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ABSTRACT

Zero-Shot Video Anomaly Detection (ZS-VAD) is an urgent task in scenarios
where the target video domain lacks training data due to various concerns, e.g.,
data privacy. The skeleton-based approach is a promising way to achieve ZS-
VAD as it eliminates domain disparities in both background and human appear-
ance. However, existing methods only learn low-level skeleton representation and
rely on the domain-specific normality boundary, which cannot generalize well to
new scenes with different normal and abnormal behavior patterns. In this paper,
we propose a novel skeleton-based zero-shot video anomaly detection framework,
which captures both scene-generic typical anomalies and scene-adaptive unique
anomalies. Firstly, we introduce a language-guided typicality modeling module
that projects skeleton snippets into action semantic space and learns generalizable
typical distributions of normal and abnormal behavior. Secondly, we propose a
test-time context uniqueness analysis module to finely analyze the spatio-temporal
differences between skeleton snippets and then derive scene-adaptive boundaries.
Without using any training samples from the target domain, our method achieves
state-of-the-art results on four large-scale VAD datasets: ShanghaiTech, UBnor-
mal, NWPU, and UCF-Crime. The Code will be publicly available.

1 INTRODUCTION

Video Anomaly Detection (VAD) aims to temporally locate abnormal events, which has wide appli-
cations in the context of video surveillance and public safety (Liu et al., 2018; Sultani et al., 2018).
Current mainstream paradigms include one-class (Wang et al., 2022; Liu et al., 2021; Hirschorn &
Avidan, 2023) and weakly supervised methods (Sultani et al., 2018; Cho et al., 2023; Shi et al.,
2023), which require samples from the target video domain for training. However, in surveillance
scenarios involving privacy or newly installed monitoring devices, training samples from the tar-
get domain are often not available. Therefore, designing a Zero-Shot Video Anomaly Detection
(ZS-VAD) method is necessary, as shown in Fig. 1 (a).

Despite the success of zero-shot anomaly detection in image domain (Zhou et al., 2024; Cao et al.,
2024), only a few works (Aich et al., 2023; Guo et al., 2024) have ventured into the more complex
video domain with underwhelming performance. Although recently (Zanella et al., 2024) proposes
to leverage large visual language models to tackle the ZS-VAD task, it relies on multi-stage reason-
ing and the coordination of multiple large models, posing challenges for widespread deployment.
Compared with them, we find skeleton-based method (Hirschorn & Avidan, 2023; Flaborea et al.,
2023) is a promising way to achieve ZS-VAD as they are computation-friendly and can exclude the
domain gap in human appearance and background. Existing methods use skeleton prediction, recon-
struction, or coordinate-based normalizing flow to learn the normal skeleton distribution. However,
they can only learn low-level spatio-temporal representation and rely on domain-specific normality
boundaries, which cannot generalize well to new scenes with different normal and abnormal pat-
terns. Within this line of work, ZS-VAD seems to become an ill-posed problem, because the new
scene’s decision boundary is unattainable, as illustrated in Fig. 1 (b). This limitation leads to a
question: “Can we design a model that can generalize to various target scenes with generalizable
representation learning and prior injection?”

We reflect on how human observers judge normal and abnormal behavior in a new scenario, as il-
lustrated in Fig. 1 (c). Initially, we identify the types of actions performed by individuals in the
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Figure 1: (a) The illustration of zero-shot video anomaly detection, where the model is tasked with
localizing anomalous events in various scenes without any training samples from the target domain.
(b) Previous methods do not involve action semantics and their learned normality boundaries in
source data cannot generalize well to new scenes with different normal and anomalous behavior. (c)
The illustration of how human observers or our model judge normal and abnormal in new scenarios.

video and consider whether they are normal or abnormal based on our experiential knowledge of
normality and abnormality (typicality). For instance, a pedestrian walking would be considered nor-
mal, while a fight or scuffle would be deemed abnormal. Secondly, for atypical normal or abnormal
scenarios, we integrate the behaviors of all individuals in the video to observe if any individual’s
behavior significantly differs from others, as anomalies are usually rare and unique (uniqueness).

Based on these complementary priors, we propose a novel skeleton-based zero-shot video anomaly
detection framework, which captures both typical anomalies guided by language prior and unique
anomalies in spatio-temporal contexts. Firstly, we introduce a language-guided typicality model-
ing module that projects skeleton snippets into a semantic space and learns typical distributions
of normal and abnormal behavior. To obtain the semantic representations of skeleton snippets, we
align skeleton snippets with CLIP’s language embeddings using external skeleton action recognition
datasets. Furthermore, by leveraging human experiential typicality labels obtained from language
model, we train a feature normalization flow to learn domain-general boundaries between normal
and abnormal behavior. Secondly, we propose a context uniqueness analysis module at test time
to derive scene-adaptive boundaries. To gain a fine-grained understanding of the scene context, we
construct two types of spatio-temporal context graphs: a cross-person graph and a self-inspection
graph. The uniqueness scores are derived within these graphs, indicating whether the current skele-
ton is unique in the surroundings or if there is a sudden change in the motion state. Without using
any training samples from the target domain, we achieved state-of-the-art results on four large-scale
VAD datasets: ShanghaiTech (Liu et al., 2018), UBnormal (Acsintoae et al., 2022), NWPU (Cao
et al., 2023), UCF-Crime (Sultani et al., 2018). Our contributions are as follows:

• We propose a new setting for skeleton-based zero-shot video anomaly detection and in-
troduce a novel video anomaly detection framework that can generalize to various target
scenes with action typicality and uniqueness learning.

