (Ho & Salimans, 2022). How-
ever, these works have limited applications due to their
strong assumption of no latent confounders in the system.

Xia et al. (2021) propose a similar training process as Ko-
caoglu et al. (2018) in the presence of hidden confounders.
They show explicit connections with the Causal Hierarchy
Theorem (Bareinboim et al., 2022) and formalize the iden-
tification problem with neural models. However, it is dif-
ficult to match an arbitrary high-dimensional distribution,
and their joint GAN training approach may suffer from
convergence issues. Rahman & Kocaoglu (2024) utilizes
a modular algorithm to relax the joint training restriction
for specific structures, but might face the convergence issue
when the number of high-dimensional variables increases.
Note that these methods are not suitable for efficient con-
ditional sampling.

Jung et al. (2020) convert the expression returned by iden-
tification algorithm (Tian & Pearl, 2002) into a form where
it can be computed through a re-weighting function to al-
low sample-efficient estimation. Similarly Bhattacharyya
et al. (2020; 2022) utilize bounded number of samples
from the observational distribution to construct an inter-
ventional sampler. However, computing these reweighting
functions/conditional distributions from data is still highly
nontrivial with high-dimensional variables. Zečević et al.
(2021) models each probabilistic term in the expression ob-
tained for P (y|do(x)) with (i)SPNs. However, they require
access to the interventional data and do not address iden-
tification from only observations. Wang & Kwiatkowska
(2023) design a novel probabilistic circuit architecture to
encode the target causal query and estimate causal effects

but do not offer high-dimensional sampling.

3. Background
Structural causal model, (SCM) (Pearl, 1980) is a tuple
M = (G = (V, E),N ,U ,F , P (.)). V = {V1, ..., Vn}
is a set of observed variables in the system. N is a set of
independent exogenous random variables where Ni ∈ N
affects Vi and U is a set of unobserved confounders each af-
fecting any two observed variables. This refers to the semi-
Markovian causal model. A set of deterministic func-
tions F={fV1

, fV2
, .., fVn

} determines the value of each
variable Vi from other observed and unobserved variables
as Vi = fi(Pai, Ni, USi

), where Pai ⊂ V (parents),
Ni ∈ N (randomness) and USi

⊂ U (latent confounders)
for some Si. P(.) is a product probability distribution over
N and U and projects a joint distribution PV over the set
of actions V representing their likelihood.

An SCM M, induces an acyclic directed mixed graph
(ADMG) G = (V, E) containing nodes for each variable
Vi ∈ V. For each Vi = fi(Pai, Ni, USi

), Pai ⊂ V, we
add an edge Vj → Vi ∈ E ,∀Vj ∈ Pai. Thus, Pai(Vi)
becomes the parent nodes in G. G has a bi-directed edge,
Vi ↔ Vj ∈ E between Vi and Vj if and only if they share a
latent confounder. If a path Vi → . . . → Vj exists, then Vi

is an ancestor of Vj , i.e., Vi = An(Vj)G. An intervention
do(x) replaces the structural function fx with X = x and in
other structural functions where X occurs. The distribution
induced on the observed variables V after such an interven-
tion is represented as Px(v) or P(v|do(x)). Graphically, it
is represented by GX where incoming edges to X are re-
moved (marked red). With a slight abuse of notation, we
will use P (y) for both the numerical value P(Y = y) and
the probability distribution [P (y)]y , depending on the con-
text. An example for the latter is:“Let Y be sampled from
P (y)”. Also, Px(y) refers to the interventional distribu-
tion for all x, y. Given an ADMG G, a maximal subset
of nodes where any two nodes are connected by bidirected
paths is called a c-component C(G). For any S ∈ C(G),
P (S|do(V \ S)) is called a c-factor.

Classifier-free diffusion guidance (Ho & Salimans,
2021) Let (v, c) ∼ P (v, c) be the data distribution and
z = {zλ|λ ∈ [λmin, λmax]} for λmin < λmax ∈
R. We corrupt the data as zλ = αλx + σλϵ and opti-
mize the denoising model by taking the gradient step on
∇θ||ϵθ(zλ, c)− ϵ||2. Given that variables V are connected
as a directed acyclic graph and we have diffusion mod-
els trained to learn the distributions P (vi|pa(vi)), we can
perform ancestral sampling from the joint distribution,
P (v) =

∏
Vi∈V P (vi|pa(vi)) by making one pass through

each model in the topological order while sampling from
the conditional distributions (Bishop, 2006). We choose
classifier-free diffusion as our conditional model, but the

3

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

choice changes based on the application. We use MV (c)
and a square node as notation.

4. ID-GEN: generative model-based
interventional sampling

Given a causal graph G, datasetD ∼ P (v), our objective is
to generate high-dimensional interventional samples from
a query P (y|do(x)) or a conditional query P (y|do(x), z).
ID-GEN builds upon the recursive structure of the identifi-
cation algorithm (Shpitser & Pearl, 2008) to train necessary
conditional models. Thus, we first discuss its connection
with us and show the challenges it faces if deployed for
sampling.

4.1. Identification algorithm (ID) and challenges with
high-dimensional sampling

Shpitser & Pearl (2008) propose a recursive algorithm for
estimating an interventional distribution Px(y) given ac-
cess to all conditional tables. At any recursion level, it en-
ters one of its four recursive steps: 2, 3, 4, 7 and three base
case steps: 1, 5, 6 (Algorithm 6). Below, we discuss them
in detail.

Step 1 occurs when the intervention set X is empty in
Px(y). The effect of X = ∅ on Y is its marginal P (y)
which is returned as output. Step 2 checks if there exists
any non-ancestor variable of Y in the intervention set X.
Such variables in the graph do not have any causal effect
on Y. Thus, it is safe to drop them. In Step 3, it searches
for a set W in G, which does not effect Y assuming that X
has already been intervened on. Thus, it can include W as
an additional intervention set: X = X ∪W. Intervention
on W implies, deleting its incoming edges which simpli-
fies the problem in the future. Step 4 is the most important
line and is executed when there are multiple c-components
in the subgraph G\X. It factorizes (decomposes) the prob-
lem of estimating Px(y) into estimating c-factors (sub-
problems) and performs recursive calls for each c-factor.
Base case Step 5 returns fail for non-identifiable queries.
Base case Step 6 asserts that when X does not have a bi-
directed edge with the rest of the nodes in S and S consists
of a single c-component, intervening on X is equivalent
to conditioning on X. Thus, ID can now solve Px(y) as∑

s\y
∏

i|Vi∈S P (vi|v(i−1)
π) and return as output. Step 7

occurs when the variables in X can be partitioned into two
sets: one having bi-directed edges to other variables (S′)
in the graph and one (defined as XZ) with no bi-directed
edges to S′. In that case, evaluating Px(y) from P (V) is
equivalent to first obtaining P ′(V) := PxZ

(V) and then
evaluating Px\xz

(Y) from P ′(V). Hence, PxZ
(V) is first

calculated as
∏

{i|Vi∈S′} P (Vi|V (i−1)
π ∩S′, v

(i−1)
π \S′) and

then passed to the next recursive call for do(x \ xz) to be

applied. One major issue of ID is that it requires probabil-
ity tables and thus cannot be applied for high-dimensional
sampling. A trivial attempt might be to perform ancestral
sampling according to its expressions. Such attempts fails
for graphs with confounders and might lead to a deadlock
situation.

Example 4.1 (Cyclic dependency). We provide a graph
in Appendix: Fig. 4 for which Px(y) does not fit any fa-
miliar criterion such as backdoor or front door. ID al-
gorithm factorizes Px(y) into c-factors at its step 4, as
Px(y) =

∑
w1,w2

Px,w1
(w2)Px,w2

(w1, y) and estimates
each of them sequentially. Suppose we naively follow
the ID algorithm and attempt to sample from these fac-
tors sequentially as well. To sample W2 ∼ Px,w1

(w2)
we need W1 as input, which has to be sampled from
Px,w2

(w1, y). But to sample {W1, Y } ∼ Px,w2
(w1, y), we

need W2 as input which has to be sampled from Px,w1(w2).
Therefore, no order helps to sample all W1,W2, Y con-
sistently. ID-GEN follows ID’s recursive trace to reach at
this factorization but solves the deadlock issue by avoid-
ing direct sampling from them. Rather, it first trains the
required models for c-components {W1, Y }, {W2} indi-
vidually, considering all possible input values, and then
connects them to perform sampling. Thus, ID-GEN
first obtains Px,w2

(w1, y) = P (w1|x)P (y|x,w1, w2),
and trains conditional models MW1

and MY for these
conditional distributions. Similarly, for Px,w1

(w2) =∑
x′ P (x′)P (w2|x′, w1), we train MX′ and MW2 . Finally,

we merge these networks based on inputs-outputs to build
a single sampling network and perform ancestral sampling
on it to sample from Px(y),∀x.

Definition 4.2 (Sampling network, H). A collection of
feedforward models {MVi}∀i for a set of variables V =
{Vi}∀i

is said to form a sampling network, H, if
the directed graph obtained by connecting each MVi

to
MAn(Vi)G via incoming edges according to some condi-
tional distribution, is acyclic. Two sampling networks
Hi,Hr can be merged into a larger networkH.

4.2. Recursive training of ID-GEN and interventional
sampling

Similar to ID’s recursive structure, ID-GEN has 7
steps (Algorithm 1). However, to deal with high-
dimensional variables, we call three new functions: i)
Algorithm 2:ConditionalGMs(.) inside steps 1
and 6 where we train diffusion models or other condi-
tional models to learn conditional distributions, ii) Algo-
rithm 3:MergeNetwork(.) inside step 4 to merge the
conditional models, and iii) Algorithm 4:Update(.) in-
side step 7 to train models that can apply part of the in-
terventions and update the training dataset for next recur-
sive calls. We initiate with ID-GEN (Y,X, G,D, X̂ =
∅, Ĝ = G). Along with the given inputs Y,X, G,D,

4

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

ID-GEN maintains two extra parameters X̂, Ĝ to keep
track of the interventions performed. During the top-down
phase, ID-GEN updates its parameters: by i) removing in-
terventions from the intervention set X, and ii) updating
the training dataset D, X̂ and the causal graph G, Ĝ ac-
cording to the interventions. At any level of recursion, an
ID-GEN call returns a sampling network H (DAG of a set
of trained models) trained on the dataset D to learn condi-
tional distributions according to X̂, G, Ĝ. After the recur-
sion ends, we can generate samples from Px(V),Y ⊆ V,
by ancestral sampling on H. See a recursion tree in Ap-
pendix C.5.

Base Case: Step 1: ID-GEN enters step 1 if the inter-
vention X is empty. For X = ∅, we have, Px(y) =

P (y) =
∑

v\y P (v) =
∑

v\y
∏

Vi∈V P (vi|v(i−1)
π) which

is suitable for ancestral sampling. To train models that
can collectively sample from this distribution, we call Al-
gorithm 2:ConditionalGMs(.). Here, we train each
model MVi

, ∀Vi ∈ V using V
(i−1)
π , (i.e., variables that

are located earlier in the topological order π) as inputs to
match P (vi|v(i−1)

π). Note that X̂ contains the values that
were intervened in previous recursion levels and Ĝ is the
graph at the current level that contains X̂ with its incom-
ing edges cut. Since we want our conditional models to
generate samples consistent with the values of X̂, we con-
sider the topological order of Ĝ while using V

(i−1)
π as in-

puts so that X̂ are also fed as input while training. After
training, we connect the trained models according to their
input-outputs to build a sampling network H and return it
(Alg 2:lines 1-6).
Step 2 & 3: We follow the same steps of the ID algorithm
as discussed in Section 4.1.

Step 4 and Merge sampling Networks: This step de-
composes the problem of training models able to sample
from Px(y) into sub-problems of training models able sam-
ple from its factorization. If we remove X from G and
there exist multiple c-components in the remaining sub-
graph (Alg 1:line 1), we can apply c-component factoriza-
tion (Lemma D.7, (Tian & Pearl, 2002)) to factorize Px(y)
as

∑
v\(y∪x)Pv\s1(s1) . . . Pv\sn(sn) where each {Sk}k is

the c-factor of each c-component. To obtain the trained
models, we perform the next recursive calls: ID-GEN
(Y = Si,X = V \ Si, G,D, X̂, Ĝ) for each of these c-
factors. This factorization implies that when these recur-
sive calls return a sampling network Hi for each Pv\si(si),
we can wire them together based on their input-output to
build one single sampling network H, which can sample
from Px(y) (Lemma D.21,Theorem D.22).

We call Algorithm 3: MergeNetwork(.) to connect
all sampling networks {Hi}∀i

. Here, each Hi is a set
of trained conditional models {MVj

}j connected to each
other as a DAG. If a sampling network Hi contains an

empty node MVj = ∅ without any conditional model and
some other sampling network Hr generates this variable
Vj with its node MVk

, i.e., Vj = Vk, then we combine MVj

and MVk
into the same node to build a connection between

Hi andHr (lines 3-6). Intuitively, due to the c-factorization
at this step, the variables intervened in one sampling net-
work might be generated from models in another network.
We connect two networks to continue the ancestral sam-
pling sequence.
Base Case: Step 5: We follow the step 5 of the ID algo-
rithm as discussed in Section 4.1.

Base Case: Step 6: We enter Step 6 if G \ X is a sin-
gle c-component S, and X does not have bi-directed edges
to the rest of the variables S. This situation allows us
to replace the intervention on X by conditioning on X:
Px(y) =

∑
s\y

∏
Vi∈S P (vi|v(i−1)

π). This step is similar
to step 1, except that now we have a non-empty interven-
tion set, i.e., X ̸= ∅. Here, we consider the topological
order of Ĝ and V

(i−1)
π contains both X and X̂. We call Al-

gorithm 2:ConditionalGMs(.) which trains multiple
conditional models to learn the above distribution. More
precisely, we utilize classifier-free diffusion guidance for
conditional training of each MVi by taking the gradient
step on ∇θ||ϵθ(ziλ, v

(i−1)
π) − ϵ||2. Here, ziλ is the noisy

version of Vi at time step λ during the forward process and
v
(i−1)
π is the condition (see Background). Finally, we con-

nect the input-output of these diffusion models according
to the topological order to build a sampling network and
return it as output. Note that for any specific conditional
distribution, if we have access to a pre-trained models that
can sample from it, we can directly plug it in the network
instead of training it from scratch (motivated from (Rah-
man & Kocaoglu, 2024)).

Step 7: Here, ID-GEN partitions X into two sets: one is
applied in the current step to update the training dataset
and other parameters, and the other is kept for future steps.
It performs this step if i) G \X is a single c-component S
and ii) S is a sub-graph of a larger c-component S′ in the
whole graph G, i.e, (S = C(G \ X)) ⊂ (S′ ∈ C(G)).
For example, in Fig. 5, for Pw1,w2,x(y), we have S =
G \ {W1,W2, X} = {Y }, S′ = {W1, X, Y }. In this
step, we call Algorithm 4: Update(.) which utilizes
the larger c-component S′ to partition the intervention set
X into one set contained within S′, i.e., X ∩ S′, and an-
other set not contained in S′, i.e., XZ = X \ S′. Evaluat-
ing Px(y) from P (v) is equivalent to evaluating Px∩s′(y)
from P ′(v) where P ′(v) := Pxz

(v) is the joint distribu-
tion. Hence, we first perform do(XZ) to update the dataset
as D′. Next, we shift our goal of sampling from Px(y)
in G with training dataset D ∼ P (V) to sampling from
Px∩s′(y) in Ĝ

{S′,X̂}
with training data D′ ∼ Pxz

(v) in

the next recursive calls. To generate dataset D′ ∼ Pxz (v),

5

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Algorithm 1 ID-GEN (Y,X, G,D, X̂, Ĝ)

1: Input: target Y, to be intervened X, intervened variables at step
7s X̂, causal graph G without X̂, causal graph Ĝ with X̂ having
no parents, training data D[Ĝ] sampled from observed distribu-
tion P (V).

2: Output: A sampling network of trained models.
3: if X = ∅ then {Step 1}
4: Return ConditionalGMs(Y,X = ∅,G,D,X̂,Ĝ)
5: if V \An(Y)G ̸= ∅ then {Step 2}
6: Return ID-GEN(Y,X ∩ An(Y)G, GAn(Y), X̂, ĜAn(Y),

D′ = D[An(Y)G])
7: Let W = (V \X) \An(Y)G

X
{Step 3}

8: if W ̸= ∅ then
9: Return ID-GEN(Y,X = X ∪W, G, X̂, Ĝ,D)

10: if C(G \X) = {S1, . . . , Sk} then {Step 4}
11: for each Si ∈ C(G \X) = {S1, . . . , Sk} do
12: Hi=ID-GEN(Si,X = V \ Si, G, X̂, Ĝ,D)
13: Return MergeNetwork({Hi}∀i)
14: if C(G \X) = {S} then
15: if C(G) = {G} then {Step 5}
16: throw FAIL
17: if S ∈ C(G) then {Step 6}
18: Return ConditionalGMs(S,X, G,D, X̂, Ĝ)
19: if (∃S′) such that S ⊂ S′ ∈ C(G) then {S7}
20: Return ID-GEN(Update(S′,X,G,D,X̂,Ĝ))

Algorithm 2 ConditionalGMs(Y,X,G,D,X̂,Ĝ)

1: for each Vi ∈ {X ∪ X̂} do
2: Add node (Vi, ∅) to H {Initialized H = ∅}
3: for each Vi ∈ Y in the topological order πĜ do
4: Let MVi be a model trained on D[Vi, V

(i−1)
π] such that

MVi(V
(i−1)
π) ∼ P (vi|v(i−1)

π)
5: Add node (Vi,MVi) to H
6: Add edge Vj → Vi to H for all Vj ∈ V

(i−1)
π

7: Return H.

