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Abstract

In this paper, we present a simple example that provably exhibits double descent in1

the under-parameterized regime. For simplicity, we look at the ridge regularized2

least squares denoising problem with data on a line embedded in high-dimension3

space. By deriving an asymptotically accurate formula for the generalization error,4

we observe sample-wise and parameter-wise double descent with the peak in the5

under-parameterized regime rather than at the interpolation point or in the over-6

parameterized regime. Further, the peak of the sample-wise double descent curve7

corresponds to a peak in the curve for the norm of the estimator, and adjusting µ,8

the strength of the ridge regularization, shifts the location of the peak. We observe9

that parameter-wise double descent occurs for this model for small µ. For larger10

values of µ, we observe that the curve for the norm of the estimator has a peak but11

that this no longer translates to a peak in the generalization error.12

1 Introduction13

This paper aims to demonstrate interesting new phenomena that suggest that our understanding of the14

relationship between the number of data points, the number of parameters, and the generalization15

error is incomplete, even for simple linear models with data on a line. The classical bias-variance16

theory postulates that the generalization risk versus the number of parameters for a fixed number17

of training data points is U-shaped. However, modern machine learning showed that if we keep18

increasing the number of parameters, the generalization error eventually starts decreasing again [1,19

2]. This second descent has been termed as double descent and occurs in the over-parameterized20

regime, that is when the number of parameters exceeds the number of data points. Understanding the21

location and the cause of such peaks in the generalization error is of significant importance. Hence22

many recent works have theoretically studied the generalization error for linear regression [3–12]23

and kernelized regression [13–21] and show that there exists a peak at the boundary between the24

under and over-parameterized regimes. Further works such as [10, 22–25] show that there can be25

multiple descents in the over-parameterized regime and [26] shows that any shaped generalization26

error curve can occur in the over-parameterized regime. However, all prior works assume that the27

classical bias-variance trade-off is true in the under-parameterized regime.28

The implicit bias of the learning algorithm is a possible reason that the error decreases in the over-29

parameterized regime [27–32]. In the under-parameterized regime, there is exactly one solution30

that minimizes the loss. However, once in the over-parameterized regime, there are many different31

solutions, and the training algorithm implicitly picks one that generalizes well. For linear models, the32

generalization error and the variance are very closely related to the norm of the estimator [11, 33].33

Then, using the well-known fact that the pseudo-inverse solution to the least squares problem is the34

minimum norm solution, we see that the training algorithm picks solutions with the minimum norm.35

Hence this learning algorithm minimizes the variance and lowers the generalization error.36
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Table 1: Table showing various assumptions on the data and the location of the double descent peak
for linear regression and denoising. We only present a subset of references for each problem setting.

Noise Ridge Reg. Dimension Peak Location Reference

Input Yes 1 Under-parameterized This paper.
Input No Low Over-parameterized/interpolation point [33, 37]

Output No Full Over-parameterized/interpolation point [5, 8, 11]
Output Yes Full Over-parameterized/interpolation point [11, 24]
Output No Low Over-parameterized/interpolation point [34, 35]
Output Yes Low Over-parameterized/interpolation point [36]

Main Contributions. In contrast with prior work, this paper shows that double descent can occur37

in the under-parameterized regime. Specifically, when denoising data on a line embedded in high-38

dimensional space using a denoiser obtained as the pseudo-inverse solution for the ridge regularized39

least squares problem, we show that a peak in the generalization error curve occurs in the under-40

parameterized regime. We also show that changing the ridge regularization strength changes the41

location of the peak. The major contributions of this paper are as follows.142

• (Generalization error) We derive a theoretical formula for the generalization error (Theorem 1).43

• (Under-parameterized double descent) We prove (Theorem 2) and empirically demonstrate44

that the generalization error versus the number of data points curve has double descent in the45

under-parameterized regime.46

• (Location of the peak) The peak location depends on the regularization strength. We provide47

evidence (Theorem 6) that the peak is near c = 1
µ2+1 for the sample-wise double descent curves.48

• (Norm of the estimator) We show that the peak in the curve for the generalization error versus49

the number of training data points corresponds to a peak in the norm of the estimator. However,50

versus the number of parameters, we show that there is still a peak in the curve for the norm of the51

estimator (Theorem 5), but this no longer corresponds to a peak in the generalization error.52

Low-Dimensional Data. It is important to highlight that using low-rank data does not immediately53

imply that a peak occurs in the under-parameterized regime. Specifically, [33–37] look at a variety of54

different problems with low rank data and see that the peak occurs at the interpolation point or in the55

over-paramterized regime. Table 1 compares common assumptions and the location of the peak.56

2 Background and Model Assumptions57

Throughout the paper, we assume that noiseless training data xi live in Rd and that we have access to58

a d×Ntrn matrix Xtrn of training data. Then given new data Xtst ∈ Rd×Ntst , we are interested in59

the least squares generalization (or test) error. Two scenarios for the generalization error curve are60

considered; data scaling and parameter scaling.61

Definition 1. • Data scaling refers to the regime in which we fix the dimension d of the input data62

and vary the number of training data points Ntrn. This is also known as the sample-wise regime.63

• Parameter scaling refers to the regime in which we fix the number of training data points Ntrn and64

vary the dimension d of the input data. This is also known as the parameter-wise regime.65

• A linear model is under-parameterized, if d < Ntrn. A linear model is over-parameterized, if66

d > Ntrn. The boundary of the under and over-parameterized regimes is when d = Ntrn.67

• Given Ntrn, the interpolation point is the smallest d for the which the model has zero training error.68

• A curve has double descent if the curve has a local maximum or peak.69

• The aspect ratio of an m× n matrix is c := m/n.70

Prior Double Descent We present a baseline model from prior work on double descent. This is to71

highlight prior important phenomena related to double descent in the literature. Concretely, consider72

the following simple linear model that is a special case of the general models studied in [5, 8, 11, 24]73

amongst many other works. Let xi ∼ N (0, Id) and let β ∈ Rd be a linear model with ∥β∥ = 1. Let74

yi = βTxi + ξi where ξ ∼ N (0, 1). Then, let βopt := argminβ̃ ∥βTXtrn − β̃Xtrn + ξtrn∥, where75

ξtrn ∈ RNtrn×1. Then the excess risk, when taking the expectation over the new test data point, can76

be expressed as R = ∥β − βopt∥2 = ∥β∥2 + ∥βopt∥2 − 2βTβopt. Let c be the aspect ratio of the77

1All code is available anonymized at [Github Repo]

2

https://anonymous.4open.science/r/Under-Parameterized-Double-Descent-0B52/README.md


data matrix. That is, c = d/Ntrn. Then it can be shown that278

EXtrn,ξtrn [∥βopt∥2] =

{
1 + c

1−c c < 1
1
c + 1

c−1 c > 1
and EXtrn,ξtrn [β

Tβopt] =

{
1 c < 1
1
c c > 1

Then, the excess risk can be expressed as R =

{
c

1−c c < 1
c−1
c + 1

c−1 c > 1
. There are a few important79

features that are considered staple in many prior double descent curves that are present in this model.80

1. The peak happens at c = 1, on the border between the under and over-parameterized regimes.81

2. Further, at c = 1 the training error equals zero. Hence this is the interpolation point.82

3. The peak occurs due to the norm of the estimator βopt blowing up near the interpolation point.83

Further, [26] proved risk is monotonic in the under-parameterized regime for the above model.84

For the ridge regularized version of the regression problem, as shown in [11, 24], the peak is always85

at c = 1 (see Figure 1 in [24]). Further, as seen in Figure 1 in [24], changing the strength of the86

regularization changes the magnitude of the peak. Not the location of the peak. Building on this, [23]87

looks at the model where yi = f(xi)+ξi and shows that triple descent occurs for the random features88

model [38] in the over-parameterized regime. Further [26] shows that by considering a variety of89

product data distributions, any shaped risk curve can be observed in the over-parameterized regime.90

Assumptions for Denoising Model With the context from the previous section in mind, we are91

now ready to present the assumptions for the input noise model with double descent in the under-92

parameterized regime. For the denoising problem, let Atrn ∈ Rd×Ntrn be the noise matrix, then the93

ridge regularized least square denoiser Wopt is the minimum norm solution to94

Wopt := argmin
W

∥Xtrn −W (Xtrn +Atrn)∥2F + µ2∥W∥2F . (1)

Given test data Xtst, the mean squared generalization error is given by95

R(Wopt) = EAtrn,Atst

[
1

Ntst
∥Xtst −Wopt(Xtst +Atst)∥2F

]
. (2)

The reason we consider linear models with the pseudo-inverse solution is that this eliminates other96

factors, such as the initialization of the network that could be a cause of the double descent [23]. We97

assume that the data lies on a line embedded in high-dimensional space.98

Assumption 1. Let U ⊂ Rd be a one dimensional space with a unit basis vector u. Then let Xtrn =99

σtrnuv
T
trn ∈ Rd×Ntrn and Xtst = σtstuv

T
tst ∈ Rd×Ntst be the respective SVDs for the training data100

and test data matrices. We further assume that σtrn = O(
√
Ntrn) and σtst = O(

√
Ntst).101

In [26], it was shown that by considering specific data distributions, any shaped generalization error102

curve could be observed in the over-parameterized regime. Hence to limit the effect of the data, we103

consider data on a line with norm restrictions.104

Assumption 2. The entries of the noise matrices A ∈ Rd×N are I.I.D. from N (0, 1/d).105

Notational note. One final piece of technical notation is the following function definition.106

p(µ) := (4µ15 + 48µ13 + 204µ11 + 352µ9 + 192µ7)
√
µ2 + 4

−(4µ16 + 56µ14 + 292µ12 + 680µ10 + 640µ8 + 128µ6).
(3)

3 Under-Parameterized Regime Peak107

We begin by providing a formula for the generalization error given by Equation 2 for the least squares108

solution given by Equation 1. The over-parameterized case can be found in Appendix F.2. See109

Appendix A for more discussion. All proofs are in Appendix F.110

Theorem 1 (Generalization Error Formula). Suppose the training data Xtrn and test data Xtst111

satisfy Assumption 1 and the noise Atrn, Atst satisfy Assumption 2. Let µ be the regularization112

2The proofs are in Appendix F.1.
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parameter. Then for the under-parameterized regime (i.e., c < 1) for the solution Wopt to Problem 1,113

the generalization error or risk given by Equation 2 is given by114

R(c, µ) = τ−2

(
σ2
tst

Ntst
+

cσ2
trn(σ

2
trn + 1))

2d

(
1 + c+ µ2c√

(1− c+ µ2c)2 + 4µ2c2
− 1

))
+ o

(
1

d

)
,

where τ−1 =
2

2 + σ2
trn(1 + c+ µ2c−

√
(1− c+ µ2c) + 4µ2c2)

.115

Data Scaling. We prove that the risk curve in Theorem 1 has a peak for c ∈ (0, 1). Theorem 2116

tells us that under certain conditions, we are guaranteed to have a peak in the under-parameterized117

regime. This contrasts with prior work such as [3, 5, 8–11, 14, 25]. Further, we conjecture that the118

peak occurs near c = (µ2 + 1)−1 (Appendix B). Figure 1 shows that the theoretically predicted risk119

matches the numerical risk. Moreover, the curve has a single peak for c < 1. Thus, verifying that120

double descent occurs in the under-parameterized regime. Finally, Figure 1 shows that the location121

of the peak is near the conjectured location of 1
µ2+1 . See Appendix D for the training error curves.122

Theorem 2 (Under-Parameterized Peak). If µ ∈ R>0 is such that p(µ) < 0, σ2
trn = Ntrn = d/c123

and σ2
tst = Ntst, and d is sufficiently large, then the risk R(c) from Theorem 1, as a function of c,124

has a local maximum in the under-parameterized regime (c ∈ (0, 1)).125
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Figure 1: Figure showing the risk curve in the data scaling regime for different values of µ [(L)
µ = 0.1, (C) µ = 1, (R) µ = 2]. Here σtrn =

√
Ntrn, σtst =

√
Ntst, d = 1000, Ntst = 1000. For

each empirical point, we ran at least 100 trials. More details can be found in Appendix G.
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Figure 2: Figure showing generalization error versus ∥Wopt∥2F for the parameter scaling regime for
three different values of µ. More details can be found in Appendix B.