• We propose a language-guided typicality modeling module that projects skeleton snippets
into a generalizable semantic space and effectively learns the typical distribution of normal
and abnormal behavior based on human experiential knowledge.

• We propose a test-time uniqueness analysis module to finely analyze the spatio-temporal
differences between skeleton snippets and derive scene-adaptive boundaries between nor-
mal and abnormal behavior.

2 RELATED WORK

Video anomaly detection. Most previous video anomaly detection studies can be grouped into
frame-based (Liu et al., 2018; 2021; Sultani et al., 2018), object-centric (Wang et al., 2022; Sun &
Gong, 2023; Micorek et al., 2024), and skeleton-based methods (Markovitz et al., 2020; Morais
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et al., 2019; Flaborea et al., 2023; Hirschorn & Avidan, 2023). In this work, we focus on the
skeleton-based methods, which detect anomalies in human activity based on preprocessed skele-
ton/pose snippets. Morais et al. (Morais et al., 2019) propose an anomaly detection method that uses
RNN to learn the representation of pose snippets, with prediction errors serving as anomaly scores.
GEPC (Markovitz et al., 2020) utilizes autoencoders to learn pose graph embeddings, generates soft
assignments through clustering, and uses Dirichlet process mixture to determine anomaly scores. To
model normal diversity, MoCoDAD (Flaborea et al., 2023) leverages diffusion probabilistic mod-
els to generate multimodal future human poses. STG-NF (Hirschorn & Avidan, 2023) proposes a
simple yet effective method by establishing normalized flow from normal pose snippets to obtain
normal boundaries. However, these methods rely on training with normal data from the target do-
main, while overlooking the semantic understanding of human behavior, which makes it difficult to
ensure performance when the data is unavailable.

Zero-shot anomaly detection. Thanks to the development of vision-language models, zero-shot
anomaly detection has received a lot of attention (Jeong et al., 2023; Li et al., 2024; Gu et al., 2024;
Aota et al., 2023; Liu et al., 2024; Chen et al., 2023; Zhou et al., 2024), especially in the field
of image anomaly detection (Miyai et al., 2024). The pioneering work is WinCLIP (Jeong et al.,
2023), which utilizes CLIP (Radford et al., 2021)’s image-text matching capability to distinguish
between unseen normal and abnormal anomalies. Building on that, AnomalyCLIP (Zhou et al.,
2024) proposes to learn object-agnostic text prompts that capture generic normal and abnormal
patterns in an image. AdaCLIP (Cao et al., 2024) introduces two types of learnable prompts to
enhance CLIP’s generalization ability for anomaly detection data. Despite the success in the image
domain, only a few works (Aich et al., 2023; Guo et al., 2024) have ventured into zero-shot video
anomaly detection with underwhelming performance. Although recently (Zanella et al., 2024)
proposes to leverage large visual language models for zero-shot video anomaly detection, it requires
multi-stage reasoning and the collaboration of multiple large models, making it less user-friendly.
We aim to develop a lightweight, user-friendly, and easily deployable zero-shot anomaly detector
starting from skeleton data. Our work shares some similarities with a recent study (Sato et al.,
2023). However, we emphasize that our approach differs significantly from (Sato et al., 2023) in
the following ways: 1) Different tasks: (Sato et al., 2023) addresses abnormal action recognition,
involving no more than two individuals in a short video, without the need for temporally localizing
abnormal events. 2) Novel perspective: We combine the action typicality and uniqueness priors to
address zero-shot anomaly detection challenges in video surveillance scenarios.

3 ACTION TYPICALITY AND UNIQUENESS LEARNING

3.1 OVERVIEW

The objective of ZS-VAD is to train one model that can generalize to diverse target domains. For-
mally, let Vtrain be a training set from source video domain and {Wtest

1 ,Wtest
2 , ...,Wtest

N } be mul-
tiple test sets from target video domain. The test videos are annotated at the frame level with labels
li ∈ {0, 1}, and the VAD model is required to predict each frame’s anomaly score. In this work,
we focus on the skeleton-based paradigm, as it is computation-friendly and can benefits ZS-VAD by
reducing the domain gap in both background and appearance.