Algorithm 3 MergeNetwork({Hi}∀i)
1: Input: Set of sampling networks {Hi}∀i.
2: Output: A connected DAG sampling network H.
3: for Hi ∈ {Hi}∀i do
4: for MVj ∈ Hi do
5: if MVj = ∅ and ∃MVk ∈ Hr, ∀r such that Vj = Vk

and MVk ̸= ∅ then
6: MVj = MVk

7: Return H = {Hi}∀i {All Hi are connected.}

Algorithm 4 Update(S′,X, G,D, X̂, Ĝ)

1: XZ = X \ S′

2: H = ConditionalGMs(S′,XZ , G,D, X̂, Ĝ)
3: D′ ∼ H(XZ , X̂); X̂ = X̂ ∪XZ

4: Return Y,X ∩ S′, GS′ , D′[X̂, S′], X̂, Ĝ{S′,X̂}

we call ConditionalGMs(.) and use the returned net-
work to sample D′ (lines 2-3).

Note that given access to probability tables, the ID algo-
rithm can use any specific value XZ = xz to calculate
Pxz

(v) to get the correct estimation of Px(y) (Verma con-
straint (Verma & Pearl, 1990; Shpitser & Pearl, 2008)).
In our case, if we use a specific value xz to sample the
training dataset D′ ∼ Pxz (v), the models trained on this
dataset in subsequent recursive steps will also depend on
xz . However, during ancestral sampling in the returned net-
work, a different value XZ = x′

z might come from other
c-components (ex: MY (W2, .) in Fig. 5). Thus, to make
our trained models suitable for any values, we pick XZ

from a uniform distribution or from P (XZ) and generate
D′ accordingly. We save XZ in X̂, its values in D[X̂, S′]
and in graph Ĝ

{S′,X̂}
with incoming edges removed, to be

considered while training in the next recursive calls. When-
ever ID-GEN visits Step 7 again, X̂ will be applied along
with the new XZ . Finally, an ID-GEN call is performed
with these updated parameters (line 4) which will return a
network that can sample from Px∩S′(y) and equivalently
from the original query Px(y).

(Un)conditional sampling and complexity: ID-GEN re-
turns a sampling network H when recursion ends. For un-
conditional query Px(y), we fix X = x in H and perform
ancestral sampling to generate joint samples. We pick the
Y values in these joint samples (equivalent to marginal-
ization in ID) and report as interventional samples. For

a conditional query Px(y|z), ID-GEN uses the sampling
network to first generate samples D[X,Z,Y] ∼ Px(y, z)
and then train a new conditional model MY(X,Z) onD to
sample from Y ∼ Px(y|z) (Alg.5:IDC-GEN). The sam-
pling network has O(|An(Y)G|) number of models and
requires O(|An(Y)G|) time to sample from it. Please, see
our complexity details in Appendix C.6, Appendix C.7 and
our algorithm simulation in Appendix C.3.

Theorem 4.3. Under Assumptions: i) the SCM is semi-
Markovian, ii) we have access to the ADMG, iii) P (V)
is strictly positive and iv) trained generative models sam-
ple from correct distributions, ID-GEN and IDC-GEN are
sound and complete to sample from any identifiable Px(y)
and Px(y|z).

Note that although existing work can sample from (low-
dimensional) distributions, Theorem 4.3, makes ID-GEN,
to our knowledge, the first method to use only feed-
forward models to provably sample from identifiable high-
dimensional interventional distributions.

5. Experiments
To illustrate ID-GEN’s capabilities with high-dimensional
image and text variables, we evaluate it on semi-synthetic:
Colored MNIST and real-world: CelebA and MIMIC-CXR
datasets (Appendix F.4).

6

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

5.1. ID-GEN performance on napkin-MNIST dataset
and baseline comparison

Setup: We consider a semi-synthetic Colored-MNIST
dataset for the napkin graph (Pearl & Mackenzie, 2018)
in Fig. 2 with image variables W1, X, Y and paired dis-
crete variable W2. Here, X and Y inherit the same digit
value as image W1 which is propagated through discrete
W2.d ∈ [0 − 9]. X is either red or green which is also
inherited from W1 through discrete W2.c, i.e., W1.color :
{r, g, b, y,m, cy} → W2.c : {0, 1} → X.color : {r, g}.
Unobserved Ucolor makes W1 and Y correlated with the
same color, and unobserved Uthickness makes W1 and
X correlated with the same thickness. All mechanisms in-
clude 10% noise. See more details in Appendix F.2. Our
target is to sample from Px(y).

Training and evaluation: We follow ID-GEN steps:
[3, 7, 2, 6]. Step 3 implies Px(y) = Px,w1,w2

(y), i.e., in-
tervention set ={X,W1,W2}. Step 7 suggests to gen-
erate do(W2) interventional dataset D′[W1,W2, X, Y] ∼
Pw2

(w1, x, y) = P (w1)P (x, y|w1, w2). To obtain D′, we
i) sample W1 ∼ P (w1), and ii) train a conditional diffu-
sion model to sampling from P (x, y|w1, w2) with arbitrary
W2 values. Next, Step 2 drops non-ancestor W1 and Step
6 trains a diffusion model MY (x,w2) on the new dataset
D′ to sample from P ′(y|x,w2). MY (x,w2) is returned as
output that can sample from Px(y),∀w2. We compare our
performance with three baselines: i) a classifier-free diffu-
sion model that samples from the (Cond)itional distribu-
tion P (y|x), ii) the DCM algorithm (Chao et al., 2023) that
uses diffusion models to samples from Px(y) but without
confounders, and iii) the NCM algorithm (Xia et al., 2021)
that uses GANs and considers confounders. We performed
do(x) intervention with two images, i) digit 3 and ii) digit 5,
both colored red. In Fig. 2, we show interventional samples
for each method alongside their FID scores representing the
image quality (lower:better). The (Cond) model (row 1,
5), DCM (row 2, 6) and our algorithm (row 5, 8) all generate
good quality images of digit 3 and digit 5 with a specific
color. However, the NCM algorithm (row 3, 7) generates
images with blended colors (such as green + red). We ob-
serve that ID-GEN achieves the lowest FID scores (25.66
and 22.67), showing the ability to generate high-quality im-
ages consistent with the dataset. Whereas, Cond and DCM
generate almost the same structure for all digits lacking va-
riety, which explains their high FID. Note that do(x) re-
moves the color bias between X and Y along the backdoor
path. Thus, interventional samples should show all colors
with uniform probability. Since Cond and DCM can not
deal with confounders they show bias towards R, G, B col-
ors of Y for red X . ID-GEN removes such bias and bal-
ances different colors (Fig. 2). For a more rigorous evalua-
tion, we use the effectiveness metric proposed in (Monteiro
et al., 2023) and employ a classifier to map all generated

images to discrete analogues (Digit, Color, Thickness)
and compute exact likelihoods. We compare them with our
ground truth P (Y.color|do(x)) (uniform) and display these
results for the color attribute in Fig. 2(right). We emulate
the interventional distribution more closely with a low total
variation distance: 0.25 compared to the baselines Cond
(0.54) and DCM (0.58). We skip classifying colors of NCM
as they are blended.

5.2. Evaluating CelebA image translation models with
ID-GEN

Setup: We apply ID-GEN to evaluate multidomain image
translation of some existing generative models (ex: Male
to Female domain translation). We examine whether they
apply causal changes in (facial) attributes or add unneces-
sary changes due to the spurious correlations among dif-
ferent attributes they picked up in the training data. Our
application is motivated by Goyal et al. (2019), who gen-
erate counterfactual images to explain a pre-trained classi-
fier while we examine pre-trained image generative mod-
els. We employ two generative models that are trained
on CelebA dataset (Liu et al., 2015): i) StarGAN (Choi
et al., 2018) and ii) EGSDE (Zhao et al., 2022) (an ap-
proach that utilizes energy-guided stochastic differential
equations). We assume the graph in Fig. 3 where the orig-
inal image I1 causes its own attributes Male and Young.
These attributes along with the original image are used to
generate a translated image I2. Next, P1 and P2 are 40
CelebA attributes of I1 and I2. A is the difference between
P1, P2, i.e., the additional attributes (ex: makeup) that gets
added to I2 but are absent in I1 during translation. We es-
timate PMale=0(A), i.e., the causal effect of changing the
domain from Male to Female on the appearance of a new
attribute.

Training and Evaluation: For PMale(A), We first gen-
erate I2 ∼ PMale=0(I2) and then use a classifier on I2.
ID-GEN vists steps: 4, 6 and factorizes as PMale=0(I2) =∫
Y,I1

P (I2|Male = 0, Y, I1) ∗P (Y, I1). To sample from
these factors, it first trains MY ,MI1 . Next, instead of train-
ing MI2 for P (I2|Male = 0, Y, I1), we plug in the model
that we want to evaluate (StarGAN or EGSDE) as MI2 .
We connect these models to build the sampling network in
Fig. 3. We can now perform ancestral sampling in the net-
work with Male = 0 and generate samples of I2. Next, we
use a classifier to obtain 40 attributes of I1 and I2 as P1

and P2. Finally, we obtain the added attributes, A by com-
paring P1 and P2 and report the proportion as the estimate
of PMale=0(A). Similarly, we also estimate the conditional
query, PMale=0(A|Y), using StarGAN with Y = 1 fixed.

In Fig. 3, we show top 9 most appeared attributes.
We observe that EGSDE introduces both causal (ex:
WearingLipstick to 82%, HeavyMakeup to 69.28% of

7

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

W1

W2

X

Y

U
colorU

th
ic

kn
es

s
FID ↓

X
=

3

Cond 50.83
DCM 66.57
NCM 61.11
Ours 25.66

X
=

5

Cond 41.35
DCM 60.61
NCM 71.50
Ours 22.67

Color True
Px(y)

Cond DCM Ours

R 0.17 0.17 0.24 0.13
G 0.17 0.45 0.27 0.24
B 0.17 0.15 0.28 0.21
Yw 0.17 0.19 0.05 0.14
Mg 0.17 0.02 0.07 0.11
Cy 0.17 0.10 0.09 0.18
TVD 0 0.54 0.58 0.25

Figure 2. (Left:) Causal graph with color and thickness as unobserved. (Center:) FID scores (lower the better) of each algorithm and
images generated from them. (Right:) Likelihood calculated from the Px(y) images generated by each algorithm. We closely reflect the
true Px(y) with low TVD.

I1

P1

I2

P2A
Male

Y oung(Y)

MI2

MYMI1

Male = 0 I2

(a) Graph and sampling network for PMale(I2).

Wearing_Lipstick

Heavy_Makeup

Arched_Eyebrows
Oval_Face

Attractive

High_Cheekbones

Wearing_Earrings
No_Beard Young

0

10

20

30

40

50

60

70

80

At
tri

bu
te

 a
pp

ea
ra

nc
e

(%
)

82.38%

69.29%

46.9%
41.43%

37.62%35.24% 33.1% 30.48%
24.76%

EGSDE: P(A|do(Male = 0)
StarGAN: P(A|do(Male = 0)
StarGAN: P(A|Young, do(Male = 0)

(b) For both causal and non-causal attributes, EGSDE shows high
correlation. and StarGAN shows low. Correlation with only
causal attributes is expected.

Figure 3. Evaluating image translation models with ID-GEN

all images) and non-causal attributes (ex:Attractive to
37.61% and Young to 24.76%) with high probability.
The model might assign high-probability to non-causal
attributes because they were spuriously correlated in the
CelebA training dataset. For example, sex and age have
a correlation coefficient of 0.42 (Shen et al., 2020). On
the other hand, StarGAN and conditional StarGAN intro-
duce new attributes with a low probability (≤ 30%) even
if they are causal which is also not preferred. These eval-
uations enabled by ID-GEN help us to understand the fair-
ness or bias in the prediction of image translation models.
Finally, for the conditional query PMale=0(A|Y), StarGAN
translates 54.68% of all images as Young,Female which is
consistent. In Appendix F.3, we discuss how baselines deal

poorly with these queries.

6. Conclusion
We propose a sound and complete algorithm to sample
from conditional or unconditional high-dimensional inter-
ventional distributions. Our approach is able to leverage the
state-of-the-art conditional generative models by showing
that any identifiable causal effect estimand can be sampled
from efficiently, only via feed-forward models.

Acknowledgements
This research has been supported in part by NSF CA-
REER 2239375, IIS 2348717, Amazon Research Award
and Adobe Research.

References
Balazadeh Meresht, V., Syrgkanis, V., and Krishnan, R. G.

Partial identification of treatment effects with implicit
generative models. Advances in Neural Information Pro-
cessing Systems, 35:22816–22829, 2022.

Bareinboim, E. and Pearl, J. Causal inference by surro-
gate experiments: z-identifiability. In Proceedings of the
Twenty-Eighth Conference on Uncertainty in Artificial
Intelligence, pp. 113–120, 2012.

Bareinboim, E., Correa, J. D., Ibeling, D., and Icard, T. On
pearl’s hierarchy and the foundations of causal inference.
In Probabilistic and causal inference: the works of judea
pearl, pp. 507–556. 2022.

Bhattacharyya, A., Gayen, S., Kandasamy, S., Maran, A.,
and Variyam, V. N. Learning and sampling of atomic in-
terventions from observations. In International Confer-
ence on Machine Learning, pp. 842–853. PMLR, 2020.

Bhattacharyya, A., Gayen, S., Kandasamy, S., Raval, V.,
and Variyam, V. N. Efficient interventional distribution

8

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

learning in the pac framework. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 7531–
7549. PMLR, 2022.

Bishop, C. M. Pattern recognition and machine learning.
Springer google schola, 2:645–678, 2006.

Boecking, B., Usuyama, N., Bannur, S., Castro, D. C.,
Schwaighofer, A., Hyland, S., Wetscherek, M., Nau-
mann, T., Nori, A., Alvarez-Valle, J., et al. Making the
most of text semantics to improve biomedical vision–
language processing. In European conference on com-
puter vision, pp. 1–21. Springer, 2022.

Castro, D. C., Tan, J., Kainz, B., Konukoglu, E., and
Glocker, B. Morpho-mnist: quantitative assessment and
diagnostics for representation learning. Journal of Ma-
chine Learning Research, 20(178):1–29, 2019.

Catalá, O. D. T., Igual, I. S., Pérez-Benito, F. J., Escrivá,
D. M., Castelló, V. O., Llobet, R., and Perez-Cortes,
J.-C. Bias analysis on public x-ray image datasets of
pneumonia and covid-19 patients. Ieee Access, 9:42370–
42383, 2021.

Chambon, P., Bluethgen, C., Delbrouck, J.-B., Van der
Sluijs, R., Połacin, M., Chaves, J. M. Z., Abraham,
T. M., Purohit, S., Langlotz, C. P., and Chaudhari, A.
Roentgen: Vision-language foundation model for chest
x-ray generation. arXiv preprint arXiv:2211.12737,
2022.

Chao, P., Blöbaum, P., and Kasiviswanathan, S. P. Interven-
tional and counterfactual inference with diffusion mod-
els. arXiv preprint arXiv:2302.00860, 2023.

Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., and Choo,
J. Stargan: Unified generative adversarial networks for
multi-domain image-to-image translation. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018.

Cleveland Clinic. Atelectasis. https://my.
clevelandclinic.org/health/diseases/
17699-atelectasis. Accessed: May 12, 2024.

Croitoru, F.-A., Hondru, V., Ionescu, R. T., and Shah, M.
Diffusion models in vision: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2023.

Goyal, Y., Feder, A., Shalit, U., and Kim, B. Explain-
ing classifiers with causal concept effect (cace). arXiv
preprint arXiv:1907.07165, 2019.

Gu, J., Cho, H.-C., Kim, J., You, K., Hong, E. K., and
Roh, B. Chex-gpt: Harnessing large language models
for enhanced chest x-ray report labeling. arXiv preprint
arXiv:2401.11505, 2024.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks, 2017.

Healthline. Lung opacity: Symptoms, causes, diagnosis,
and treatment. https://www.healthline.com/
health/lung-opacity. Accessed: May 12, 2024.