Parameter Scaling. For many prior models, the data and parameter scaling regimes are analogous126

in that the shape of the risk is primarily governed by the aspect ratio c of the data matrix. However,127

we see significant differences between the parameter scaling and data scaling regimes for our setup.128

Figure 2 shows that for small values of µ, double descent occurs in the under-parameterized regime,129

for larger values of µ, the risk is monotonically decreasing.3 Further, Figure 2 shows that for larger130

values of µ, there is still a peak in the curve for the norm of the estimator ∥Wopt∥2F . However, this131

does not translate to a peak in the risk curve.132

Theorem 3 (∥Wopt∥F Peak). If σtst =
√
Ntst, σtrn =

√
Ntrn and µ is such that p(µ) < 0,133

then for Ntrn large enough and d = cNtrn, we have that ∥Wopt∥F has a local maximum in the134

under-parameterized regime. Specifically for c ∈ ((µ2 + 1)−1, 1).135

3This is verified for more values of µ in Appendix B.
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A Under-Parameterized Regime Peak285

We begin by providing a formula for the generalization error given by Equation 2 for the least squares286

solution given by Equation 1. All proofs are in Appendix F.287

Theorem 1 (Generalization Error Formula). Suppose the training data Xtrn and test data Xtst288

satisfy Assumption 1 and the noise Atrn, Atst satisfy Assumption 2. Let µ be the regularization289

parameter. Then for the under-parameterized regime (i.e., c < 1) for the solution Wopt to Problem 1,290

the generalization error or risk given by Equation 2 is given by291

R(c, µ) = τ−2

(
σ2
tst

Ntst
+

cσ2
trn(σ

2
trn + 1))

2d

(
1 + c+ µ2c√

(1− c+ µ2c)2 + 4µ2c2
− 1

))
+ o

(
1

d

)
,

where τ−1 =
2

2 + σ2
trn(1 + c+ µ2c−

√
(1− c+ µ2c) + 4µ2c2)

.292

Since the focus is on the under-parameterized regime, Theorem 1 only presents the under-293

parameterized case. The over-parameterized case can be found in Appendix F.2.294

Data Scaling. Looking at the formula in Theorem 1, the risk curve’s shape is unclear. In this295

section, we prove that the risk curve in Theorem 1 has a peak for c ∈ (0, 1). Theorem 2 tells us that296

under certain conditions, we are theoretically guaranteed to have a peak in the under-parameterized297

regime. This contrasts with prior work such as [3, 5, 8–11, 14, 25] where double descent occurs in298

the over-parameterized regime or on the boundary between the two regimes.299

Theorem 2 (Under-Parameterized Peak). If µ ∈ R>0 is such that p(µ) < 0, σ2
trn = Ntrn = d/c300

and σ2
tst = Ntst, and d is sufficiently large, then the risk R(c) from Theorem 1, as a function of c,301

has a local maximum in the under-parameterized regime (c ∈ (0, 1)).302

Since the peak no longer occurs at c = 1, one important question is to determine the location of the303

peak. Theorem 6 provides a method for estimating the location of the peak.304

Theorem 4 (Peak Location). If µ ∈ R>0 is such that p(µ) < 0, σ2
trn = Ntrn = d/c and σ2

tst = Ntst,305

then the partial derivative with respect to c of the risk R(c) from Theorem 1 can be written as306

∂

∂c
R(c, µ) =

(µ2c+ c− 1)P (c, µ, T (c, µ), d) + 4dµ2c2(2µ2c− T (c, µ))

Q(c, µ, T (c, µ), d)
,

where T (c, µ) =
√

(1− c+ µ2c)2 + 4µ2c2 and P,Q are polynomials in four variables.307

Here, at c = (µ2 +1)−1, the first term in the numerator is zero. Hence we conjecture that the peak of308

the generalization error curve occurs near c = (µ2 + 1)−1.309

Remark 1. Note that as µ → 0, we have that 4dµ2c2(2µ2c−T (c, µ)) → 0. We also note that, when310

µ = 1, we have that 2c − T (c, 1) = 0. Thus, we see that for µ near 0 or 1, we should expect our311

estimate of the location of the peak to be accurate.312
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Figure 3: Figure showing the risk curve in the data scaling regime for different values of µ [(L)
µ = 0.1, (C) µ = 1, (R) µ = 2]. Here σtrn =

√
Ntrn, σtst =

√
Ntst, d = 1000, Ntst = 1000. For

each empirical point, we ran at least 100 trials. More details can be found in Appendix G.

We numerically verify the predictions from Theorems 1, 2, 6. Figure 1 shows that the theoretically313

predicted risk matches the numerical risk. Moreover, the curve has a single peak for c < 1. Thus,314

verifying that double descent occurs in the under-parameterized regime. Finally, Figure 3 shows that315

the location of the peak is near the conjectured location of 1
µ2+1 . This conjecture is further tested316
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Figure 4: Figure showing generalization error versus ∥Wopt∥2F for the data scaling regime for three
different values of µ. More details can be found in Appendix B and G.
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Figure 5: Figure showing that the shape of the risk curve in the data scaling regime depends on d
[(L) d = 1000, (R) d = 2000]. Here µ =

√
2, σtrn =

√
Ntst, σtrn =

√
Ntst, Ntst = 1000. Each

empirical point is an average of at least 200 trials. More details can be found in Appendix G.

for a larger range of µ values in Appendix B. One similarity with prior work is that the peak in the317

generalization error or risk is corresponds to a peak in the norm of the estimator Wopt as seen in318

Figure 4 (i.e., the curve passes through the top right corner). The figure further shows, as conjectured319

in [39], that the double descent for the generalization error disappears when plotted as a function of320

∥Wopt∥2F and, in some cases, recovers an approximation of the standard U shaped error curve.321

Risk curve shape depends on d. Another interesting aspect of Theorem 2 is that it requires that d322

is large enough. Hence the shape of the risk curve depends on d. Most results for the risk are in the323

asymptotic regime. While Theorems 1, 2, and 6 are also in the asymptotic regime, we see that the324

results are accurate even for (relatively) small values of d,Ntrn. Figure 5 shows that the shape of the325

risk curve depends on the value of d. Both curves still have a peak at the same location.326

Parameter Scaling. For many prior models, the data scaling and parameter scaling regimes are327

analogous in that the shape of the risk curve does not depend on which one is scaled. The shape is328

primarily governed by the aspect ratio c of the data matrix. However, we see significant differences329

between the parameter scaling and data scaling regimes for our setup. Figure 6 shows risk curves330

that differ from those in Figure 3. Further, while for small values of µ, double descent occurs in the331

under-parameterized regime, for larger values of µ, the risk is monotonically decreasing.4332

Even more astonishing, as shown in Figure 7, is the fact that for larger values of µ, there is still a333

peak in the curve for the norm of the estimator ∥Wopt∥2F . However, this does not translate to a peak334

in the risk curve. Thus, showing that the norm of the estimator increasing cannot solely result in the335

generalization error increasing. The following theorem provides a local maximum in the ∥Wopt∥2F336

versus c curve for c < 1.337

Theorem 5 (∥Wopt∥F Peak). If σtst =
√
Ntst, σtrn =

√
Ntrn and µ is such that p(µ) < 0,338

then for Ntrn large enough and d = cNtrn, we have that ∥Wopt∥F has a local maximum in the339

under-parameterized regime. Specifically for c ∈ ((µ2 + 1)−1, 1).340

4This is verified for more values of µ in Appendix B.
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Figure 6: Figure showing the risk curves in the parameter scaling regime for different values of
µ [(L) µ = 0.1, (C) µ = 0.2, (R) µ = 0.2]. Here only the µ = 0.1 has a local peak. Here
Ntrn = Ntst = 1000 and σtrn = σtst =

√
1000. Each empirical point is an average of 100 trials.
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Figure 7: Figure showing generalization error versus ∥Wopt∥2F for the parameter scaling regime for
three different values of µ. More details can be found in Appendix B.

B Peak Location and ∥Wopt∥F341

Theorem 6 (Peak Location). If µ ∈ R>0 is such that p(µ) < 0, σ2
trn = Ntrn = d/c and σ2

tst = Ntst,342

then the partial derivative with respect to c of the risk R(c) from Theorem 1 can be written as343

∂

∂c
R(c, µ) =

(µ2c+ c− 1)P (c, µ, T (c, µ), d) + 4dµ2c2(2µ2c− T (c, µ))

Q(c, µ, T (c, µ), d)
,

where T (c, µ) =
√

(1− c+ µ2c)2 + 4µ2c2 and P,Q are polynomials in four variables.344

B.1 Peak Location for the Data Scaling Regime345

We first look at the peak location conjecture for the data scaling regime. For this experiment, for 101346

different values of µ ∈ [0.1, 10] we compute the generalization error at 101 equally spaced points for347

c ∈
(

1

2(µ2 + 1)
,

2

µ2 + 1

)
.

We then pick the c value that has the maximum from amongst these 101 values of c. We notice that348

this did not happen at the boundary. Hence it corresponded to a true local maximum. We plot this349

value of c on Figure 8 and compare this against 1
µ2+1 . As we can see from Figure 8, our conjectured350

location of the peak is an accurate estimate.351

C Generalization error - bias and variance352

For both the data scaling and parameter scaling regimes, Figures 9 and 10 show the bias, ∥Wopt∥ and353

the generalization error. Here we see that our estimate is accurate.354

D Training Error355

As seen in the prior section, the peak happens in the interior of the under-parameterized regime and356

not on the border between the under-parameterized and over-parameterized regimes. In many prior357

works, the peak aligns with the interpolation point (i.e., zero training error). Theorem 7 derives a358

formula for the training error in the under-parameterized regime. Figure 11 plots the location of359
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Figure 9: Figure showing the bias, ∥Wopt∥2F , and the generalization error in the data scaling regime
for µ = 1, σtrn =

√
Ntrn, and σtst =

√
Ntst. Here d = 1000 and Ntst = 1000. For each empirical

data point, we ran at least 100 trials. More details can be found in Appendix G.
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Figure 10: Figure showing the ∥Wopt∥2F , and the generalization error in the parameter scaling regime
for µ = 1, σtrn =

√
Ntrn, and σtst =

√
Ntst. Here Ntrn = 1000 and Ntst = 1000. For each

empirical data point, we ran at least 100 trials. More details can be found in Appendix G.

the peak, the training error, and the third derivative of the training error. Here the figure shows that360

the training error curve does not signal the location of the peak in the generalization error curve.361

However, it shows that for the data scaling regime, the peak roughly corresponds to a local minimum362

of the third derivative of the training error.363

Theorem 7 (Training Error). Let τ be as in Theorem 1. The training error for c < 1 is given by364

EAtrn
[∥Xtrn −Wopt(Xtrn +Atrn)∥2F ] = τ−2

(
σ2
trn (1− c · T1) + σ4

trnT2

)
+ o(1),
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Figure 11: Figure showing the training error, the third derivative of the training error, and the location
of the peak of the generalization error for different values of µ [(L) µ = 1, (C) µ = 2] for the data
scaling regime. (R) shows the location of the local minimum of the third derivative and 1

µ2+1 .

where T1 =
µ2

2

(
1 + c+ µ2c√

(1− c+ µ2c)2 + 4µ2c2
− 1

)
+

1

2
+

1 + µ2c−
√

(1− c+ µ2c)2 + 4c2µ2

2c
,365

and T2 =
(µ2c+ c− 1−

√
(1− c+ µ2c)2 + 4c2µ2)2(µ2c+ c+ 1−

√
(1− c+ µ2c)2 + 4c2µ2)

2
√
(1− c+ µ2c)2 + 4c2µ2

.366

E Regularization Trade-off367

We analyze the trade-off between the two regularizers and the generalization error.368
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Figure 12: The first two figures show the σtrn versus risk curve for c = 0.5, µ = 1 and c = 2, µ = 0.1
with d = 1000. The second two figures show the risk when training using the optimal σtrn for the
data scaling and parameter scaling regimes.