Fig. 2 overviews our proposed approach. Our model tackles the ZS-VAD problem from the perspec-
tive of action typicality and uniqueness learning. First, the Language-Guided Typicality Modeling
module projects skeleton snippets into a semantic space and effectively learns the typical distribu-
tion of normal and abnormal behavior based on experiential knowledge from the language model.
Second, the Test-Time Uniqueness Analysis module finely analyzes the spatio-temporal differences
between skeleton snippets and derives scene-adaptive boundaries. During inference on unseen VAD
datasets, our model integrates typicality scores and uniqueness scores of human behavior to provide
a holistic understanding of anomalies.

3.2 LANGUAGE-GUIDED TYPICAL MODELING

This module aims to obtain a generalizable semantic understanding of human behavior in videos
by learning discriminative representation of skeleton snippets. Furthermore, it learns the scene-
generic distributions of typical normal and abnormal behavior by leveraging the prior knowledge
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Figure 2: Overview of our approach for skeleton-based zero-shot video anomaly detection. I.
Language-guided typicality modeling in the training phase. It projects skeleton snippets into the
action semantic space, collects typicality knowledge from language model, and then effectively
learns the typical distribution of normal and abnormal behavior. (Only the black dashed boxes are
used during inference.) II. Test-time uniqueness analysis in the inference phase. It finely analyzes
the spatio-temporal differences between skeleton snippets and derives scene-adaptive boundaries
between normal and abnormal behavior.

acquired from language models. Specifically, this module consists of skeleton-text alignment, typi-
cality knowledge selection, and typicality distribution learning.

Skeleton-text alignment. For achieving a generalizable semantic understanding of human behav-
ior, we first propose to align the skeleton snippets with the corresponding semantic labels. For
such skeleton-text pairs, we utilize external action recognition datasets (e.g., Kinect (Carreira &
Zisserman, 2017) as the training set instead of specific VAD datasets (e.g., ShanghaiTech). The raw
skeleton data of an action video is typically formally represented as Xi ∈ RC×J×L×M , where C
is the coordinate number, J is the joint number, L is the sequence length, and M is the pre-defined
maximum number of persons, respectively. In addition, each video is annotated with a text label gi
representing the action class, which can be also transformed into a one-hot class vector yi.

Compared to action recognition tasks that only predict video-level categories, the VAD task is more
fine-grained, focusing on predicting frame-level anomaly scores. Therefore, we decompose the
original sequences into multiple short skeleton snippets Ai ∈ RC×J×T using a sliding window, and
discard snippets that are predominantly composed of zeros. For the snippets from the same action
video, they share the same labels and undergo a normalization operation to make different snippets
independent. Inspired by the recent multimodel alignment works (Wang et al., 2021; Xiang et al.,
2023), we then perform a skeleton-text alignment pretraining procedure to learn the discriminative
representation. The procedure is built with a skeleton encoder Es and a text encoder Et, for gen-
erating skeleton features Fs and text features Ft, respectively. Additionally, the skeleton encoder
also predicts a probability vector ŷi using a fully-connected layer. The training loss consists of a
KL divergence loss and a cross-entropy classification loss, which are presented as follows:

Ls =
1

2N

∑N

i=1
[KL(ps2t(Fs

i ), y
s2t
i ) + KL(pt2s(Ft

i), y
t2s
i )] + Lcls(ŷ,y), (1)

where N is the sample count. More details can be found in the appendix.

Typicality knowledge selection. In most video surveillance scenarios, some behaviors are gen-
erally considered normal or abnormal, which constitute a scene-generic set. Therefore, training a
typicality-aware capability is one of the promising ways to achieve ZS-VAD. Based on the pre-
trained skeleton-text representation, we aim to use a Large Language Model (LLM) as our knowl-
edge engine to collect typical normal and abnormal data from the massive skeleton snippets. In
detail, we give the large model a prompt P: “In most video surveillance scenarios, what are gener-
ally considered as normal actions and abnormal actions among these actions: <T >...”, where T
refers to the set of all action class labels in the action recognition dataset. The large language model
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will respond with a list of typical normal action classes T n and a list of typical abnormal action
classes T a, which can be formalized as:

T n, T a = OLLM (P, T ), (2)

where T n and T a are the subsets of T , and OLLM denotes the offline LLM. Note that the LLM
is only needed to be used once during training for auxiliary data selection, while inference is not.
Therefore, we use the powerful LLM, ChatGPT (OpenAI, 2022), as our knowledge engine, for initial
typical label generation.

After knowing the action categories of typicality, we first collect the data of these selected categories
and then proceed to select the high-quality snippets from them. This is because 1) Some snippets
contain noise, such as errors in pose detection and tracking. 2) In an abnormal action sequence,
not all the snippets are abnormal. Therefore, we use the skeleton-text similarity score to filter the
skeleton snippets, which is formulated as:

Mx = {arg topβx

i

(
sim

(
Fs

i ,F
t
j

))
| gi ∈ T x, gj ∈ T x}, (3)

where Mx refers to the selected snippets index and β denotes the selection ratio. The superscript x
represents n or a, indicating normal and abnormal, respectively. Using the index Mx, we obtain the
corresponding skeleton data Ãn and Ãa, as well as skeleton features F̃s

n and F̃s
a.

