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Abstract

In this paper, we present a simple example that provably exhibits double descent in
the under-parameterized regime. For simplicity, we look at the ridge regularized
least squares denoising problem with data on a line embedded in high-dimension
space. By deriving an asymptotically accurate formula for the generalization error,
we observe sample-wise and parameter-wise double descent with the peak in the
under-parameterized regime rather than at the interpolation point or in the over-
parameterized regime. Further, the peak of the sample-wise double descent curve
corresponds to a peak in the curve for the norm of the estimator, and adjusting p,
the strength of the ridge regularization, shifts the location of the peak. We observe
that parameter-wise double descent occurs for this model for small y. For larger
values of 1, we observe that the curve for the norm of the estimator has a peak but
that this no longer translates to a peak in the generalization error.

1 Introduction

This paper aims to demonstrate interesting new phenomena that suggest that our understanding of the
relationship between the number of data points, the number of parameters, and the generalization
error is incomplete, even for simple linear models with data on a line. The classical bias-variance
theory postulates that the generalization risk versus the number of parameters for a fixed number
of training data points is U-shaped. However, modern machine learning showed that if we keep
increasing the number of parameters, the generalization error eventually starts decreasing again [1,
2]. This second descent has been termed as double descent and occurs in the over-parameterized
regime, that is when the number of parameters exceeds the number of data points. Understanding the
location and the cause of such peaks in the generalization error is of significant importance. Hence
many recent works have theoretically studied the generalization error for linear regression [3—12]
and kernelized regression [13-21] and show that there exists a peak at the boundary between the
under and over-parameterized regimes. Further works such as [10, 22-25] show that there can be
multiple descents in the over-parameterized regime and [26] shows that any shaped generalization
error curve can occur in the over-parameterized regime. However, all prior works assume that the
classical bias-variance trade-off is true in the under-parameterized regime.

The implicit bias of the learning algorithm is a possible reason that the error decreases in the over-
parameterized regime [27-32]. In the under-parameterized regime, there is exactly one solution
that minimizes the loss. However, once in the over-parameterized regime, there are many different
solutions, and the training algorithm implicitly picks one that generalizes well. For linear models, the
generalization error and the variance are very closely related to the norm of the estimator [11, 33].
Then, using the well-known fact that the pseudo-inverse solution to the least squares problem is the
minimum norm solution, we see that the training algorithm picks solutions with the minimum norm.
Hence this learning algorithm minimizes the variance and lowers the generalization error.
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Table 1: Table showing various assumptions on the data and the location of the double descent peak
for linear regression and denoising. We only present a subset of references for each problem setting.

Noise Ridge Reg. Dimension Peak Location Reference
Input Yes 1 Under-parameterized This paper.
Input No Low Over-parameterized/interpolation point [33, 37]
Output No Full Over-parameterized/interpolation point  [5, 8, 11]
Output Yes Full Over-parameterized/interpolation point [11,24]
Output No Low Over-parameterized/interpolation point [34, 35]
Output Yes Low Over-parameterized/interpolation point [36]

Main Contributions. In contrast with prior work, this paper shows that double descent can occur
in the under-parameterized regime. Specifically, when denoising data on a line embedded in high-
dimensional space using a denoiser obtained as the pseudo-inverse solution for the ridge regularized
least squares problem, we show that a peak in the generalization error curve occurs in the under-
parameterized regime. We also show that changing the ridge regularization strength changes the
location of the peak. The major contributions of this paper are as follows.!

* (Generalization error) We derive a theoretical formula for the generalization error (Theorem 1).

* (Under-parameterized double descent) We prove (Theorem 2) and empirically demonstrate
that the generalization error versus the number of data points curve has double descent in the
under-parameterized regime.

* (Location of the peak) The peak location depends on the regularization strength. We provide
evidence (Theorem 6) that the peak is near ¢ = ﬁ for the sample-wise double descent curves.

* (Norm of the estimator) We show that the peak in the curve for the generalization error versus
the number of training data points corresponds to a peak in the norm of the estimator. However,
versus the number of parameters, we show that there is still a peak in the curve for the norm of the
estimator (Theorem 5), but this no longer corresponds to a peak in the generalization error.

Low-Dimensional Data. It is important to highlight that using low-rank data does not immediately
imply that a peak occurs in the under-parameterized regime. Specifically, [33—37] look at a variety of
different problems with low rank data and see that the peak occurs at the interpolation point or in the
over-paramterized regime. Table 1 compares common assumptions and the location of the peak.

2 Background and Model Assumptions

Throughout the paper, we assume that noiseless training data x; live in R? and that we have access to
ad X Ny, matrix Xy, of training data. Then given new data X4 € R4*Nist we are interested in
the least squares generalization (or test) error. Two scenarios for the generalization error curve are
considered; data scaling and parameter scaling.

Definition 1. * Data scaling refers to the regime in which we fix the dimension d of the input data
and vary the number of training data points Ny,.,. This is also known as the sample-wise regime.

» Parameter scaling refers to the regime in which we fix the number of training data points Ny, and
vary the dimension d of the input data. This is also known as the parameter-wise regime.

* A linear model is under-parameterized, if d < Ny.,. A linear model is over-parameterized, if
d > Nippn. The boundary of the under and over-parameterized regimes is when d = Nyp,.

* Given N, the interpolation point is the smallest d for the which the model has zero training error.

* A curve has double descent if the curve has a local maximum or peak.

* The aspect ratio of an m X n matrix is ¢ := m/n.

Prior Double Descent We present a baseline model from prior work on double descent. This is to
highlight prior important phenomena related to double descent in the literature. Concretely, consider
the following simple linear model that is a special case of the general models studied in [5, 8, 11, 24]
amongst many other works. Let x; ~ N(0, I;) and let 3 € R? be a linear model with ||3]| = 1. Let
yi = BT a; + & where & ~ N(0,1). Then, let 8, := arg min 5 187 Xtrn — BXtrn + Etrnl|, where
&trn € RNtrn X1 Then the excess risk, when taking the expectation over the new test data point, can
be expressed as R = [|3 — Bope[|? = 18112 + |Bopt[|> — 267 Bopt- Let ¢ be the aspect ratio of the

'All code is available anonymized at [Github Repo]
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data matrix. That is, ¢ = d/N¢,,. Then it can be shown that?

1 ec<1

1+ 1% c¢<1 T
1 —+ l c>1 and EXtr'nwgtrn [/B 50]37‘/] = {i c>1

c c—1

EX,rnirn [ Bopt]*] = {

C
T c<1

el y 1 c>1

c c—1
features that are considered staple in many prior double descent curves that are present in this model.

Then, the excess risk can be expressed as R = . There are a few important

1. The peak happens at ¢ = 1, on the border between the under and over-parameterized regimes.
2. Further, at ¢ = 1 the training error equals zero. Hence this is the interpolation point.
3. The peak occurs due to the norm of the estimator j3,,; blowing up near the interpolation point.

Further, [26] proved risk is monotonic in the under-parameterized regime for the above model.

For the ridge regularized version of the regression problem, as shown in [11, 24], the peak is always
at ¢ = 1 (see Figure 1 in [24]). Further, as seen in Figure 1 in [24], changing the strength of the
regularization changes the magnitude of the peak. Not the location of the peak. Building on this, [23]
looks at the model where y; = f(x;) + &; and shows that triple descent occurs for the random features
model [38] in the over-parameterized regime. Further [26] shows that by considering a variety of
product data distributions, any shaped risk curve can be observed in the over-parameterized regime.

Assumptions for Denoising Model With the context from the previous section in mind, we are
now ready to present the assumptions for the input noise model with double descent in the under-
parameterized regime. For the denoising problem, let A;,,, € R?*Netrn be the noise matrix, then the
ridge regularized least square denoiser W, is the minimum norm solution to

Wopt == arg min || Xy, — W(Xprp + Apn)|F + 12 [W % ey
w
Given test data X, the mean squared generalization error is given by

1
R(Wopt) = By, Arey N [ Xest — Wopt(Xest + Atat) |7 - 2)
tst

The reason we consider linear models with the pseudo-inverse solution is that this eliminates other
factors, such as the initialization of the network that could be a cause of the double descent [23]. We
assume that the data lies on a line embedded in high-dimensional space.

Assumption 1. LetU C R? be a one dimensional space with a unit basis vector u. Then let Xy, =
Jtmuugn € R¥*Nern gnd X, = atstuvg’;t € R¥*Nist pe the respective SVDs for the training data
and test data matrices. We further assume that o4, = O(\/Nipy) and o5t = O(v/Nist)-

In [26], it was shown that by considering specific data distributions, any shaped generalization error
curve could be observed in the over-parameterized regime. Hence to limit the effect of the data, we
consider data on a line with norm restrictions.

