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Abstract— Motion prediction has been an essential compo-
nent of autonomous driving systems since it handles highly
uncertain and complex scenarios involving moving agents of
different types. In this paper, we propose a Multi-Granular
TRansformer (MGTR) framework, an encoder-decoder net-
work that exploits context features in different granularities for
different kinds of traffic agents. To further enhance MGTR’s
capabilities, we leverage LiDAR point cloud data by incorpo-
rating LiDAR semantic features from an off-the-shelf LiDAR
feature extractor. We evaluate MGTR on Waymo Open Dataset
motion prediction benchmark and show that the proposed
method achieved state-of-the-art performance, ranking 1st on
its leaderboard 1.

Keywords: Motion Prediction, Transformer, Autonomous
Driving

I. INTRODUCTION

High-quality motion prediction in a long horizon is es-
sential for the development of safety-critical autonomous
vehicles. It serves as one of the cornerstones of related fields
including scene understanding and decision-making in the
realm of autonomous driving. Although advancements were
made in past years, major challenges still exist and come
from the following aspects: (i) Heterogeneous data acquired
by autonomous vehicles such as maps and agent history
states is non-trivial to be represented in a unified space.
(ii) Environment context inputs from upstream modules in-
cluding object detection and pre-built maps have limitations
(e.g., uncountable amorphous regions such as bushes, walls,
and construction zones, can be missing). (iii) Multimodal
nature of agent behaviors brings further complexity. Here,
the multimodal agent behaviors refer to discrete and diverse
agent intents and possible futures. This work addresses
these challenges with a proposed multi-granular Transformer
model, namely MGTR.

Early methods mainly render inputs including High Defi-
nition (HD) map, agent history states into rasterized images,
and apply convolutional neural networks (CNN) to encode
scene information [1]–[3]. While convenient, long-range in-
teractions are hard to capture in rasterization-based methods
due to the limited receptive field of convolutions. A majority
of recent works represent inputs as vectors by pre-processing
raw continuous inputs into discrete sample points at a fixed
sample rate [4]–[6]. Such vectors are later sent to graph-
structured models for scene-level information extraction. A
low sample rate will lose geometric details like curb curva-
ture. On the other end, a high sample rate requires models’
stronger ability to learn complex topographic relationships

∗ equal contribution
1https://waymo.com/open/challenges/2023/motion-prediction/

Fig. 1. Comparing context information used in different motion
prediction frameworks. Most previous methods [5], [6] encode road graph
only in a single granularity for all agents in the scene (green dashed
box). In our method, various agents can benefit from multi-granular context
information encoded from multimodal sources (blue dashed box).

like lane centerline connectivity, which constrains perception
range due to an increased number of nodes with limited
computational resources. As shown in Fig. 1, in reality,
different types of agents with varying motion patterns would
benefit from context information at multiple distinguished
granularities. Concurrently, the computer vision community
has developed multiple ways of multi-granularity processing,
such as feature pyramid techniques [7]. Through the years,
it has been proven to be effective in gaining more compre-
hensive context information.

Furthermore, the majority of existing motion prediction
works are developed based on open datasets [8], [9] which
usually provide 2D agent tracking states and static HD maps.
However, in real world scenarios, a lot of other context
information such as bushes, building walls, and traffic cones
can also serve as strong cues for motion prediction. The
new dataset WOMD-LiDAR [10] enables us to incorporate
LiDAR point cloud containing dense 3D context informa-
tion for motion prediction. To the best of our knowledge,
only a few works have combined LiDAR data into motion
prediction. They primarily focus on extracting instance-level
information [10], [11] rather than rich environment context.
Also, they do not explore LiDAR information in a multi-
granular manner.