Helske, J., Tikka, S., and Karvanen, J. Estimation of causal
effects with small data in the presence of trapdoor vari-
ables. Journal of the Royal Statistical Society Series A:
Statistics in Society, 184(3):1030–1051, 2021.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
In NeurIPS 2021 Workshop on Deep Generative Models
and Downstream Applications, 2021.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. Advances in Neural Information Pro-
cessing Systems, 33:6840–6851, 2020.

Huang, Y. and Valtorta, M. Identifiability in causal
bayesian networks: A sound and complete algorithm. In
Proceedings of the national conference on artificial in-
telligence, volume 21, pp. 1149. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999,
2006.

Johnson, A. E., Pollard, T. J., Berkowitz, S. J., Greenbaum,
N. R., Lungren, M. P., Deng, C.-y., Mark, R. G., and
Horng, S. Mimic-cxr, a de-identified publicly available
database of chest radiographs with free-text reports. Sci-
entific data, 6(1):317, 2019.

Jung, Y., Tian, J., and Bareinboim, E. Learning causal
effects via weighted empirical risk minimization. Ad-
vances in neural information processing systems, 33:
12697–12709, 2020.

Kocaoglu, M., Snyder, C., Dimakis, A. G., and Vish-
wanath, S. Causalgan: Learning causal implicit gener-
ative models with adversarial training. In International
Conference on Learning Representations, 2018.

Lee, K., Rahman, M. M., and Kocaoglu, M. Finding invari-
ant predictors efficiently via causal structure. In Uncer-
tainty in Artificial Intelligence, pp. 1196–1206. PMLR,
2023.

Lee, S., Correa, J. D., and Bareinboim, E. General iden-
tifiability with arbitrary surrogate experiments. In Un-
certainty in artificial intelligence, pp. 389–398. PMLR,
2020.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning
face attributes in the wild. In Proceedings of Interna-
tional Conference on Computer Vision (ICCV), Decem-
ber 2015.

9

https://my.clevelandclinic.org/health/diseases/17699-atelectasis
https://my.clevelandclinic.org/health/diseases/17699-atelectasis
https://my.clevelandclinic.org/health/diseases/17699-atelectasis
https://www.healthline.com/health/lung-opacity
https://www.healthline.com/health/lung-opacity

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Louizos, C., Shalit, U., Mooij, J. M., Sontag, D., Zemel,
R., and Welling, M. Causal effect inference with deep
latent-variable models. Advances in neural information
processing systems, 30, 2017.

Mayo Clinic. Pneumonia - symptoms and
causes. https://www.mayoclinic.org/
diseases-conditions/pneumonia/
symptoms-causes/syc-20354204. Accessed:
May 12, 2024.

Mayo Clinic Staff. Atelectasis - symptoms and
causes. https://www.mayoclinic.org/
diseases-conditions/atelectasis/
symptoms-causes/syc-20369684#:˜:text=
Various%20types%20of%20pneumonia%
2C%20which,of%20a%20lung%20to%
20collapse. Accessed: May 12, 2024.

Medscape. Hyponatremia. https://emedicine.
medscape.com/article/296468-overview?
form=fpf. Accessed: May 12, 2024.

Monteiro, M., Ribeiro, F. D. S., Pawlowski, N., Castro,
D. C., and Glocker, B. Measuring axiomatic sound-
ness of counterfactual image models. arXiv preprint
arXiv:2303.01274, 2023.

Pawlowski, N., Coelho de Castro, D., and Glocker, B. Deep
structural causal models for tractable counterfactual in-
ference. Advances in Neural Information Processing
Systems, 33:857–869, 2020.

Pearl, J. Causality: models, reasoning, and inference, 1980.

Pearl, J. Causal diagrams for empirical research.
Biometrika, 82(4):669–688, 1995.

Pearl, J. Causality. Cambridge university press, 2009.

Pearl, J. and Mackenzie, D. The book of why: the new
science of cause and effect. Basic books, 2018.

Rahman, M. M. and Kocaoglu, M. Modular learning
of deep causal generative models for high-dimensional
causal inference. arXiv preprint arXiv:2401.01426,
2024.

Ribeiro, F. D. S., Xia, T., Monteiro, M., Pawlowski,
N., and Glocker, B. High fidelity image counterfac-
tuals with probabilistic causal models. arXiv preprint
arXiv:2306.15764, 2023.

Sanchez, P. and Tsaftaris, S. A. Diffusion causal
models for counterfactual estimation. arXiv preprint
arXiv:2202.10166, 2022.

Shalit, U., Johansson, F. D., and Sontag, D. Estimating in-
dividual treatment effect: generalization bounds and al-
gorithms. In International conference on machine learn-
ing, pp. 3076–3085. PMLR, 2017.

Shen, Y., Gu, J., Tang, X., and Zhou, B. Interpreting the
latent space of gans for semantic face editing. In Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pp. 9243–9252, 2020.

Shpitser, I. and Pearl, J. Complete identification methods
for the causal hierarchy. Journal of Machine Learning
Research, 9:1941–1979, 2008.

Song, J., Meng, C., and Ermon, S. Denoising diffusion im-
plicit models. arXiv preprint arXiv:2010.02502, 2020.

Subbaswamy, A., Schulam, P., and Saria, S. Preventing
failures due to dataset shift: Learning predictive mod-
els that transport. In The 22nd International Conference
on Artificial Intelligence and Statistics, pp. 3118–3127.
PMLR, 2019.

Subbaswamy, A., Adams, R., and Saria, S. Evaluating
model robustness and stability to dataset shift. In Inter-
national Conference on Artificial Intelligence and Statis-
tics, pp. 2611–2619. PMLR, 2021.

Tian, J. Studies in causal reasoning and learning. Univer-
sity of California, Los Angeles, 2002.

Tian, J. and Pearl, J. A general identification condition for
causal effects. eScholarship, University of California,
2002.

Tikka, S. and Karvanen, J. Enhancing identification of
causal effects by pruning. Journal of Machine Learning
Research, 18(194):1–23, 2018.

Verma, T. and Pearl, J. Equivalence and synthesis of
causal models. Probabilistic and Causal Inference,
1990. URL https://api.semanticscholar.
org/CorpusID:27807863.

Vo, T. V., Bhattacharyya, A., Lee, Y., and Leong, T.-Y. An
adaptive kernel approach to federated learning of hetero-
geneous causal effects. Advances in Neural Information
Processing Systems, 35:24459–24473, 2022.

Wang, B. and Kwiatkowska, M. Compositional probabilis-
tic and causal inference using tractable circuit models. In
International Conference on Artificial Intelligence and
Statistics, pp. 9488–9498. PMLR, 2023.

Wang, L., Lin, Z. Q., and Wong, A. Covid-net: a tailored
deep convolutional neural network design for detection
of covid-19 cases from chest x-ray images. Scientific
Reports, 10(1):19549, Nov 2020. ISSN 2045-2322. doi:

10

https://www.mayoclinic.org/diseases-conditions/pneumonia/symptoms-causes/syc-20354204
https://www.mayoclinic.org/diseases-conditions/pneumonia/symptoms-causes/syc-20354204
https://www.mayoclinic.org/diseases-conditions/pneumonia/symptoms-causes/syc-20354204
https://www.mayoclinic.org/diseases-conditions/atelectasis/symptoms-causes/syc-20369684#:~:text=Various%20types%20of%20pneumonia%2C%20which,of%20a%20lung%20to%20collapse.
https://www.mayoclinic.org/diseases-conditions/atelectasis/symptoms-causes/syc-20369684#:~:text=Various%20types%20of%20pneumonia%2C%20which,of%20a%20lung%20to%20collapse.
https://www.mayoclinic.org/diseases-conditions/atelectasis/symptoms-causes/syc-20369684#:~:text=Various%20types%20of%20pneumonia%2C%20which,of%20a%20lung%20to%20collapse.
https://www.mayoclinic.org/diseases-conditions/atelectasis/symptoms-causes/syc-20369684#:~:text=Various%20types%20of%20pneumonia%2C%20which,of%20a%20lung%20to%20collapse.
https://www.mayoclinic.org/diseases-conditions/atelectasis/symptoms-causes/syc-20369684#:~:text=Various%20types%20of%20pneumonia%2C%20which,of%20a%20lung%20to%20collapse.
https://www.mayoclinic.org/diseases-conditions/atelectasis/symptoms-causes/syc-20369684#:~:text=Various%20types%20of%20pneumonia%2C%20which,of%20a%20lung%20to%20collapse.
https://emedicine.medscape.com/article/296468-overview?form=fpf
https://emedicine.medscape.com/article/296468-overview?form=fpf
https://emedicine.medscape.com/article/296468-overview?form=fpf
https://api.semanticscholar.org/CorpusID:27807863
https://api.semanticscholar.org/CorpusID:27807863

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

10.1038/s41598-020-76550-z. URL https://doi.
org/10.1038/s41598-020-76550-z.

Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. The
causal-neural connection: Expressiveness, learnability,
and inference. Advances in Neural Information Process-
ing Systems, 34:10823–10836, 2021.

Xia, K. M., Pan, Y., and Bareinboim, E. Neural causal
models for counterfactual identification and estima-
tion. In The Eleventh International Conference on
Learning Representations, 2023. URL https://
openreview.net/forum?id=vouQcZS8KfW.

Xin, Y., Tagasovska, N., Perez-Cruz, F., and Raubal, M. Vi-
sion paper: causal inference for interpretable and robust
machine learning in mobility analysis. In Proceedings of
the 30th International Conference on Advances in Geo-
graphic Information Systems, pp. 1–4, 2022.

Zečević, M., Dhami, D., Karanam, A., Natarajan, S.,
and Kersting, K. Interventional sum-product networks:
Causal inference with tractable probabilistic models. Ad-
vances in neural information processing systems, 34:
15019–15031, 2021.

Zhang, C., Zhang, K., and Li, Y. A causal view on robust-
ness of neural networks. Advances in Neural Information
Processing Systems, 33:289–301, 2020.

Zhang, W., Liu, L., and Li, J. Treatment effect estimation
with disentangled latent factors. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 10923–10930, 2021.

Zhao, M., Bao, F., Li, C., and Zhu, J. Egsde: Unpaired
image-to-image translation via energy-guided stochastic
differential equations. arXiv preprint arXiv:2207.06635,
2022.

11

https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1038/s41598-020-76550-z
https://openreview.net/forum?id=vouQcZS8KfW
https://openreview.net/forum?id=vouQcZS8KfW

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

A. Limitations and future work
We assume that we have access to the fully specified causal graph (ADMG) and the causal model is semi-Markovia.
Although these are common assumptions in causal inference, we aim to extend our algorithm for structures with more
uncertainty (ex: PAGs). In certain cases, the identification algorithm acts on particular variables, yet the expression for the
causal effect does not depend on these variables. However, given that our sample size is limited, distinct values of these
variables could affect the accuracy of the causal effect (Helske et al., 2021). Since our algorithm follows the same recursive
trace as the identification algorithm, it might suffer from the same problem. In addition, some model training might be
unnecessarily performed due to this issue. To avoid this scenario, the pruning algorithm proposed in (Tikka & Karvanen,
2018) might be merged with us to reduce the redundant cost of model training. Finally, since we target a specific causal
query, if the query is substantially changed (causal effect on new variables), we might have to train some models from
scratch.

B. Broader impact
During the last few years, researchers have proposed many deep learning-based approaches to learn the unknown struc-
tural causal model from available data and employ the learned model to estimate the causal effect or sample from the
high-dimensional interventional distribution. However, all these methods propose solutions tailored to specific neural
architectures. As a result, when better generative models appear (such as diffusion models), existing methods lack the
flexibility to utilize them, and thus we are in need of a new causal sampling method to get benefits of the new architecture.
ID-GEN proposes a generic method that is independent of any model architecture and can generate high-dimensional in-
terventional samples with any model architecture (GANs, VAE, Normalizing flow, diffusion models, etc.) as long as that
model has the ability to generate conditional samples. Thus, our algorithm would allow the causal community to always
use the latest generative model for high-dimensional causal sampling-based applications.

On a different note, the ability to sample from interventional distributions may enhance deep-generative models to obtain
fake data, which can be exploited similarly to fake image generation. Since our algorithm considers causal relations among
different variables, it has the ability to generate comparatively sensible and realistic fake images. Fake images can be a
source of distress or might influence public actions and opinion. Thus, careful deployment of should be considered for
deep causal generative models and the same procedures to detect fake image should be taken.

C. ID-GEN additional discussion
In this section, we provide more details about our algorithm ID-GEN.

C.1. Sampling from any interventional distribution with ID-GEN

Here we provide the full form of the causal query P (v|do(r)) that we mentioned in the introduction (Section 1). Each
term is expressed in terms of observational distribution. Note that it is nonintuitive and nontrivial for existing algorithms to
sample from this complicated expression. Our algorithm ID-GEN solves this problem by training a specific set of models
in a recursive manner and building a sampling network combining them. Finally, ID-GEN uses this network to sample
from the following interventional distribution.

P (v|do(r)) = P (w2, w3|do(r))P (w4|do(w3))P (w1|do(v \ {w1, x}))P (x|do(v \ {x}))
= P (w2, w3|r) ∗ P (w4|w3) ∗

∑
r′P (w1|r′, w2, w3, w4)P (r′|w3, w4)

∗
∑

r′ P (w1, x|r′, w2, w3, w4)P (r′|w3, w4)∑
r′ P (w1|r′, w2, w3, w4)P (r′|w3, w4)

(1)

C.2. Cyclic dependency dealt with ID-GEN

Here we discuss Example 4.1 in more detail. ID-GEN follows ID’s recursive trace to reach at the factorization:
Px(y) =

∑
w1,w2

Px,w1
(w2)Px,w2

(w1, y) but solves the deadlock issue by avoiding direct sampling from them. Rather,
it first trains the required models for c-components {W1, Y }, {W2} individually, considering all possible input values,
and then connects them to perform sampling. Thus, ID-GEN first obtains Px,w2

(w1, y) = P (w1|x)P (y|x,w1, w2),
and trains a conditional model for each of the conditional distributions (Fig. 4 left-blue). Similarly, for Px,w1(w2) =∑

x′ P (x′)P (w2|x′, w1), we train models for each conditional distribution (right-blue). Note that X and X ′ are sampled

12

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

from the same P (x) but considered as different variables. Thus, we train MX′ to sample from P (x′) which is differ-
ent from intervention do(X). Finally, we merge these networks trained for each c-component to build a single sampling
network and can perform ancestral sampling on this network to sample from Px(y),∀x.

X W1

W2 Y MW2

MX′

MY

MW1X

W1

W2Y MW2

MX′

MY

MW1do(x)

Y

Figure 4. ↔:Confounding. MW1 , MY sample from Px,w2(w1, y) = P (w1|x) P (y|x,w1, w2). MX′ , MW2 sample from Px,w1(w2)
=

∑
x′ P (x′) P (w2|x′, w1). Joint network samples from Px(y).

C.3. ID-GEN algorithm simulation

W1 W2 X Y

(i) Step 4

W1 X Y

(iii) Step 2

W1 W2 X Y

(ii) Step 7

G : X Y

Ĝ : W2 X Y
(iv) Step 6

MW2

W1

MX

MW ′
1

MYW2 X

Unif [W2]

MW2

do(W1 = w1)

MX

MW ′
1

MY

Figure 5. (Left: top-down) Pw1(y) is factorized into Pw1,x,y(w2), Pw1,w2,y(x) and Pw1,w2,x(y) (Step 4). Steps 7, 2, 6 is shown for
Pw1,w2,x(y) only. (Right: bottom-up) we combine the sampling networks of each c-factor. For any do(W1 = w1), we use H to get
samples from Pw1(y).

Algorithm simulation: We apply ID-GEN to sample from Pw1(y) for the causal graph G in Fig. 5. Since G \ {W1}
has three c-components {W2}, {X}, {Y }, we first call (i) step 4 of ID-GEN. Pw1(y) is factorized as:

∑
x,w2

Pw1,x,y(w2)
Pw1,w2,y(x) Pw1,w2,x(y). Thus, step 4 will return the sampling networks {HW2

, HX , HY } that can sample from each
of these factors. Here, we focus only on HY . ID-GEN reaches (ii) step 7 for the query: Pw1,w2,x(y) since we have
S = G \ {W1,W2, X} = {Y }, S′ = {W1, X, Y } and S ⊂ S′. Here, sampling from Px,w1,w2

(y) in G, with observational
training dataset is equivalent to sampling from Px,w1(y) in Ĝ = GW2

with do(W2) interventional data. With W2 ∼ P (w2),
we generate D′ ∼ Pw2(v) by calling step 6 (base case). We pass D′ as the dataset parameter for the next recursive call.
This step implies that if the recursive call returns a network that samples from Px,w1

(y), it can also be used to sample from
Pw1,w2,x(y). Next, since W1 /∈ An(Y)G, at (iii) step 2, we drop W1 from all parameters before the next recursive call. We
are at the base case (iv) step 6 with Ĝ : W2 → X → Y . Thus, we train a conditional model MY (W2, X) on D′[W2, X, Y]
that can sample from P (y|w2, x). This would be returned as HY at step 4 (Fig. 5:green). Similarly, we can obtain
sampling network HW2

and HX to sample from Pw1,x,y(w2) = P (w2|w1) and Pw1,w2,y(x) =
∑

w′
1
P (x|w′

1, w2)P (w′
1)

(Fig. 5:blue). We connect these networks and perform ancestral sampling with fixed w1 for do(W1 = w1).