Assumption 2. The entries of the noise matrices A € RN are LLD. from N'(0,1/d).

Notational note. One final piece of technical notation is the following function definition.

p(p) == (4p" + 48, + 204 + 352u° 4+ 19217 )/ 2 + 4

3)
—(4p" 561 + 292412 + 680110 + 64045 + 12845).

3 Under-Parameterized Regime Peak

We begin by providing a formula for the generalization error given by Equation 2 for the least squares
solution given by Equation 1. The over-parameterized case can be found in Appendix F.2. See
Appendix A for more discussion. All proofs are in Appendix F.

Theorem 1 (Generalization Error Formula). Suppose the training data X, and test data X;s;
satisfy Assumption 1 and the noise Ay, As satisfy Assumption 2. Let | be the regularization

The proofs are in Appendix F.1.
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parameter. Then for the under-parameterized regime (i.e., ¢ < 1) for the solution Wy, to Problem 1,
the generalization error or risk given by Equation 2 is given by

o2 co?., (02, +1)) 1+ c+ ple 1
R ¢, — 7_—2 tst 4 trn\"itrn _ +o ()
(e, ) Nist 2d \/(1 — e+ p2¢)? + 4p2c2 d

2
where 771 = .
24 02, (L+ et ple—/(L—ct u2e) 1 42c?)

Data Scaling. We prove that the risk curve in Theorem 1 has a peak for ¢ € (0,1). Theorem 2
tells us that under certain conditions, we are guaranteed to have a peak in the under-parameterized
regime. This contrasts with prior work such as [3, 5, 8-11, 14, 25]. Further, we conjecture that the
peak occurs near ¢ = (u? + 1)~ (Appendix B). Figure 1 shows that the theoretically predicted risk
matches the numerical risk. Moreover, the curve has a single peak for ¢ < 1. Thus, verifying that
double descent occurs in the under-parameterized regime. Finally, Figure 1 shows that the location

of the peak is near the conjectured location of ﬁ See Appendix D for the training error curves.

Theorem 2 (Under-Parameterized Peak). If n € Rxq is such that p(u) < 0, 02.,, = Nypp = dfc
and 0%, = Nyg, and d is sufficiently large, then the risk R(c) from Theorem 1, as a function of c,
has a local maximum in the under-parameterized regime (c € (0,1)).
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7} @ 0.00112 9]
g 0.002 S <- Under-Parameterized S 0.00106 °
0] (9 0.00110 Regime o / °
0.00105{ &
0.001 | S
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¢ =d/N¢m ¢ =d/Ntm ¢ =d/Ntrm

Figure 1: Figure showing the risk curve in the data scaling regime for different values of p [(L)

on = 01, (C) o= 1, (R) on = 2] Here Otrn = Nt'rn7 Otst = V/ Ntst7d = 10007 Ntst = 1000. For
each empirical point, we ran at least 100 trials. More details can be found in Appendix G.
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Figure 2: Figure showing generalization error versus || W,,¢||% for the parameter scaling regime for
three different values of ;1. More details can be found in Appendix B.

Parameter Scaling. For many prior models, the data and parameter scaling regimes are analogous
in that the shape of the risk is primarily governed by the aspect ratio c of the data matrix. However,
we see significant differences between the parameter scaling and data scaling regimes for our setup.
Figure 2 shows that for small values of p, double descent occurs in the under-parameterized regime,
for larger values of i, the risk is monotonically decreasing.® Further, Figure 2 shows that for larger
values of p, there is still a peak in the curve for the norm of the estimator ||W,,||%. However, this
does not translate to a peak in the risk curve.

Theorem 3 (||W,,:|| 7 Peak). If 015t = v/ Nist, Otrn = V/Nign and o is such that p(p) < 0,
then for Ny, large enough and d = cNy,,,, we have that ||Wopu||r has a local maximum in the
under-parameterized regime. Specifically for ¢ € ((u? +1)71,1).

3This is verified for more values of 1 in Appendix B.
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A Under-Parameterized Regime Peak
We begin by providing a formula for the generalization error given by Equation 2 for the least squares
solution given by Equation 1. All proofs are in Appendix F.

Theorem 1 (Generalization Error Formula). Suppose the training data X, and test data X;s;
satisfy Assumption 1 and the noise Aiyy,, Aist satisfy Assumption 2. Let | be the regularization
parameter. Then for the under-parameterized regime (i.e., ¢ < 1) for the solution W, to Problem 1,
the generalization error or risk given by Equation 2 is given by

o? co?., (02, +1)) 1+c+ pe 1
R c, — 7_72 tst + trn\"irn -1 +o <> ,
(1) <Ntst 2d V(1 —c+ p2e)? + 4p2c2 d

2
24 0, (1+c+ pe— /(1= c+ p2e) + 4u2c%)

Since the focus is on the under-parameterized regime, Theorem 1 only presents the under-
parameterized case. The over-parameterized case can be found in Appendix F.2.

where 771 =

Data Scaling. Looking at the formula in Theorem 1, the risk curve’s shape is unclear. In this
section, we prove that the risk curve in Theorem 1 has a peak for ¢ € (0,1). Theorem 2 tells us that
under certain conditions, we are theoretically guaranteed to have a peak in the under-parameterized
regime. This contrasts with prior work such as [3, 5, 8-11, 14, 25] where double descent occurs in
the over-parameterized regime or on the boundary between the two regimes.

Theorem 2 (Under-Parameterized Peak). If i € R is such that p(u) < 0, 0., = Ny = d/c
and 0%, = Ny, and d is sufficiently large, then the risk R(c) from Theorem 1, as a function of c,
has a local maximum in the under-parameterized regime (c € (0, 1)).

Since the peak no longer occurs at ¢ = 1, one important question is to determine the location of the
peak. Theorem 6 provides a method for estimating the location of the peak.

Theorem 4 (Peak Location). If 1 € R~ is such that p(p) < 0, 02.,, = Ny = d/cand o2, = Ny,
then the partial derivative with respect to c of the risk R(c) from Theorem I can be written as

(BPe+c=1)P(e,p, T(e, ), d) + 4dp>c® (2pPc — T(c, p))
Q(e, 1, T(c, p), d) ’

where T(c, 1) = \/(1 — ¢ + p2c)? + 4u2c2 and P, Q are polynomials in four variables.

0
&R(C, l’L) -

Here, at ¢ = (u? + 1)1, the first term in the numerator is zero. Hence we conjecture that the peak of
the generalization error curve occurs near ¢ = (u? + 1)~ 1.

Remark 1. Note that as j1 — 0, we have that 4du*c?(2u?c —T(c, 1)) — 0. We also note that, when
w =1, we have that 2¢ — T'(¢, 1) = 0. Thus, we see that for u near 0 or 1, we should expect our
estimate of the location of the peak to be accurate.
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Figure 3: Figure showing the risk curve in the data scaling regime for different values of u [(L)
o= 01, (C) o= 1, (R) o= 2] Here Otrn =V Ntrna Otst = V/ Ntst7 d= 10007Ntst = 1000. For
each empirical point, we ran at least 100 trials. More details can be found in Appendix G.

We numerically verify the predictions from Theorems 1, 2, 6. Figure 1 shows that the theoretically
predicted risk matches the numerical risk. Moreover, the curve has a single peak for ¢ < 1. Thus,

verifying that double descent occurs in the under-parameterized regime. Finally, Figure 3 shows that

the location of the peak is near the conjectured location of ﬁ This conjecture is further tested
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Figure 4: Figure showing generalization error versus || W, ||% for the data scaling regime for three
different values of p. More details can be found in Appendix B and G.
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Figure 5: Figure showing that the shape of the risk curve in the data scaling regime depends on d

[(L) d = 1000, (R) d = 2000]. Here ;1 = /2,04, = v/Nist, 0trn = v/ Nist, Nest = 1000. Each
empirical point is an average of at least 200 trials. More details can be found in Appendix G.

for a larger range of p values in Appendix B. One similarity with prior work is that the peak in the
generalization error or risk is corresponds to a peak in the norm of the estimator W,,,; as seen in
Figure 4 (i.e., the curve passes through the top right corner). The figure further shows, as conjectured
in [39], that the double descent for the generalization error disappears when plotted as a function of
|[Wopt||% and, in some cases, recovers an approximation of the standard U shaped error curve.