In this work, we propose a multi-granular Transformer
model (MGTR), for motion prediction of heterogeneous
traffic agents. MGTR follows a Transformer encoder-decoder
architecture. It fuses multimodal inputs including agent his-
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tory states, map elements, and extra 3D context embeddings
from LiDAR. Both map elements and LiDAR embeddings
are processed into sets of tokens at several granular levels
for better context learning. Next, agent embeddings and
multi-granular context embeddings are passed through a
Transformer encoder after being filtered by our motion-aware
context search for better efficiency. Then, motion predictions
are generated through iterative refinement within the decoder
and modeled by Gaussian Mixture Model (GMM). Our
contributions can be summarized as follows: (i) We intro-
duce a novel Transformer-based motion prediction method
utilizing multimodal and multi-granular inputs, with motion-
aware context search mechanism to enhance accuracy and
efficiency. (ii) We present an approach to incorporate LiDAR
inputs practically and efficiently for the purpose of motion
prediction. (iii) We demonstrate state-of-the-art performance
on Waymo Open Dataset motion prediction benchmark.

II. RELATED WORK

Motion prediction: Early works [1]–[3], [12]–[17] on
motion prediction usually represent inputs as rasterized im-
ages, and adopts CNN to obtain high-quality results. For
more direct context representation, VectorNet [4] brings
up the vector representation that sequentially samples and
connects map and agent history states into polylines, and
combines them with graph-based models. Vectorized inputs
enable researchers to tackle both structured and unstructured
data, and build more versatile models [5], [18], [19]. An
emerging trend rises regarding Transformer-based models in
various NLP and vision applications [20]. SceneTransformer
[21] and Wayformer [22], combine the vector representation
and apply a Transformer-based model to handle multimodal
input. MTR [6] and MTR++ [23] further improve vectorized
representation by using local connected graphs and apply
Transformer structures with their inspirations from DETR
[24] and DAB-DETR [25]. In this work, we adopt the
vectorized representation but introduce the multi-granular
structure for multimodal input, which is an essential aspect
neglected by previous works.

Multi-granularity learning: The concept of multi-
granularity learning originates from the field of computer
vision. It is capable of learning patterns of various granular
features [7], [26]–[29]. InceptionNet [26] and FPN [7] have
shown great success in image classification tasks by incorpo-
rating multi-granularity techniques into CNN models, while
MViT [29] proves the effectiveness of multi-granularity
representation in Transformer-based models. In this work,
we exploit advantages of applying multi-granularity to
Transformer-based models for motion prediction, which has
rarely been explored.

LiDAR for motion prediction: Applying LiDAR in the
field of motion prediction is fairly new. In recent years,
with the advancement of multimodal learning, researchers
have been trying to incorporate LiDAR data towards different
learning tasks in the field [10], [11], [30]–[32]. Most work
such as IntentNet [30] and MultiXNet [31] take LiDAR
data as the only perception input and generate both object

detection and motion prediction through multi-task settings.
More Recent works [10], [11] focus on motion prediction
and mainly use LiDAR as instance-level features. Unlike
previous work, the proposed MGTR treats LiDAR data as
context features and incorporates the advantages of multi-
modal learning.

III. METHOD

As depicted in Fig. 2, we proposed the MGTR model, a
novel Transformer-based framework that takes multimodal
inputs in a multi-granular manner including LiDAR data. In
III-A, we first introduce how different inputs are represented
and encoded into multi-granular tokens and how the number
of tokens is reduced by motion-aware context search. Next,
in III-B and III-C, we demonstrate how tokens are refined in
the encoder and utilized in the decoder for motion prediction.
Finally, III-D introduces the training losses used in our
model.

A. Multimodal Multi-Granular Inputs

1) Agent and map: Following representation in VectorNet
[4], agent state history is sampled at a constant time interval
and processed into vectorized polylines as PA ∈ RNa×Th×Ca

to represent state information from T0−Th to T0, where Na

denotes the number of target agents in a scene, Ca as the
dimension of agent features, T0 as the current time, Th as the
time horizon. The agent state features Ca include position,
velocity, 3D bounding box size, heading angle, object type,
etc. Zero paddings are added in the time dimension if
the tracking length is smaller than Th. Then, each agent
polyline will first be transformed into the target agent-centric
coordinate followed by a PointNet-like [33] polyline encoder
as shown in Eq. 1.