C.4. Related works

In Figure 6, we show a visual comparison among different implementations of existing works. Researchers have proposed
deep neural networks for causal inference problems (Shalit et al., 2017; Louizos et al., 2017) and neural causal meth-
ods Xia et al. (2021); Kocaoglu et al. (2018) to deal with high-dimensional data. However, the proposed approaches are
not applicable to any general query due to the restrictions they employ or their algorithmic design. For example, some
approaches perform well only for low-dimensional discrete and continuous data (group 2 in Figure 6: (Xia et al., 2021;
Balazadeh Meresht et al., 2022)) while some propose modular training to partially deal with high-dimensional variables
(group 3: (Rahman & Kocaoglu, 2024)). Other works with better generative performance depend on a strong structural
assumption: no latent variable in the causal graph (group 4: Kocaoglu et al. (2018); Pawlowski et al. (2020); Chao et al.
(2023)).

13

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Age (A)

Ventricle
volume (V)

Brain
volume (B)

Sex (s)
Unobserved

MRI (M)

A

V B

M

Group 1:
Liikelihood estimation

Group 2:
GAN architectures

A

V
B

M

Generator

G
enerator

Generator

Ours:
Diffusion models for

interventional sampling

B

A

M

V

Diffu
sion

Group 4:
Normalizing flow,
Diffusion models

S
Diffusion

Goal: sample from

Shared
noise

A

V
B

M

Diffusion

D
iffusion

Diffusion

A

V
B

M

Generator

D
iffusion

Generator
Shared
noise

Group 3:
Modular Training,
allows pre-trained

Figure 6. Suppose we aim to sample from P (m|do(v)), with M (MRI) as high-dimensional. Group 1 includes algorithms (ex: ID) that
depend on likelihood estimation such as P (m|v, a, b). Group 2 algorithms with GAN architectures have issues with GAN convergence
while Group 3 improves convergence with modularization but both struggle to match the joint distribution. Group 4 utilizes normalizing
flow, diffusion models, etc but cannot deal with confounders. Groups 2-4 only do unconditional interventions or costly rejection sam-
pling. Finally, our method can employ classifier-free diffusion models to sample from P (m|do(v)) or conditional P (m|a, do(v)). The
causal graph is adapted from Ribeiro et al. (2023).

C.5. ID-GEN recursion tree example

In Figure 7, we show a possible recursive route of ID-GEN for a causal query P (y|do(x)). At any recursion level, we
check condition for 7 steps (S1-S7) and enter into one step based on the satisfied conditions. The red edges indicate the
top-down phase, and the green edges indicate the bottom-up phase. The rectangular gray boxes (ConditionalGMs(.),
MergeNetwork(.), Update(.)) represent the functions that allow ID-GEN to sample from the high-dimensional
interventional distribution. Pv\s1(s1)Pv\s2(s2) are obtained after performing c-factorization at step 4. We also indicate
the recursive route with increasing indices. We hope that this figure helps the readers understand the recursion route in a
better way.

C.6. IDC-GEN: conditional interventional sampling

Existing works that use causal graph-based feedforward models (Xia et al., 2023; Rahman & Kocaoglu, 2024) need to
update the posterior of Z’s upstream variables which is not efficiently feasible in their architecture. We, given a causal
query Px(y|z), sample from this conditional interventional query by calling Algorithm 5: IDC-GEN. This function finds
the maximal set α ⊂ Z such that we can apply do-calculus rule-2 and move α from conditioning set Z and add it to
intervention set X . Precisely, Px(y|z) = Px∪α(y|z \ α) = Px∪α(y,z\α)

Px∪α(z\α) . Next, Algorithm 1: ID-GEN (.) is called to obtain
the sampling network that can sample from the interventional joint distribution Px∪α(y, z \ α). We use the sampling
network to generate samples D[X ∪ α,Y,Z \ α]. We train a new conditional model MY on D that takes Z \ α, X ∪ α as
input and samples Y ∼ Px∪α(y, z \ α) i.e, Y ∼ Px(y|z).

C.7. ID-GEN computational complexity

Bhattacharyya et al. (2022) in their work discusses the sample complexity and time complexity of Shpitser & Pearl (2008)’s
ID algorithm. Since our algorithm ID-GEN is build upon the recursive structure of ID, we follow their approach to
determine the computational complexity of our algorithm.

Suppose, in step 4 ID-GEN factorizes Px(y) as∑
v\(y∪x)Pv\s1(s1) . . . Pv\sl(sl) . . . Pv\sn(sn)

where each Si is the c-factor of each c-component Ci. Let the number of variables located in each c-component be k. Sup-
pose, the intervention X can be partitioned into multiple c-components and the c-components can be arranged in a way such
that X = ∪li=1Xi and Xi ⊆ Ci, i.e., all interventions are located in the first l c-components. Following (Bhattacharyya
et al., 2022), we define two sets C>l = ∪i>lCi and C≤l = ∪i≤lCi.

For |C>l| = n − l, c-components that do not contain any X, ID-GEN will either go to step1 or step 6. In the base
cases, they will train k models for each c-components. Thus, the number of models trained for these c-components will be
O((n− l)k).

14

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

S2 S5 S6S1

Fail

S3

S4

S4S3 S7

Factorization

MergeNetwork

S7UpdateConditionalGMs

S2

S6

ConditionalGMs

1

2

3

4

5

67

8
9

10

11

1213

S2

S1

ConditionalGMs14

15

16
17

18

1920

21

2223

24

25

26

Figure 7. ID-GEN Recursion Tree Example

For the first |C≤l| = l, c-components, we assume that each c-component contains intervention subset Xi of size X .
Then the size of the remaining c-component is k − X . For each Pv\si(si), ID-GEN will eventually reach the base cases:
Step 1 or 6 and will train k − X models. Now, consider recursive steps. We assume that, in the worst case, Xi will
reduce one at a time, by visiting step 7 and step 2 alternately. Thus, ID-GEN will visit step 7, O((X/2 − 1)) times
(except base case). Whenever ID-GEN visits step 7, it will apply a subset of the intervention Xi and atmost k models
will be trained to sample the updated training dataset. Thus, till the base case, the total number of models trained in step
7s will be O(k(X/2 − 1)). If we consider the whole recursive route for each c-component Ci ∈ C≤l, we will train
O(k(X/2 − 1)) + O((k − X)) = O(kX/2) number of models. For all c-components in C≤l, we will train O(lkX/2)
number of models.

Finally, if we consider all c-components, we will train in total O((n − l)k + lkX/2) models. If the cost of training a
diffusion model to learn a specific conditional distribution isO(T), then the total training cost isO(T (n− l)k+T lkX/2).
Note that, when there exists no confounders, we have k = 1 and the trining cost is O(T (n − l) + T l) = O(Tn). Here
|An(Y)G| = n. Existing algorithms train |V| number of models for a causal graph of V variables. Thus, their training
cost is O(T |V|).

D. Theoretical analysis
Here we provide formal proofs for all theoretical claims made in the main paper, along with accompanying definitions and
lemmas.

Definition D.1. A conditional generative model for a random variable X ∈ V relative to the distribution P (v) is a
function MX : PaX → |X| such that MX(paX) ∼ P (x|paX),∀pa ∈ Pa, where Pa is a subset of observed variables in
V .

15

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Definition D.2 (Recursive call). For a function f(), when a subprocedure with the same name is called within f() itself,
we define it as a recursive call. At Steps 2, 3, 4, 7 of Algorithm 1:ID-GEN, the sub-procdedure ID-GEN(.) with updated
parameters are recursive calls, but the sub-procedure ConditionalGMs(.), Update(.) are not recursive calls.

Here, we restate the assumptions that are mentioned in the main paper.

Assumption D.3. The causal model is semi-Markovian.

Assumption D.4. We have access to the true acyclic-directed mixed graph (ADMG) induced by the causal model.

Assumption D.5. Each conditional generative model trained by ID-GEN correctly samples from the corresponding con-
ditional distribution.

Assumption D.6. The observational joint distribution is strictly positive and Markov relative to the causal graph.

Lemma D.7 (c-component factorization (Tian & Pearl, 2002)). Let M be an SCM that entails the causal graph G and
Px(y) be the interventional distribution for arbitrary variables X and Y . Let C(G \X) = {S1, . . . , Sn}. Then we have
Px(y) =

∑
v\(y∪x)

Pv\s1(s1)Pv\s2(s2) . . . Pv\sn(sn).

Definition D.8. We say that a sampling network H is valid for an interventional distribution Px(y) if the following
conditions hold:

• Every node V ∈ H has an associated conditional generative model MV (.) except the variables in X.

• If the values X = x are specified inH, then the samples of Y obtained after droppingH\{X∪Y} from all generated
samples are equivalent to samples from Px(Y).

Proposition D.9. The ConditionalGMs(.) (S′,XZ , G,D, X̂, Ĝ) called inside Update(.), returns D[XZ , S
′] ∼

PXZ
(S′).

Proof. Suppose that our goal is to generate samples from PXZ
(Y = S′). S′ is a single c-component and the intervention

set X = XZ located outside of S′. This is the entering condition for step 6 of the ID-GEN algorithm. Thus, we can directly
apply it as Algorithm 2: ConditionalGMs(.), instead of another recursive ID-GEN (Y = S′,X = XZ , G,D, X̂, Ĝ)
call.

Proposition D.10. At any recursion level of Algorithm 1: ID-GEN (Y,X, G,D, X̂, Ĝ) and Algorithm 6: ID(Y,X, P,G)
, the execution step is determined by the values of the set of observed variables Y, the set of intervened variables X and
the causal graph G, at that recursion level.

Proof. To enter in steps [1-7] of ID-GEN and steps [1-7] of ID, specific graphical conditions are checked, which depend
only on the values of the parameters Y,X and G. If that graphical condition is satisfied, both algorithms enter in their
corresponding steps. Thus, the execution step of each algorithm at any recursive level is determined by only Y,X and
G.

Lemma D.11. (Recursive trace) At any recursion level R, recursive call ID-GEN (Y,X,D, G, X̂, Ĝ) enters Step i if and
only if recursive call ID(Y,X, P,G) enters Step i, for any i ∈ [7]

Proof. Suppose, both algorithms start with an input causal query Px(y) for a given graph G. For this query, the parameters
Y,X, G of ID(Y,X, P,G) and ID-GEN (Y,X, X̂′,D, G) represent the same objects: the set of observed variables Y,
the set of intervened variables X and the causal graph G. According to Proposition D.10, Algorithm 1: ID-GEN and
Algorithm 6: ID only check these 3 parameters to enter into any steps and decide the next recursive step. Thus, we use
proof by induction based on these 3 parameters to prove our statement.

Induction base case (recursion level R = 0): Both algorithms start with the same input causal query Px(y) in G, i.e.,
the same parameter set Y,X, G. We show that at recursion level R = 0, ID-GEN enters step i if and only if ID enters step
i for any i ∈ [7].

Step 1: Both ID and ID-GEN check if the intervention set X is empty and go to step 1. Thus, ID-GEN enters step 1 iff ID
enters step 1.

16

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Step 2: If the condition for step 1 is not satisfied, then both ID and ID-GEN check if there exist any non-ancestor variables
of Y: V \An(Y)G in the graph to enter in their corresponding step 2. Thus, with the same Y and G, ID-GEN enters step
2 iff ID enters step 2.

Step 3: If conditions for Steps [1-2] are not satisfied, both ID and ID-GEN check if W is an empty set for W = (V \X)\
An(Y)GX

to enter in their corresponding step 3. Since both algorithms have the same Y,X and G, ID-GEN enters step 3
iff ID enters step 3.

Step 4: If conditions for Steps [1-3] are not satisfied, both ID and ID-GEN check if they can partition the variables set
C(G \X) into k (multiple) c-components. Since these condition checks depend on X and G and both have the same input
X and G, ID-GEN enters step 4 iff ID enters step 4.

Step 5: If conditions for Steps [1-4] are not satisfied, both algorithms check if C(G\X) = {S} and C(G) = {G} to enter
their corresponding step 5. Since both have the same X and G, ID-GEN enters step 5 iff ID enters step 5.

Step 6: If the conditions of Steps [1-5] are not satisfied, ID and ID-GEN check if C(G \X) = {S} and S ∈ C(G), to
enter their corresponding step 6. Since both have the same X and G, ID-GEN enters step 6 iff ID enters step 6.

Step 7: If conditions for Steps [1-6] are not satisfied, both ID and ID-GEN check if C(G \X) = {S} and (∃S′) such that
S ⊂ S′ ∈ C(G) to enter their corresponding step 7. Since both have the same X and G, both will satisfy this condition
and enter this step. Thus, ID-GEN enters step 7 iff ID enters step 7.

Induction Hypothesis: We assume that for recursion levels R = 1, . . . , r, ID-GEN and ID follow the same steps at each
recursion level and maintain the same values for the parameter set Y,X and G.

Inductive steps: Both algorithms have the same set of parameters Y,X, G and they are at the same step i at the current
recursion level R = r. As inductive step, we show that with the same values of the parameter set Y,X and G at recursion
level R = r, ID-GEN and ID will visit the same step at recursion level R = r + 1.

Step 1: Step 1 is a base case of both algorithms. After entering into step 1 with X = ∅, ID estimates
∑

v\y P (v) and ends

the recursion. ID-GEN also ends the recursion after training a set of conditional models MVi(V
(i−1)
π) ∼ P (vi|v(i−1)

π).
Thus, ID-GEN goes to the same step at recursion level R = r+1 iff ID goes to the same step which in this case is Return.

Step 2: At step 2, both ID-GEN and ID update their intervention set X as X∩An(Y)G and the causal graph G as GAn(Y).
The same values of the parameters X,Y and G will lead both algorithms to the same step at the recursion level R = r+1.
Thus, at recursion level R = r + 1, ID-GEN visits step i iff ID visits step i, ∀i ∈ [7].

Step 3: At step 3, both algorithms only update the intervention set parameter X as X = X ∪W and perform the next
recursive call. Since they leave for the next recursive call with the same set of parameters, at recursion level R = r + 1,
ID-GEN visits step i iff ID visits step i, ∀i ∈ [7].

Step 4: At step 4, both ID-GEN and ID partition the variables set C(G \X) into k (multiple) c-components. Then they
perform a recursive call for each c-component with parameter Y = Si and X = V \ Si. For each of these k recursive
calls, both algorithms use the same values for the parameter set Y,X and G. Thus, at recursion level R = r + 1, ID-GEN
visits step i iff ID visits step i, ∀i ∈ [7].

Step 5: Step 5 is a base case for both algorithms, and if both algorithms are at step 5, they return FAIL. This step represents
the non-identifiability case. Thus, ID-GEN goes to the same step at recursion level R = r+1 iff ID goes to the same step,
which in this case is Return.

Step 6: Step 6 is a base case for both algorithms. ID calculates the product of a set of conditional distributions P (vi|vi−1
π)

and returns it. While ID-GEN trains conditional models MVi(V
(i−1)
π) to learn those conditional distributions, ID-GEN

returns a sampling network after connecting these models. Both algorithms end the recursion here and return different
objects but that will not affect their future trace. Thus, ID-GEN goes to the same step at recursion level R = r + 1 iff ID
goes to the same step which in this case is Return.

Step 7: ID algorithm at step 7, updates its distribution parameter P with Pxz(S
′). On the other hand, ID-GEN generates

do(XZ) interventional samples. Both algorithms update their parameters set Y,X and G in the same way as Y = Y,X =
X ∩ S′ (or X \XZ since X ∩ S′ = X \XZ) and G = GS′ . Since they leave for the next recursive call with the same set
of parameters Y,X, G, at recursion level R = r + 1, ID-GEN visits step i iff ID visits step i, ∀i ∈ [7].

17

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Lemma D.21:
M() samples correctly

from joint dist.

Lemma D.15:
ID-GEN data sampled from

same distribution as ID

Lemma D.13:
Same graph
G as ID

Lemma D.14:
ID and ID-GEN’s relation

with input P (V)

Lemma D.11:
Same recursive

trace as ID

Lemma D.17:
Correctness of
Step 1 (Base)

Lemma D.18:
Correctness of
Step 6 (Base)

Lemma D.20:
Sampling net
follows Gπ

Theorem D.22:
ID-GEN

soundness

Lemma D.16:
Correctness of

Fail Case

Theorem D.23:
ID-GEN

completeness

Lemma D.12:
ID-GEN

Termination

Figure 8. Flow Chart of Proofs

Therefore, we have proved by induction that ID-GEN (Y,X, G,D, X̂, Ĝ) enters Step i if and only if ID(Y,X, P,G)
enters Step i, for any i ∈ [7] for any recursion level R.