Risk curve shape depends on d. Another interesting aspect of Theorem 2 is that it requires that d
is large enough. Hence the shape of the risk curve depends on d. Most results for the risk are in the
asymptotic regime. While Theorems 1, 2, and 6 are also in the asymptotic regime, we see that the
results are accurate even for (relatively) small values of d, Ny,.,. Figure 5 shows that the shape of the
risk curve depends on the value of d. Both curves still have a peak at the same location.

Parameter Scaling. For many prior models, the data scaling and parameter scaling regimes are
analogous in that the shape of the risk curve does not depend on which one is scaled. The shape is
primarily governed by the aspect ratio c of the data matrix. However, we see significant differences
between the parameter scaling and data scaling regimes for our setup. Figure 6 shows risk curves
that differ from those in Figure 3. Further, while for small values of y, double descent occurs in the
under-parameterized regime, for larger values of i, the risk is monotonically decreasing.*

Even more astonishing, as shown in Figure 7, is the fact that for larger values of p, there is still a
peak in the curve for the norm of the estimator || W,,¢||%.. However, this does not translate to a peak
in the risk curve. Thus, showing that the norm of the estimator increasing cannot solely result in the
generalization error increasing. The following theorem provides a local maximum in the ||Wo¢||%
versus c curve for ¢ < 1.

Theorem 5 (||Wo,:|| 7 Peak). If otst = v/ Nist, Otrn = V/Nign and s such that p(p) < 0,
then for Ny, large enough and d = cNy,y,, we have that ||Wopu||r has a local maximum in the
under-parameterized regime. Specifically for ¢ € ((u? +1)71,1).

“This is verified for more values of . in Appendix B.
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Figure 6: Figure showing the risk curves in the parameter scaling regime for different values of
pw @ p =01, (C) p =02, (R) o = 0.2]. Here only the x = 0.1 has a local peak. Here
Nipp = Nisp = 1000 and o4, = 045 = +/1000. Each empirical point is an average of 100 trials.

1.0 1.0 1.0

0.011 0,010
s 0,010 L 0
goo10 08 £ 08 £ 0.8
“C" 0.009 "‘C" 0.008 '-lc-’ 0.008
S 06 O 06 O 06
5 0.008 = =
® L 10006 O @ 0.006 )
L0007 04 = 04 = 04
g 0.006 g 0.004 g 0.004
$ 0.005 02 g 02 g 02
@ 0.002 (0 0.002
0.004
T H] 3 3 3 0.0 1075 1.100 1125 1150 1175 1300 °° 1020 1.025 1.030 1.035 1.040 0.0
Iwiiz Iwiiz Iwiiz
(@p=0.1 byp=1 ©p=2

Figure 7: Figure showing generalization error versus || W,,¢||% for the parameter scaling regime for
three different values of ;1. More details can be found in Appendix B.

B Peak Location and ||1V,,|| »

Theorem 6 (Peak Location). If i € R is such that p(p) < 0, 02,,, = Nipp = d/cand o2, = Ny,
then the partial derivative with respect to ¢ of the risk R(c) from Theorem I can be written as

(et c—1)P(e,p,T(c, ), d) +4dp*c®(2p*c — T(c, p))
Q(e, 1, T(e, 1), d) ’

where T(c, 1) = \/(1 — ¢ + p2c)? + 4p2c? and P, Q are polynomials in four variables.

0
%R(C, :u) -

B.1 Peak Location for the Data Scaling Regime

We first look at the peak location conjecture for the data scaling regime. For this experiment, for 101
different values of p € [0.1, 10] we compute the generalization error at 101 equally spaced points for

c ( 1 2 >
c , .
2p*+1)" p?+1
We then pick the ¢ value that has the maximum from amongst these 101 values of c. We notice that

this did not happen at the boundary. Hence it corresponded to a true local maximum. We plot this
value of ¢ on Figure 8 and compare this against —=—. As we can see from Figure 8, our conjectured

pA+1e
location of the peak is an accurate estimate.

C Generalization error - bias and variance

For both the data scaling and parameter scaling regimes, Figures 9 and 10 show the bias, ||, || and
the generalization error. Here we see that our estimate is accurate.

D Training Error

As seen in the prior section, the peak happens in the interior of the under-parameterized regime and
not on the border between the under-parameterized and over-parameterized regimes. In many prior
works, the peak aligns with the interpolation point (i.e., zero training error). Theorem 7 derives a
formula for the training error in the under-parameterized regime. Figure 11 plots the location of

11
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Figure 9: Figure showing the bias, ||W,,t||%, and the generalization error in the data scaling regime

for u =1, 04rn = v/ Nirn, and orsg = /Nyt Here d = 1000 and Vs = 1000. For each empirical
data point, we ran at least 100 trials. More details can be found in Appendix G.
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Figure 10: Figure showing the ||W,,||%, and the generalization error in the parameter scaling regime

for u = 1, otrn, = VNipp, and 045t = / Nyg. Here Ny, = 1000 and Nyg; = 1000. For each
empirical data point, we ran at least 100 trials. More details can be found in Appendix G.

se0 the peak, the training error, and the third derivative of the training error. Here the figure shows that
se1 the training error curve does not signal the location of the peak in the generalization error curve.
362 However, it shows that for the data scaling regime, the peak roughly corresponds to a local minimum
se3  of the third derivative of the training error.

ss4 Theorem 7 (Training Error). Let T be as in Theorem 1. The training error for ¢ < 1 is given by

IEAt,rn[HXtT" - opt(Xtrn + Atrn)H%‘] = 772 (O't2rn (1 —C- Tl) + 0-211"71,T2) + 0(1)7
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Figure 11: Figure showing the training error, the third derivative of the training error, and the location
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E Regularization Trade-off

We analyze the trade-off between the two regularizers and the generalization error.
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Figure 12: The first two figures show the oy, versus risk curve forc = 0.5,y =landc =2, = 0.1
with d = 1000. The second two figures show the risk when training using the optimal o,., for the
data scaling and parameter scaling regimes.

Optimal o,.,. First, we fix 1 and determine the optimal oy,.,,. Figure 12 displays the generalization
error versus o2, curve. The figure shows that the error is initially large but then decreases until the
optimal generalization error. The generalization error when using the optimal oy,.,, is also shown in
Figure 12. Here, unlike [24], picking the optimal value of o, does not mitigate double descent.

Proposition 1 (Optimal 7y,.,). The optimal value of 7., for c < 1 is given by

o2 — oid2e(p? + 1) = 2T (cp® + ¢+ 1) + 2(cp® — 2¢ + 1)] + Nese(u2 + 2 +1-1T)
brn Nise(3(p2+1)2 —=T(pu2c2 +c2 —1) —2c2 — 1) ’

Additionally, it is interesting to determine how the optimal value of oy,-,, depends on both y and
c. Figure 13 shows that for small values of p (0.1,0.5), as ¢ changes, there exists an (inverted)
double descent curve for the optimal value of o.,. However, unlike [33], for the data scaling

800{ == c=0.10, slope = 0.10

— =029, slope = 0.30 30 — Risk poak 2.00 | —— Risk peak
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Figure 13: The first figure plots the optimal ¢2,.,, /Ny, versus u curve. The middle figure plots
the optimal o2, /Ny, versus c in the data scaling regime for y = 0.5, and the last figure plots the
optimal o7, / Ny, versus c in the parameter scaling regime for 1 = 0.1.
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regime, the minimum of this double descent curve does not match the location for the peak of the
generalization error. Further, as the amount of ridge regularization increases, the optimal amount of
noise regularization decreases proportionally; optimal 2., ~ du?. Thus, for higher values of ridge
regularization, it is preferable to have higher-quality data.
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Figure 14: Trade-off between the regularizers. The left column is the optimal oy,.,,, the central column
is the optimal u, and the right column is the generalization error for these parameter restrictions.

Interaction Between the Regularizers. The optimal values of i and oy,., are jointly computed
using grid search for p € (0, 100] and o4y, /v/Nirp, € (0, 10]. Figure 14 shows the results. Specifi-
cally, o, is at the highest possible value (so best quality data), and then the model regularizes purely
using the ridge regularizer. This results in a monotonically decreasing generalization error curve.
Thus, in the data scaling model, there is an implicit bias that favors one regularizer over the other.
Specifically, the model’s implicit bias is to use higher quality data while using ridge regularization to
regularize the model appropriately. It is surprising that the two regularizers are not balanced.
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Figure 15: Figure showing the generalization error versus p for 02, = Ny, and 02, = Nyg.