Typicality distribution learning. After obtaining the data, we move on to model the feature dis-
tribution of typical behavior. Normalizing Flow (NF) (Kingma & Dhariwal, 2018) provides a robust
framework for modeling feature distributions, transforming this distribution through a series of in-
vertible and differentiable operations. Consider a random variable X ∈ RD with target distribution
pX(x), and a random variable Z follows a spherical multivariate Gaussian distribution. Introducing
a bijective map f : X ↔ Z, composed of a sequence of transformations: f1◦f2◦...◦fK . According
to the variable substitution formula, the log-likelihood of X can be expressed as:

log pX(x) = log pZ(f(x)) +
∑K

i=1
log

∣∣∣∣det( dfi
dfi−1

)

∣∣∣∣ . (4)

The bijective maps for the normal features and abnormal features are f : Xn ↔ Zn and f : Xa ↔
Za, respectively. Here, the log-likelihood of Zn and Za are as follows:

log pZn(z) = Con− 1

2
(z − µn)

2, log pZa(z) = Con− 1

2
(z − µa)

2, (5)

where Con is a constant, and un and uz are the centers of the Gaussian distributions (|un−uz| ≫ 0),
respectively. During training, the normalizing flow is optimized to increase the log-likelihood of the
skeleton features Fs with the following loss:

Ln = − log pXn(F
s
n)− log pXa(F

s
a), (6)

During inference, the testing skeleton snippet Fs
i will be sent to the trained normalizing flow, out-

putting the typicality anomaly score as follows:

St
i = − log pXn(F

s
i ), (7)

where the normal skeletons will exhibit low St
i, while the anomalies will exhibit higher St

i. Our
approach differs significantly from STG-NF (Hirschorn & Avidan, 2023). It takes low-level joint
coordinates as inputs and only learns implicit spatio-temporal features, which struggle to generalize
to new datasets without the normality reference of training data from the target dataset. Differently,
we use action semantics as a generalizable representation for NF input, and leverage experiential
typicality labels to learn domain-general boundaries between normal and abnormal behavior.

3.3 TEST-TIME UNIQUENESS ANALYSIS

The goal of this component is to serve as a complementary perspective of typicality, deriving scene-
adaptive boundaries by considering the context of the target scene. To this end, we propose a context
uniqueness analysis module during the inference of the unseen VAD dataset.

Unlike action recognition datasets, surveillance videos often contain a much longer temporal span,
involve a larger number of people, and exhibit more diverse behavioral patterns. For such a video, we
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first extract H skeleton sequences {X1, ...,XH}, where each sequence comprises Li-frame poses,
represented as Xi = {P1, ...,PLi

}. Here, Pt ∈ RJ×2 comprises J keypoints, each defined by a pair
of coordinate values. Targeted at frame-level anomaly scoring, the sequences are then segmented
into shorter skeleton snippets Ai ∈ RC×J×T as described in Section 3.2.

Spatio-temporal context. To gain a fine-grained context understanding of the scene, we construct
two types of spatio-temporal context graphs: a cross-person graph Gc and a self-inspection graph
Gs. The first graph is constructed by retrieving the feature nearest neighbors among the surrounding
skeleton snippets, while the second one is constructed by retrieving the feature nearest neighbors
from different time segments of the current person. In this way, we can filter out some unrelated
activities and focus solely on behaviors related to the current individual. Given a skeleton snippet
Ai with feature Fs

i , the cross-person graph is defined as Gc
i = {Vc

i , Ec
i }, where Vc

i = {Ai,Nc(Ai)}
denotes the node set and E i

c = {(i, j) | j ∈ Nc) denotes the edge set. Besides, Ai is associated with
a person index pi and timestamp ti. The neighborhood Nc is formulated as:

Nc =
{
Aj | d

(
Fs

i ,F
s
j

)
≤ topk

(
d
(
Fs

i ,F
s
j

))
, pj ̸= pi

}
, (8)

where d(·) represents the Euclidean distance, and topk refers to the k-th smallest value for the self-
person graph, it is defined as Gs

i = {Vs
i , Es

i }, where Vs
i = {Ai,Ns(Ai)} denotes the node set and

E i
s = {(i, j) | j ∈ Ns) denotes the edge set. Then, the neighborhood Ns is formulated as:

Ns = {Aj | d
(
Fs

i ,F
s
j

)
≤ topk

(
d
(
Fs

i ,F
s
j

))
, pj = pi, |ti − tj | > α · T}, (9)

where α is a threshold that masks out a period of time before and after the current time window, as
the individual’s state tends to remain stable during adjacent periods.