Lemma D.12. Termination: Let Px(Y) be a query for causal graph G = (V, E) and D ∼ P (V). Then the recursions
induced by ID-GEN (Y,X, G,D, X̂, Ĝ) terminate in either step 1, 5, or 6.

Proof. The result follows directly from Lemma D.11: Consider any causal query Px(Y). Since ID is complete, the query
– whether it is identifiable or not – terminates in one of the steps 1, 5, or 6. By Lemma D.11, ID-GEN follows the same
steps as ID, and hence also terminates in one of these steps.

Lemma D.13. Consider the recursive calls ID(∗, GID) and ID-GEN(∗, GID-GEN, X̂, Ĝ) at any level of the recursion.
Then GID = GID-GEN and GID = Ĝ \ X̂.

Proof. According to Lemma D.11, ID and ID-GEN follow the same recursive trace. Thus, at any recursion level, both
algorithms will stay at step i ∈ [7].

Base case: At recursion level R = 0, both ID and ID-GEN start with the same input causal graph G. Thus, GID =
GID-GEN = Ĝ = G. Also at R = 0, the set of intervened variables X̂ = ∅. Thus, GID = Ĝ \ ∅ = G holds.

Induction hypothesis: At any recursion level R = r, let Gr
ID be the graph parameter of the ID algorithm and

{Gr
ID-GEN, X̂

r, Ĝr} be the parameters for the ID-GEN algorithm. We assume that Gr
ID = Gr

ID-GEN and Gr
ID = Ĝr \ X̂r.

Inductive step: The set of parameters {GID-GEN, X̂, Ĝ} of ID-GEN and the graph parameter G of ID are only updated at
step 2 and step 7 for the next recursive calls. Thus, we prove the claim for these two steps separately.

At step 2: In both ID and ID-GEN algorithms, we remove the non-ancestor variables V \ An(Y) from the graph. For
ID, Gr+1

ID = Gr
ID(An(Y)). For the ID-GEN algorithm, we obtain Gr+1

ID-GEN = Gr
ID-GEN(An(Y)). Thus, Gr+1

ID = Gr+1
ID-GEN.

In ID-GEN, we also update Ĝr+1 as Ĝr+1 = Ĝr(An(Y)). Since removing non-ancestor does not affect the intervened
variables X̂ anyway, the same relation between Gr+1

ID and Ĝr+1 is maintained, i.e., Gr+1
ID = Ĝr+1 \ X̂.

At step 7: Both ID and ID-GEN finds XZ = X \ S′ and apply do(XZ) as intervention. Also, in ID-GEN, X̂r+1 is set to
X̂r ∪XZ .

For ID-GEN:

Since XZ is intervened on, Gr for ID-GEN is updated as Gr+1 = Gr
XZ

and Ĝr is updated as Ĝr+1 = Ĝr
XZ

.

Now, XZ has all incoming edges are cut off in Gr+1 and does not have any parents. As a result, removing XZ from
Gr+1 is valid. Thus, we obtain Gr+1 = Gr+1 \XZ = Gr

XZ
\XZ = Gr

S′ . However, for the other graph parameter, we

18

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

keep Ĝr+1 = Ĝr
XZ

as it is, since we would follow this structure in the base cases and consider XZ while training the

conditional models. Note that, in Ĝr the intervened variables X̂r (before recursion level r) had already incoming edges
removed. Thus, after X̂r being updated as X̂r+1 = X̂r ∪XZ , we can write Ĝr+1 = Ĝr

XZ
= Ĝr

X̂r+1
. Since by inductive

assumption, Gr = Ĝr \ X̂r, thus

Gr+1 = Ĝr+1 \ {X̂r ∪XZ} = Ĝr+1 \ {X̂r+1} (2)

For ID:

ID algorithm updates its parameters G as Gr+1 = Gr
S′ = Gr \XZ . Since ID-GEN and ID have the same graph parameter

at recursion level r, i.e, Gr
ID = Gr

ID-GEN and they updated the parameter in the same way, Gr+1
ID = Gr+1

ID-GEN holds true.
Since Gr+1

ID-GEN = Ĝr+1 \ {X̂r+1} according to Equation 2, we also obtain Gr+1
ID = Ĝr+1 \ {X̂r+1}.

Therefore, the lemma holds for any recursion level R.

Lemma D.14. Let P (.) be the input observational distribution to the ID algorithm and D ∼ P (.) be the input ob-
servational dataset to the ID-GEN algorithm. Suppose, X̂ is the set of variables that are intervened at step 7 of both
the ID and ID-GEN algorithm from recursion level R = 0 to R = r. Consider recursive calls ID(∗, PID(v)) and
ID-GEN(∗,D, ∗, X̂, Ĝ) at recursion level R = r. Then PID = Px̂(v) and D[X̂,V] ∼ Px̂(x̂,v).

Proof. According to Lemma D.11, ID and ID-GEN follow the same recursive trace. Thus, at any recursion level, both
algorithms will stay at step i ∈ [7].

Base case: At recursion level R = 0, ID starts with the observational distribution P and ID-GEN starts with the observa-
tional training dataset D ∼ P . At R = 0, X̂ = ∅ since no variables have yet been intervened on. Thus, for ID algorithm
PID = P∅(V) holds. For ID-GEN, D[∅,V] ∼ P∅(∅,V) holds. Thus, the claim is true for R = 0.

Induction hypothesis: Let the set of variables intervened at step 7s from the recursion level R = 0 to R = r, be X̂r. At
R = r, let the distribution parameter of the ID algorithm be P r

ID = Px̂r (v). Let the dataset parameter of the ID-GEN
algorithm be sampled from Px̂r (x̂r,v), i.e, Dr ∼ Px̂r (x̂r,v).

Inductive step: The distribution parameter P of ID and the dataset parameterD of ID-GEN only change at step 2 and step
7 for the next recursive calls. Thus, we prove the claim for these two steps separately.

At step 2: At step 2 of both ID and ID-GEN algorithms, there is no change in X̂, i.e., no additional variables are intervened
to change the distribution P or the dataset D.

At this step, we marginalize over V \ An(Y). Since X̂ ⊂ An(Y)Ĝ, marginalizing non-ancestors out does not impact
X̂. Thus, P r+1

ID (An(Y)) =
∑

V\An(Y)G
P r
ID(v) =

∑
V\An(Y)G

Px̂r (v) = Px̂r (An(Y)). This holds true since we can
marginalize over V \An(Y)G in the joint interventional distribution.

In the ID-GEN algorithm, we drop the values of variables V \ An(Y)G from the data set, that is, Dr[X̂,V] →
Dr+1[X̂, An(Y)G]. Since we assumed Dr[X̂,V] ∼ Px̂r (x̂r,v), therefore Dr+1[X̂, An(Y)G] ∼ Px̂r (An(Y)) holds.

At step 7: At step 7, both ID and ID-GEN algorithm intervened on variable set XZ where XZ = X \ S′. Thus, at level
R = r + 1, we have X̂r+1 = X̂r ∪XZ . Note that at this step, S′ = V \XZ .

ID algorithm updates its current distribution parameter P r
ID by intervening on XZ . Thus, at level R = r + 1,

P r+1
ID (v \ xZ) = P r+1

ID (s′) = P r
ID(v|do(xZ)) = Px̂r (v|do(xZ)) = Px̂r∪xZ

(s′) = Px̂r+1(s′). Thus the claim holds
for ID algorithm at level R = r + 1.

In the ID-GEN algorithm, we generate an interventional dataset Dr+1[XZ , X̂, S′] by applying the do(XZ) interven-
tion on dataset Dr[X̂,V]. Since Dr[X̂r,V] ∼ Px̂r (x̂r,v), we obtain Dr+1[XZ , X̂

r, S′] ∼ Px̂r∪xz
(x̂r,xz, s

′)

=⇒ Dr+1[X̂r+1, S′] ∼ Px̂r+1(x̂r+1, s′). Thus, the claim holds true for ID-GEN at the recursion level R = r + 1.

Therefore, P (.) being the input distribution for ID and D ∼ P (.) being the input dataset for ID-GEN, we proved by
induction that PID = Px̂(v) and D[X̂,V] ∼ Px̂(x̂,v) at any recursion level.

19

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Lemma D.21:
M() samples correctly

from joint dist.

Lemma D.15:
ID-GEN data sampled from

same distribution as ID

Lemma D.13:
Same graph
G as ID

Lemma D.14:
ID and ID-GEN’s relation

with input P (V)

Lemma D.11:
Same recursive

trace as ID

Lemma D.17:
Correctness of
Step 1 (Base)

Lemma D.18:
Correctness of
Step 6 (Base)

Lemma D.20:
Sampling net
follows Gπ

Theorem D.22:
ID-GEN

soundness

Lemma D.16:
Correctness of

Fail Case

Theorem D.23:
ID-GEN

completeness

Lemma D.12:
ID-GEN

Termination

Figure 9. Flow Chart of Proofs

Lemma D.15. Consider recursive calls ID(Y,X, G, PID(v)) and ID-GEN (Y,X, G,D, X̂, Ĝ) at any recursion level
R. If D[X̂, V] ∼ PID-GEN(x̂,v), thenPID(v) = PID-GEN(v|x̂) for fixed values of X̂ = x̂.

Proof. At any level R = r of the recursion , we have GID = GID-GEN and GID = Ĝ \ X̂ according to Lemma D.13 and
PID = Px̂(v) and D[X̂,V] ∼ Px̂(x̂,v) according to Lemma D.14 where P (v) is the input observational distribution.

Let D[X̂,V] ∼ Px̂(x̂,v) = PID-GEN(x̂,v),∀x̂.

Now, since in Ĝ we have already intervened on X̂, for fixed X̂ = x̂, we have Px̂(x̂,v) = Px̂(x̂) ∗ Px̂(v|x̂) = Px̂(v|x̂),
thus V will be sampled from PID-GEN(v|x̂) for fixed consistent X̂ = x̂.

On the other hand, in the ID algorithm, at any recursion level, PID(v) = Px̂(v) for fixed consistent X̂ = x̂ and GID =

Ĝ \ X̂.

Since according to Lemma D.14, PID = Px̂(v) and D[X̂,V] ∼ Px̂(x̂,v) at any recursion level, i.e., starting from the
same P (V), the same set of interventions are performed in the same manner in both algorithms; thus for fixed X̂ = x̂, we
obtain PID(v) = PID-GEN(v|x̂) .

Lemma D.16. If a non-identifiable query is passed to it, ID-GEN will return FAIL.

Proof. Suppose ID-GEN is given a non-identifiable query as input. Since the ID algorithm is complete, if ID is given this
query, it will reach its step 5 and return FAIL. According to the lemma D.11, ID-GEN follows the same trace and the same
sequence of steps as ID for a fixed input. Since for the non-identifiable query ID reaches step 5, ID-GEN will also reach
step 5 and return FAIL.

Lemma D.17. ID-GEN Base case (step 1):

Let, at any recursion level of ID-GEN, the input dataset D[X̂,V] is sampled from a specific joint distribution P (X̂,V),
i.e., D[X̂,V] ∼ P (X̂,V) where X̂ is the set of intervened variables at step 7s. Given a target interventional query P (y)

over a causal graph G = (V,E), suppose ID-GEN (Y,X = ∅, G,D, X̂, Ĝ) enters step 1 and returns H. Then H is a
valid sampling network for P (y) with fixed consistent X̂ = x̂.

Proof. Since the intervention set X is empty, we are at the base case step 1 of ID-GEN. Suppose that for the same query,
the ID algorithm reaches step 1. Let PID(v) be the current distribution of the ID algorithm after performing a series
of marginalizations in step 2 and intervention in step 7 on the input observational distribution. D[X̂,V] is the dataset
parameter of ID-GEN algorithm that went through the same transformations as the ID algorithm in the sample space
according to Lemma D.15. X̂ is the set of interventions that are applied on the dataset at step 7s.

20

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Since ID algorithm is sound it returns correct output for the query P (y). We prove the soundness of ID-GEN step 1 by
showing that the sampling network ID-GEN returns, is valid for the output of the ID algorithm.

ID algorithm is sound and factorizes PID(v) with respect to the graph G as below.

PID(v) =
∏
vi∈V

P (vi|v(i−1)
πG

)

And obtains PID(y) by:
PID(y) =

∑
v\y

∏
vi∈V

P (vi|v(i−1)
πG

) (3)

Let D[X̂,V] ∼ PID-GEN(x̂,v) = P (x̂,v),∀(x̂,v). For fixed X̂ = x̂, PID-GEN(v|x̂) can be factorized with respect to G
and Ĝ as following:

PID-GEN(v|x̂) =
∏
vi∈V

P (vi|v(i−1)
πG

, x̂)

=
∏
vi∈V

P (vi|v(i−1)
πĜ

)

[Changed the graph from G to Ĝ since X̂ ∈ Ĝ and only affects the descendants of X̂.]

And PID-GEN(y|x̂) can be obtained by:

PID-GEN(y|x̂) =
∑
v\y

∏
vi∈V

P (vi|v(i−1)
πĜ

) (4)

Since for fixed X̂ = x̂, PID(v) = PID-GEN(v|x̂) according to Lemma D.15. Thus, the corresponding conditional dis-
tributions in Equation 3 and 4 are equal, i.e, PID(vi|v(i−1)

πG) = PID-GEN(vi|v(i−1)
πĜ

),∀{i|Vi ∈ V}. Therefore, PID(y)
and PID-GEN(y|x̂) having the same factorization and the corresponding conditional distributions being equal implies that
PID(y) = PID-GEN(y|x̂).

Now, based on Assumption D.5, ID-GEN learns to sample from each conditional distribution PID-GEN(vi|v(i−1)
π , v

(i−1)
πĜ

) of
the product in Equation 4, by training a conditional model MVi

on samples from the dataset D[X̂,V] ∼ P (x̂,v).

For each Vi, we add a node containing Vi and its associated conditional generative model MVi to a sampling network. This
produces a sampling network H that is a DAG, where each variable Vi ∈ V has a sampling mechanism. By factorization
and Assumption D.5, ancestral sampling from this sampling graph produces samples from PID-GEN(v|x̂). We can drop
values of V \ Y to obtain the samples from PID-GEN(y|x̂). Since PID(v) = PID-GEN(v|x̂), both factorized in the same
manner and MVi

learned conditional distribution of ID-GEN’s factorization, the sampling network returned by ID-GEN,
will correctly sample from the distribution PID(y) returned by the ID algorithm for fixed X̂ = x̂. Thus, the sampling
network returned by ID-GEN is valid for P (y).

Lemma D.18. ID-GEN Base case (step 6): Let, at any recursion level of ID-GEN, the input dataset D[X̂,V] is sampled
from a specific joint distribution P (X̂,V), i.e., D[X̂,V] ∼ P (X̂,V) where X̂ is the set of intervened variables at step 7s.
Given an identifiable interventional query Px(y) over a causal graph G = (V,E), suppose ID-GEN (Y,X, G,D, X̂, Ĝ)

immediately enters step 6 and returnsH. ThenH is a valid sampling network for Px(y) with fixed consistent X̂ = x̂.

Proof. By Lemma D.11, both ID-GEN (Y,X, G,D, X̂, Ĝ) and ID(Y,X, P,G) enter the same base case step 6. By the
condition of step 6, G \X has only one c-component {S}, where S ∈ C(G).

Let P (v) be the current distribution of the ID algorithm after performing a series of marginalizations in step 2 and inter-
vention in step 7 on the input observational distribution. Let D[X̂,V] ∼ P ′(x̂,v) be the dataset parameter of ID-GEN
algorithm that went through the same transformations as the ID algorithm in the sample space. X̂ is the set of interventions

21

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

that are applied on the dataset at step 7s. According to Lemma D.15 for fixed values of X̂ = x̂, P (v) = P ′(v|x̂) holds
true at any recursion level.

Since ID algorithm is sound it returns correct output for the query Px(y). We prove the soundness of ID-GEN step 6 by
showing that the sampling network ID-GEN returns, is valid for the output of the ID algorithm.

With the joint distribution P (v), the soundness of ID implies that

Px(y) =
∑
S\Y

∏
{i|Vi∈S}

P (vi|v(i−1)
πG

) (5)

where πG is a topological ordering for G.

With the joint distribution P ′(v|x̂), ID-GEN can factorize P ′
x(y|x) in the same manner:

P ′
x(y|x̂) =

∑
S\Y

∏
{i|Vi∈S}

P ′(vi|v(i−1)
πG

, x̂)

=
∑
S\Y

∏
{i|Vi∈S}

P ′(vi|v(i−1)
πĜ

)

[Changed the graph from G to Ĝ since X̂ ∈ Ĝ and only affects the descendants of X̂.]