Optimal σtrn. First, we fix µ and determine the optimal σtrn. Figure 12 displays the generalization369

error versus σ2
trn curve. The figure shows that the error is initially large but then decreases until the370

optimal generalization error. The generalization error when using the optimal σtrn is also shown in371

Figure 12. Here, unlike [24], picking the optimal value of σtrn does not mitigate double descent.372

Proposition 1 (Optimal σtrn). The optimal value of σ2
trn for c < 1 is given by373

σ2
trn =

σ2
tstd[2c(µ

2 + 1)2 − 2T (cµ2 + c+ 1) + 2(cµ2 − 2c+ 1)] +Ntst(µ
2c2 + c2 + 1− T )

Ntst(c3(µ2 + 1)2 − T (µ2c2 + c2 − 1)− 2c2 − 1)
.

Additionally, it is interesting to determine how the optimal value of σtrn depends on both µ and374

c. Figure 13 shows that for small values of µ (0.1,0.5), as c changes, there exists an (inverted)375

double descent curve for the optimal value of σtrn. However, unlike [33], for the data scaling376
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Figure 13: The first figure plots the optimal σ2
trn/Ntrn versus µ curve. The middle figure plots

the optimal σ2
trn/Ntrn versus c in the data scaling regime for µ = 0.5, and the last figure plots the

optimal σ2
trn/Ntrn versus c in the parameter scaling regime for µ = 0.1.
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regime, the minimum of this double descent curve does not match the location for the peak of the377

generalization error. Further, as the amount of ridge regularization increases, the optimal amount of378

noise regularization decreases proportionally; optimal σ2
trn ≈ dµ2. Thus, for higher values of ridge379

regularization, it is preferable to have higher-quality data.380
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Figure 14: Trade-off between the regularizers. The left column is the optimal σtrn, the central column
is the optimal µ, and the right column is the generalization error for these parameter restrictions.

Interaction Between the Regularizers. The optimal values of µ and σtrn are jointly computed381

using grid search for µ ∈ (0, 100] and σtrn/
√
Ntrn ∈ (0, 10]. Figure 14 shows the results. Specifi-382

cally, σtrn is at the highest possible value (so best quality data), and then the model regularizes purely383

using the ridge regularizer. This results in a monotonically decreasing generalization error curve.384

Thus, in the data scaling model, there is an implicit bias that favors one regularizer over the other.385

Specifically, the model’s implicit bias is to use higher quality data while using ridge regularization to386

regularize the model appropriately. It is surprising that the two regularizers are not balanced.387

E.1 Optimal Value of µ388
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Figure 15: Figure showing the generalization error versus µ for σ2
trn = Ntrn and σ2

tst = Ntst.

We now explore the effect of fixing σtrn and then changing µ. Figure 15, shows a U shaped curve389

for the generalization error versus µ, suggesting that there is an optimal value of µ, which should be390

used to minimize the generalization error.391

Next, we compute the optimal value of µ using grid search and plot it against c. Figure 16 shows392

double descent for the optimal value of µ for small values of σtrn. Thus for low SNR data we see393

double descent, but we do not for high SNR data.394

Finally, for a given value of µ and c, we compute the optimal σtrn. We then compute the generalization395

error (when using the optimal σtrn) and plot the generalization error versus µ curve. Figure 17396

displays a very different trend from Figure 15. Instead of having a U -shaped curve, we have a397

monotonically decreasing generalization error curve. This suggests that we can improve generalization398

by using higher-quality training while compensating for this by increasing the amount of ridge399

regularization.400
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Figure 16: Figure for the optimal value of µ versus for different values of σtrn
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Figure 17: Figure showing the generalization error versus µ for the optimal σ2
trn and σ2

tst = Ntst.
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(a) 0.1 ≤ µ ≤ 10 and 0.1 ≤ σtrn ≤ 10
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(b) 0.1 ≤ µ ≤ 100 and 0.1 ≤ σtrn ≤ 10

Figure 18: Trade-off between the regularizers. The left column is the optimal σtrn, the central column
is the optimal µ, and the right column is the generalization error for these parameter restrictions

E.2 Trade-off in Parameter Scaling Regime401

Here we look at the trade-off between σtrn and µ for the parameter scaling regime. We again see402

that the model implicitly prefers regularizing via ridge regularization and not via input data noise403

regularizer.404
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F Proofs405

F.1 Linear Regression406

We begin by noting,407

βT = (βT
optX + ξtrn)X

†
trn.

Thus, we have,408

∥β∥2 = Tr(βTβ)

= Tr(βT
optXtrnX

†
trn(X

†
trn)

TXtrnβopt) + Tr(ξtrnX
†
trn(X

†
trn)

T ξTtrn) + 2Tr(βT
optXtrnX

†
trnX

†
trn)

T ξTtrn.

Taking the expectation, with respect to ξtrn, we see that the last term vanishes.409

Letting Xtrn = UXΣXV T
X . We see that using the rotational invariance of X , UX , VX are independent410

and uniformly random. Thus, s := βT
optUX is a uniformly random unit vector.411

Thus, we see,412

EXtrn,ξtrn

[
Tr(βT

optXtrnX
†
trn(X

†
trn)

TXtrnβopt)
]
=

min(d,Ntrn)∑
i=1

E[s2i ] = min

(
1,

1

c

)
Similarly, we see,413

EXtrn,ξtrn

[
ξtrnX

†
trn(X

†
trn)

T ξTtrn

]
=

min(d,Ntrn)∑
i=1

E
[

1

σi(Xtrn)2

]
Multiplying and dividing by d, normalizes the singular values squared of Xtrn so that the limiting414

distribution is the Marchenko Pastur distribution with shape c. Thus, we can estimate using Lemma 5415

from Sonthalia and Nadakuditi [33] to get,416 {
c

1−c + o(1) c < 1
1

c−1 + o(1) c > 1
.

Finally, the cross-term has an expectation equal to zero. Thus,417

EXtrn,ξtrn [∥βopt∥2] =

{
1 + c

1−c c < 1
1
c + 1

c−1 c > 1

Then we have,418

βTβopt = βT
optXtrnX

†
trnβopt + ξtrnX

†
trnβopt

The second term has an expectation equal to zero, and the first term is similar to before and has an419

expectation equal to min

(
1,

1

c

)
.420

F.2 Proofs for Theorem 1421

The proof structure closely follows that of [33].422

F.2.1 Step 1: Decompose the error into bias and variance terms.423

First, we decompose the error. Since we are not in the supervised learning setup, we do not have424

standard definitions of bias/variance. However, we will call the following terms the bias/variance of425

the model. First, we recall the following from [33].426

Lemma 1 (Sonthalia and Nadakuditi [33]). If Atst has mean 0 entries and Atst is independent of427

Xtst and W , then428

EAtst [∥Xtst −WYtst∥2F ] = EAtst [∥Xtst −WXtst∥2F ]︸ ︷︷ ︸
Bias

+EAtst [∥WAtst∥2F ]︸ ︷︷ ︸
V ariance

.
(4)
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F.2.2 Step 2: Formula for Wopt429

Here, we compute the explicit formula for Wopt in Problem 1. Let Âtrn = [Atrn µI], X̂trn =430

[Xtrn 0] , and Ŷtrn = X̂trn + Âtrn. Then solving argminW ∥Xtrn −WYtrn∥2F + µ2∥W∥2F is431

equivalent to solving argminW ∥X̂trn−WŶtrn∥2F . Thus, Wopt = argminW ∥X̂trn−WŶtrn∥2F =432

X̂trnŶ
†
trn. Expanding this out, we get the following formula for Ŵ . Let û be the left singular433

vector and v̂trn be the right singular vectors of X̂trn. Note that the left singular does not change434

after ridge regularization, so û = u. Let ĥ = v̂TtrnÂ
†
trn, k̂ = Â†

trnu, ŝ = (I − ÂtrnÂ
†
trn)u,435

t̂ = v̂trn(I − Â†
trnÂtrn), γ̂ = 1 + σtrnv̂

T
trnÂ

†
trnu, τ̂ = σ2

trn∥t̂∥2∥k̂∥2 + γ̂2.436

Proposition 2. If γ̂ ̸= 0 and Atrn has full rank then437

Wopt =
σtrnγ̂

τ̂
uĥ+

σ2
trn∥t̂∥2

τ̂
uk̂T Â†

trn.

Proof. Here we know that u is arbitrary. We have that Âtrn has full rank. Thus, the rank of Âtrn is438

d, and the range of Âtrn is the whole space. Thus, u lives in the range of Âtrn. In this case, we want439

Theorem 3 from [40]. We define440

p̂ = −σ2
trn∥k̂∥2

γ̂
t̂T − σtrnk̂ and q̂T = −σtrn∥t̂∥2

γ̂
k̂T Â†

trn − ĥ.

Then we have,441

(Âtrn + σtrnuv̂
T
trn)

† = Â†
trn +

σtrn

γ̂
t̂T k̂T Â†

trn − γ̂

τ̂
p̂q̂T .

Note that, by our assumptions, we have t̂ = v̂trn(I − Â†
trnÂtrn), and (I − Â†

trnÂtrn) is a projection442

matrix, thus443

v̂Ttrnt̂
T = v̂Ttrn(I − Â†

trnÂtrn)
T v̂Ttrn

= v̂Ttrn(I − Â†
trnÂtrn)

T (I − Â†
trnÂtrn)

T v̂Ttrn.

To compute Wopt = X̂trn(X̂trn + Âtrn)
† = σtrnuv̂

T
trn(Âtrn + σtrnuv̂

T
trn)

†, using γ̂ − 1 =444

σtrnv̂
T
trnÂ

†
trnu = σtrnĥu, we multiply this through.445

σtrnuv̂
T
trn(Âtrn + σtrnuv̂

T
trn)

† = σtrnuv̂
T
trn(Â

†
trn +

σtrn

γ̂
t̂T k̂T Â†

trn − γ̂

τ̂
p̂q̂T )

= σtrnuĥ+
σ2
trn∥t̂∥2

γ̂
uk̂T Â†

trn

+
σtrnγ̂

τ̂
uv̂Ttrn

(
σ2
trn∥k̂∥2

γ̂
t̂T + σtrnk̂

)
q̂T

= σtrnuĥ+
σ2
trn∥t̂∥2

γ̂
uk̂T Â†

trn +
σ3
trn∥k̂∥2∥t̂∥2

τ̂
uq̂T

+
σtrnγ̂(γ̂ − 1)

τ̂
uq̂T .