Different types of agents have different movement ranges
and requirements for map granularity. In this work we extract
map contents in a multi-granular manner. Map elements with
topological relationships such as road centerlines and area
boundaries are sampled evenly at different sample rates,
resulting in polylines with different granularities. Concretely,
we represent sets of multi-granular polylines as {P(i)

M } ∈
RN(i)

m ×N(i)
s ×Cm , where P(i)

M denotes map polylines at i-th
spatial granularity, N (i)

m denotes the number of polylines at
i-th granularity, N (i)

s denotes the number of sampled points
in each polyline, Cm denotes the token feature dimension
for map including positions, curvature, speed limit, etc.
With a high sample rate, the same road centerline will be
sampled into more polylines similar to more image pixels
on high-resolution images. N (i)

m polylines are generated at
each sample rate ri. Similar to agent polylines, each map
polyline is transformed to an agent-centric coordinate and
encoded by a PointNet-like structure as:

FA = ϕ
(

MLP
(
Γ(PA)

))
, F

(i)
M = ϕ

(
MLP

(
Γ(P(i)

M

))
, (1)

where Γ(·) denotes the coordinate transformation, MLP(·)
denotes a multi-layer perceptron, ϕ denotes max-pooling.
Agent and map polylines are encoded into FA ∈ RNa×C



Fig. 2. An overview of our proposed MGTR. Agent trajectories and map elements are represented as polylines and encoded as agent and multi-granular
map tokens. LiDAR data is processed by a pre-trained model into voxel features and further transformed into multi-granular LiDAR tokens. Motion-aware
context search selects a set of map and LiDAR tokens, refined together with agent tokens through local self-attention in the Transformer encoder. Finally,
a set of intention goals and their corresponding content features are sent to the decoder to aggregate context features. Multiple future trajectories of each
agent will be predicted based on its intention goals, supporting the multimodal nature of agent behaviors.

and F
(i)
M ∈ RN(i)

m ×C with a feature dimension of C. The
weights of the polyline encoders for different granularities
are not shared, to ensure map features at each granularity
are kept.

2) LiDAR: In order to obtain richer 3D context infor-
mation missing in explicit perception outputs and pre-built
HD maps, we propose to integrate LiDAR information into
our framework. Using raw LiDAR point cloud directly in
the motion prediction network is inefficient and resource-
intensive, due to its sparsity and large magnitude. Therefore,
we choose to use LiDAR voxel features extracted by an
off-the-shelf LiDAR segmentation network. This typically
does not add additional overhead to autonomous driving
systems since most deployed systems have such network
already implemented. Although MGTR is not restricted to a
certain LiDAR module, we adopt a voxel-based segmentation
network, specifically LidarMultiNet [34], as our pre-trained
LiDAR model. We extract a voxel feature map Vraw ∈
RCl×D×H×W from an intermediate layer, where Cl denotes
the feature dimension, D,H,W are the sizes of the voxel
space. It serves as a perfect input feature to represent context
information for motion prediction. To add more context
information, we concatenate one-hot embedding of the pre-
dicted semantic label of each voxel from the segmentation
result and the 3D position of the center of each voxel
with Cl LiDAR segmentation features. The voxel feature
becomes V ∈ RCv×D×H×W , where Cv is the LiDAR feature
dimension after concatenation.

To obtain LiDAR context features in multi-granularities
and reduce complexity, we employ average pooling across
various scales to obtain features of different granularities.
Pooled features are encoded into tokens through an MLP as:

F
(i)
L = MLP

(
P(i)

(
Γ(V)

))
, (2)

where Γ(·) denotes the coordinate transformation, P(i)(·)
denotes the average pooling for the i-th granularity. LiDAR
features are encoded into F

(i)
L ∈ RN

(i)
l ×C , where N

(i)
l is the

number of LiDAR tokens for the i-th granularity, and C is
the feature dimension.