We now explore the effect of fixing o4, and then changing p. Figure 15, shows a U shaped curve
for the generalization error versus p, suggesting that there is an optimal value of p, which should be
used to minimize the generalization error.

Next, we compute the optimal value of i using grid search and plot it against c. Figure 16 shows
double descent for the optimal value of  for small values of oy,.,,. Thus for low SNR data we see
double descent, but we do not for high SNR data.

Finally, for a given value of i and ¢, we compute the optimal o4,.,,. We then compute the generalization
error (when using the optimal oy,.,) and plot the generalization error versus p curve. Figure 17
displays a very different trend from Figure 15. Instead of having a U-shaped curve, we have a
monotonically decreasing generalization error curve. This suggests that we can improve generalization
by using higher-quality training while compensating for this by increasing the amount of ridge
regularization.
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401 E.2 Trade-off in Parameter Scaling Regime

402 Here we look at the trade-off between o, and p for the parameter scaling regime. We again see
403 that the model implicitly prefers regularizing via ridge regularization and not via input data noise
404 regularizer.
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F Proofs
F.1 Linear Regression

We begin by noting,
B = (B X + &urn) X
Thus, we have,

181> = Te(878)
= TI‘( g:DtXtTanrn(Xjrn>TXtT’ﬂBOPt) + ﬂ(ﬁtranrn(Xjrn>T€Zrn) + 2’I‘r( g;)tXtT’ﬂX:rnXtTrn)ng;‘n'

Taking the expectation, with respect to &;,.,, we see that the last term vanishes.

Letting Xy, = UxXx V}; . We see that using the rotational invariance of X, Ux, Vx are independent
and uniformly random. Thus, s := BoTpt Ux is a uniformly random unit vector.

Thus, we see,

min(vam‘n)

. 1
EXtrn-ftrn {Tr(ﬂtg;tXtrnXZrn(Xjrn)TXtrnﬂopt)} = Z ]E[S%] = min (17 C)
=1

Similarly, we see,

min(d,N¢rn)
1
EXtrmEtrn [gtrnX:rn(Xjrn)ng;’n] - Z E |:0W:|

i=1

Multiplying and dividing by d, normalizes the singular values squared of Xj,.,, so that the limiting
distribution is the Marchenko Pastur distribution with shape c. Thus, we can estimate using Lemma 5
from Sonthalia and Nadakuditi [33] to get,

{1CC+0(1) c<1

Loto(1l) e>1"

Finally, the cross-term has an expectation equal to zero. Thus,

1+ 1% c¢<1
|

c c—1

EXyrirn [ Bopt]*] = {

Then we have,
T Bopt = B Xtpn X, el
/6 /Bopt - B(,pt trn trnﬂopt + ft'r'n trnﬂopt
The second term has an expectation equal to zero, and the first term is similar to before and has an

. . 1
expectation equal to min <1, ) .
c

F.2 Proofs for Theorem 1

The proof structure closely follows that of [33].

F.2.1 Step 1: Decompose the error into bias and variance terms.

First, we decompose the error. Since we are not in the supervised learning setup, we do not have
standard definitions of bias/variance. However, we will call the following terms the bias/variance of
the model. First, we recall the following from [33].

Lemma 1 (Sonthalia and Nadakuditi [33]). If Ass; has mean O entries and A is independent of
Xist and W, then

Ea,, [ Xest = WYist| 2] = Ea,,, [ Xest — WXeatll7] + Ea,,, [IW Ast| 7] -

Bias Variance

“
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F.2.2 Step 2: Formula for W,

Here, we compute the explicit formula for W,,, in Problem 1. Let Ay = [Atrn ], Xipm =
[Xtrn 0], and Yirn = Xipn + Agpn. Then solving arg miny, || Xen — WYl % + @2 W%
equivalent to solving arg miny; ||Xtm — Wf/{gmHF Thus, Wope = arg miny, ||X',gm Wf/{gmHF =
X’thtm Expanding this out, we get the followmg formula for . Let @ be the left singular
vector and ¥y, be the right singular vectors of X wn. Note that the left smgular does not change
after ridge regularization sot = u. Leth = oL, Al k= Al u § = (I— AynAl ) u,
t - UtT’TL(I AtrnAtTﬂ) =1+ UtTnvtj;‘nAIrnu 7= O'trnHtH HkH2 + ’3/2'

Proposition 2. If§ # 0 and Ay, has full rank then

e

S

5 2 12
Wopt _ Ut:ﬁuh + O—trn%” ” UkTAIT"I’L

Proof. Here we know that w is arbitrary. We have that Atm has full rank. Thus, the rank of Atm is

d, and the range of Atm is the whole space. Thus, u lives in the range of fltm. In this case, we want
Theorem 3 from [40]. We define

A

A o t A A
p - — 0¢rnk and qAT LH”ICTAIML — h.
Y Y
Then we have,
o R O't Y A
(Atrn + Utrnuvzrn) A:ﬁrrn — tATkTAIrn - ;qu'

Note that, by our assumptions, we have f = 9y (I — A, Ayn), and (I — A Ay,.,) is a projection
matrix, thus

T ~T At
Ut7nt _Ut7n(I At7rLAt77l) Ut7n

trn(I AITnAtT’ﬂ) (I AIT’I’LAtT'n) Utrn

To compute Wo, = Xtm(Xtm + Atm) = atmuﬁgn(fltm + opnudh, )T, using 4 — 1 =
Jtmvg;,nAImu = Utmhu we multiply this through.

Ot N
TnkaTAIrn - qu)

~T (A ~T AT
UtTnuvtrn(AtTn + UtTnuvtrn)T - UtTTLuvtrn (Atrn

» |2

= Utmuh + trn

a't2rn||£|| kTAT
y
2 2 ]% 2 R
i Jt;nvuﬁtj;nn <O—trn’AL || tAT+0'trnk> (jT

9 R
= Utrnuh + t”?y” ” kTAT

trn

Ufy-nHkIIQHfIIQquT
,7’;

O—trn:)/(’? — 1)

+ - uc}T.
=

Then we have,
G L G L L 9 (_atmnﬂPkT i )
A - o trn
Y

T T
L O s
A2 trn

Ty T
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452
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460

and

T Y = 1) or _ 0¥ =1 (— ol pr 4 ﬁ)
T T )

A trn
_ _o-t27n||tH2(;y - 1) ’U,];‘TAT _ o-t'r'n;}/(;y — 1)Uil

- S trn S

Substituting back in and collecting like terms, we get,

U X a2 kIPIE1E 43 =1)\ -
Utrnuvt];n (Atrn + O'trnuvtj;-n)T = Otrn (1 - trn” 7A_|| ” ” - 'Y('Y% ) wh+
o (IEIP o lIEIPIE P = 1) At
Otrn ~ - 71,3/ - 3 U trn-

We can then simplify the constants as follows.

O L] D O 2. L el ARG
T T T T
and
N N . N M2 (a2 NRI2NEN2 _ 22 1 A R
1P R BPHEE 1P = 1) M (7 = ot I = 5% +3) e
ol T T T4 7
This gives us the result. O

F.2.3 Step 3: Decompose the terms into a sum of various trace terms.

For the bias and variance terms, we have the following two Lemmas.

Lemma 2. If W, is the solution to Equation 1, then

¥
tht - Wothtst = ;thb

Proof. To see this, note that we have Ny,.,, + M > M.

X W . X - X Utrn:y }AL T JtzrnH£||2 ]%TAT T
tst — WoptAist = Agst — — = UNUVy g — — U trnUWUtst
~ ~ 2 2112
Otrn™ T 3t T Utrn‘|t|| . T AT T
= tht - 7 uvtrnAtrnuvtst - ~ uk Atrnuvtst'

Note that § = 1 + o, L, Al u. Thus, we have that o405, Al u =4 — 1. Substituting this
into the second term, we get,

45 -1 o2 NEN? = s
tht — Wothtst = tht — %U’Utzt — ”‘%HHU]CTAIT,”U’UZS#

For the third term, since k = A} u, kT Al u = kTk = ||k||2. Substituting this into the expression,
we get that

S5 1 o2 PP
tht _ Wothtst _ tht _ ’7(’77: )uvtj;t _ trn” 7L| || || uvtj;t'

; — 0T
Since Xys; = vy, we get,

Y —1) RPN
mem&ﬁ&ﬁva >tMUn>.