Then we have,446

σ3
trn∥k̂∥2∥t̂∥2

τ̂
uq̂T =

σ3
trn∥k̂∥2∥t̂∥2

τ̂
u

(
−σtrn∥t̂∥2

γ̂
k̂T Â†

trn − ĥ

)
= −σ4

trn∥k̂∥2∥t̂∥4

τ̂ γ̂
uk̂T Â†

trn − σ3
trn∥k̂∥2∥t̂∥2

τ̂
uĥ
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and447

σtrnγ̂(γ̂ − 1)

τ̂
uq̂T =

σtrnγ̂(γ̂ − 1)

τ̂
u

(
−σtrn∥t̂∥2

γ̂
k̂T Â†

trn − ĥ

)
= −σ2

trn∥t̂∥2(γ̂ − 1)

τ̂
uk̂T Â†

trn − σtrnγ̂(γ̂ − 1)

τ̂
uĥ.

Substituting back in and collecting like terms, we get,448

σtrnuv̂
T
trn(Âtrn + σtrnuv̂

T
trn)

† = σtrn

(
1− σ2

trn∥k̂∥2∥t̂∥2

τ̂
− γ̂(γ̂ − 1)

τ̂

)
uĥ+

σ2
trn

(
∥t̂∥2

γ̂
− σ2

trn∥k̂∥2∥t̂∥4

τ̂ γ̂
− ∥t̂∥2(γ̂ − 1)

τ̂

)
uk̂T Â†

trn.

We can then simplify the constants as follows.449

1− σ2
trn∥k̂∥2∥t̂∥2

τ̂
− γ̂(γ̂ − 1)

τ̂
=

τ̂ − σ2
trn∥k̂∥2∥t̂∥2 − γ2 + γ

τ̂
=

γ̂

τ̂

and450

∥t̂∥2

γ̂
− σ2

trn∥k̂∥2∥t̂∥4

τ̂ γ̂
− ∥t̂∥2(γ̂ − 1)

τ̂
=

∥t̂∥2
(
τ̂ − σ2

trn∥k̂∥2∥t̂∥2 − γ̂2 + γ̂
)

τ̂ γ̂
=

∥t̂∥2

τ̂
.

This gives us the result.451

F.2.3 Step 3: Decompose the terms into a sum of various trace terms.452

For the bias and variance terms, we have the following two Lemmas.453

Lemma 2. If Wopt is the solution to Equation 1, then454

Xtst −WoptXtst =
γ̂

τ̂
Xtst.

Proof. To see this, note that we have Ntrn +M > M .455

Xtst −WoptXtst = Xtst −
σtrnγ̂

τ̂
uĥuvTtst −

σ2
trn∥t̂∥2

τ̂
uk̂T Â†

trnuv
T
tst

= Xtst −
σ̂trnγ̂

τ̂
uv̂TtrnÂ

†
trnuv

T
tst −

σ2
trn∥t̂∥2

τ̂
uk̂T Â†

trnuv
T
tst.

Note that γ̂ = 1 + σtrnv̂
T
trnÂ

†
trnu. Thus, we have that σtrnv̂

T
trnÂ

†
trnu = γ̂ − 1. Substituting this456

into the second term, we get,457

Xtst −WoptXtst = Xtst −
γ̂(γ̂ − 1)

τ̂
uvTtst −

σ2
trn∥t̂∥2

τ̂
uk̂T Â†

trnuv
T
tst.

For the third term, since k̂ = Â†
trnu, k̂T Â†

trnu = k̂T k̂ = ∥k̂∥2. Substituting this into the expression,458

we get that459

Xtst −WoptXtst = Xtst −
γ̂(γ̂ − 1)

τ̂
uvTtst −

σ2
trn∥t̂∥2∥k̂∥2

τ̂
uvTtst.

Since Xtst = uvTtst, we get,460

Xtst −WoptXtst = Xtst

(
1− γ̂(γ̂ − 1)

τ̂
− σ2

trn∥t̂∥2∥k̂∥2

τ̂

)
.
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Simplify the constants using τ̂ = σ2
trn∥t̂∥2∥k̂∥2 + γ̂2, we get,461

τ̂ + γ̂ − γ̂2 − σ2
trn∥t̂∥2∥k̂∥2

τ̂
=

γ̂

τ̂
.

462

Lemma 3 (Sonthalia and Nadakuditi [33]). If the entries of Atst are independent with mean 0, and463

variance 1/d, then we have that EAtst
[∥WoptAtst∥2] = Ntst

d ∥Wopt∥2.464

Lemma 4. If γ̂ ̸= 0 and Atrn has full rank, then we have that465

∥Wopt∥2F =
σ2
trnγ̂

2

τ2
Tr(ĥT ĥ) + 2

σ3
trn∥t̂∥2γ̂

τ̂2
Tr(ĥT k̂T Â†

trn) +
σ4
trn∥t̂∥4

τ̂2
Tr((Â†

trn)
T k̂k̂T Â†

trn)︸ ︷︷ ︸
ρ

.

Proof. We have466

∥Wopt∥2F = Tr(WT
optWopt)

= Tr

((
σtrnγ̂

τ̂
uĥ+

σ2
trn∥t̂∥2

τ̂
uk̂T Â†

trn

)T (
σtrnγ̂

τ̂
uĥ+

σ2
trn∥t̂∥2

τ̂
uk̂T Â†

trn

))

=
σ2
trnγ̂

2

τ̂2
Tr(ĥTuTuĥ) + 2

σ3
trn∥t̂∥2γ̂

τ̂2
Tr(ĥTuTuk̂T Â†

trn)

+
σ4
trn∥t̂∥4

τ̂2
Tr((Â†

trn)
T k̂uTuk̂T Â†

trn)

=
σ2
trnγ̂

2

τ̂2
Tr(ĥT ĥ) + 2

σ3
trn∥t̂∥2γ̂

τ̂2
Tr(ĥT k̂T Â†

trn) +
σ4
trn∥t̂∥4

τ̂2
Tr((Â†

trn)
T k̂k̂T Â†

trn).

Where the last inequality is true due to the fact that ∥u∥2 = 1.467

F.2.4 Step 4: Estimate With Random Matrix Theory468

Lemma 5. Let A be a p× q matrix and let Â = [A µI] ∈ Rp×q+p. Suppose A = UΣV T be the469

singular value decomposition of A. If Â = Û Σ̂V̂ T is the singular value decomposition of Â, then470

Û = U and if p < q471

Σ̂ =


√
σ1(A)2 + µ2 0 · · · 0

0
√
σ2(A)2 + µ2 0

...
. . .

...
0 0 · · ·

√
σp(A)2 + µ2

 ∈ Rp×p,

and472

V̂ =

[
V1:pΣΣ̂

−1

µU Σ̂−1

]
∈ Rq+p×p.

Here V1:p are the first p columns of V .473

Proof. Since p < q, we have that U ∈ Rp×p, Σ ∈ Rp×p are invertible. Here also consider the form474

of the SVD in which V T ∈ Rp×q .475

We start by nothing that Û Σ̂2ÛT = ÂÂT = AAT +µ2I = U(Σ2+µ2Ip)U
T . Thus, we immediately476

see that σi(Â)2 = σi(A)2 + µ2 and that Û = U .477

Finally, we see,478

V̂ T = Σ̂−1UT Â =
[
Σ̂−1ΣV T

1:p µΣ̂−1UT
]

479
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Lemma 6. Let A be a p× q matrix and let Â = [A µI] ∈ Rp×q+p. Suppose A = UΣV T be the480

singular value decomposition of A. If Â = Û Σ̂V̂ T is the singular value decomposition of Â, then481

Û = U and if p > q482

Σ̂ =



√
σ1(A)2 + µ2 0 · · · 0 · · · 0

0
√
σ2(A)2 + µ2 0

...
. . .

...
...

0 0 · · ·
√
σq(A)2 + µ2 0

µ
...

. . . 0
0 0 · · · 0 · · · 0 µ


∈ Rp×p.

Here we will denote the upper left q × q block by C. Further,483

V̂ =

[
V ΣT

1:q,1:qC
−1 0

µU1:qC
−1 Uq+1:p

]
∈ Rq+p×p.

Proof. Since p > q, we have that U ∈ Rp×p and we have that Σ ∈ Rp×q. Here V T ∈ Rq×q is484

invertible.485

We start with nothing,486

Û Σ̂2ÛT = ÂÂT = AAT + µ2I = U

([
Σ2

1:q,1:q 0
0 0q−p

]
+ µ2Iq

)
UT .

Thus, we immediately see that for i = 1, . . . , p σi(Â)2 = σi(A)2 + µ2 and for i = p+ 1, . . . , q, we487

have that σi(Â)2 = µ2 and that Û = U .488

Then, we see,489

V̂ T = Σ̂−1UT Â =
[
Σ̂−1ΣV T µΣ̂−1UT

]
.

Note that Σ has 0 for the last p− q entries. Thus,490

Σ̂−1ΣV =

[
C−1Σ1:q,1:qV

0q−p,q

]
.

Similarly, due to the structure of Σ̂, we see,491

µΣ̂−1UT = [µC−1UT
1:q µ

1

µ
UT
q+1:p].

492

Lemma 7. Suppose A is an p by q matrix such that p < q, the entries of A are independent and have493

mean 0, variance 1/p, and bounded fourth moment. Let c = p/q. Let Â = [A µI] ∈ Rp×q+p. Let494

Wp = ÂÂT and let Wq = ÂT Â. Suppose λp is a random non-zero eigenvalue from the largest p495

eigenvalues of Wp, and λq is a random non-zero eigenvalue of Wq . Then496

1. E
[

1
λp

]
= E

[
1
λq

]
=

√
(1+µ2c−c)2+4µ2c2−1−µ2c+c

2µ2c + o(1).497

2. E
[

1
λ2
p

]
= E

[
1
λ2
q

]
= µ2c2+c2+µ2c−2c+1

2µ4c
√

4µ2c2+(1−c+µ2c)2
+ 1

2µ4

(
1− 1

c

)
+ o(1).498

Proof. First, we note that the non-zero eigenvalues of Wp and Wq are the same. Hence we focus on499

Wp. Wp is nearly a Wishart matrix but is not normalized by the correct value. However, cWp does500

have the correct normalization.501

Due to the assumptions on A, we have that the eigenvalues of cAAT converge to the Marchenko-502

Pastur. Hence since the eigenvalues of cWp are503

(cλp)i = cσi(A)2 + cµ2,
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we can estimate them by estimating cσi(A)2 with the Marchenko-Pastur [41–45]. In particular, we504

want the expectation of the inverse. We need to use the Stieljes transform. We know that if mc(z) is505

the Stieljes transform for the Marchenko-Pastur with shape parameter c, then if λ is sampled from the506

Marchenko-Pastur distribution, then507

mc(z) = Eλ

[
1

λ− z

]
.

Thus, we have that the expected inverse of the eigenvalue can be approximated m(−cµ2). We know508

that the Steiljes transform:509

mc(z) = −
1− z − c−

√
(1− z − c)2 − 4cz

−2zc
.

Thus, we have,510

E
[

1

cλp

]
= m(−cµ2) =

√
(1 + µ2c− c)2 + 4µ2c2 − 1− µ2c+ c

2µ2c2
.

Canceling 1/c from both sides, we get,511

E
[
1

λp

]
=

√
(1 + µ2c− c)2 + 4µ2c2 − 1− µ2c+ c

2µ2c
.

Then for the estimate of E
[
1/λ2

p

]
, we need to compute the derivative of the mc(z) and evaluate it at512

−cµ2. Hence, we see,513

m′
c(z) =

(c− z +
√
−4cz + (1− c− z)2 − 1)(c+ z +

√
−4cz + (1− c− z)2 − 1)

4cz2
√

−4cz + (1− c− z)2
.

Thus,514

E
[

1

c2λ2
p

]
= m′

c(−cµ2)

=
(c+ µ2c+

√
4µ2c2 + (1− c+ µ2c)2 − 1)(c− µ2c+

√
4µ2c2 + (1− c+ µ2c)2 − 1)

4µ4c3
√

4µ2c2 + (1− c+ µ2c)2
.