(6)

Since P (v) = P ′(v|x̂), the corresponding conditional distributions in Equation 5 and 6 are equal, i.e, P (vi|v(i−1)
πG) =

P ′(vi|v(i−1)
πĜ

),∀{i|Vi ∈ S}. Therefore, Px(y) and P ′
x(y|x̂) having the same factorization and the corresponding condi-

tional distributions being equal implies that Px(y) = P ′
x(y|x̂).

ID-GEN operates in this case by training, from joint samples D[X̂, V], a model to correctly sample each P ′(vi | v(i−1)
πĜ

)

term, i.e., we learn a conditional generative model MVi
(V

(i−1)
πĜ

) which produces samples from P ′(vi | v(i−1)
πĜ

), which we
can do according to Assumption D.5. Then we construct a sampling network H by creating a node Vi with a sampling
mechanism MVi for each Vi ∈ S. We add edges from Vj → Vi for each Vj ∈ V

(i−1)
πĜ

. Since every vertex in Ĝ is either in
S or in X∪ X̂, every edge either connects to a previously constructed node or a variable in X∪ X̂. Since we already have
fixed values for X̂ = x̂, when we specify values for X and sample according to topological order πĜ, this sampling graph
provides samples from the distribution

∏
{i|Vi∈S} P

′(vi|v(i−1)
πĜ

), i.e. P ′
x(s|x̂).

Since, as shown earlier, P ′
x(s|x̂) = Px(s), samples from the sampling network H is consistent with Px(s) as well. We

obtain samples from Px(y) by dropping the values of S\Y from the samples obtained from Px(s). We assert the remaining
conditions to show that this sampling network is correct for Px(y): certainly this graph is a DAG and every v ∈ S has a
conditional generative model inH. By the conditions to enter step 6, Ĝ = S ∪X ∪ X̂ and S ∩ {X ∪ X̂} = ∅. Then every
node inH is either in S or is in X∪ X̂: hence the only nodes without sampling mechanisms are those in X∪ X̂ as desired.
Therefore, when X̂ is fixed as x̂,H is a valid sampling network for Px(y).

Proposition D.19. At any level of the recurison, the graph parameters G and Ĝ in ID-GEN (Y,X, G,D, X̂, Ĝ) have the
same topological order excluding X̂.

Proof. Let πG be the topological order of G and πĜ be the topological order of Ĝ. At the beginning of the algorithm
G = Ĝ. Thus, πG = πĜ. According to the lemma D.13, at any level of recursion, GID = GID-GEN and GID = Ĝ \ X̂.
Thus, we have G = GID-GEN = GID = Ĝ \ X̂. Therefore, πG = πĜ\X̂.

Lemma D.20. LetH be a sampling network produced by ID-GEN from an identifiable query Px(y) over a graph G. If G
has the topological ordering π, then every edge in the sampling graph ofH adheres to the ordering π.

Proof. We consider two factors: which edges are added, and with respect to which graphs. Since the only base cases
ID-GEN enters are steps 1 and 6, the only edges added are consistent with the topological ordering π for the graph that
was supplied as an argument to these base case calls. The only graph modifications occur in steps 2 and 7, and these yield

22

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Lemma D.21:
M() samples correctly

from joint dist.

Lemma D.15:
ID-GEN data sampled from

same distribution as ID

Lemma D.13:
Same graph
G as ID

Lemma D.14:
ID and ID-GEN’s relation

with input P (V)

Lemma D.11:
Same recursive

trace as ID

Lemma D.17:
Correctness of
Step 1 (Base)

Lemma D.18:
Correctness of
Step 6 (Base)

Lemma D.20:
Sampling net
follows Gπ

Theorem D.22:
ID-GEN

soundness

Lemma D.16:
Correctness of

Fail Case

Theorem D.23:
ID-GEN

completeness

Lemma D.12:
ID-GEN

Termination

Figure 10. Flow Chart of Proofs

subgraphs of G. Thus the original topological ordering π for graph G is a valid topological ordering for each restriction of
G. Therefore any edge added toH is consistent with the global topological ordering Π.

Lemma D.21. Let H be a sampling network for random variables {V1, V2, . . . Vn} formed by a collection of conditional
generative models MVi

relative to P (v) for all Vi. Then the tuple (V1, V2 . . . Vn) obtained by sequentially evaluating each
conditional generative model relative to the topological order of the sampling graph is a sample from the joint distribution
ΠiPi(vi|pai).

Proof. Without loss of generality, let (V1, V2, . . . , VN) be a total order that is consistent with the topological ordering
over the nodes in G. To attain a sample from the joint distribution, sample each Vi in order. When sampling Vj , each Vi

for all i < j is already sampled, which is a superset of Paj (the inputs to MVj
) by definition of topological orderings.

Thus, all inputs to every conditional generative model MVj
are available during sampling. Since each Vj is conditionally

independent of Vi ̸∈ Paj , the joint distribution factorizes as given in the claim.

Theorem D.22. ID-GEN Soundness: Let Px(y) be an identifiable query given the causal graph G = (V,E) and that we
have access to joint samples D ∼ P (v). Then the sampling network returned by ID-GEN (Y,X, G,D, X̂, Ĝ) correctly
samples from Px(y) under Assumption D.5.

Proof sketch: Suppose that Px(y) is the input causal query and Assumptions D.3, D.4, D.5, D.6 hold. The soundness of
ID-GEN implies that if the trained conditional models converge to (near) optimality, ID-GEN returns the correct samples
from Px(y). For each step of the ID algorithm that deals with probabilities of discrete variables, multiple actions are
performed in the corresponding step of ID-GEN to correctly train conditional models to sample from the corresponding
distributions. ID-GEN merges these conditional models according to the topological order of G, to build the final sampling
network H. Therefore, according to structural induction, when we intervened on X and perform ancestral sampling in H
each model in the sampling network will contribute correctly to generate samples from Px(y).

Proof. We proceed by structural induction. We start from the base cases, i.e., the steps that do not call ID-GEN again.
ID-GEN only has three base cases: step 1 is the case when no variables are being intervened upon and is covered by
Lemma D.17; step 6 is the other base case and is covered by Lemma D.18; step 5 is the non-identifiable case and since we
assumed that Px(y) is identifiable, we can skip ID-GEN’s step 5.

The structure of our proof is as follows. By the assumption that Px(y) is identifiable and due to Lemma D.12, its recursions
must terminate in steps 1 or 6. Since we have already proven correctness for these cases, we use these as base cases for a
structural induction. We prove that if ID-GEN enters any of step 2, 3, 4 or 7, under the inductive assumption that we have
correct sampling network for the recursive calls, we can produce a correct overall sampling network. The general flavor
of these inductive steps adheres to the following recipe: i) determine the corresponding recursive call that ID algorithm
makes; ii) argue that we can generate the correct dataset to be analogous to the distribution that ID uses in the recursion;
iii) rely on the inductive assumption that the generated DAG from ID-GEN’s recursion is correct.

23

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

We consider each recursive case separately. We start with step 2. Suppose ID-GEN (Y,X, G,D, X̂, Ĝ) enters step 2,
then according to Lemma D.11, ID(Y,X, P,G) enters step 2 as well. Hence the correct distribution to sample from is
provided by ID step 2:

Px(y) = ID(Y,X ∩An(Y)G,
∑

V\An(Y)G

P (v), GAn(Y)).

Now, according to Lemma D.15, at the current step, the dataset D of ID-GEN is sampled from a distribution P ′(v|x̂) such
that for fixed values of X̂ = x̂, P (v) = P ′(v|x̂) holds true. Following our recipe, we need to update the dataset D such
that it is sampled from

∑
V \An(Y)G

P (v) =
∑

V \An(Y)G
P ′(v|x̂). We do this by dropping all non-ancestor variables of

Y (in the graph G) from the dataset D, thereby attaining samples from the joint distribution
∑

V\An(Y)G
P (v). Since

Ĝ is used at the base case, we update it as ĜAn(Y), the same as GAn(Y) to propagate the correct graph at the next step.
Therefore, we can generate the sampling network from ID-GEN(Y,X ∩ An(Y)G, GAn(Y),D[An(Y)], X̂, ĜAn(Y)) by
the inductive assumption and simply return it.

Next, we consider step 3. Suppose ID-GEN (Y,X, G,D, X̂, Ĝ) enters step 3. Then by Lemma D.11, ID(Y,X, P,G)
enters step 3, and the correct distribution to sample from is provided from ID step 3 as

Px(y) = ID(Y,X ∪W,P,G)

where W := (V \ X) \ An(Y)GX
. Since the distribution passed to the recursive call is P , we can simply return the

sampling graph generated by ID-GEN (Y,X, G,D, X̂, Ĝ), which we know is correct for PX∪W(Y) by the inductive
assumption. Thus, the returned sampling network by ID-GEN can sample from Px(y). While we do need to specify
a sampling mechanism for W to satisfy our definition of a valid sampling network, this can be chosen arbitrarily, say
W ∼ P (w) or uniform the distribution.

Next we consider step 4. Suppose ID-GEN (Y,X, G,D, X̂, Ĝ) enters step 4. Then by Lemma D.11, ID(Y,X, P,G)
enters step 4 and the correct distribution to sample from is provided from ID step 4 as:∑

V \(y∪x)

∏
i

ID(si, v \ si, P,G)

where Si are the c-components of G \X, i.e., elements of C(G \X). By the inductive assumption, we can sample from
each term in the product with the sampling network returned by ID-GEN(Si,X = V \ Si, G,D, X̂, Ĝ). However, recall
the output of ID-GEN: ID-GEN returns a ‘headless’ (no conditional models for X) sampling network as follows:

ID-GEN (Y,X, G,D, X̂, Ĝ) returns a sampling network, i.e., a collection of conditional generative models where for
each variable in G and every variable except those in X have a specified conditional generative model. To sample from
this sampling network, values for X must first be specified. In the step 4 case, the values v \ si need to be provided to
sample values for Si, and similarly for i ̸= j, values v \ sj are needed to sample values for Sj . Since Si ⊆ (V \ Sj) and
Sj ⊆ (V \Si), it might lead to cycles (as shown in Example 4.1) if we attempt to generate samples for each c-components
sequentially. Thus, it does not suffice to sample from each c-component sequentially or separately.

Note that, Hi is the correct sampling network corresponding to ID-GEN(Si,X = V \ Si, G,D, X̂, Ĝ) by definition,
for each node Vi ∈ Si, Vi has a conditional generative model in Hi. By Lemma D.20, each edge in Hi adheres to the
topological ordering πG (at the current level). Hence, if we apply MergeNetwork(.) to construct a graph H from
{Hi}i, it will also adhere to the original topological ordering πG. Thus,H is a DAG.

Since every node Vi in G \ X has a conditional generative model in some Hi, the only nodes in combined H without
conditional generative models are those in X. Finally, since each node in H samples the correct conditional distribution
by the inductive assumption, H samples from the product distribution Px(y) corretly. The sum

∑
v\(y∪x) can be safely

ignored now and can be applied later since the sample values of the marginalized variables (v \ (y ∪ x)) can be dropped
from the joint at the end of the algorithm to attain samples values of the remaining variables. HenceH is correct for Px(y).

Step 5 can never happen by the assumption that Px(y) is identifiable, and step 6 has already been covered as a base case.
The only step remaining is step 7.

Lemma D.11 says, ID-GEN (Y,X, G,D, X̂, Ĝ) enters step 7 by the same conditions ID(Y,X, P,G) enters step 7. Then
by assumption, C(G \X) = {S} and there exists a confounding component S′ ∈ C(G) such that S ⊂ S′. The correct

24

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Lemma D.21:
M() samples correctly

from joint dist.

Lemma D.15:
ID-GEN data sampled from

same distribution as ID

Lemma D.13:
Same graph
G as ID

Lemma D.14:
ID and ID-GEN’s relation

with input P (V)

Lemma D.11:
Same recursive

trace as ID

Lemma D.17:
Correctness of
Step 1 (Base)

Lemma D.18:
Correctness of
Step 6 (Base)

Lemma D.20:
Sampling net
follows Gπ

Theorem D.22:
ID-GEN

soundness

Lemma D.16:
Correctness of

Fail Case

Theorem D.23:
ID-GEN

completeness

Lemma D.12:
ID-GEN

Termination

Figure 11. Flow Chart of Proofs

distribution to sample from is provided from ID step 7 as

Px(y) = ID(Y,X ∩ S′, P ′, GS′)

where
P ′ :=

∏
{i|Vi∈S′}

P (Vi|V (i−1)
π ∩ S′, v(i−1)

π \ S′).

Examining ID algorithm more closely, if we enter step 7 during ID, the interventional set X is partitioned into two com-
ponents: X ∩ S′ and XZ := X \ S′. From Lemmas 33 and 37 of Shpitser & Pearl (2008), in the event we enter step 7,
Px(y) is equivalent to P ′

x∩S′(y) where P ′(v) = PxZ
(v). ID estimates PxZ

(v) with a similar computation as the step 6
base case.

To sample correctly in ID-GEN, we consider two cases.
i) X̂ = ∅: When ID-GEN visits step 7 for the first time, we have X̂ = ∅. In that case, we first update our dataset D[V] ∼
P (v) to samples from D′ ∼ PxZ

(v), and then we recurse on the query P ′
x∩S′(y) over the graph GS′ . Also, XZ is outside

the c-component S′. Therefore we generate a dataset fromD′ ∼ PxZ
(S′) via running directly the ConditionalGMs(.)

of the ID-GEN algorithm, Algorithm 2: ConditionalGMs(S′, XZ , G,D, X̂, Ĝ). This is attainable via the inductive
assumption and Lemma D.12. The only divergence from ID during the generation of D′ is that ID presumes pre-specified
fixed values for XZ , where we train a sampling mechanism that is agnostic a priori to the specific choice of XZ . To
sidestep this issue, we generate a dataset with all possible values of XZ and be sure to record the values of XZ in the
dataset D′[XZ , S

′].

ii) X̂ ̸= ∅: When ID-GEN has visited step 7 already once and thus X̂ ̸= ∅. We consider X̂ along with XZ when generating
D′ this time. More precisely, we update our dataset D[X̂,V] ∼ P (x̂,v) to samples from D′ ∼ PxZ∪x̂(xz, x̂,v). Rest of
the steps follow similarly as the above case. We record the new XZ in X̂ and carry them in D′[X̂, S′] and Ĝ.

Next, we need to map the recursive call ID(Y,X ∩ S′, P ′, G) to ID-GEN. ID-GEN sends the same parameters Y,X ∩
S′ and G as ID. Now, equivalent to passing the distribution P ′ of ID, we pass the dataset D[X̂, S′] sampled from this
distribution, including the intervened values for X̂ used to obtain this dataset. According to Lemma D.15, this dataset is
sampled from P ′ if we fix to a specific value X̂ = x̂. Finally, ID algorithm uses specific value of XZ and then ignores
those variables from X and G for rest of the recursion. On the other hand, ID-GEN saves XZ in X̂ as X̂ = X̂ ∪XZ and
keeps X̂ connected to Ĝ with incoming edges cut, i.e., G

S′,X̂
for the next recursive calls since ID-GEN utilizes X̂ and the

topological order in Ĝ at the base cases (step 1 and 6). By the inductive assumption, we can generate a correct sampling
network from the call ID-GEN(Y,X \XZ , GS′ ,D[X̂, S], X̂, Ĝ

{S′,X̂}
), and hence the returned sampling graph is correct

for Px(y).

Since we have shown that every recursion of ID-GEN ultimately terminates in a base case, that all the base cases provide
correct sampling graphs, and that correct sampling graphs can be constructed in each step assuming the recursive calls are
correct, we conclude that ID-GEN returns the correct sampling graph for Px(y).

25

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Theorem D.23. ID-GEN is complete.

Proof. Suppose we are given a causal query Px(y) as input to sample from. We prove that if ID-GEN fails, then the query
Px(y) is non identifiable, implying that it is not possible to train conditional models on observational data and correctly
sample from the interventional distribution Px(y).

If ID-GEN reaches step 5, it returns FAIL. According to the lemma D.11, ID reaches at step 5 if and only if ID-GEN
reaches at step 5. Step 5 is also the FAIL case of the ID algorithm. Since ID is complete and returns FAIL at Step 5, the
query Px(y) is not identifiable.