T T
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Simplify the constants using 7 = o2, ||£]|2[|k[|2 + 42, we get,

T + 'Ay - ﬁ/2 B O-tzrn||£||2||k||2 _ j
T 7
O]
Lemma 3 (Sonthalia and Nadakuditi [33]). If the entries of A:s: are independent with mean 0, and
variance 1/d, then we have that E 4, , [||[Wopt Ast||?] = 2ot {| Wy ||

Lemma 4. If4 # 0 and Ay, has full rank, then we have that

ot lE]l*
72

p

o2 A2 o o3 1171124 o
Wl = Zm” w4 270l moirir a4

Proof. We have
[WopellF: = Te(Wo,

opt

A o 02 2 e s N\ (om0 |EZ s
—Tr ((UtA ’Yuh_"_ UtrnAH || Uk’TA;.n) <UtA ’Y’U/h—l— O-trnAH H UkTAIrn)
T T T T

Wopt)

2 22 R R 3 1£1124 o A
- % Tr(hTu"uh) + QW Tr(hTuTuk™ Af,,)
& T

O';lrn||ﬂ|4 At Ti.,. T, 1T it
+ 22 Tr((Atrn) ku” uk Atrn)
2 A2 3 124 e 4 174 . o
_ O't’rr;,y TI'(hTh) + QUtrnJL || g Tf(thTAITn) + Jtrri! || Tr((AIrn)TkkTAIrn)
7 7 7
Where the last inequality is true due to the fact that |Ju[|? = 1. O

F.2.4 Step 4: Estimate With Random Matrix Theory

Lemma 5. Let A be ap x g matrix and let A = [A  pl] € RP*92, Syppose A = USVT be the
sjngular value decomposition of A. If A = UXV'T is the singular value decomposition of A, then
U=Uandifp<q

0'1(14)2 + /.LQ 0 0
2 2
& 0 o2(A)? + 0 € RP¥P,
0 0 e op(A)? + p?
and R
9 Vl:pzz_l +px
— 4 RI+PXP
v { pUs! ] c

Here V., are the first p columns of V.

Proof. Since p < g, we have that U € RP*P_ 3 € RP*P are invertible. Here also consider the form
of the SVD in which VT € RP*4,

We start by nf)thing that U207 = AAT = AAT + 121 = U(X%4p21,)UT. Thus, we immediately
see that 0;(A)? = 0;(A)? + p? and that U = U.

Finally, we see,

VI =" '0TA = [5'sv, s tUT]
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Lemma 6. Let A be ap x q matrix and let A = [A  pI] € RPXUHP_ Suppose A = ULV be the
sjngular value decomposition of A. If A = UXV'T is the singular value decomposition of A, then
U=Uandifp>q

o1 (A2 £ 122 0 0 )
0 oo(A)? + pu? 0
2= 0 0 o(A)Z 1 122 0| e RP*P.
1
: 0
I 0 0 0 0 pf

Here we will denote the upper left ¢ X q block by C'. Further,

Vo [Vziqmcl 0

c RQ"'Z)XP.
puU1.C UqH:p]

Proof. Since p > ¢, we have that U € RP*P and we have that ¥ € RP*4, Here VT € R9% is
invertible.

We start with nothing,

o . 2
UZ2UT:AAT:AAT+‘LLZI:U(|:2161Q 00 :| +,LL2I(1> UT.
a—p

Thus, we immediately see that fori = 1,...,p 0;(A)? = 0;(A)2 4+ p2 and fori = p+1,...,q, we
have that o;(A)? = 42 and that U = U.
Then, we see, R ) . A .

VE=3"0TA=[2'2vT 21Ut
Note that X has 0 for the last p — ¢ entries. Thus,
lez1:(1,1:(1‘/:|

q9—p,9q

STInv = [
Similarly, due to the structure of f) we see,
o _ 1
NJE IUT = [IU‘C lUiZ:q M;U;]z;l:p]'
O]

Lemma 7. Suppose A is an p by q matrix such that p < q, the entries of A are independent and have
mean 0, variance 1/p, and bounded fourth moment. Let c = p/q. Let A =[A pl] € RPXITP, Let

Wy, = AAT and let W, = AT A. Suppose X\, is a random non-zero eigenvalue from the largest p
eigenvalues of Wy, and \; is a random non-zero eigenvalue of W,. Then

2
1. E [A} -E F} = VhtemePtdpiciAopete |y

Ap e | T 2u2c
5 E |:ii| _ E |:L:| _ H202+02+'U'20_2C+1 + 1 (1 . l) + 0(1)
’ A A 2uden/ap2 2 +(1—c+p2c)? 2ut ¢ )

Proof. First, we note that the non-zero eigenvalues of W, and W, are the same. Hence we focus on
W,. Wy, is nearly a Wishart matrix but is not normalized by the correct value. However, cWV,, does
have the correct normalization.

Due to the assumptions on A, we have that the eigenvalues of cAA” converge to the Marchenko-
Pastur. Hence since the eigenvalues of ¢V, are

(eAp)i = cos(A) + a1,

20



504 we can estimate them by estimating co;(A)? with the Marchenko-Pastur [41-45]. In particular, we
s05 want the expectation of the inverse. We need to use the Stieljes transform. We know that if m.(z) is
so6 the Stieljes transform for the Marchenko-Pastur with shape parameter c, then if A is sampled from the
507 Marchenko-Pastur distribution, then

i =m [ 1]

s08  Thus, we have that the expected inverse of the eigenvalue can be approximated m(—cu?). We know
s09 that the Steiljes transform:

l—z—c—/(1—2—0)2—4dcz
—2zc ’

me(z) =

si0  Thus, we have,

VI +p2e—e)2 +4p2c2 — 1 —ple+e
22 c? '

511 Canceling 1/c¢ from both sides, we get,

E[l] B V4 p2e— )2 +4p2c2 — 1 — ple+c

Ao 2u2e

512 Then for the estimate of E [1 / /\Z] , we need to compute the derivative of the m.(z) and evaluate it at
513 fc,uz. Hence, we see,

(c—z4++/dcz+(1—c—2)2=1)(c+z++/—dcz+ (1 —c—2)2 - 1)

/
mL(z) =
(%) 4e22\/—dcz + (1 — c — 2)?

514 Thus,

1
E — o (—ppy2
| =i
(e pPe+ Va2 + (1 —c+ p2e)? — 1)(c — pPe+ /Ap2e® + (1 — ¢ + pc)? — 1)
4pred\/4pu2c + (1 — ¢ + p2c)?

515 Canceling the 1/c? from both sides, we get,

E {1} _ (et p2e+\/4p2c + (1 —c+ p2c)? — 1)(c — ple + /422 + (1 — e+ p2c)2 — 1)
A2 dpte/4pu2c? + (1 — ¢ + p2e)? '
st6  Multiplying out and simplifying
[1]: w2+ 4+ pPe—2c+1 1(1_1)
Ml 2pte /A2 + (1 —c+ p2e)? - 2t ¢/
517 O

s1s Lemma 8. Suppose A is an p by q matrix such that p > q, the entries of A are independent and have
st9 mean 0, variance 1/p, and bounded fourth moment. Let c = p/q. Let A = [A ul] € RPXITP, Let

s20 W, = AAT and let Wy = AT A. Suppose Ap is a random non-zero eigenvalue of Wy, and )\ is a
521 random eigenvalue from the largest q eigenvalues of W,. Then

\/ —ctp —c—ple
522 1. E [qu] =F {)\i] = VAet(ctn?e)?—cpetl + o(1).

2u?

=

1] 1| . 1-2ctEtpietpid? 1
o 2 E [73} =k {TZ} B 2u4\/4u2c+(ﬁ1+ciu%)2 (1= g +oll)
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Proof. First, we note that the non-zero eigenvalues of W, and W, are the same. Hence we focus on
W,. Due to the assumptions on A, we have that the eigenvalues of A7 A converge to the Marchenko-
Pastur with shape ¢~ 1. Hence if \,, is one of the first ¢ eigenvalues of W, we see,

V42 —1/e)2 +4p2/c—1— 12 +1/c
2u?/c

Then for the estimate of E [1 / )\12)] , we need to compute the derivative of the m.—1(z) and evaluate it
—u?. Hence, we see,

E [;p] = me-1 (p?) =

A

E {1} — (Le+p2+/Ap2/c+ (1= 1/c+ p2)2 — 1)(1/c — p2 + /4u2Je+ (1 = 1/c + p2)2 — 1)
dptfeN/Ap2 e+ (1 — 1/c+ p2)?
_ (1+M26+c\/4’u2/c+(1_1/C+M2)2_C>(1_M20+C\/4M2/C+(1—1/C+/,L2)2—c)

dpten/4p2fe+ (1 —1/c+ p?)?