Canceling the 1/c2 from both sides, we get,515

E
[
1

λ2
p

]
=

(c+ µ2c+
√
4µ2c2 + (1− c+ µ2c)2 − 1)(c− µ2c+

√
4µ2c2 + (1− c+ µ2c)2 − 1)

4µ4c
√
4µ2c2 + (1− c+ µ2c)2

.

Multiplying out and simplifying516

E
[
1

λ2
p

]
=

µ2c2 + c2 + µ2c− 2c+ 1

2µ4c
√
4µ2c2 + (1− c+ µ2c)2

+
1

2µ4

(
1− 1

c

)
.

517

Lemma 8. Suppose A is an p by q matrix such that p > q, the entries of A are independent and have518

mean 0, variance 1/p, and bounded fourth moment. Let c = p/q. Let Â = [A µI] ∈ Rp×q+p. Let519

Wp = ÂÂT and let Wq = ÂT Â. Suppose λp is a random non-zero eigenvalue of Wp, and λq is a520

random eigenvalue from the largest q eigenvalues of Wq . Then521

1. E
[

1
λq

]
= E

[
1
λp

]
=

√
4µ2c+(1−c+µ2c)2−c−µ2c+1

2µ2 + o(1).522

2. E
[

1
λ2
q

]
= E

[
1
λ2
p

]
= 1−2c+c2+µ2c+µ2c2

2µ4
√

4µ2c+(−1+c+µ2c)2
+ (1− c) 1

2µ4 + o(1).523
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Proof. First, we note that the non-zero eigenvalues of Wp and Wq are the same. Hence we focus on524

Wp. Due to the assumptions on A, we have that the eigenvalues of ATA converge to the Marchenko-525

Pastur with shape c−1. Hence if λp is one of the first q eigenvalues of Wp, we see,526

E
[
1

λp

]
= mc−1(µ2) =

√
(1 + µ2 − 1/c)2 + 4µ2/c− 1− µ2 + 1/c

2µ2/c
.

Then for the estimate of E
[
1/λ2

p

]
, we need to compute the derivative of the mc−1(z) and evaluate it527

at −µ2. Hence, we see,528

E
[
1

λ2
p

]
=

(1/c+ µ2 +
√
4µ2/c+ (1− 1/c+ µ2)2 − 1)(1/c− µ2 +

√
4µ2/c+ (1− 1/c+ µ2)2 − 1)

4µ4/c
√

4µ2/c+ (1− 1/c+ µ2)2

=
(1 + µ2c+ c

√
4µ2/c+ (1− 1/c+ µ2)2 − c)(1− µ2c+ c

√
4µ2/c+ (1− 1/c+ µ2)2 − c)

4µ4c
√
4µ2/c+ (1− 1/c+ µ2)2

=
(1 + µ2c+

√
4µ2c+ (−1 + c+ µ2c)2 − c)(1− µ2c+

√
4µ2c+ (−1 + c+ µ2c)2 − c)

4µ4
√
4µ2c+ (−1 + c+ µ2c)2

This can be further simplified to529

1− 2c+ c2 + µ2c+ µ2c2

2µ4
√
4µ2c+ (−1 + c+ µ2c)2

+ (1− c)
1

2µ4
+ o(1)

530

We will also need to estimate some other terms.531

Lemma 9. Suppose A is an p by q matrix such that the entries of A are independent and have mean532

0, variance 1/p, and bounded fourth moment. Let Â = [A µI] ∈ Rp×q+p. Let Wp = ÂÂT and let533

Wq = ÂT Â. Suppose λp, λq are random non-zero eigenvalues of Wp,Wq from the largest min(p, q)534

eigenvalues of Wp,Wq . Then535

1. If p > q, E
[

λp

λp+µ2

]
= c

(
1
2 +

1+µ2c−
√

(−1+c+µ2c)2+4µ2c

2c

)
+ o(1).536

2. If p < q, E
[

λq

λq+µ2

]
= 1

2 +
1+µ2c−

√
(1−c+µ2c)2+4c2µ2

2c + o(1).537

3. If p > q, E
[

λp

(λp+µ2)2

]
= c

(
1+c+µ2c

2
√

(−1+c+µ2c)2+4µ2c
− 1

2

)
+ o(1).538

4. If p < q, E
[

λq

(λq+µ2)2

]
= 1+c+µ2c

2
√

(1−c+cµ2)2+4c2µ2
− 1

2 + o(1).539

Proof. Notice that540

λ

λ+ µ2
= 1− µ2

λ+ µ2
and

λ

(λ+ µ2)2
=

1

λ+ µ2
− µ2

(λ+ µ2)2

Then use Lemmas 7, and 8 to finish the proof.541

Bounding the Variance.542

Lemma 10. Let ηn be a uniform measure on n numbers a1, . . . , an such that ηn → η weakly in543

probability. Then for any bounded continuous function f544

1

n

n−1∑
i=1

f(ai) → Ex∼η[f(x)].
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Proof. Using weak convergence545

1

n

n∑
i=1

f(ai) → Ex∼η[f(x)].

Then using the boundedness of f , we get,546

1

n

n−1∑
i=1

f(ai)−
1

n

n∑
i=1

f(ai) = − 1

n
f(an) → 0.

547

Lemma 11. Let ηn be a uniform measure on n numbers a1, . . . , an such that ηn → η weakly in548

probability. Let s be a uniformly random unit vector in Rm independent of ηn. Suppose n/m → ζ ∈549

(0, 1]. Then for any bounded function f ,550

Es

[
n∑

i=1

s2i f(ai)

]
→ ζEx∼η[f(x)]

and551

Es

( n∑
i=1

s2i f(ai)

)2
− Es

[
n∑

i=1

s2i f(ai)

]2
→ 0.

Proof. The first limit comes directly from weak convergence.552

For the second, notice,553 (
n∑

i=1

s2i f(ai)

)2

=

n∑
i=1

s4i f(ai)
2+
∑
i̸=j

s2i s
2
jf(ai)f(aj) =

n∑
i=1

s4i f(ai)
2+

n∑
i=1

s2i f(ai)
∑
j ̸=i

s2jf(aj).

Taking the expectation with respect to s we get,554

Es

( n∑
i=1

s2i f(ai)

)2
 =

1

m2 +O(m)

n∑
i=1

f(ai)
2 +

1

m2 +O(m)

n∑
i=1

f(ai)
∑
j ̸=i

f(aj)

Then using Lemma 10 for any fixed i, we have,555

1

m

∑
j ̸=i

f(aj) → ζEx∼η[f(x)].

Thus, as n → ∞, we have,556

Es

( n∑
i=1

s2i f(ai)

)2
→ ζ2Ex∼η[f(x)]

2.

Then since557

Es

[
n∑

i=1

s2i f(ai)

]2
→ ζ2Ex∼η[f(x)]

2.

Thus, the variance goes to zero.558

The interpretation of the above Lemma is that the variance of the sum decays to zero as m → ∞.559

Lemma 12. Suppose A is an p by q matrix such that the entries of A are independent and have560

mean 0, variance 1/p, and bounded fourth moment. Let Â = [A µI] ∈ Rp×q+p. Let x ∈ Rp and561

ŷ ∈ Rp+q be unit norm vectors such that ŷT = [yT 0p]. Then562

1. If p < q, then E[Tr(xT (ÂÂT )†x] =

√
(1−c+µ2c)2+4µ2c2−1−µ2c+c

2µ2c + o(1).563
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2. If p > q, then E[Tr(xT (ÂÂT )†x] =

√
(−1+c+µ2c)2+4µ2c−1−µ2c+c

2µ2c + o(1).564

3. If p < q, then E[Tr(ŷT (ÂT Â)†ŷ] = c

(
1+c+µ2c

2
√

(1−c+µ2c)2+4c2µ2
− 1

2

)
+ o(1).565

4. If p > q, then E[Tr(ŷT (ÂT Â)†ŷ] = c

(
1+c+µ2c

2
√

(−1+c+µ2c)2+4µ2c
− 1

2

)
+ o(1).566

The variance of each above is o(1).567

Proof. Let us start with p < q.568

Let Â = Û Σ̂V̂ T , where Σ̂ is p× p. Then we see,569

(ÂÂT )† = Û Σ̂−2ÛT .

Where Û is uniformly random. Thus similar to [33], we can use Lemma 7 to get,570

E[Tr(xT (ÂÂT )†x] =

√
(1 + µ2c− c)2 + 4µ2c2 − 1− µ2c+ c

2µ2c
+ o(1).

On the other hand, for p > q, we have that only the first q eigenvalues have the expectation in Lemma571

8 The other p− q are equal to 1
µ2 . Thus, we see,572

E[Tr(xT (ÂÂT )†x] =
1

c

(√
4µ2c+ (−1 + c+ µ2c)2 − c− µ2c+ 1

2µ2
+ o(1)

)
+

(
1− 1

c

)
1

µ2

=

√
4µ2c+ (−1 + c+ µ2c)2 + c− µ2c− 1

2cµ2
.

Again let us first consider the case when p < q. Then we have,573

(ÂT Â)† = V̂ Σ̂−2V̂ T =

[
V1:pΣΣ̂

−1

µU Σ̂−1

]
Σ̂−2

[
Σ̂−1ΣV T

1:p µΣ̂−1UT
]
.

Since ŷ has zeros in the last p coordinates, we see,574

ŷT (ÂT Â)†ŷ = yTV1:pΣΣ̂
−4ΣV T

1:py.

Thus, we can use Lemma 9 to estimate this as,575

c

(
1 + c+ µ2c

2
√
(1− c+ cµ2)2 + 4c2µ2

− 1

2

)
+ o(1).

The extra factor of c comes from the sum of p coordinates of a uniformly unit vector in q dimensional576

space. And for p > q, we have that the estimate is577

1 + c+ µ2c

2
√
(1 + µ2 − 1/c)2 + 4µ2/c

− c

2
+ o(1).

For the variance term, use Lemma 11. For three of the cases, the limiting distribution is the Marchenko-578

Pastur distribution. For the other case, the limiting measure is a mixture of the Marchenko-Pastur and579

a dirac delta at 1/µ2.580

The rest of the lemmas in this section are used to compute the mean and variance of the various terms581

that appear in the formula of Wopt.582

Lemma 13. We have that583

EAtrn

[
∥ĥ∥2

]
=


c

(
1+c+µ2c

2
√

(1−c+µ2c)2+4µ2c2
− 1

2

)
+ o(1) c < 1

c

(
1+c+µ2c

2
√

(−1+c+µ2c)2+4µ2c
− 1

2

)
+ o(1) c > 1

and that V(∥ĥ∥2) = o(1).584
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Proof. Here we see that585

∥ĥ∥2 = Tr(v̂Ttrn(Â
T
trnÂtrn)

†v̂Ttrn).

Thus, using the Lemma 12 we get that if c < 1586

E[∥ĥ∥2] = c

(
1 + c+ µ2c

2
√
(1− c+ µ2c)2 + 4µ2c2

− 1

2

)
+ o(1)

and if c > 1587

E[∥ĥ∥2] = c

(
1 + c+ µ2c

2
√

(−1 + c+ µ2c)2 + 4µ2c
− 1

2

)
+ o(1).

588

Lemma 14. We have589

EAtrn

[
∥k̂∥2

]
=


√

(1−c+µ2c)2+4µ2c2−1−µ2c+c

2µ2c + o(1) c < 1√
(−1+c+µ2c)2+4µ2c−1−µ2c+c

2µ2c + o(1) c > 1

and that V(∥k̂∥2) = o(1).590

Proof. Since k̂ = Â†
trnu, we have that591

∥k̂∥2 = Tr(uT (ÂtrnÂ
T
trn)

†u).