Uniqueness scores. Since abnormal activities are rare, anomalies in real-world surveillance videos
often differ from other activities at most times, i.e., uniqueness. Based on the pre-trained discrimina-
tive skeleton features, uniqueness can be represented as the feature distances between a query node
and other nodes in the built graph. Specifically, the uniqueness score Su for individual i is obtained
by taking the larger one of the cross-person and self-inspection distances, formulated as follows:

Su
i = max {

∑
j∈Nc(Ai)

d
(
Fs

i ,F
s
j

)
,

∑
j∈Ns(Ai)

d
(
Fs

i ,F
s
j

)
}. (10)

Holistic anomaly scoring. By integrating the complementary typicality St
i scores and the unique-

ness scores Su
i , our model can capture both typical anomalies in language prior and unique anoma-

lies in spatio-temporal contexts. This helps gain a comprehensive understanding of anomalies in
new scenes, where the holistic anomaly score of individual i is defined as:

Si =
St
i − St

mean

St
std

+
Su
i − Su

mean

Su
std

. (11)

In the end, the frame-level anomaly score is obtained by taking the highest score among all individ-
uals within that frame. If any individual is considered anomalous, the entire frame is classified as
anomalous. Following (Hirschorn & Avidan, 2023), when no individuals are detected in the frame,
it is considered normal, with the score being the minimum among all anomaly scores for that video.

4 EXPERIMENTS

4.1 DATASET AND IMPLEMENTATION DETAILS

Dataset. The training of our model is conducted on the Kinect-400 dataset (Carreira & Zisserman,
2017), while the ZS-VAD capability of our model is evaluated on four large-scale VAD datasets:
ShanghaiTech (Liu et al., 2018), UBnormal (Acsintoae et al., 2022), NWPU (Cao et al., 2023) and
UCF-Crime (Sultani et al., 2018). Note that we only use the test set of these four VAD dataset.
(1) Kinect-400: It is not intended for VAD tasks but for action recognition, which is gathered from
YouTube videos covering 400 action classes. We utilize the preprocessed skeleton data obtained
from ST-GCN (Yan et al., 2018) for training. (2) VAD datasets for evaluation: ShanghaiTech con-
tains 107 test videos from 13 different scenes. UBnormal includes 211 test videos from 29 different
scenes. NWPU is a newly published dataset containing 242 testing videos from 43 scenes. UCF-
Crime includes 290 testing videos from more than 50 scenes. Appendix contains more details.
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Table 1: Zero-shot video anomaly detection performance on the four large-scale datasets, Shang-
haiTech (SHT), UBnormal (UB), NWPU, and UCF-Crime (UCFC), where the subscript denotes the
number of scenes of the dataset. The evaluation metric is frame-level AUC (%). “LVLM (infer.)”
indicates using Large-Vision-Language-Models during inference.

paradigm Method Venue LVLM Training Testing
(infer.) VAD SHT13 UB29 NWPU43 UCFC>50

LVLM Imagebind CVPR’23 ✔ ✘ - - - 55.8
LAVAD CVPR’24 ✔ ✘ - - - 80.3

frame/object HF2-VAD ICCV’21 ✘ SHT - 59.5 58.3 52.9
Jigsaw-VAD ECCV’22 ✘ SHT - 58.6 61.1 53.3

skeleton

MocoDAD ICCV’23 ✘ SHT - 67.6 56.4 51.8
MocoDAD ICCV’23 ✘ UB 76.0 - 56.6 52.0
STG-NF ICCV’23 ✘ SHT - 68.8 57.6 51.6
STG-NF ICCV’23 ✘ UB 83.0 - 57.9 51.9

Ours - ✘ ✘ 84.1 74.5 62.1 62.7

Table 2: Our zero-shot performance vs.
SOTA full-shot performance.

Setting Method SHT UB

full-shot
Jigsaw-VAD 84.3 60.9
MocoDAD 77.6 68.3
STG-NF 85.9 71.8

zero-shot Ours 84.1 74.5

Implementation Details. For a fair comparison, we di-
rectly use the skeleton data of ShanghaiTech and UB-
normal from STG-NF (Hirschorn & Avidan, 2023). For
NWPU and UCF-Crime, as they do not have open-source
skeleton data, we resort to utilizing AlphaPose (Fang
et al., 2022) for data extraction. We use a segment win-
dow T = 16 and a stride of 1 to divide each sequence
into snippets. Specifically, we use a stride of 16 for UCF-
Crime because its videos are too long. The batch size is
set to 1024, and we use Adam as the optimizer with a
learning rate of 0.0005. Additionally, the hyperparameters βn, βa, k, and α are set to 90%, 10%,
16, and 4, respectively. For the evaluation metrics, we follow common practice (Liu et al., 2018;
Sultani et al., 2018; Hirschorn & Avidan, 2023) by using the micro-average frame-level AUC as the
evaluation metric, which involves concatenating all frames and calculating the score. More details
can be found in appendix.

4.2 ZS-VAD PERFORMANCE

We conduct a comprehensive comparison of the performance of ZS-VAD, comparing the frame-
based/object-based (Liu et al., 2021; Wang et al., 2022), skeleton-based (Flaborea et al., 2023;
Hirschorn & Avidan, 2023), and LVLM-based methods (Girdhar et al., 2023; Zanella et al., 2024).