E. Conditional interventional sampling
Conditional sampling: Given a conditional causal query Px(y|z), we sample from this conditional interventional query
by calling Algorithm 5: IDC-GEN. This function finds the maximal set α ⊂ Z such that we can apply rule-2 and move
α from conditioning set Z and add it to intervention set X . Precisely, Px(y|z) = Px∪α(y|z \ α) = Px∪α(y,z\α)

Px∪α(z\α) . Next,
Algorithm 1: ID-GEN(.) is called to obtain the sampling network that can sample from the interventional joint distribution
Px∪α(y, z \ α). We use the sampling network to generate samples D′ through feed-forward. A new conditional model
MY is trained on D′ that takes Z \ α and X ∪ α as input and outputs Y . Finally, we generate new samples with MY by
feeding input values such that Y ∼ Px∪α(y, z \ α) i.e, Y ∼ Px(y|z).
Theorem E.1 (Shpitser & Pearl (2008)). For any G and any conditional effect PX(Y |W) there exists a unique maximal
set Z = {Z ∈ W |PX(Y |W) = PX,Z(Y |W \ Z)} such that rule 2 applies to Z in G for PX(Y |W). In other words,
PX(Y |W) = PX,Z(Y |W \ Z).
Theorem E.2 (Shpitser & Pearl (2008)). Let PX(Y |W) be such that every W ∈ W has a back-door path to Y in G \X
given W \ {W}. Then PX(Y |W) is identifiable in G if and only if PX(Y,W) is identifiable in G.
Theorem E.3. IDC-GEN Soundness: Let PX(Y |Z) be an identifiable query given the causal graph G = (V,E) and that
we have access to joint samples D ∼ P (v). Then the sampling network returned by IDC-GEN (Y,X,Z,D, G) correctly
samples from PX(Y |Z) under Assumptions D.3, D.4, D.5, D.6.

Proof. The IDC algorithm is sound and complete based on Theorem E.1 and Theorem E.2. For sampling from the condi-
tional interventional query, we follow the same steps as the IDC algorithm in Algorithm 5: IDC-GEN and call the sound
and complete Algorithm 1:ID-GEN as sub-procedure. Therefore, IDC-GEN is sound and complete.

F. Experimental details
F.1. Training details and compute

We performed some of our experiments on a machine with an RTX-3090 GPU. We also performed some training on 2 A100
GPU’s which took roughly 9 hours for 1000 epochs. Training for baseline NCM took more than 50 hours to complete 1000
epochs. The baseline DCM took around 10 hours. When variables were low-dimensional discrete, it was quite fast and
took 10-20 minutes to finish all training and get convergence. We discuss more specifics about each experiment in their
individual sections.

F.1.1. REPRODUCIBILITY

For reproducibility purposes, we provide our anonimized source codes with instructions. Besides, we provided explana-
tions of each experiment along with model settings and hyperparameters. We provide the code to generate the Colored
MNIST dataset.

F.2. Napkin-MNIST dataset

Data Generation: First we consider a synthetic dataset imbued over the napkin graph. We consider variables
W1,W2, X, Y , where W1, X, Y are images derived from MNIST and W2 is a paired discrete variable. We introduce latent

26

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

confounders C, T , denoting color and thickness, where C can be any of {red, greed, blue, yellow,magenta, cyan}, and
T can be any of {thin, regular, thick}. Data generation proceeds as follows: first we sample latent C, T from the uniform
distribution. We color and reweight a random digit from MNIST to form W1. W2 only keeps the digit value in {0 . . . 9}
of W1 and a restriction of its color: if the color of W1 is red, green, or blue, W2’s color value is 0, and it is 1 otherwise.
X then picks a random MNIST image of the same digit as W2’s digit value (0-9), is colored according to W2’s color
value (0-1), and is reweighted according to the latent T . Then Y is the same original MNIST image as X , with the same
thickness but colored according to the latent C. Further, for every edge in the graph, we include a random noising process:
with probability 0.1, the information passed along is chosen in a uniformly random manner from the valid range.

Here we describe the data-generation procedure, and training setup for the Napkin-MNIST experiment in full detail.

F.2.1. DATA GENERATION PROCEDURE: DISCRETE CASE

As a warm-up, we outline the generation for the Napkin-MNIST dataset in a low-dimensional setting. When we consider
in the next section the high-dimensional case, we simply replace some of these discrete variables with MNIST images
which can be mapped back into this low-dimensional case.

We start by enumerating the joint distribution and the support of each marginal variable. First lets define the sets

• COLORS := {red, green, blue, yellow, magenta, cyan}.

• RG COLORS := {red, green}.

• THICKNESSES := {thin, regular, thick}.

• DIGITS := {0, . . . , 9}.

And then the definitions and support of each of the variables in our distribution:

• (Latent) Color ∈ COLORS.

• (Latent) Thickness ∈ THICKNESSES.

• W1 ∈ DIGITS× COLORS× THICKNESSES

• W2 ∈ DIGITS× RG COLORS.

• X ∈ DIGITS× COLORS× THICKNESSES

• Y ∈ DIGITS× COLORS× THICKNESSES

Now we describe the full data generation procedure. A key hyperparameter is a noise-probability p. This defines the
probability that any variable flips to a uniform probability. To ease notation, we define the function ηp(v, S) defined as

ηp(v, S) :=

{
v with probability 1− p

U(S) otherwise

and we define the mapping R : COLORS→ RESTRICTED COLORS as

R(c) :=

{
red if c ∈ {red, green, blue}
green otherwise

Where U(S) means a uniformly random choice of S. Then our data generation procedure follows the following steps:

• Color := U(COLORS)

• Thickness := U(THICKNESSES)

27

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Color

Thickness

W1

W2

X

Y

Figure 12. Joint samples from the Napkin-MNIST dataset: Samples from the Napkin-MNIST dataset are visualized as columns
above. The first row indicates the latent variable color, the second row indicates the latent variable thickness, and the row labeled
W2 is a discrete variable holding a (color, digit), where digit is represented as the number of dots. Notice that the noising process
sometimes causes information to not be passed to children.

• W1 :=
(
U(DIGITS), ηp(Color,COLORS), ηp(Thickness,THICKNESSES)

)
• W2 :=

(
ηp(W1.digit,DIGITS), ηp(R(W1.color,RG COLORS)

)
• X :=

(
ηp(W2.digit,DIGITS), ηp(W2.color,RG COLORS), ηp(Thickness,THICKNESSES)

)
• Y :=

(
ηp(X.digit,DIGITS), ηp(Color,COLORS), ηp(X.thickness,THICKNESSES)

)
It is easy to verify that this describes the Napkin graph, as each only Color, Thickness are latent and each variable
only depends on its parents in the SCM.

Secondly, observe that this structural causal model is separable with respect to digits, colors, and thicknesses. Since each
digit only depends on parent digits, each color only depends on parent colors, and each thickness depends only on parent
thicknesses, these can all be considered separately.

Further, because this distribution is only supported over discrete variables, exact likelihoods can be computed for any
conditional query. This is much more easily done programmatically, however, and we provide code in the attached codebase
to do just that. We will claim without proof that in the case of thicknesses and digits, PY (X) = P (Y |X). However in the
case of colors, PY (X) ̸= P (Y |X). Hence we consider this case in the evaluations in the experiments section.

F.2.2. DATA GENERATION PROCEDURE: HIGH-DIMENSIONAL CASE

The high-dimensional case follows the discrete case of the Napkin-MNIST dataset, with a few key changes. Namely,
W1, X, and Y are MNIST images that have been colored and thickened. We explicitly outline these changes:

• W1: A random MNIST image of the provided digit is used, then colored and thickened accordingly (noisy from
latents).

• W2 : This is a discrete variable, only encoding the (noised) digit and (noised) restricted color of W1.

• X: This is a random MNIST image of the (noised) digit obtained from W2, then colored with the (noised) restricted
color from W2 and thickened according to the (noised) latent thickness.

• Y : This is the same base image of X , unless the noising procedure calls for a change in digit, then a random MNIST
image of the specified image is used. The (noisy) color is obtained from the latent distribution, and the (noisy)
thickness is obtained from X .

To color the images, we convert each 1-channel MNIST image into a 3-channel MNIST image, and populate the necessary
channels to generate these colors. Note that in RGB images: if only the RG channels are active, the image is yellow; if
only the RB channels are active, the image is magenta; if only the BG channels are active, the image is cyan. To thicken

28

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

the images, we use the MorphoMNIST Castro et al. (2019) package1. Operationally, we generate a base dataset for our
experiments of size equivalent to the original MNIST dataset. That is, the training set has a size of 60K, and the test set has
a size of 10K. Because we have access to the latents during the data generation procedure, we are able to train classifiers
for each variable to identify their digit, color and thickness. We use a simple convolutional network architecture for each
of these cases and achieve accuracy upwards of 95% in each case.

F.2.3. DIFFUSION TRAINING DETAILS

We train two diffusion models during our sampling procedure, and we discuss each of them in turn.

To train a model to sample from P(X,Y |W1,W2), we train a single diffusion model over the joint (X,Y) distribution, i.e.,
6 channels. We train a standard UNet architecture where we follow the conditioning scheme of classifier-free guidance.
That is, we insert at every layer an embedding of the W1 (image) and W2 (2-dimensional discrete variable). To embed the
W1 image, we use the base of a 2-layer convolutional neural network for MNIST images, and to embed the W1 we use a
standard one-hot embedding for each of the variables. All three embeddings are concatenated and mixed through a 2-layer
fully connected network to reach a final embedding dimension of 64. Batch sizes of 256 are used everywhere. Training is
performed for 1000 epochs, which takes roughly 9 hours on 2 A100 GPU’s. Sampling is performed using DDIM over 100
timesteps, with a conditioning weight of w = 1 (true conditional sampling) and noise σ = 0.3.

To train a model to sample Y from the generated dataset (W2, X, Y), we follow an identical scheme. An option is to train a
single diffusion model for each choice of W2 in our synthetic dataset, however, we argue our schema still produces correct
samples because: 1) W2 can be arbitrarily chosen, and thus should not affect Y , 2) we argue that the model fidelity benefits
from weight sharing across multiple choices of W2, 3) the model is only ever called with a specified value of W2 so we
always condition on this W2.

F.2.4. EXTRA EVALUATIONS

As such, our evaluations include verifying the quality of the trained component neural networks and, in the case of MNIST,
a surrogate ground truth for a discrete version of the dataset. In each experiment, for conditional sampling with high-
dimensional data, we train diffusion models using classifier-free guidance (Ho & Salimans, 2022). For conditional sam-
pling of categorical data, we train a classifier using cross-entropy loss. In addition to the evaluations presented in the main
paper, we can further perform evaluations on the component models necessary to sample PX(Y).

P (X,Y |W1,W2): We can evaluate the model approximating samples from P (X,Y |W1,W2) on a deeper level than just
visual inspection as provided in the main paper. In particular, assuming access to good classifiers that can predict the digit,
color, and thickness of an MNIST image, we can compare properties of the generated images with respect to the ground
truth in the discrete case. For example, assuming we have hyperparameter of random noise equal to p, we can compute the
following quantities analytically on the discrete dataset as:

• P [Xd = W2d] = 1− p+ p
10

• P [X.c = W2c] = 1− p+ p
10

• P [Xt = W1t] = (1− p+ p
3)

2 +
(
p
3

)2 ∗ 2
• P [Yd = Xd] = 1− p+ p

10

• P [Yc = W1c] = (1− p+ p
6)

2 + big(p6
)2 ∗ 5

• P [Yt = Xt] = 1− p+ p
3

where Vd, Vc, Vt refer to the digit, color, and thickness attributes respectively. These calculations follow from two formulas.
In a discrete distribution with support S and |S| = K:

• P [ηp(z, S) = z] = 1− p+ p
K

1https://github.com/dccastro/Morpho-MNIST/

29

https://github.com/dccastro/Morpho-MNIST/

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Table 2. Color probability distribution of the sampled images. P (y.c|x.c = red) is biased towards [R, G, B] while P (y.c|do(x.c =
red)) is not.

Predicted color probabilities Red Green Blue Yellow Magenta Cyan
Conditional model: P (y.c|x.c = red) 0.1889 0.4448 0.1612 0.1021 0.0232 0.0798

Ours: P (y.c|do(x.c = red)) 0.1278 0.2288 0.2097 0.1445 0.1177 0.1715

• P [ηp(z, S) = ηp(z, S)] = (1− p+ p
K)2 +

(
p
K

)2

∗ (K − 1)

where in the second equation, it is assumed that ηp(·, ·) are two independent noising procedures.

Then to evaluate, we can 1) consider a large corpus of joint data, 2) run each of W1, X, Y through a classifier for digit,
color, and thickness, 3) evaluate the empirical estimate of each desired probability. We present these results for the synthetic
dataset Dsynth sampled from the diffusion model approximating P (X,Y |W1,W2), a dataset Dorig generated according
to the data generation procedure, and Ptrue the true analytical probabilities. These results are displayed in the Table 1.

Table 1. Evaluations on the Napkin-MNIST generated dataset. V.d, V.c, V.t refer to the digit, color and thickness respectively of
variable V . The first column is with respect to samples generated from diffusion model P̂ (X,Y | W1,W2), Image Data is the dataset
used to train P̂ , Discrete Data is the empirical distribution according to a discrete Napkin-MNIST, and the ground truth is analytically
computed. Ideally all values should be equal across a row. While our synthetic dataset generated from P̂ is not a perfect representation,
it is quite close in all attributes except thickness. This is because the classifier for thickness has some inherent error in it, as evidenced
by the mismatch between the base data and ground truth in the thickness rows.

P̂ (Y,X |W1,W2) Image Data Discrete Data Ground Truth

P [X.d = W2.d] 0.931 0.895 0.909 0.910
P [X.c = W2.c] 0.964 0.950 0.950 0.950
P [X.t = W1.t] 0.683 0.776 0.879 0.873
P [Y.d = X.d] 0.927 0.895 0.909 0.910
P [Y.c = W1.c] 0.847 0.841 0.841 0.842
P [Y.t = X.t] 0.830 0.851 0.933 0.933

F.2.5. MNIST BASELINE COMPARISON

Here we provide some additional information about the baseline comparison we showed in Section 5.1. Although the
implementation of the baseline methods is different, we considered the performance of each method after running them
for 300 epochs (until good image quality is obtained). The NCM algorithm took around 50 hours to complete while our
algorithm took approximately 16 hours to complete. We observe the probabilities in Table 2.

In the generated samples from the conditional model, the color of digit image X and digit image Y are correlated due to
confounding through backdoor paths. For example, for a digit image X with color as red, Y takes a value from [Red, Green,
Blue] with high probability. Thus, the conditional model does not have the ability to generate interventional samples. On
the other hand, our algorithm generates samples from the interventional distribution P (y|do(x)) and the generated samples
choose different colors:[Red, Green, Blue, Yellow, Magenta, Cyan] with almost the same probability. Therefore, our
algorithm shows superior performance compared to baselines and illustrates the high-dimensional interventional sampling
capability.

F.3. CelebA experiment

Here we provide some additional information about the CelebA image to image translation experiment we showed
in Section 5.2. We used a pre-trained classifier from this repository: https://github.com/clementapa/
CelebFaces_Attributes_Classification. We use the pre-trained model of EGSDE from this repos-
itory:https://github.com/ML-GSAI/EGSDE We use the pre-trained model of StarGAN from this reposi-
tory:https://github.com/yunjey/stargan. We generated 850 samples withe these models. Note that although
EGSDE generates better quality (blur-free) images compared to StarGAN (blurry), it makes its samples more realistic by

30

https://github.com/clementapa/CelebFaces_Attributes_Classification
https://github.com/clementapa/CelebFaces_Attributes_Classification
https://github.com/ML-GSAI/EGSDE
https://github.com/yunjey/stargan

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Figure 13. Samples from P (I2|do(Male = 0). Row 1: original I1, Row 2: translated I2 by StarGAN and Row3: translated I2 by
EGSDE.

Figure 14. Multi-domain image translation by EGSDE. Images in rows 1 and 3 are the original images (male domain) and images in
rows 2 and 4 are translated images (female domain). Table 3 shows, 29.16% of the total images are translated as a young person.

Table 3. Additional attributes added (in percentage) in the translated images.
WearingLipstick HeavyMakeup ArchedEyebrows OvalFace Attractive Young

Added Attribute (%) 87.5 79.16 66.66 54.16 37.5 29.16

adding different non-causal attributes such as Y oung or Attractive. As a result, it will generate Female samples from
a specific part of the image manifold. As a result, it might lack the ability to generate a different variety of images (for
example: old females). The reason behind this is possibly the correlation in the dataset it is trained on. For example, in the
CelebA dataset, we observe a high correlation between Female and Y oung while also a high correlation between Male
and Old. As a result, when EGSDE converts the images whether the Male is young or old, it converts them to a young
female. On the other hand, starGAN does not change noncausal attributes, but it also does not properly change the causal
attributes as well.

Baselines: Existing algorithms such as Xia et al. (2023); Chao et al. (2023) do not utilize the causal effect expression of
P (A|do(Male = 0)), rather they train neural models for each variable in the causal graphs which will be costly in this
scenario. Even if they utilize pre-trained models, they have to train models for the remaining variables to match the whole
joint and perform sampling-based methods to evaluate P (A|Young = 1, do(Male = 0)). Note that the ground truth if our
considered attributes are causally related with an image of a Female is unknown. We assume that they are causal in the
CelebA dataset based on expert knowledge (Kocaoglu et al., 2018).