According to the Lemma 12, if c < 1592

E[∥k̂∥2] =
√
(1− c+ µ2c)2 + 4µ2c2 − 1− µ2c+ c

2µ2c
+ o(1)

and if c > 1593

E[∥k̂∥2] =
√
(−1 + c+ µ2c)2 + 4µ2c− 1− µ2c+ c

2µ2c
+ o(1).

594

Lemma 15. We have that595

EAtrn

[
∥t̂∥2

]
=


1
2

(
1− c− µ2c+

√
(1− c+ µ2c)2 + 4c2µ2

)
+ o(1) c < 1

1
2

(
1− c− µ2c+

√
(−1 + c+ µ2c)2 + 4µ2c

)
+ o(1) c > 1

and we have that V(∥t̂∥2) = o(1)596

Proof. Here we see that t̂ = v̂trn(I − Â†
trnÂtrn). Thus, we see that597

∥t̂∥2 = ∥vtrn∥2 − v̂TtrnÂ
†
trnÂtrnv̂trn = 1− v̂TtrnÂ

†
trnÂtrnv̂trn.

If V̂ ∈ Rp+q×p+q , we have that598

Â†
trnÂtrn = V̂

[
Ip 0
0 0q

]
V̂ T .

Then if p < q using Lemma 6 and the fact that the last p coordinates of v̂trn are 0, we see that599

v̂TtrnÂ
†
trnÂtrnv̂trn = vTtrnV1:pΣΣ̂

−2ΣV T
1:pvtrn.

Then using Lemma 9 to estimate the middle diagonal matrix, we get that600

E[∥t̂∥2] = 1− c

(
1

2
+

1 + µ2c−
√
(1 + µ2c− c)2 + 4c2µ2

2c

)

=
1

2

(
1− c− µ2c+

√
(1− c+ µ2c)2 + 4c2µ2

)
+ o(1).
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Similarly for c > 1, we have that601

E[∥t̂∥2] = 1−

(
1

2
+

c+ µ2c− c
√
(1 + µ2 − 1/c)2 + 4µ2/c

2

)
+ o(1)

=
1

2

(
1− c− µ2c+

√
(−1 + c+ µ2c)2 + 4µ2c

)
+ o(1).

The variance of Â†
trnÂtrn is also o(1) using Lemma 11.602

Lemma 16. We have that EAtrn
[γ̂] = 1 and V(γ) = O(σ2

trn/d).603

Proof. Noting that Â = U Σ̂V̂ T , we have that604

γ̂ = 1 + σtrnv̂
T
trnÂ

†
trnu = 1 + σtrn

min(Ntrn,d)∑
i=1

σi(Â)−1âibi.

Here âT = v̂TtrnV̂ and b = UTu. U is a uniformly random rotation matrix that is independent of Σ̂605

and V̂ . Thus, taking the expectation with respect to Atrn, we get that the expectation is equal to zero.606

For the variance, let us first consider the case when c < 1. For this case, we have that607

V̂ =

[
V1:dΣΣ̂

−1

µU Σ̂−1

]
.

Thus, letting aT = vTtrnV1:d, we get that608

γ̂ = 1 +

d∑
i=1

σi(A)

σ2
i (A) + µ2

aibi.

Squaring and taking the expectation, we see that609

E[γ2] = 1 +
σ2
trn

Ntrn
Eλ∼µc

[
λ

(λ+ µ2)2

]
+ o

(
σ2
trn

Ntrn

)
.

Similarly for c > 1, we have that610

E[γ2] = 1 +
σ2
trn

d
Eλ∼µc

[
λ

(λ+ µ2)2

]
+ o

(
σ2
trn

d

)
.

611

Lemma 17. We have that612

E
[
Tr((Â†

trn)
T k̂k̂T Â†

trn)
]
= E [ρ] =


µ2c2+c2+µ2c−2c+1

2µ4c
√

4µ2c2+(1−c+µ2c)2
+ 1

2µ4

(
1− 1

c

)
+ o(1) c < 1

1−2c+c2+µ2c+µ2c2

2µ4c
√

4µ2c+(−1+c+µ2c)2
+
(
1− 1

c

)
1

2µ4 + o(1)

and that V(ρ) = o(1).613

Proof. Here we have that614

ρ = Tr(k̂T (ÂT
trnÂtrn)

†k̂) = Tr(uT (ÂtrnÂ
T
trn)

†(ÂtrnÂ
T
trn)

†u).

We first notice that615

(ÂtrnÂ
T
trn)

†(ÂtrnÂ
T
trn)

† = ÛT Σ̂2Û .

Thus using Lemmas 7 and 8, we see that if c < 1616

E[ρ] =
µ2c2 + c2 + µ2c− 2c+ 1

2µ4c
√
4µ2c2 + (1− c+ µ2c)2

+
1

2µ4

(
1− 1

c

)
and if c > 1617

E[ρ] =
1

c

(
1− 2c+ c2 + µ2c+ µ2c2

2µ4
√
4µ2c+ (−1 + c+ µ2c)2

+ (1− c)
1

2µ4

)
+

(
1− 1

c

)
1

µ4

=
1− 2c+ c2 + µ2c+ µ2c2

2µ4c
√
4µ2c+ (−1 + c+ µ2c)2

+

(
1− 1

c

)
1

2µ4
.

The variance being o(1) comes from Lemma 11 again.618
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Lemma 18. We have that619

EAtrn

[
Tr(ĥT k̂T Â†

trn)
]
= 0

and the variance is o(1).620

Proof. Letting Â = U Σ̂V̂ T , we get that621

Tr(ĥT k̂T ÂT ) = uTU Σ̂−3V̂ T v̂Ttrn.

Then again since U is uniformly random and independent of Σ̂ and V̂ , the expectation is equal to622

zero. The variance is computed similarly to Lemma 16.623

F.2.5 Step 5: Putting it together624

Lemma 19. We have that625

E
[

τ

σ2
trn

]
=


1

σ2
trn

+ 1
2

(
1 + µ2c+ c−

√
(1− c+ µ2c)2 + 4µ2c2

)
+ o(1) c < 1

1
σ2
trn

+ 1
2

(
1 + µ2c+ c−

√
(−1 + c+ µ2c)2 + 4µ2c

)
+ o(1)) c > 1

and that V(τ/σ2
trn) = o(1).626

Proof. Using the fact that all of the quantities concentrate, we can use the previous estimates.627

Specifically, we use that628

|E[XY ]− E[X]E[Y ]| ≤
√
V[X]V[Y ].

Thus, since our variances decay, we can use the product of the expectations. Further,629

|V[XY ]| = |V[X]V[Y ] + E[X]2V[Y ] + E[Y ]2V[X]− 2E[X]E[Y ]Cov(X,Y ) + Cov(X2, Y 2)− Cov(X,Y )2|

≤ |V[X]V[Y ] + E[X]2V[Y ] + E[Y ]2V[X]|+ 2|E[X]E[Y ]|
√
V[X]V[Y ] + |V[X]V[Y ]|+ |

√
V[X2]V[Y 2]|.

Thus, since the variances individually go to 0, we see that the variance of the product also goes to 0.630

Then using Lemma 15 and 14, we have that if c < 1631

E
[
∥t̂∥2∥k̂∥2

]
=

1

2

(
1 + µ2c+ c−

√
(1− c+ µ2c)2 + 4µ2c2

)
+ o(1)

and V(∥t̂∥2∥k̂∥2) = o(1). Then since632

|V[X + Y ]| ≤ |V[X] + V[Y ]|+ 2
√

V[X]V[Y ]

we have that using Lemma 16, that if c < 1633

E
[

τ

σ2
trn

]
=

1

σ2
trn

+
1

2

(
1 + µ2c+ c−

√
(1− c+ µ2c)2 + 4µ2c2

)
+ o(1)

and that that variance is o(1). If c > 1634

E
[

τ

σ2
trn

]
=

1

σ2
trn

+
1

2

(
1 + µ2c+ c−

√
(−1 + c+ µ2c)2 + 4µ2c

)
+ o(1).

635

Lemma 20. We have that636

EAtrn

[
1

σ2
trn

∥ĥ∥2 + ∥t̂∥4ρ
]
=


c(1+σ−2

trn)
2

(
µ2c+c+1√

(1−c+µ2c)2+4µ2c2
− 1

)
+ o(1) c < 1

c(1+σ−2
trn)

2

(
µ2c+c+1√

(−1+c+µ2c)2+4µ2c
− 1

)
+ o(1) c > 1

and that the variance is o(1).637
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Proof. Similar to Lemma 19, we can multiply the expectations since the variances are small. For638

c < 1, simplifying, we get that639

EAtrn

[
1

σ2
trn

∥ĥ∥2 + ∥t̂∥4ρ
]
=

c(1 + σ−2
trn)

2

(
µ2c+ c+ 1√

(1− c+ µ2c)2 + 4µ2c2
− 1

)
+ o(1)

and if c > 1, we get that640

EAtrn

[
1

σ2
trn

∥ĥ∥2 + ∥t̂∥4ρ
]
=

c(1 + σ−2
trn)

2

(
µ2c+ c+ 1√

(−1 + c+ µ2c)2 + 4µ2c
− 1

)
+ o(1)

and the variance decays since the variances decay individually.641

Lemma 21. We have that642

EAtrn

[
∥Wopt∥2F

]
=

σ4
trn

τ2


c(1+σ−2

trn)
2

(
µ2c+c+1√

(1−c+µ2c)2+4µ2c2
− 1

)
+ o(1) c < 1

c(1+σ−2
trn)

2

(
µ2c+c+1√

(−1+c+µ2c)2+4µ2c
− 1

)
+ o(1) c > 1

and that V(∥Wopt∥2F ) = o(1).643

Proof. Follows immediately from Lemmas 4, 17, 18, and 20.644

Theorem 1 (Generalization Error Formula). Suppose the training data Xtrn and test data Xtst645

satisfy Assumption 1 and the noise Atrn, Atst satisfy Assumption 2. Let µ be the regularization646

parameter. Then for the under-parameterized regime (i.e., c < 1) for the solution Wopt to Problem 1,647

the generalization error or risk given by Equation 2 is given by648

R(c, µ) = τ−2

(
σ2
tst

Ntst
+

cσ2
trn(σ

2
trn + 1))

2d

(
1 + c+ µ2c√

(1− c+ µ2c)2 + 4µ2c2
− 1

))
+ o

(
1

d

)
,

where τ−1 =
2

2 + σ2
trn(1 + c+ µ2c−

√
(1− c+ µ2c) + 4µ2c2)

.649

Proof. Rewriting γ̂2

τ2 as γ̂2/σ4
trn

τ2/σ4
trn

, we can the concentration from Lemmas 16 and 19. Then using650

Lemma 21 we get the needed result.651

Theorem 8. For the over-parameterized case, we have that the generalization error is given by652

R(c, µ) = τ−2

(
σ2
tst

Ntst
+

cσ2
trn(σ

2
trn + 1))

2d

(
1 + c+ µ2c√

(−1 + c+ µ2c)2 + 4µ2c
− 1

))
+ o

(
1

d

)
,

where τ−1 =
2

2 + σ2
trn(1 + c+ µ2c−

√
(−1 + c+ µ2c) + 4µ2c)

.653

Proof. Rewriting γ̂2

τ2 as γ̂2/σ4
trn

τ2/σ4
trn

, we can the concentration from Lemmas 16 and 19. Then using654

Lemma 21 we get the needed result.655

F.3 Proof of Theorem 2656

Theorem 2 (Under-Parameterized Peak). If µ ∈ R>0 is such that p(µ) < 0, σ2
trn = Ntrn = d/c657

and σ2
tst = Ntst, and d is sufficiently large, then the risk R(c) from Theorem 1, as a function of c,658

has a local maximum in the under-parameterized regime (c ∈ (0, 1)).659
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Proof. First, we compute the derivative of the risk. We do so using SymPy and get the following660

expression.661

(
1+ d

c

)


µ2+1√
4c2µ2+

(
cµ2−c+1

)2 +

−4cµ2−

(
2µ2−2

)(
cµ2−c+1

)
2

(cµ2+c+1
)

(
4c2µ2+

(
cµ2−c+1

)2) 3
2


2

−

d

−1+
cµ2+c+1√

4c2µ2+
(
cµ2−c+1

)2


2c21 +

d

(
cµ2+c−

√
4c2µ2+

(
cµ2−c+1

)2
+1

)
2c


2

+



−1+
cµ2+c+1√

4c2µ2+
(
cµ2−c+1

)2
(1+ d

c

)
2

+ 1




−

d

µ2−
4cµ2+

(
2µ2−2

)(
cµ2−c+1

)
2√

4c2µ2+
(
cµ2−c+1

)2 +1


c

+

d

(
cµ2+c−

√
4c2µ2+

(
cµ2−c+1

)2
+1

)
c2


1 +

d

(
cµ2+c−

√
4c2µ2+

(
cµ2−c+1

)2
+1

)
2c


3

.