Comparison with frame/object-based methods. We use their open-source checkpoints trained on
the ShanghaiTech to evaluate the zero-shot performance on the remaining three VAD datasets. As
shown in Tab. 1, their generalization capabilities on new scene datasets are relatively poor due to the
influence of human appearance and background variations.

Comparison with skeleton-based methods. We use their open-source checkpoints trained on the
ShanghaiTech or UBnormal to evaluate on the remaining three VAD datasets. The performance of
prevalent skeleton-based methods is still underwhelming due to a lack of understanding of complex
normal and abnormal behaviors without target training data. Compared with our baseline STG-
NF, our proposed method improves the frame-level AUC-ROC by 1.1% on ShanghaiTech, 5.7% on
UBnormal, 4.2% on NWPU, and 10.8% on UCF-Crime. We also compare their performance in the
full-shot setting, where target domain data is used for training. Table 2 shows that our zero-shot
approach can achieve comparable or even superior results to SOTA full-shot performance.

Comparison with LVLM-based methods. While LAVAD (Zanella et al., 2024) recently proposes
leveraging large visual language models for ZS-VAD, it relies on multi-stage reasoning and the
coordination of multiple large models with over 13 billion (B) parameters, posing challenges for
widespread deployment. In contrast, we develop a lightweight zero-shot anomaly detector with a
mere 5.0 million (M) parameters, just one in two thousand of LAVAD’s parameters.
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Table 3: Ablation experiments of the typicality
modeling module.

Experiments SHT UB NWPU UCFC

(a) ours w/o aligning 83.2 69.4 60.4 59.5
(b) ours w/o selection - 64.1 61.9 56.7
(c) ours w/o NF 83.4 72.2 62.6 60.5
(d) prompt score 81.3 64.4 61.5 61.0
(e) ours 84.1 74.5 62.1 62.7

Table 4: Ablation study of the uniqueness anal-
ysis module and holistic anomaly scoring.

Typ. Cross Self SHT UB NWPU UCFC

✓ 81.9 73.2 62.1 59.6
✓ 81.9 62.9 60.7 59.9

✓ 67.8 60.1 61.0 62.6
✓ ✓ 82.0 64.5 61.7 61.0

✓ ✓ ✓ 84.1 74.5 62.1 62.7

A
U
C

NP AP NAP Ours

(a) Typicality modeling (b) Selection ratio: 𝛽𝑛 (c) Selection ratio: 𝛽𝑎

Figure 3: (a) Comparison between our typicality modeling module and the prompt-based schemes.
(b)-(c) Comparison of different selection ratios in the typicality knowledge selection step.

4.3 ABLATION STUDY

Ablation of typicality module. We conduct ablation experiments on the typicality modeling module
with the following settings: (a) removing the aligning stage, training with raw skeleton data and
the typicality labels; (b) removing the collection phase, training with VAD source data (SHT); (c)
removing the normalizing flow and calculating typicality scores using k-nearest neighbors distance
techniques. As shown in Table 3, the model shows poor performance without the aligning stage, as
it fails to learn generalizable and discriminative semantic representations. Moreover, performance
deteriorates without the selection of typicality knowledge, as the model can only learn a limited
normality boundary from VAD source data. Furthermore, without the normalizing flow, the model
also loses flexibility in modeling the distribution of typical behaviors.

Comparison with prompt-based methods. Since prompt-based techniques have been popular in
other zero-shot tasks (Sato et al., 2023; Jeong et al., 2023), we conduct experiments to compare our
typicality module with theirs. To this end, we design typical normal prompts (NP), typical abnormal
prompts (AP), and the ensemble (NAP), then using the skeleton-prompt similarity as the anomaly
score. More details can be found in the appendix. As shown in Table 3 (d) and Fig. 3 (a), the
results are suboptimal. Unlike various forms of text seen in CLIP image-text alignment, the current
skeleton-text alignment scheme has only encountered text of action class names, thus the alignment
capability for prompt text is relatively weak. Our method, on the other hand, leverages LLM to
collect typicality labels, avoiding directly using the skeleton-prompt similarity as anomaly scores.

Ablation of uniqueness module. We ablate the uniqueness scores and the holistic scores in this
part. As demonstrated in Table 4, when only using the cross-person distance, the model can identify
contextual anomalies with acceptable performance. When combined with the self-inspection score,
the model can spot changes in motion states, aiding in detecting a wider range of anomalies. The
reason for the suboptimal performance of uniqueness score on UBnormal is that UBnormal is a syn-
thetic dataset where some videos contain only one person with relatively short movement durations,
which does not align well with real surveillance video scenarios. By integrating both the typicality
and uniqueness modules, our approach can achieve optimal performance.

Hyper-parameter sensitivity. We ablate the hyper-parameters in the typicality knowledge selec-
tion step. As shown in Fig. 3 (b)-(c), the optimal value of βn is 90%, and a smaller βa can enhance
performance by filtering out noisy data and normal snippets within the anomalous sequences.
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(a) Typical anomalies Localization. (Left) STG-NF. (Right) Ours.