3) Motion-aware context search: After multi-granular
encoders, the number of raw tokens N = Na +

∑
i N

(i)
m +∑

i N
(i)
l can be extremely large, making it impossible to

send them directly to Transformer encoder due to computing
resource constraint. To learn features more efficiently, we
introduce motion-aware context search which helps boost
training efficiency and encode more meaningful context
for agents with different motion patterns. For agents with
different velocities, the desired positions of scene context
for long-horizon trajectory prediction differ significantly.
Therefore, for an agent of interest, we use its current velocity
to project a future distance as the context token search prior.
Through the projected position, we acquire Ñm nearest map
tokens and Ñl nearest LiDAR tokens, resulting in a total
of Na + Ñm + Ñl selected tokens that will be fed into our
Transformer encoder for further refinement.



B. Transformer Encoder

1) Token aggregation and encoding: After the afore-
mentioned vectorization and token generation, a Transformer
encoder is established to aggregate features from multi-
granular tokens. All tokens are refined through layers of
encoder structure with a self-attention layer followed by a
feed-forward network (FFN). To boost training efficiency
and better capture neighboring information, a local attention
mechanism is adopted. Let F j

e be the refined tokens output
by the j-th layer. The multi-head self-attention [35] can be
formulated as:

Q = F j−1
e + PE(F j−1

e ), V = κ(F j−1
e ),

K = κ(F j−1
e ) + PE(κ(F j−1

e )),

F j
e = MHSA(Q,K, V ),

(3)

where κ(·) is a function that returns k-nearest neighboring
tokens for each query token, PE(·) is a positional encoding
function. MHSA(·, ·, ·) stands for multi-head self-attention
layer [35].

2) Future state enhancement: In addition to considering
agents’ history trajectories, we also take into account their
potential future trajectories, which play a crucial role in
predicting the motion of agent of interest. Therefore, after
agent tokens are refined by the Transformer encoder, a future
trajectory is predicted for each agent following [6] and it can
be formulated as:

Tscene = MLP(FA
e ), (4)

where Tscene ∈ RNa×T×4 denotes trajectories (including
position and velocity) of Na agent for future T frames
and FA

e is the agent token from the encoder. The future
trajectories are further encoded by a polyline encoder and
fused with the original agent token FA

e to form a future-
aware agent feature that is fed into the decoder later. It’s
worth noting that Tscene is supervised by the ground truth
trajectories, resulting in an auxiliary loss which will be
introduced in III-D.

C. Transformer Decoder

1) Intention goal set: We generate K representative
intention goals by adopting K-means clustering algorithm
on endpoints of ground truth trajectories for different types
of agents. Each intention goal represents an implicit motion
mode, which can be modeled as a learnable positional
embedding.

2) Token aggregation with intention goal set: In each
layer, we first apply the self-attention module to propagate
information among K intention queries as follows:

Q = K = F j−1
d + PE(F j−1

d ), V = F j−1
d ,

F j
I = MHSA(Q,K, V ),

(5)

where F j−1
d ∈ RK×Cdec are intention features from (j-1)-th

decoder layer and F j
I is the updated intention feature, where

K denotes number of intention goals, Cdec denotes feature
dimension. We initialize the intention features F 0

d to be all
zeros as the input for the first Transformer decoder. Next, a

cross-attention layer is adopted for aggregating features from
the encoder as:

Q = F j
I + PE(F j

I ),

K = V = γ(Fe) + PE(γ(Fe)),

F j
d = MHCA(Q,K, V ),

(6)

γ(Fe) = η(Fe) ∪ θ(Fe), (7)

where F j
I is the updated intention feature from previous

multi-head self-attention. Fe is the multi-granular context
tokens from encoder, which includes future-aware agent
tokens, map tokens, and LiDAR tokens. MHCA(·, ·, ·) is the
multi-head cross-attention layer [35]. γ(·) is the combination
of our trajectory-aware context search (η(·)) and motion-
aware context search (θ(·)), which intends to extract multi-
granular context features from a local region. Inspired by the
dynamic map collection from [6], we introduce trajectory-
aware context search which takes the predicted trajectories
from previous decoder layer and selects the context token
whose centers are close to the predicted trajectory. Along
with the previously mentioned motion-aware context search,
it continuously attends to the most important context infor-
mation throughout iterative prediction refinement.