We can then compute the limit as c → 0+ and c → 1−. Again using SymPy we see that662

lim
c→0+

∂

∂c
R(c, µ2;σ2

trn = d/c) =
4

d+ 1
> 0.

Similarly, we can compute the limit as c → 1− and get663

2 · Expression

(µ4 + 4µ2)
7
2

(
dµ2 − dµ

√
µ2 + 4 + 2d+ 2

)3
where664

Expression =− 2d2µ16 + 2d2µ15
√

µ2 + 4− 28d2µ14 + 24d2µ13
√
µ2 + 4− 146d2µ12

+ 102d2µ11
√
µ2 + 4− 340d2µ10 + 176d2µ9

√
µ2 + 4− 320d2µ8

+ 96d2µ7
√
µ2 + 4− 64d2µ6 − 2dµ14 + 2dµ13

√
µ2 + 4− 26dµ12

+ 30dµ11
√

µ2 + 4− 120dµ10 + 144dµ9
√
µ2 + 4− 224dµ8

+ 224dµ7
√

µ2 + 4− 128dµ6 − 4µ10 − 32µ8 − 64µ6.

Here using the arithmetic mean and geometric mean inequality, we see that665

µ2 + 2 ≥ µ
√
µ2 + 4.

Thus, the denominator is always positive for µ > 0. Thus, to determine the sign of the derivative, we666

need to determine the sign of the numerator. Here, we see that as a function of d, the numerator is a667

quadratic function of d, with the coefficient of d2 is given by668

(4µ15 + 48µ13 + 204µ11 + 352µ9 + 192µ7)
√
µ2 + 4

−(4µ16 + 56µ14 + 292µ12 + 680µ10 + 640µ8 + 128µ6).

We notice that this is exactly p(µ), which we assumed was negative. Thus, since the leading coefficient669

of the quadratic is negative, as d → ∞, we have the quadratic, and hence the numerator, and hence670

the whole derivative is negative for sufficiently large d.671

Finally, since the derivative near 0 is positive, and the derivative near 1 is negative, by the intermediate672

value theorem, there exists a value of c ∈ (0, 1) such that the derivative value equals 0. Then since673

the derivative goes from positive to negative, this critical point corresponds to a local maximum.674

F.4 Proof of Theorem 6675

Theorem 6 (Peak Location). If µ ∈ R>0 is such that p(µ) < 0, σ2
trn = Ntrn = d/c and σ2

tst = Ntst,676

then the partial derivative with respect to c of the risk R(c) from Theorem 1 can be written as677

∂

∂c
R(c, µ) =

(µ2c+ c− 1)P (c, µ, T (c, µ), d) + 4dµ2c2(2µ2c− T (c, µ))

Q(c, µ, T (c, µ), d)
,

where T (c, µ) =
√

(1− c+ µ2c)2 + 4µ2c2 and P,Q are polynomials in four variables.678
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Proof. To begin, we note that the derivative is,679

∂cR(c, µ) =
P (c, µ, d, T )

Q(c, µ, d, T )
.

Where680

P (c, µ, d, T ) =− 4T 2(−Tc3d2µ6 − 3Tc3d2µ4 − 3Tc3d2µ2 − Tc3d2 − Tc3dµ4

− 5Tc3dµ2 − 4Tc3d− Tc2d2µ4 − Tc2d2µ2 − 2Tc2dµ2 + 5Tc2d+ Tcd2µ2 − Tcd

+ Td2 + c4d2µ8 + 4c4d2µ6 + 6c4d2µ4 + 4c4d2µ2 + c4d2 + c4dµ6 + 2c4dµ4

+ c4dµ2 + 2c4µ2 + 2c4 + 2c3d2µ6 + 3c3d2µ4 − c3d2 + 3c3dµ4 + 5c3d− 2c3

+ 3c2dµ2 − 6c2d− 2cd2µ2 + cd2 + cd− d2),
681

Q(c, µ, d, T ) = T 7
(
−Td+ cdµ2 + cd+ 2c+ d

)3
,

and682

T =
√
c2µ4 + 2c2µ2 + c2 + 2cµ2 − 2c+ 1.

Then if a critical point exists, it must be the case that P (c, µ, d, T ) = 0. This happens either if683

T 2 = 0 or P̂ = P/(−4T 2) = 0. Note we can simplify T 2 as684

c2(µ2 + 1)2 + 2(µ2 − 1)c+ 1

Then since this is a quadratic, we get that,685

c =
−2(µ2 − 1)±

√
4(µ2 − 1)2 − 4(µ2 + 1)2

2(µ2 + 1)2
=

−2(µ2 − 1)±
√

−16µ4

2(µ2 + 1)2
.

Thus, the solutions live in C and not in R. Since we want to find a root in (0, 1), we can discard this686

factor and focus on P̂ .687

Looking at P̂ , we see that688

P̂ = P̂1 + P̂2 + P̂3 + P̂4 + P̂5,
where689

P̂1 = −d2T (µ2c+ c− 1)(µ4c2 + 2µ2c2 + 2µ2c+ c2 + c+ 1).

P̂2 = −dTc(µ4c2 + 5µ2c2 + 2µ2c+ 4c2 − 5c+ 1).

P̂3 = d2(µ2c+ c− 1)(µ2c+ c+ 1)(µ4c2 + 2µ2c2 + 2µ2c+ c2 − c+ 1).

P̂4 = dc(µ6c3 + 2µ4c3 + 3µ4c2 + µ2c3 + 3µ2c+ 5c2 − 6c+ 1).

P̂5 = 2c3(µ2c+ c− 1).

Here we see that µ2c+ c− 1 is a factor for three of the five polynomials. Hence, the hope is that a690

multiple of µ2c+ c− 1 can approximate the sum of the other two. Dividing P̂2, P̂4 by µ2c+ c− 1,691

we get that692

P̂2 = −dTc(µ2c+ c− 1)(µ2c+ 4c− 1)− 4dTµ2c2.

P̂4 = dc(µ2c+ c− 1)(µ4c2 + µ2c2 + 4µ2c− 1)− 3dµ2c3 + 8dµ2c2 + 5dc3 − 5dC2.

Now we see that for some P̃693

P̂ = (µ2c+ c− 1)P̃ − 4dTµ2c2 − 3dµ2c3 + 8dµ2c2 + 5dc3 − 5dC2.

We further simplify this by dividing the remainder again by µ2c+ c− 1 to get that694

−4dTµ2c2−3dµ2c3+8dµ2c2+5dc3−5dc2 = dc2(µ2c+c−1)(5µ2c−8µ2)+4dµ2c2(2µ2c−T ).

Thus, redefining P̃ , we get that695

P̂ = (µ2c+ c− 1)P̃ + 4dµ2c2(2µ2c− T ),

with696

P̃ =− Tc2d2µ4 − 2Tc2d2µ2 − Tc2d2 − Tc2dµ2 − 4Tc2d− 2Tcd2µ2 − Tcd2 + Tcd

− Td2 + c3d2µ6 + 3c3d2µ4 + 3c3d2µ2 + c3d2 + c3dµ4 + c3dµ2 + 2c3

+ 3c2d2µ4 + 3c2d2µ2 − 4c2dµ2 + 5c2d+ 3cd2µ2 − cd+ d2.

Thus, we have the needed result.697

698
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F.5 Proof of Theorem 5699

Theorem 5 (∥Wopt∥F Peak). If σtst =
√
Ntst, σtrn =

√
Ntrn and µ is such that p(µ) < 0,700

then for Ntrn large enough and d = cNtrn, we have that ∥Wopt∥F has a local maximum in the701

under-parameterized regime. Specifically for c ∈ ((µ2 + 1)−1, 1).702

Proof. Here we note that the expression for the norm of Wopt is given by Lemma 21. Differentiating703

with respect to c, we get that the derivative is given by704

−
cσ4

trn

(
−1 + cµ2+c+1√

4c2µ2+(cµ2−c+1)2

)(
σ2
trn + 1

)(
µ2 − 4cµ2+

(2µ2−2)(cµ2−c+1)
2√

4c2µ2+(cµ2−c+1)2
+ 1

)

2

(
σ2
trn

(
cµ2+c−

√
4c2µ2+(cµ2−c+1)2+1

)
2 + 1

)3

+

cσ2
trn

(
σ2
trn + 1

) µ2+1√
4c2µ2+(cµ2−c+1)2

+

(
−4cµ2− (2µ2−2)(cµ2−c+1)

2

)
(cµ2+c+1)

(4c2µ2+(cµ2−c+1)2)
3
2


2

(
σ2
trn

(
cµ2+c−

√
4c2µ2+(cµ2−c+1)2+1

)
2 + 1

)2

+

σ2
trn

(
−1 + cµ2+c+1√

4c2µ2+(cµ2−c+1)2

)(
σ2
trn + 1

)
2

(
σ2
trn

(
cµ2+c−

√
4c2µ2+(cµ2−c+1)2+1

)
2 + 1

)2 .

At c = 1
µ2+1 , this has value705

2σ2
trn

(
µ2 + 1

) 3
2
(
−256µ7 + 256µ6

√
µ2 + 1

) (
σ2
trn + 1

)
 4µ4(

µ2+1
)2 + 4µ2(

µ2+1
)2
 7

2 (
−2µσ2

trn + 2σ2
trn

√
µ2 + 1 + 2

√
µ2 + 1

)3 (
µ6
√

µ2 + 1 + 3µ4
√

µ2 + 1 + 3µ2
√

µ2 + 1 +
√

µ2 + 1
) .

Then since
√
µ2 + 1 > µ, we have that the derivative is positive at this point. Next, we compute the706

limit of the derivative as c → 1− and see that this is given by707

σ2
trn

(
σ2
trn + 1

) (
σ2
trnp(µ) + 4µ14 + 56µ12 + 280µ10 + 576µ8 + 384µ6 − (4µ13 + 48µ11 + 192µ9 + 256µ7)

√
µ2 + 4

)
(µ4 + 4µ2)

7
2

(
σ2
trn

(
µ2 − µ

√
µ2 + 4 + 2

)
+ 2
)3

.