F.3.1. CONDITIONAL IMAGE GENERATION

In Figure 16, we show images generated from conditional interventional distribution.

31

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Figure 15. Performance comparison of multi-domain image translation between StarGAN and EGSDE.

Figure 16. Samples from P (I2|Y oung = 1, do(Male = 0)) generated by StarGAN.

32

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Pleural
Effusion(E)

Pneumonia
(N)

Prompt/
Report(R)

Atelectasis (A)

Xray
Image (X)

Lung
Opacity (L)

Prompt/
Report(R)

Xray
Image (X)

Baseline
Causal graph

True
Causal graph

Hospita
l

Locat
ion (H

)

Figure 17. Left: Baseline vs our causal graph. Right: two prompts, their CXR images, and inferred attributes with the likelihood to
appear. Blue regions indicate changes compared to the healthy X-ray.

F.4. Invariant prediction with foundation models for chest X-ray generation

Setup: We demonstrate ID-GEN’s utility to intervene with a text variable and generate images from the corresponding
interventional distribution. We consider the report-to-Xray generation task in the causal graph in Fig. 17(middle) which
is designed based on the MIMIC-CXR dataset (Johnson et al., 2019)(see Appendix ??). Existing works (Chambon et al.,
2022) solve this task by using vision-language foundation models to directly generate CXR images conditioned on text
prompts: P (X|R)(Fig. 17 left). Although these models generate images satisfying the prompt attributes (ex: effusion),
they ignore the possibility of other attributes caused by the prompt attribute (effusion→atelectasis). Moreover, these models
are trained on multiple datasets collected at different locations. They might learn a potential confounding bias between
report (R) accuracy and pneumonia prevalence (N) in a specific location (H) i.e. R← H → N . Thus, the direct R→ X
prediction might absorb backdoor bias: R← H → N → ...→ X and get affected if P (R,N) shifts in a new location. To
make the image generation task interpretable and invariant in the test domain, ID-GEN performs do(R,N) intervention to
remove the backdoor bias and infer attributes and images from the interventional distribution (motivated by (Subbaswamy
et al., 2019; Lee et al., 2023)).

Training and Evaluation: We indicate attribute extraction with outgoing edges from report R and image genera-
tion with incoming edges to X-ray X . We assume pneumonia infection N affects the attributes and the text re-
port. For our target query PR,N (E,A,L,X)), ID-GEN first visits step 4 and factorizes it as PR,N (E,A,L,X) =
PN,R(E)PN,E,R(A)PN,E,R,A(L)PE,A,L(X). ID-GEN goes to step 6 for each, converts them to conditional distribu-
tions and trains corresponding model ME ,MA,ML,MX . If report R explicitly mentions attributes E,A,L (extracted
by an LLM labeler (Gu et al., 2024)), then ME ,MA,ML output 1. Otherwise, they probabilistically infer their output
conditioned on other attributes in the causal graph. All these models converged with low TVD (≈ 0.05) for us. We utilize
a stable diffusion-based model (Chambon et al., 2022) as MX to sample X ∼ PE,A,L(X). After ID-GEN connects all
models, we intervene with a prompt, infer all attributes along with their empirical distribution and generate corresponding
X-rays. In Fig. 17(right), we show our results for two prompts. For the first prompt intervention, i.e, do(R =left pleural
fluid persists), the LLM labeller extracts effusion (E = 1) from it. Next, ancestral sampling with E = 1 and do(N = 0/1)
in the sampling network provides us the top 3 highest probable attribute combination (N = 0/1, E = 1, A, L) and their
corresponding images. In Fig. 17, we provide (i) a healthy image, (ii) image generated by baseline (Chambon et al.,
2022), and (iii)-(v) images generated with ID-GEN and their attributes with empirical probabilities. ID-GEN makes these
predictions interpretable and invariant with domain shifts.

F.4.1. CAUSAL GRAPH

Below we shortly describe the reasoning for our causal graph assumption.

Nodes and Edges:

• Prompt/Report (R) is variable that represents textual input. In CXR datasets such as MIMIC-CXR, it is generally

33

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Models Distribution
Matched TVD ↓

MN P (N) 0.0595
ME P (E|N,R) 0.0512
MA P (A|N,E,R) 0.0451
ML P (L|N,E,A) 0.042
MX P (X|N,E,A,L)Pre-

trained

Figure 18. CXR conditional models in the sampling network.

doctor written text report indicating the existence of different attributes. In our experiment, we consider it as an input
prompt feed by some user who is interested to understand how the prompt affects other attributes and the CXR image
generation. We assume that the LLM labeller can extract effusion (E) and atelectasis (A). Thus, we consider R→ E
and R→ A.

• Pneumonia(N) is an infection that inflames the air sacs in one or both lungs (Mayo Clinic).

• Pleural effusion (E) happens when fluid builds up in the space between the lung and the chest wall. This can occur
for reasons such as pneumonia or complications from heart, liver, or kidney disease. Pleural effusion also involves
fluid in the lung area. It is common in patients who develop pneumonia. At least 40-60% of patients with bacterial
pneumonia will develop a pleural effusion of varying severity. Thus, we consider N → E .

• Atelectasis (A) is one of the most common breathing complications after surgery. Here, complication is a medical
problem that occurs during a disease, or after a procedure or treatment (Cleveland Clinic). External pulmonary com-
pression by pleural fluid or air (i.e, pleural effusion, pneumothorax, etc.) may cause atelectasis (Medscape). Thus, we
consider the edge E → A. Also, various types of pneumonia, which is a lung infection, can cause atelectasis (Mayo
Clinic Staff). Therefore, we consider the edge N → A.

• Lung opacity (L) is a lack of transparency, i.e., an opaque or non-transparent area on an x-ray/radiograph. (Healthline).
We consider pneumonia, effusion and atelectasis to be causes for lung opacity. Thus we consider edges N → L,E →
L,A→ L.

• Xray Image (X) represents different attributes such as atelectasis, effusion and lung opacity in visible radiography
form. Thus, we consider edges E → X,A→ X,L→ X .

• N ↔ R represents the presence of a hidden confoudner between pneumonia and the input prompt/report. We followed
(Catalá et al., 2021) to consider the hospital location as the unobserved variable from where the chest x-ray datasets
where collected.

(Catalá et al., 2021) discusses that when we merge/mix different datasets and train models on that different types of
biases are introduced. For example, in many scenarios, most patients are screened in certain health services and highly
suspicious patients are derived to a different area. Another example of introducing bias is, when we aim to increase
the number of controls or cases, we expand the dataset s expanded with samples coming from significantly different
origins and labeled with unbalanced class identifiers. Since we utilized foundation models such as (Gu et al., 2024;
Chambon et al., 2022) who are trained in multiple chest radiograph datasets, they are prone to above kind of bias. In
some cases, these models trained to discriminate between cases and controls could learn to differentiate images from
different origins/locations rather than finding features actually related to the disease. Thus, we consider that hospital
locations have some effect on the text report on which the models were trained on and also how likely people were
affected by pneumonia infection in those areas. Therefore, we consider the presence of a confounder between the text
report (R) and pneumonia (N).

Note that all our results are based on the MIMIC-CXR dataset and our assumption on the causal graph. Thus, our results
should not be used to make medical inferences without an expert opinion. In the real world, the domain-specific causal
graph might change. Our algorithm can be applied on the domain specific causal graph and the dataset to obtain correct
results.

34

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Table 4. (Left) Class-conditional FID scores for generated Covid XRAY images (lower is better). Generated C = c, means we
sample from the diffusion model conditioned on c. Real (C = c) refers to a held out test set of approximately 5k images, partitioned
based on C-value. Low values on the diagonal and high values on the off-diagonal imply we are sampling correctly from conditional
distributions. (Right) Evalution of Interventional Distribution Pc(n). We evaluate the distributions Pc(n = 1) for three cases for the
Covid-XRAY dataset. Diffusion uses a learned diffusion model for P (x|c), No Diffusion samples P (x|c) empirically from a held out
validation set, and no latent evaluates the conditional query assuming no latent confounders in the causal model.

FID (↓) Real: C = 0 Real: C = 1

Generated: C = 0 15.77 61.29
Generated C = 1 101.76 23.34

Pc(n = 1) c = 0 c = 1

Diffusion 0.622 0.834
No Diffusion 0.623 0.860
No Latent 0.406 0.951

F.5. Covid X-Ray dataset

F.5.1. DATA PREPROCESSING

Note that a full pipeline of data preparation is contained in cxray/prep cxray dataset.sh in the provided code-
base. We start by downloading the corpus approximately 30K Covid X-Ray images2. Then we download Covid-19 labels
and Pneumonia labels3 and attach labels to each image. Then we convert each image to black-white one-channel images
and rescale each to a size of (128 × 128) pixels. Finally, a random split of the 30K images is performed: keeping 20K to
be used during training, and 10K to be used as validation images. Note that the labels come with a set of 400 test images,
but 400 images is too small to be an effective test set (say for FID computations). We will be explicit about where we use
each data set.

F.5.2. DIFFUSION TRAINING DETAILS

We train a diffusion model to approximate P (X|C). To do this, we use a standard UNet and classifier-free guidance
scheme. We train for 100K training steps over the 20K-sized training set, using a batch size of 16. This takes roughly 10
hours on a single A100. The same classifier-free guidance parameters are used as in the NapkinMNIST diffusion training.

F.5.3. CALIBRATED CLASSIFIER TRAINING DETAILS

To train a classifier to sample from P (N |C,X), we note that our inputs are a (1, 128, 128) image and a binary variable.
Our architecture is as follows: we create an embedding of X by modifying the final linear layer of a ResNet18 to have
output dimension 64 (vs 1000), and modify the input channels to be 1. We create an embedding for N by using a standard
embedding layer for binary variables, with embedding dimension 64. These embeddings are then concatenated and pushed
through 3 fully connected layers with ReLU nonlinearities and dimension 128. A final fully-connected layer with 2 outputs
is used to generate logits.

Training follows a standard supervised learning setup using cross entropy loss. We train for 100 epochs using a batch size
of 256 and a standard warmup to decaying learning rate (see code for full details).

We note the deep literature suggesting that even though classifiers seek to learn P (N |X,C), neural networks trained
using cross entropy loss do not actually do a very good job of estimating this distribution. Training attains an accuracy
of 91.2% on the test set. Calibrated classification seeks to solve this problem by modifying the network in a way such
that it more accurately reflects this distribution. We follow the standard approach using temperature scaling of the logits,
where a temperature is learned over the validation set, using LBFGS with a learning rate of 0.0001 and a maximum of 10K
iterations. This does not affect the test accuracy at all, but drastically improves the ECE and MCE reliability metrics. See
Guo et al. (2017) for a further discussion of temperature scaling.

F.6. Covid X-Ray dataset

Data generation: Next we apply our algorithm to a real dataset using chest X-rays on COVID-19 patients. Specifically,
we download a collection of chest X-rays (X) where each image has binary labels for the presence/absence of COVID-19

2https://www.kaggle.com/datasets/andyczhao/covidx-cxr2
3https://github.com/giocoal/CXR-ACGAN-chest-xray-generator-covid19-pneumonia

35

https://www.kaggle.com/datasets/andyczhao/covidx-cxr2
https://github.com/giocoal/CXR-ACGAN-chest-xray-generator-covid19-pneumonia

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE = 9.03%
MCE = 45.67%

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE = 0.59%
MCE = 3.38%

Figure 19. Reliability plots for P(N|C,X):. Reliability plots which overlay accuracy versus classifier confidence. (Left) Reliability
plot for P (N |C,X) without calibration. (Right) Reliability plot for P (N |C,X) with temperature scaling calibration applied.

Real
(C=0)

Generated
(C=0)

Generated
(C=1)

Real
(C=1)

Figure 20. Generated Covid XRay Images: Generated chest XRay images from our diffusion model, separated by class and compared
against real data.

(C), and pneumonia (N) (Wang et al., 2020) 4. We imbue the causal structure of the backdoor graph, where C → X ,
X → N , and there is a latent confounder affecting both C and N but not X . This may capture patient location, which
might affect the chance of getting COVID-19, and quality of healthcare affecting the right diagnosis. Since medical devices
are standardized, location would not affect the X-ray image given COVID-19. We are interested in the interventional query
Pc(n): the treatment effect of COVID-19 on the presence of pneumonia.

Component Models: Applying ID-GEN to this graph requires access to two conditional distributions: P (x|c) and
P (n|x, c). Since X is a high-dimensional image, we train a conditional diffusion model to approximate the former. Since
N is a binary variable, we train a classifier that accepts X,C and returns a Bernoulli distribution for N . The generated
sampling network operates by sampling an X given the interventional C, and then sampling an auxiliary C ′ ∼ P (c′) and
feeding X,C ′ to the classifier for P (n|x, c), finally sampling from this distribution.

Evaluation: Again we do not have access to the ground truth. Instead, we focus on the evaluation of each component
model, and we also perform an ablation on our diffusion model. We first evaluate the image quality of the diffusion model
approximating P (x|c). We evaluate the FID of generated samples versus a held-out validation set of 10K X-ray images.
When samples are generated with C taken from the training distribution, we attain an FID score of 16.17. We then evaluate
the conditional generation by comparing class-separated FID evaluations and display these results in Table 4 (left). The
classifier estimating P (n|x, c) has an accuracy of 91.9% over validation set. We note that we apply temperature scaling
(Guo et al., 2017) to calibrate our classifier, where the temperature parameter is trained over a random half of the validation
set. Temperature scaling does not change the accuracy, but it does vastly improve the reliability metrics; see Appendix.

4Labels are from https://github.com/giocoal/CXR-ACGAN-chest-xray-generator-covid19-pneumonia/

36

https://github.com/giocoal/CXR-ACGAN-chest-xray-generator-covid19-pneumonia/

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

Finally we evaluate the query of interest Pc(n). Since we cannot evaluate the ground truth, we consider our evaluated Pc(n)
versus an ablated version where we replace the diffusion sampling mechanism with P̂ (x|c), where we randomly select an
X-ray image from the held-out validation set. We also consider the query Pc(n) if there were no latent confounders in the
graph, in which case, the interventional query Pc(n) is equal to P (n|c). We display the results in Table 4 (right).

37

Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand

G. Pseudo-codes

Algorithm 5 IDC-GEN (Y,X,Z,D, G)

1: Input: target Y , intervention X , conditioning set Z. training data D, G.
2: Output: A DAG of trained model to sample from PX(Y|Z).
3: if ∃α ∈ Z such that (Y ⊥⊥ α|X,Z \ {α})G

X,α
then

4: return IDC-GEN (Y,X ∪ {α}, Z \ {α},D, G)
5: else
6: H1= ID-GEN (Y ∪ Z,X,D, X̂ = ∅, Ĝ = G)
7: D′ ∼ H1(X)
8: H2 = ∅
9: Add node (X, ∅) and (Z, ∅) to H2

10: Let MY be a model trained on {Y,X,Z} ∼ D′ such that MY (X,Z) ∼ P ′(Y |X,Z) i.e., MY (X,Z) ∼ PX(Y |Z)
11: Add node (Y,MY) to H2

12: Add edge X → Y and Z → Y to H2

13: return H2

Algorithm 6 ID(y,x, P,G)

1: Input: y, x value assignments , distribution P , G.
2: Output: Expression for Px(y) in terms of P or Fail(F, F ′).
3: if x = ∅ then {Step:1}
4: Return

∑
v\y P (v)

5: if V \An(Y)G ̸= ∅ then {Step:2}
6: Return ID(y,x ∩An(Y)G,

∑
V\An(Y)G

P,GAn(Y))
7: Let W = (V \X) \An(Y)G

X
{Step:3}

8: if W ̸= ∅ then
9: Return ID(y,x ∪w, P,G)

10: if C(G \X) = {S1, . . . , Sk} then {Step:4}
11: Return

∑
v\(y∪x)

∏
i ID(si,v \ si, P,G)

12: if C(G \X) = {S} then
13: if C(G) = {G} then {Step:5}
14: Return FAIL(G,G ∩ S)
15: if S ∈ C(G) then {Step:6}
16: Return

∑
s\y

∏
{i|Vi∈S} P (vi|vi−1

π)

17: if ∃S′ s.t. S ⊂ S′ ∈ C(G) then {Step:7}
18: Return ID(y,x ∩ S′, P =

∏
{i|Vi∈S′} P (Vi|V (i−1)

π ∩ S′, v
(i−1)
π \ S′), GS′)

Algorithm 7 IDC(Y,X,Z, P,G)

1: Input: x, y, z value assignments, P a probability distribution, G a causal diagram (an I-map of P).
2: Output: Expression for PX(Y |Z) in terms of P or Fail(F, F’).
3: if ∃α ∈ Z such that (Y ⊥⊥ α|X,Z \ {α})G

X,α
then

4: return IDC(Y,X ∪ {α}, Z \ {α},D, G)
5: else
6: let P ′ = ID(y ∪ z,x, P,G)
7: return P ′/

∑
y P ′

38