(L4 pPe4 ApPe+ (—1+ e+ p20)? — o) (1 — pPe + /Ap2e+ (=1 + ¢ + p2c)? — ¢)
4pt/Ap2e + (=1 + ¢+ pc)?

This can be further simplified to

1—2c+c?+ p2c+ p2c?
2t \/Ap2e + (=1 + ¢ + p2c)?

+(1—-0c)=—

We will also need to estimate some other terms.

Lemma 9. Suppose A is an p by q matrix such that the entries of A are independent and have mean
0, variance 1/p, and bounded fourth moment. Let A = [A  pul] € RPX9+P, Let W), = AAT and let

W, = AT A Suppose \p, A\, are random non-zero eigenvalues of W,,, W, from the largest min(p, q)
eigenvalues of W,,, W,. Then

c— - C c C
T <2+1+“ VLB ITe ) | o(1).

L Ifp>q E %

14p2c—+/(1—c+p2c)2+4c2 p2
2. If p<q, [/\q’l"“z} :% +u ( 2C+H )2+4c2 +o(1).
[ Lt 14

A +:U’ i| 2\/(1 ctcp?)2+4c2p?

1+c+/_L20 1
3 lfp>q E (2\/(1+c+#20)2+4,u20 2) +o(1).

4. Ifp<qE

Proof. Notice that

2 2
A =1- H and A = ! — H
A+ p? A+ p? A+p2)?2 A+p2 (A4 p?)?
Then use Lemmas 7, and 8 to finish the proof. O

Bounding the Variance.

Lemma 10. Let 1, be a uniform measure on n numbers a1, . . .,a, such that n* — n weakly in
probability. Then for any bounded continuous function f

1 n—1
=3 fla) = Bony[f (@)

n
i=1
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Proof. Using weak convergence
1 n
=3 (@) = Ean £ (@)
i=1

Then using the boundedness of f, we get,

O

Lemma 11. Let n,, be a uniform measure on n numbers aq, ..., a, such that n, — n weakly in
probability. Let s be a uniformly random unit vector in R™ independent of n,,. Suppose n/m — { €
(0, 1]. Then for any bounded function f,

E, lz S?f(ai)] = (Eonn[f(2)]

and
n

2
Z s?f(ai)] — 0.

=1

n 2
II':':s (Z Slzf(az)> - Es

Proof. The first limit comes directly from weak convergence.

For the second, notice,
n 2 n n n
(Z s?f<ai>> =D sif(@)’+)_ sisiflaflag) =Y sifa)®+) sif(a) Y sif(ay).
i=1 i=1 i#£] i=1 i=1 j#i
Taking the expectation with respect to s we get,
E, 2flar) | | = — P — 1. |
: (; sif(a )) Yo ; F@) + o0 ;f(a ) ; f(a;)

Then using Lemma 10 for any fixed ¢, we have,

1

= f(a) = (Bany[f ()]

J#i

Thus, as n — oo, we have,

E, (Zﬁf(m)) = CEypyf ()]

Then since )
E, Zsfﬂai)] = CEpmn[f (@)
i=1

Thus, the variance goes to zero. O

The interpretation of the above Lemma is that the variance of the sum decays to zero as m — oco.

Lemma 12. Suppose A is an p by q matrix such that the entries of A are independent and have

mean 0, variance 1/p, and bounded fourth moment. Let A= [A pl] € RPXITP, Let 2 € R? and
§ € RPT9 be unit norm vectors such that §* = [y*  0,]. Then

N —C C ce—1— 2(/’ C
1. Ifp < q, then E[Tr(zT (AAT)Ty] = VUZeH2o thBemlmpwmere | )

- 2u2c
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576
577

579
580

581
582

583

584

P - C L= C c— _1/2(/' c
2. Ifp > q, then E[Tr(2T (AAT) T x] = Vo berilolt i 1- ey +o(1).

2u2c

~ AT ANt ctple
3. Ifp < q, then E[Tr(yT(ATA)Ty] =c (2\/(1—1:;-#—25)2-&-4@“2 - %) +o(1).

~ AT ANt ctp’e
4. pr > q, then ]E[Tr(yT(ATA)Ty] =cC (2\/(—1}‘,-—"_(:—0——;}2(:)24_4//,2(; - é) + 0(1)

The variance of each above is o(1).

Proof. Let us start with p < q.
Let A = (72VT, where 3 is p X p. Then we see,
(AAT)t =Un20T.
Where U is uniformly random. Thus similar to [33], we can use Lemma 7 to get,

VI +p2e—e)2 +4p2c2 — 1 —ple+e
) +
2u?c

E[Tr(zT (AAT) 2] = o(1).

On the other hand, for p > ¢, we have that only the first ¢ eigenvalues have the expectation in Lemma
8 The other p — ¢ are equal to N% Thus, we see,

E[Tr(27 (AAT) 2] = % (\/4,u2c+ (-1 +c-2|—u/;2c)2 —c—pPc+1 +0(1)> n (1 3 1) 1

VAPt (1 + e+ pe)? + e —pPfe—1

2cpu?

Again let us first consider the case when p < g. Then we have,
V1:p2f1_1
pUs=t
Since g has zeros in the last p coordinates, we see,
@T(ATA)T?] = yTV1:p22_4EV1pr~

Thus, we can use Lemma 9 to estimate this as,
1 2 1
¢ et —— ] +o0(1).
2v/ (1 —c+cp?)? +4c2p2 2
The extra factor of ¢ comes from the sum of p coordinates of a uniformly unit vector in ¢ dimensional
space. And for p > ¢, we have that the estimate is
14 c+ p2e
2/ (1+p2—1/c)2 +4p2/c
For the variance term, use Lemma 11. For three of the cases, the limiting distribution is the Marchenko-

Pastur distribution. For the other case, the limiting measure is a mixture of the Marchenko-Pastur and
a dirac delta at 1 /2. O

(ATA)T = U820 = { } £ [SInVT uSo0T)

- 5 + 0(1)

The rest of the lemmas in this section are used to compute the mean and variance of the various terms
that appear in the formula of W,,;.

Lemma 13. We have that

1+c+,u20 1
c —5]+o(l) ¢<1
~ 24/ (1—c+p2c)2+4pu2c? 2)
Ea,,, [JB] = § V0o
e —1)+0(1) e>1

2\/(71+c+u2c)2+4p2c

and that V(|| h|2) = o(1).
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Proof. Here we see that
Hh”2 = (Utrn(Az;nAﬁ"n) Utrn)
Thus, using the Lemma 12 we get thatif ¢ < 1

s 1+c+ p?c 1
B[] = o fite 1)
2¢/(1 — c+ p2c)? + 4p2c 2

andifec > 1

A 1+ c+ ple 1
B[] = ¢ e 1)y,
2/ (=1 +c+ p2c)? +4p2c 2

Lemma 14. We have

_ 1,2
o Tige] R (1) e<1
o [IKP] = { orrermatr et yiere
+o(l) e¢>1

2u?c

and that V(||k||?) = o(1).

Proof. Since k = Al u, we have that

|&[|* = Tr(u” (Arn AL, Tw).
According to the Lemma 12, if ¢ < 1

trn

VI —c+p2e)? +4p2c2 — 1 — ple+c
2ue

E[|lk]%] = +o(1)

andifec > 1

V(=1 + e+ p2e)? +4p2e—1—ple+e
3 +
2ucc

E[|I5]*] = o()-

Lemma 15. We have that

1—c—ple+ \/(1—c+,u26)2—|—402,u2) +o(l) e<1
1—c—plc+ \/(—1+c—|—,u20)2+4,u2c) +o(l) ¢>1

Ea,., [IE7] =

Nl= N

and we have that V(||||?) = o(1)

Proof. Here we see that £ = 0y, (I — AfmAtm). Thus, we see that

WHZ = ||Utm||2 Uth Atm@tm =1- UthtrnAtmvtm

trn

If V € RP+a%P+4_ we have that

Al Ay =V {0 0 } VT

Then if p < g using Lemma 6 and the fact that the last p coordinates of ?,,., are 0, we see that
UtrnAtrnAtrn'Utrn = vthl pZZ ZVl pvtrn

Then using Lemma 9 to estimate the middle diagonal matrix, we get that

R 1 14 pPc— /(14 p2c—c)2 +4c2u?
EHt”Q]:l—C(—i— M \/( M ) M)

2 2c

1
3 (1 —c—ple+ /(1 —c+p2e)? + 402,u2> +o(1).
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Similarly for ¢ > 1, we have that

L (1 c+ple—e/(1+p2 — l/c)2+4,u2/c> +o(1)

E[]1#]1*)

2+ 2

1
=5 (1 —c—pPc+ \/(—1—|—c—|—,u20)2—|—4u20> +o(1).