(b) Unique anomalies Localization. (Left) STG-NF. (Right) Ours.

Figure 4: Example results of our method that succeeds in capturing typical and unique anoma-
lies. For the “arresting” and “photographing at restricted areas” anomalies, STG-NF (Hirschorn &
Avidan, 2023) fails to detect them, while ours performs well through action typicality and analy-
sis modeling. Each individual (blue skeleton) has a predicted anomaly score (red font), where the
frame-level score (red line) is defined as the maximum among all individuals in that frame. More
visualization results can be found in the appendix.

4.4 VISUALIZATION RESULTS

Fig. 4 (a) presents the qualitative localization results of typical anomalies. STG-NF fails to detect
the “arresting” anomaly because of its insufficient discriminative capability for action semantics.
Disturbed by around 1600 frames of joint noise, it erroneously positioned the anomaly. In contrast,
our model can map the skeleton snippets to a space with generalizable semantics and identify the
anomaly of the “arrest” action based on our training experience boundary. In surveillance scenarios
lacking training samples, our model can still be effectively utilized to detect certain typical abnormal
behaviors that pose a potential for harm.

Fig. 4 (b) shows the qualitative localization results of unique anomalies. Existing skeleton-based
methods rely on the source normal data for training. When the source domain does not include some
novel behavior that appears in the target domain, these behavior will be classified as anomalies. Con-
sequently, STG-NF erroneously localizes the anomaly during time periods when “riding” is present.
In contrast, our model can analyze the spatio-temporal differences and establish scene-adaptive deci-
sion boundaries. Since “riding a bicycle” occurs multiple times in the video, its uniqueness score is
relatively low. On the other hand, “photographing at restricted areas” exhibits significant differences
from the surrounding people’s behavior and appears as a sudden change in the person’s movement
trajectory, resulting in a corresponding increase in its anomaly score.

4.5 CONCLUSION

In this paper, we introduce a novel ZS-VAD framework that can generalize to various target scenes
with generalizable representation learning and prior injection. First, we propose a language-guided
typicality modeling module that effectively learns the typical distribution of normal and abnormal
behavior. Secondly, we propose a test-time uniqueness analysis module to derive scene-adaptive
boundaries. Comprehensive experiments demonstrate the effectiveness of our model.
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A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS

Backbone. We use multi-scale CTR-GCN (Chen et al., 2021) (2.1M) as the skeleton encoder and
use the text encoder of ’ViT-B/32’ CLIP (Radford et al., 2021) (63.4M). During inference, the text
encoder is removed, and the trained skeleton encoder is retained to extract skeleton features.

Alignment Loss. The training loss Ls employed in skeleton-text aligning (Sec. 3.2) is inspired by
GAP (Xiang et al., 2023), which consists of a KL divergence loss and a cross-entropy classification
loss. As there could be more than one positive matching and actions of different categories forming
negative pairs, GAP uses KL divergence as the alignment loss. In the KL divergence loss, ys2t and
yt2s denote the ground-truth matching labels. Based on the loss function in CLIP (Radford et al.,
2021), the networks are optimized by contrasting skeleton-text pairs in two directions within the
batch:

ps2t(Fs
i ) =

exp(sim(Fs
i ,F

t
i)/τ)∑B

j=1 exp(sim(Fs
i ,F

t
j)/τ)

, ps2t(Ft
i) =

exp(sim(Ft
i,F

s
i )/τ)∑B

j=1 exp(sim(Ft
i,F

s
j)/τ)

, (12)

where B is the batch size, and sim(·) denotes the cosine similarity.

Prompt for ChatGPT. During the typicality knowledge selection (Sec. 3.2), we provide ChatGPT
with the prompt: “In most video surveillance scenarios, what are generally considered as normal
actions and abnormal actions among these actions (Please identify the 20 most typical normal
actions and 20 most typical abnormal actions, ranked in order of decreasing typicality). The action
list is <T >”, where T refers to the set of all action class labels in the action recognition dataset.

Typicality prompt design. To compare our typicality learning module with prompt-based meth-
ods (Sato et al., 2023; Jeong et al., 2023) (Sec. 4.3), we design a normal prompt Pn list: [“usual”,
“normal”, “daily”, “stable”, “safe”], and a prompt Pa list: [“danger”, “violence”, “suddenness”,
“unusual”, “instability”]. The prompt Pn is encoded into normal prompt features Fp

n, and Pa is
encoded into abnormal prompt features Fp

a. Then, the anomaly scores derived from Pn and Pa are
defined as follows:

Sn
i = − sim (Fp

n,F
s
i ) , Sa

i = sim (Fp
a,F

s
i ) . (13)

For the ensemble of the two types of prompt (NAP), the anomaly score Se is obtained as follows:

Se
i =

exp (sim(Fp
a,F

s
i )/ 0.07)

exp ((sim(Fp
a,Fs

i )/ 0.07) + exp ((sim(Fp
n,Fs

i )/ 0.07)
. (14)

We then compare our typicality module with the three types of prompt schemes as in Sec. 4.3.