3) Multimodal motion prediction with GMM: Following
[5], [6], we model the multimodal future trajectories with
GMM. For each decoder layer, we append a classification
head and a regression head for the intention feature F j

d

respectively:

p = MLP(F j
d ), Ttarget = MLP(F j

d ), (8)

where p ∈ RK is the probability distribution of each trajec-
tory mode corresponding to each intention goal. Ttarget ∈
RK×T×7 is predicted GMM parameters representing K fu-
ture trajectories and 2D velocities for T future frames. The
endpoints of predicted trajectories will be used for positional
embedding in the next decoder layer.

D. Training Loss

The training loss in this work is a weighted combination
of: (i) auxiliary task loss Laux on future predicted trajectories
of all agents Tscene (ii) classification loss Lcls in form of
cross entropy loss on predicted intention probability p (iii)
GMM loss LGMM in form of negative log-likelihood loss of
the predicted trajectories of target agent Ttarget. Auxiliary
task loss is measured with L1 loss between ground truth
and predictions of both agents’ position and velocity. Similar
to [6], we use a hard-assignment strategy that selects the
best matching mode and calculates the GMM loss and the
classification loss. This can force each mode to specialize
for a distinct agent behavior.

IV. EXPERIMENTS

A. Dataset

Following most recent motion prediction works [6], [10],
[11], we conduct extensive experiments on WOMD-LiDAR
dataset [10]. It is a large-scale motion dataset with LiDAR



specifically designed for motion prediction in the field of
autonomous driving, containing 100,000+ real-world driving
video clips with diverse driving scenarios (e.g. intersection,
lane merging). It shares the same training, evaluation and test
samples with its predecessor WOMD [36]. WOMD-LiDAR
contains 3 categories of agents of interest: vehicle, pedes-
trian, and cyclist. The performance of this task on WOMD-
LiDAR is measured by the minimum Average Displacement
Error (minADE), the minimum Final Displacement Error
(minFDE), miss rate (MR) and the mean Average Precision
(mAP) of predicted trajectories in the next 3, 5 and 8 seconds,
with mAP as the major evaluation metric. Details of those
metric definitions can be found in [36].

B. Experiment Setup

1) LiDAR voxel encoder: We use LidarMultiNet [34] as
our LiDAR encoder to extract LiDAR voxel features from
raw point cloud. Resulting 3D voxel features after its global
context pooling are used as our prediction model input. The
original feature dimension Cl is 32. As discussed in Sec III-
A.2, for each voxel, we concatenate a 22-dim predicted one-
hot segmentation result as well as its 3-dim position by
channel, formulating our 57-dim LiDAR voxel features (i.e.
Cv = 57). Average pooling is applied twice on original
voxels to form multi-granularities, making the length and
width of each LiDAR voxel 0.8m or 1.6m. LidarMultiNet
is pre-trained on Waymo Open Dataset [37] and is frozen
during the training of our model.

2) Implementation details: For full-scale experiments on
WOMD-LiDAR val set and test set, our batch size is
10 per GPU and we train from scratch for 30 epochs. We
use AdamW optimizer [38] with an initial learning rate
of 0.0001, in conjunction with a multi-step scheduler. The
learning rate is decayed by a factor of 0.5 every two epochs
after 20 epochs. Both the encoder and the decoder consist of
6 Transformer layers. We adopt Ñm = 768 map polylines as
the topographic context in the encoder. In addition, we add
Ñl = 256 multi-granular LiDAR voxels to complement our
local scene representation. In practice, the length of each map
polyline is either 10 map points or 20 map points, equivalent
to 5m or 10m in range. The number of neighbors in local
self-attention of the encoder is set to 32. For each sample,
we predict 64 candidate trajectories using 64 intention goals,
which are generated from K-means clustering over all ground
truth goal points (at 8-second prediction horizon) in the
training set. Non-maximum suppression (NMS) is applied
to post-process predictions, resulting in 6 final trajectories
per sample.

For ablation study, unless stated otherwise, all experiments
use a same hyperparameter set as the full-scale experiments.
We only use 20% of the total training data in WOMD-LiDAR
via a fixed sampler for efficiency purposes.