Then we see that the denominator is positive. Hence the sign is determined by the numerator. Again,708

we assumed p(µ) < 0. Hence the leading coefficient in term of σ2
trn is negative. Since σ2

trn = Ntrn.709

If Ntrn is sufficiently large the derivative is negative near c = 1. Thus, we have a peak.710

F.6 Proof of Theorem 7711

Theorem 7 (Training Error). Let τ be as in Theorem 1. The training error for c < 1 is given by712

EAtrn
[∥Xtrn −Wopt(Xtrn +Atrn)∥2F ] = τ−2

(
σ2
trn (1− c · T1) + σ4

trnT2

)
+ o(1),

where T1 =
µ2

2

(
1 + c+ µ2c√

(1− c+ µ2c)2 + 4µ2c2
− 1

)
+

1

2
+

1 + µ2c−
√

(1− c+ µ2c)2 + 4c2µ2

2c
,713

and T2 =
(µ2c+ c− 1−

√
(1− c+ µ2c)2 + 4c2µ2)2(µ2c+ c+ 1−

√
(1− c+ µ2c)2 + 4c2µ2)

2
√
(1− c+ µ2c)2 + 4c2µ2

.714
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Proof. Note that we have:715

EAtrn

[
∥Xtrn −WoptYtrn∥2F

Ntrn

]
=

1

Ntrn
EAtrn

[
∥Xtrn −Wopt(Xtrn +Atrn))∥2F

]
=

1

Ntrn
E[∥Xtrn −WoptXtrn∥2] +

1

Ntrn
E[∥WoptAtrn∥2]

+
2

Ntrn
E
[
Tr((Xtrn −WoptXtrn)

TWoptAtrn)
]
.

First, by Lemma 2, we have Xtrn − WoptXtrn = γ̂
τ̂Xtrn. Then, E[∥Xtrn − WoptXtrn∥2] =716

γ̂2

τ̂2E[∥Xtrn∥2] = γ̂2σ2
trn

τ̂2 . Then, let us look at the EAtrn
[∥WoptAtrn∥2F ] term.717

EAtrn
[∥WoptAtrn∥2F ] = E[Tr(AT

trnW
T
optWoptAtrn)]

=
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2

τ̂2
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†
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†
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σ2
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2
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E[Tr(ĥAtrnA

T
trnĥ

T )]

+
σ3
trnγ̂∥t̂∥2

τ̂2
E[Tr(k̂T Â†
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T
trnĥ
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+
σ3
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E[Tr(ĥAtrnA

T
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†
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trnAtrnA
T
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†
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2
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T
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†
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trn)
T Â†
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T
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†
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T v̂Ttrn)]

+
σ3
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E[Tr(v̂TtrnÂ

†
trnAtrnA

T
trn(Â

†
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T Â†
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σ4
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T Â†
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T
trn(Â

†
trn)

T Â†
trnu)]

=
σ2
trnγ̂

2

τ̂2
E[Tr(v̂TtrnÂ

†
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T
trn(Â

†
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σ4
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E[Tr(uT (Â†

trn)
T Â†

trnAtrnA
T
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†
trn)
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Then, we look at the Tr((Xtrn − WoptXtrn)
TWoptAtrn) term. By Lemma 2, we have Xtrn −718

WoptXtrn = γ̂
τ̂Xtrn. Then,719

γ̂

τ̂
Tr(XT

trnWoptAtrn) =
γ̂

τ̂
Tr

(
XT

trn

(
σtrnγ̂

τ̂
uĥ+

σ2
trn∥t̂∥2

τ̂
uk̂T Â†

trn

)
Atrn

)
=

σtrnγ̂
2

τ̂2
Tr
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)
+

σ2
trnγ̂∥t̂∥2

τ̂2
Tr
(
XT

trnuk̂
T Â†
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)
=

σtrnγ̂
2

τ̂2
Tr
(
σtrnvtrnv̂

T
trnÂ

†
trnAtrn

)
+

σ2
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τ̂2
Tr
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σtrnvtrnu

T (Â†
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T Â†
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)
=

σ2
trnγ̂

2

τ̂2
Tr
(
v̂TtrnÂ

†
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)
+

σ3
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T Â†

trnAtrnvtrn

)
=

σ2
trnγ̂

2

τ̂2
Tr
(
v̂TtrnÂ

†
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)
.

In conclusion, we have the training error:720

EAtrn

[
∥Xtrn −WoptYtrn∥2F

Ntrn

]
=

γ̂2σ2
trn

Ntrnτ̂2
+

σ2
trnγ̂
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T
trn(Â
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+
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E[Tr(uT (Â†
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T Â†

trnAtrnA
T
trn(Â
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T Â†
trnu)]

+ 2
σ2
trnγ̂

2

Ntrnτ̂2
E
[
Tr
(
v̂TtrnÂ

†
trnAtrnvtrn

)]
.

Now we estimate the above terms using random matrix theory. Here we focus on the c < 1 case. For721

c < 1, we note that722

Â†
trnAtrnA

T
trn(Â

†
trn)

T = V̂ Σ̂−1ΣΣT Σ̂−1V̂ T .

Thus, for c < 1723

v̂TtrnÂ
†
trnAtrnA

T
trn(Â

†
trn)

T v̂trn =

d∑
i=1

a2i
σi(A)4

(σi(A)2 + µ2)2

where aT = vTtrnV1:d. Taking the expectation, and using Lemma 9 we get that724

EAtrn

[
v̂TtrnÂ

†
trnAtrnA

T
trn(Â

†
trn)

T v̂trn

]
=

c

(
1

2
+

1 + µ2c−
√
(1− c+ µ2c)2 + 4c2µ2

2c
+ µ2

(
1 + c+ µ2c

2
√

(1− c+ cµ2)2 + 4c2µ2
− 1

2

))
+ o(1).

Using Lemma 11, we see that the variance is o(1). Similarly, we have that725

(Â†
trn)

T Â†
trnAtrnA

T
trn(Â

†
trn)

T Â†
trn = U Σ̂−2ΣΣT Σ̂−2UT .

Thus, again, using a similar argument, we see that726

EAtrn

[
Tr(uT (Â†

trn)
T Â†

trnAtrnA
T
trn(Â

†
trn)

T Â†
trnu)

]
=

1 + c+ µ2c

2
√
(1− c+ cµ2)2 + 4c2µ2

− 1

2
+ o(1)

and again using Lemma 11, the variance is o(1). Finally,727

Â†
trnAtrn = V̂ Σ̂−1ΣV.
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Thus,728

Tr(v̂TtrnÂ
†
trnAtrnvtrn =

d∑
i=1

a2i
σi(A)2

σi(A)2 + µ2
.

Thus, using Lemma 9, we get that729

EAtrn

[
Tr(v̂TtrnÂ

†
trnAtrnvtrn

]
=

1

2
+

1 + µ2c−
√
(1− c+ µ2c)2 + 4c2µ2

2c
+ o(1)

and using Lemma 11, the variance is o(1). Then similar to the proof of Theorem 1, we can simplify730

the above expression to get the final result.731

F.7 Proof of Proposition 1732

Proposition 1 (Optimal σtrn). The optimal value of σ2
trn for c < 1 is given by733

σ2
trn =

σ2
tstd[2c(µ

2 + 1)2 − 2T (cµ2 + c+ 1) + 2(cµ2 − 2c+ 1)] +Ntst(µ
2c2 + c2 + 1− T )

Ntst(c3(µ2 + 1)2 − T (µ2c2 + c2 − 1)− 2c2 − 1)
.

Proof. Let σ := σ2
trn and734

F = τ−2

(
σ2
tst

Ntst
+

1

d
(σ∥ĥ∥22 + σ2∥t̂∥42ρ)

)
.

Notice that only τ is a function of σ, ∥ĥ∥22, ∥t̂∥22, and ∥k̂∥22 are all functions of µ. Then735

∂F

∂σ
= τ−2 1

d
(∥ĥ∥22 + 2σ∥t̂∥42ρ)− 2τ−3 ∂τ

∂σ

(
σ2
tst

Ntst
+

1

d

(
σ∥ĥ∥22 + σ2∥t̂∥42ρ

))
= τ−2 1

d
(∥ĥ∥22 + 2σ∥t̂∥42ρ)− 2τ−3∥t̂∥22∥k̂∥22

(
σ2
tst

Ntst
+

1

d
(σ∥ĥ∥22 + σ2∥t̂∥42ρ)

)
= τ−2

(
1

d
(∥ĥ∥22 + 2σ∥t̂∥42ρ)− 2τ−1∥t̂∥22∥k̂∥22

(
σ2
tst

Ntst
+

1

d
(σ∥ĥ∥22 + σ2∥t̂∥42ρ)

))
.

The optimal σ∗ satisfies ∂F
∂σ |σ=σ∗ = 0. Thus, we can solve the equation736

τ−2 = 0 or
1

d
(∥ĥ∥22 + 2σ∥t̂∥42ρ)− 2τ−1∥t̂∥22∥k̂∥22

(
σ2
tst

Ntst
+

1

d
(σ∥ĥ∥22 + σ2∥t̂∥42ρ)

)
.

Let α := ∥t̂∥22∥k̂∥22, δ := d
σ2
tst

Ntst
. Then737

τ−2 = 0 =⇒ σ = − 1

∥t∥22∥k∥22
.

Notice that σ < 0 implies σtrn is an imaginary number, something we don’t want. Thus, we look at738

the other expression.739

0 =
1

d
(∥ĥ∥22 + 2σ∥t̂∥42ρ)− 2τ−1∥t̂∥22∥k∥22

(
σ2
tst

Ntst
+

1

d
(σ∥ĥ∥22 + σ2∥t̂∥42ρ)

)
=

1

d
(∥ĥ∥22 + 2σ∥t̂∥42ρ)− 2τ−1α

(
δ

d
+

1

d
(σ∥ĥ∥22 + σ2∥t̂∥42ρ)

)
. [α = ∥t̂∥22∥k̂∥22]
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Figure 19: Figure showing the value of p(µ)

Then multiplying through by d and τ740

0 = (1 + ασ)(∥ĥ∥22 + 2σ∥t̂∥42ρ)− 2α(δ + σ∥ĥ∥22 + σ2∥t̂∥42ρ) [τ = 1 + ασ]

= ∥ĥ∥22 + 2∥t̂∥42ρσ + α∥ĥ∥22σ + 2α∥t̂∥42ρσ2 − 2αδ − 2α∥ĥ∥22σ − 2α∥t̂∥42ρσ2

= ∥ĥ∥22 + 2∥t̂∥42ρσ + α∥ĥ∥22σ − 2αδ − 2α∥ĥ∥22σ.

Then solving for σ, we get that741

σ =
2αδ − ∥ĥ∥2

2∥t∥4ρ− α∥ĥ∥2
=

2d∥t̂∥22∥k̂∥22σ2
tst − ∥ĥ∥2Ntst

Ntst(2∥t̂∥42ρ− ∥t̂∥22∥k̂∥22∥ĥ∥22)
.

Then we use the random matrix theory lemmas to estimate this quantity.742

G Experiments743

All experiments were conducted using Pytorch and run on Google Colab using an A100 GPU. For744

each empirical data point, we did at least 100 trials. The maximum number of trials for any experiment745

was 20000 trials.746

For each configuration of the parameters, Ntrn, Ntst, d, σtrn, σtst, and µ. For each trial, we sampled747

u, vtrn, vtst uniformly at random from the appropriate dimensional sphere. We also sampled new748

training and test noise for each trial.749

For the data scaling regime, we kept d = 1000 and for the parameter scaling regime, we kept750

Ntrn = 1000. For all experiments, Ntst = 1000.751

H Technical Assumption on µ752

Notice that we had this assumption that p(µ) < 0. We compute p(µ) for a million equally spaced753

points in (0, 100] and see that p(µ) < 0. Here we use Mpmath with a precision of 1000. The result is754

shown in Figure 19. Hence we see that the assumption is satisfied for µ ∈ (0, 100].755
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