A.2 DATASET

Table 5: The details of the zero-shot benchmarks.

Year Resolution Test Video Scenes
Num. Num.

ShanghaiTech 2018 480×856 107 13
UBnormal 2022 720×1280 211 29

NWPU 2023 multiple 242 43
UCF-Crime 2018 240×320 290 >50

The ZS-VAD capability of our model is
evaluated on four large-scale VAD datasets:
ShanghaiTech (Liu et al., 2018), UBnor-
mal (Acsintoae et al., 2022), NWPU (Cao
et al., 2023) and UCF-Crime (Sultani et al.,
2018). Some early VAD benchmarks (Lu
et al., 2013; Li et al., 2013) consist of single
scenes staged and captured at one location,
whereas the four datasets we evaluated are
more extensive, encompassing a wider va-
riety of scenes. Consequently, these four
datasets are better suited for testing the model’s zero-shot capabilities and assessing its cross-
scenario performance. The details are summarized in Table 5 and the following descriptions.

ShanghaiTech. It is a widely-used benchmark for one-class video anomaly detection, which con-
sists of 330 training videos and 107 test videos from 13 different scenes at 480×856 pixel resolution.

UBnormal. It is a synthetic dataset with virtual objects and real-world environments. It consists of
186 training videos and 211 test videos from 29 different scenes at 720×1280 pixel resolution.
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NWPU. It is a newly published dataset that contains some scene-dependent anomaly types. It com-
prises 305 training videos and 242 testing videos from 43 scenes with diverse resolutions.

UCF-Crime. It is a large-scale dataset with 1900 long untrimmed surveillance videos. The 290
testing videos at a resolution of 240×320 pixels are used for our evaluation. It is primarily used in
weakly supervised settings (Sultani et al., 2018; Cho et al., 2023), where the training set contains
both normal and abnormal videos. Following the ZS-VAD setting, we do not use any training
samples at all, which significantly increases the anomaly detection difficulty on this dataset.

A.3 HYPER-PARAMETER ABLATION

We ablate the nearest neighborhood (NN) number k and the mask threshold α in the uniqueness
analysis module. As shown in Fig. 5, our method is robust for these two hyper-parameters. Choosing
an appropriate k can filter out some unrelated activities and focus solely on behaviors related to the
current skeleton snippets. Taking the average of the k neighbors helps suppress noise, which also
makes our model insensitive to α.

84.3 84.2 84.1 84.1 84.1

74.574.574.574.574.2

83.9 84.0 84.1 83.7 83.5

74.574.173.773.573.3

A
U
C

(a) NN number: k (b) Mask threshold: 𝛼

Figure 5: Comparison of different NN numbers and different mask thresholds.

A.4 LIMITATION

Skeleton detection and tracking error. Obtaining skeleton data requires preprocessing by a skele-
ton/pose detector and tracker, which will introduce errors in some scenarios. As shown in Fig. 6
(left), the detector extracts an unstable skeleton sequence from a video of a stationary motorcycle,
resulting in a high abnormal score for what should have been a normal segment. This is a com-
mon issue with skeleton-based methods, which can be addressed in the future by using more robust
detectors and trackers.

GT: 0 GT: 1 

(a) failure case 1 (b) failure case 2

Figure 6: The failure cases of our model. (Left) The case’s failure is the skeleton detection error.
(Right) The case’s failure is due to no reference individuals in the video.

Scenarios with only one person. For atypical normal or abnormal actions, such as riding a bike, our
method judges anomalies through test-time uniqueness analysis. Although surveillance videos often
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cover a much longer temporal span and involve a larger number of people, there are some instances
where only one person’s activity is present. Moreover, when the person’s movement trajectory is
stable, we are also unable to infer through the self-inspection distance. In such special cases, it is
not possible to get information from the activities of surrounding individuals, as illustrated in Fig. 6
(right). This issue will be explored in the future.

A.5 MORE VISUALIZATION RESULTS

We recommend readers watch our supplemental video for a more intuitive understanding of
our method. In addition, more visualization results are shown in Fig. 7 - Fig. 10. Each individual
(blue skeleton) has a predicted anomaly score (red font), where the frame-level score (red line)
is defined as the maximum among all individuals in that frame. The vertical axis represents the
anomaly score, while the horizontal axis represents the frame index. Our approach demonstrates
a robust ability to accurately identify anomalous events within novel environments, emphasizing
the generalist nature of our model. In surveillance scenarios lacking training samples, our model
supports a lightweight and effective approach to contribute the real-world video anomaly detection.

Figure 7: Visualization results on the Shang-
haiTech dataset.

（a）visualization example on UBnormal.

Figure 8: Visualization results on the UBnormal
dataset.

Figure 9: Visualization results on the NWPU
dataset.

Figure 10: Visualization results on the UCF-
Crime dataset.
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