Ay is also o(1) using Lemma 11. O

The variance of AIM

Lemma 16. We have thatE 4, . [4] = 1 and V(v) = O(c2.,,/d).

Proof. Noting that A=U f)VT, we have that

min(Neyy, ,d)
=1+ Jtm@g;nAImu =14 oun Z oi(A) " tagb;.
i=1
Here ™ = 67,V and b = UTw. U is a uniformly random rotation matrix that is independent of 3

and V. Thus, taking the expectation with respect to Ay, we get that the expectation is equal to zero.

For the variance, let us first consider the case when ¢ < 1. For this case, we have that

> Vl.dZi_l
V= RS .
[ e
Thus, letting a” = v, V3.4, we get that
d
N Ul(A)
=1 ibi
T e

Lemma 17. We have that
u202+c2+u20—2c+1 1 1
+5r(1-2)+0(1) c<1
At ONT LT AT o 2pte/4Ap2c?2+(1—c+p2c)? 2p ¢
B [Te((Al, )RR AL =Bl = ¢ 2ot (1-1) 2L +o(1)
2u4c\/4,u2¢:+(71+c+,u20)2 c/ 2p*

and that V(p) = o(1).

Proof. Here we have that
p=Tr(k" (AT

thtm)Tl%) = Tr(uT (AtrnAT )T (AtrnAz;n)Tu) .
‘We first notice that

trn

(AtTnAZ;’n)T(AtTW:AtI;n)T = UTXA]QU-
Thus using Lemmas 7 and 8, we see thatif ¢ < 1
224+ 24+ u2c—2c+1 1 1
Elp] = —& d +@>
2uter/4pu2c? + (1 —c+ p2e)?  2p c

andifec > 1

1 1—2c+c2+ pe+ p2c? 1 1\ 1
E[p] = ( +(1=c)s5 | +l1-=)—3

C

2ut\/ApPe + (=1 + ¢ + p2c)? 2p c) u
1 —2c+ A+ pPe4pP? (1_1)1
2uter/Ap2e + (=1 + ¢ + p2c)? c) 2ut’
The variance being o(1) comes from Lemma 11 again. O
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619 Lemma 18. We have that
En,,, |Tr(hTkTAL,)] =0

620 and the variance is o(1).
621 Proof. Letting A = USVT, we get that
Te(hTkTAT) = wTUS3VTT

622 Then again since U is uniformly random and independent of S and V, the expectation is equal to
623 zero. The variance is computed similarly to Lemma 16. O

624 F.2.5 Step 5: Putting it together

625 Lemma 19. We have that

]E{ r} ——+3 1+u20+c—\/(1—c+u20)2+4u202)+o(1) c<1
il | + 1 1+u20+c—\/(—1+c—|—,u20)2+4u20>—|—o(1)) c>1

g
trn 012,

26 and that V(7 /o2.,) = o(1).
627 Proof. Using the fact that all of the quantities concentrate, we can use the previous estimates.

628 Specifically, we use that
[E[XY] - E[X]E[Y]] < v/V[X]V[Y].
629 Thus, since our variances decay, we can use the product of the expectations. Further,
IVIXY]| = [VIX]V[Y] + E[X]*V[V] + E[Y]*V[X] — 2E[X]E[Y]Cov(X,Y) + Cov(X?, Y?) — Cov(X,Y)?|
< |VIXIV[Y] +E[X]?V[Y] + E[Y2V[X]| + 2[E[X]E[Y]|/V[X]V]Y] + [VIX]V[Y]| + [/V[X2]V]Y2]].

630 Thus, since the variances individually go to 0, we see that the variance of the product also goes to 0.
631 Then using Lemma 15 and 14, we have thatif ¢ < 1

aion 1
E[IiZ1R12] = 5 (1 + #2e+ e = VT = et w2 + 4023 + o(1)
ss2 and V(||£]|2||k||2) = o(1). Then since

[VIX +Y]| < |V[X]+ V[Y]| 4+ 24/ V[X]V[Y]

633 we have that using Lemma 16, thatif ¢ < 1

1 1
E [;} =—=+= (1+u20+c—\/(1—c+u2c)2+4,u2c2) +o(1)

Otrn trn 2

s34 and that that variance is o(1). If ¢ > 1

T 1 1
E[z} =5 135 (1+M20+0—\/(—1+C+M20)2+4M20) +o(1).

Otrn Otrn 2
635 O

636 Lemma 20. We have that

c(1+a;2n) (letetl )
- +o(1 c<1
K i”}AL”2 + ||7?||4 = 2 \/(1*C+u2c)2+4u2c2 ( )
Avn | =2 o . 2
Otrn c(l40,,%) wletetl B N 0(1) .
? \/(_1+C+/‘2C)2+4ltzc

637 and that the variance is o(1).
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Proof. Similar to Lemma 19, we can multiply the expectations since the variances are small. For
¢ < 1, simplifying, we get that

1 - - c(1+0;,2) ple+c+1
B | 7= WP + 11| = 5% peterl )
trn V(1 —c+ p2e)? + 4p2c

and if ¢ > 1, we get that

B | l? + ] = LLE7izn) LSS SR S—— EY
AM‘n 0.2 p - 2 — 2 2 2
trn V(=1 +c+ p2e)? + 4pe

and the variance decays since the variances decay individually. O

Lemma 21. We have that

c(i+o,2) pletetl —1)+0(1) ec<1
Ea, [[Woptll7] = Otrn 2 V(—ctpe)2+4p2c? ) M
trn PEILE T2 c(1+a't;rfl) pletetl -1+ 0(1) c>1
2 V(—1+ctpZe)2+4p2e

and that V(||Wpt||%) = o(1).

Proof. Follows immediately from Lemmas 4, 17, 18, and 20. O

Theorem 1 (Generalization Error Formula). Suppose the training data X,., and test data X;s;
satisfy Assumption 1 and the noise Ay, Aist satisfy Assumption 2. Let p be the regularization
parameter. Then for the under-parameterized regime (i.e., ¢ < 1) for the solution W to Problem 1,
the generalization error or risk given by Equation 2 is given by

o? co?., (02, +1)) 1+c+ pe 1
R ¢, —_ 7_72 tst 4 trn\Ytrn -1 +o <> ,
() <Ntst 2d V(1 —c+ p2e)? + 4p2c2 d

2
2402, (1+c+ p2c— /(1 —c+ p2c) + 4u2c2)

where 771 =

~2 22 4
Proof. Rewriting % as %, we can the concentration from Lemmas 16 and 19. Then using
trn
Lemma 21 we get the needed result. O

Theorem 8. For the over-parameterized case, we have that the generalization error is given by

R(Q M) _ 7_2 O-gst 4 CO-thn(O-thn + 1)) 1 +c+ /“LQC -1 +o0 (1> ,
Nist 2d V(=1 +c+ p2e)? + 4pe d

2
where 771 = 5 .
2+ 05, (L+ et p2e— /(=1 + e+ p2c) + 4pc)

~2 22 4
Proof. Rewriting Z—Q as szjm, we can the concentration from Lemmas 16 and 19. Then using

Lemma 21 we get the needed result. O

F.3 Proof of Theorem 2
Theorem 2 (Under-Parameterized Peak). If i € R is such that p(u) < 0, 02, = Ny = d/c

and 0%, = Nig, and d is sufficiently large, then the risk R(c) from Theorem 1, as a function of c,
has a local maximum in the under-parameterized regime (c € (0, 1)).
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660 Proof. First, we compute the derivative of the risk. We do so using SymPy and get the following
661 expression.