C. Quantitative Analysis

We report quantitative results on WOMD-LiDAR val
set, as shown in TABLE I. We compare MGTR against
other state-of-the-art models. Remarkably, we achieve the

TABLE I
COMPARISON ON WOMD-LIDAR VAL SET. RESULTS IN TOP THREE

ROWS ARE COMPUTED AS AN AVERAGE OF t = 3, 5, AND 8 SECONDS,
WHILE THE ONES IN BOTTOM THREE ROWS ARE REPORTED FOR t = 8

SECONDS. MTR++ [23] DOES NOT REPORT CATEGORICAL RESULTS.
FOLLOWING [10], ALL METRICS ARE REPORTED WITH TWO DECIMAL

PLACES. ∗ INDICATES METHODS UTILIZING LIDAR.

mAP ↑

Method Vehicle Pedestrian Cyclist Average

MTR [6] 0.45 0.44 0.36 0.42
MTR++ [23] - - - 0.44
MGTR∗ (Ours) 0.46 0.47 0.40 0.45

Wayformer [22] 0.35 0.35 0.29 0.33
Wayformer+LiDAR [10]∗ 0.37 0.37 0.28 0.34
MGTR∗ (Ours) 0.38 0.44 0.32 0.38

best mAP over all types of agents. Specifically, compared to
Wayformer+LiDAR [10], a multimodal model with LiDAR
input, our model substantially improves mAP on pedestrians
by 7%, cyclists by 4%, and vehicle by 1% for t = 8 seconds.
MGTR demonstrates similar advancement compared with
previous SOTA MTR [6] and MTR++ [23]. We argue that
this indicates MGTR is better at capturing subtle movements
thanks to the multi-granular representation of both map and
LiDAR.

Furthermore, we achieve the state-of-the-art performance
on WOMD-LiDAR test set. As revealed in TABLE II,
the single-model version of our proposed MGTR achieves
an overall mAP of 45.05%, which has +1.76% advantage
over the second-best model, significantly outperforming all
other single-model entries. Compared to the latest state-of-
the-art motion prediction model, MTR++ [23], we achieve a
whopping 5.41% increase in terms of mAP on the pedestrian
category. Apart from mAP, our model also improves over
a variety of metrics, including minADE, minFDE, MR
for multiple categories. Specifically, we reduce trajectory
miss rate (MR) on cyclists by 1.11% in comparison with
the second-best model. This strongly signals that for non-
vehicular objects, features that attend to details are key to
more accurate and reliable trajectory predictions.

As of the paper submission date (Sep. 15, 2023), it is
worth noting that our proposed MGTR with model ensemble
has ranked first place among all submissions on the motion
prediction track of Waymo Open Challenge Leaderboard 2.
Detailed comparison of methods with model ensemble tech-
niques is not included in the paper due to page limits.

D. Qualitative Analysis

We further delve into the qualitative aspects of our pro-
posed MGTR model using visualizations. While our model
is capable of generating multimodal trajectories, for the sake
of illustration, we have chosen to visualize the trajectory
with the highest probability, demonstrating the efficacy of

2https://waymo.com/open/challenges/2023/motion-prediction/



Fig. 3. Visualization of prediction result comparison between MTR [23] and MGTR (Ours). A global bird’s-eye-view (including agents, HD map
and LiDAR point cloud) and a local LiDAR visualization for each scene. For LiDAR point cloud, only limited semantic class such as vegetation (green
points), building (cyan points), sidewalk (brown points), vehicle(orange points) and pedestrian (blue points) are shown for better visualization.

TABLE II
COMPARISON ON WOMD-LIDAR TEST SET. ALL METRICS ARE AVERAGED OVER 3S, 5S, AND 8S. ALL MODELS DO NOT USE MODEL ENSEMBLE.

Vehicle Pedestrian Cyclist Avg

Method minADE↓ minFDE↓ MR↓ mAP↑ minADE↓ minFDE↓ MR↓ mAP↑ minADE↓ minFDE↓ MR↓ mAP↑ mAP↑

ReCoAt [39] 0.9865 2.1771 0.2695 0.2667 0.4261 0.8982 0.1451 0.3208 0.8985 1.9252 0.3164 0.2258 0.2711
DenseTNT [19] 1.3462 1.9120 0.1518 0.3698 0.5013 0.9130 0.1014 0.3342 1.2687 1.8292 0.2186 0.2802 0.3281
SceneTransformer [21] 0.7094 1.4115 0.1480 0.3270 0.3812 0.7532 0.0971 0.2715 0.7446 1.4701 0.2239 0.2380 0.2788
GTR-R36 [40] 0.7450 1.5049 0.1477 0.4521 0.3470 0.7221 0.0741 0.4243 0.7095 1.4406 0.1772 0.4003 0.4255
DM [41] 0.7701 1.5400 0.1529 0.4725 0.3741 0.7882 0.0848 0.4172 0.7436 1.4885 0.2043 0.4005 0.4301
MTR [6] 0.7642 1.5257 0.1514 0.4494 0.3486 0.7270 0.0753 0.4331 0.7022 1.4093 0.1786 0.3561 0.4129
MTR++ [23] 0.7178 1.4321 0.1366 0.4871 0.3504 0.7305 0.0745 0.4324 0.7036 1.4190 0.1784 0.3792 0.4329
MGTR (Ours) 0.7393 1.5119 0.1497 0.4626 0.3441 0.7191 0.0722 0.4865 0.6919 1.4096 0.1675 0.4023 0.4505

our approach. Fig. 3 showcases two scenarios in which a
pedestrian is crossing a street. When we examine the trajec-
tory predicted by MTR [23], in the scenarios the pedestrian
will (a) walk into the bushes and (b) pass through a building,
which are not reasonable outcomes. In contrast, our MGTR
model successfully predicts that the pedestrian will walk onto
the sidewalk, skillfully (a) avoiding any collision with the
bushes, and (b) avoiding the building. These visualizations
underscore the superior predictive capabilities of MGTR in
comparison to the MTR, particularly in situations where
LiDAR can provide additional 3D context information that
is not available within HD map.

E. Ablation Study

We conduct ablation studies on WOMD-LiDAR val set, as
shown in TABLE III. The baseline has a similar structure
as MGTR, but only possesses single coarse-granular map
tokens. By adding our proposed designs one by one, we
observe consistent and notable mAP improvements for all
types of agents.

1) Multi-granular map: The multi-granular design allows
our model to represent the world at different resolutions so
that agents can benefit from the granularity that suits them.
Compared to the baseline, adding multi-granularity signifi-
cantly improves mAP of all types, especially for pedestrians.

2) Multi-granular LiDAR: Voxelized LiDAR features
contain fine-grained scene information that can affect agents’
future behaviors but may not be covered by perception results
and HD map. Adopting LiDAR as context features improves

TABLE III
ABLATION STUDY ON OUR PROPOSED MGTR.

mAP ↑

Description Vehicle Pedestrian Cyclist Average

Baseline 0.3860 0.3682 0.2881 0.3474
+ multi-granular map 0.3895 0.3730 0.2900 0.3508
+ multi-granular LiDAR 0.3896 0.3820 0.2997 0.3571
+ motion-aware context search 0.3919 0.3935 0.3025 0.3626

mAP of pedestrians and cyclists drastically.
3) Motion-aware context search: Compared to the orig-

inal context search introduced in [23] that does not consider
individual moving patterns, our motion-aware context search
factors in motion compensation on an individual basis. After
adding this feature, we observe significant improvements on
mAP. It indicates that our design can better accommodate
different agents of interest to retrieve relevant context infor-
mation, thus improving motion prediction accuracy.

V. CONCLUSION

In this paper, we propose MGTR, a novel Transformer-
based motion prediction model that incorporates multimodal
inputs including LiDAR point cloud in an effective multi-
granular manner. Rich context features at different granu-
larities enhance the overall motion prediction performance.
Our model reaches state-of-the-art performance on the public
WOMD-LiDAR motion prediction benchmark with signifi-
cant improvements over pedestrians and cyclists.
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