. (,Alwz,w) (W +C+1)

2
(1+4) 12 »
¢ \/402#24’(&#2704»1)2 (462Mz+(w2_c+1>2)% d —1+4”—4C2M;+<:;;+1)2
202
p)
d(cu2+c—1/4c2u2+(cu2—c+1)2+1)
1+ b
2 2
cp?4et1 d al w2- dcp? *4(% 2)(;7“ C+1) 1
o 2,2 2 2 (1+E) ) 2,2 2_ * df ep24c—y/ac2 L2+<CL2—C+1>2+1
m \/4c W +(cu c+1> / ' '
2 +1 - c + 2

2c

3
( d(cu2+01/402u2+(cu2c+1)2+1))
1+

662 We can then compute the limit as ¢ — 0T and ¢ — 17. Again using SymPy we see that

.0 4
. gt = 4/0) = g >0

663 Similarly, we can compute the limit as ¢ — 1~ and get
2 - Expression

3
(b + 4p2)? (d;ﬂ —du/pZ A+ 2d+ 2)
664 where

Expression = — 2d2p'% + 2d2 /12 + 4 — 282t + 244?13/ + 4 — 146d% pt?
+102d? M/ p2 + 4 — 340d% 0 + 17642 1%/ p2 + 4 — 320d° 11°
+96d2u7\/ 12 4 4 — 64d%1° — 2dp* 4 2dp* /2 + 4 — 26dut?
+30dptt /2 + 4 — 120dp™0 + 144dp® /2 + 4 — 224dp®

+224dp" /2 + 4 — 128dp® — 4p'0 — 3248 — 644°.
665 Here using the arithmetic mean and geometric mean inequality, we see that

p2 42> pn/p? + 4

666 Thus, the denominator is always positive for ¢ > 0. Thus, to determine the sign of the derivative, we
667 need to determine the sign of the numerator. Here, we see that as a function of d, the numerator is a
ees quadratic function of d, with the coefficient of d? is given by

(4p® + 48" + 204p™ + 3527 +192u7)\/ 12 + 4
—(4p™® 4+ 56pM 429212 + 680u0 4 64045 + 1281°).

ee9  We notice that this is exactly p(u), which we assumed was negative. Thus, since the leading coefficient
670 of the quadratic is negative, as d — oo, we have the quadratic, and hence the numerator, and hence
671 the whole derivative is negative for sufficiently large d.

672 Finally, since the derivative near 0 is positive, and the derivative near 1 is negative, by the intermediate
673 value theorem, there exists a value of ¢ € (0, 1) such that the derivative value equals 0. Then since
674 the derivative goes from positive to negative, this critical point corresponds to a local maximum. [

675 F.4 Proof of Theorem 6

676 Theorem 6 (Peak Location). If i1 € R is such that p(p) < 0, 67., = Nipp = d/cand 02, = Ny,
677 then the partial derivative with respect to c of the risk R(c) from Theorem I can be written as

9 _ (WPt c—1)P(c,p, T(c, p), d) +4dp?c?(2p*c — T(c, p))
c Qle, p, T(c, p), d)
78 where T(c, ) = /(1 — ¢ + p2¢)? + 4u2c2 and P, Q are polynomials in four variables.
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679 Proof. To begin, we note that the derivative is,

OR(er) = Dot T)

Qe 1, d,T)
680 Where
P(c,pu,d, T) = — 4T*(~T3d*u® — 3TAd?p* — 313 d*pu?® — Te3d?* — TEdu®
—5TCdp? — ATEd — TPt — TEd*p? — 2T dp? + 5T d + Ted?*u? — Ted
+Td? + Ad?p® + 4P S + 6 d?pt + 4t d?p? + rd? + tdpS + 20 dpt
+ctdp® 4+ 2¢ ) + 26 + 23328 + 33t — Ad? + 33dut + 53d — 268
+3c%dp® — 6¢2d — 2cd®p® 4 cd?® + cd — d?),
Qe,p,d, T)=T" (=Td + cdp® + cd + 2¢ + d)3 ,

681

682 and

T =/pt 4+ 22p2 +  + 2cp? — 2¢ + 1.
ess Then if a critical point exists, it must be the case that P(c, u,d,T) = 0. This happens either if
s T2 =0or P = P/(—4T?) = 0. Note we can simplify 72 as
AP+ 1) +2(u? —1e+1
685 Then since this is a quadratic, we get that,
2007 = 1) £ A2 —1)2 =42 + 12 —2(u® —1) £ /—16p!

‘- 2(42 1 1)2 - 2(2 1 1)2
ess  Thus, the solutions live in C and not in R. Since we want to find a root in (0, 1), we can discard this

687 factor and focus on P.

688 Looking at P, we see that
P=P + P+ Ps+ Py + P,
689 Wwhere
Py = —d®T(p2c+c— D)(p*c® +2u22 + 2pc + 2 + ¢+ 1).
Py = —dTe(pc® + 5p2c? 4+ 2p%c 4+ 4¢® — 5 + 1),
Py =d(iPc+c— D) (ple+ e+ 1) (pt 4+ 202 + 2pPc+ 2 —c+1).
Py = de(ubc® 4 2p* P + 3ptc® + 12 + 3uc + 5¢% — 6¢ + 1).
Py =23(utc+c—1).
690 Here we see that y%c + ¢ — 1 is a factor for three of the five polynomials. Hence, the hope is that a

91 multiple of ;i2c + ¢ — 1 can approximate the sum of the other two. Dividing ]52, Py by pu?c+c—1,
692 we get that

Py = —dTe(pc+ ¢ — 1) (pPc+4e — 1) — 4dTp?c?.
Py =de(pPe+c— 1)t + p2 + 4pPe — 1) — 3dp>c® + 8dp?® + 5dc® — 5dC2.
ses  Now we see that for some P
P=(yPc+c—1)P —4dTp%? — 3dp?c® + 8du?c? + 5dc® — 5dC2.
694 We further simplify this by dividing the remainder again by z?c + ¢ — 1 to get that
—4dT % c? = 3dp2c +8dp> 4 5dc® — 5dc® = dc (p?c+c—1)(5pe—8u?) +4du>* (2pc—T).
695 Thus, redefining ]5, we get that
P = (pPc+c—1)P+4dp*P(2u*c - T),
o6 with
P =—-TAd?p* —2TAd*p? — TAd? — Tdu? — ATEd — 2T ed? 1 — Ted® + Ted
—Td* + Ad?pS + 332 p* + 33d% 1% + Ad? + Sdp* + Adp® + 263
+32d%p* + 32d? p? — 4ctdp® + 5c2d + 3ed? i — ed + d*.
697 Thus, we have the needed result.
698 O
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713

714

F.5 Proof of Theorem 5

Theorem 5 (||W,,i|| 7 Peak). If 015t = /Nist, Otrn = V/Nign and  is such that p(p) < 0,
then for Ny, large enough and d = cNy,,,, we have that ||Wou||r has a local maximum in the

under-parameterized regime. Specifically for ¢ € ((u? +1)71,1).

Proof. Here we note that the expression for the norm of W, is given by Lemma 21. Differentiating
with respect to ¢, we get that the derivative is given by

; ®fotl dep®+ (207=2) (en?—ct1)
B = 2 P — S—
rn ( b \/462u2+(0u2—c+1)2) <Utm + 1) H N " +1

3
o2 (c;ﬁ—i—c— 4c2u2+(cu2—c+1)2+1)
2 ! +1

(—4cp2 — —(2“2 _2) (26“'2 _C+1) ) (cu2+c+1)

2
2 2 pno+1
co o, +1 3
trn ( trn ) \/4c2;52+(0u2—c+1)2 (402u2+(cu2—c+1)2)§
+ 2 2 2,2 2 2 2
OFrn (cp, +c—v/4c2p?+(cp?—c+1) +1)
2 5 +1
2
2 cp”+c+1 2
o -1+ ;. +1
trn ( \/462N2+(CM2C+1)2) ( trn )
) 2
o2, (cuz-i-c— 402u2+(cu2—c+1)2+1)
2 o 1
3 +
_ 1 .
Atc = = this has value
3
202, (12 +1)2 (—25647 + 25600 V/u2 +1) (03, +1)
2
At 2 ) (—2p02,, + 207, ViE F 14 2VeE 1) (O VT T 43 VAT + 1+ 302 Vi F 1+ V2 1 1)
(n2+1) (n2+1)

Then since /12 + 1 > u, we have that the derivative is positive at this point. Next, we compute the
limit of the derivative as ¢ — 1~ and see that this is given by

o2 (02, +1) (afmp(u) T 4p 156012 4 280410 4 57618 + 38468 — (4ut® + 48t + 19240 + 2567 ) /R2 + 4)
7 3 :
(4 +4p2)2 (Utzrn (M2 —uVp?+4+ 2) + 2)
Then we see that the denominator is positive. Hence the sign is determined by the numerator. Again,

we assumed p(u) < 0. Hence the leading coefficient in term of ¢2,,, is negative. Since 02,,, = Niyp,.
If Ny, is sufficiently large the derivative is negative near ¢ = 1. Thus, we have a peak. O

F.6 Proof of Theorem 7
Theorem 7 (Training Error). Let T be as in Theorem 1. The training error for ¢ < 1 is given by

EAf,rn[HXtT’n - WOPt(XtT’TL + At?“”)”%’] = 7_72 (Utzrn (1 —C- Tl) + O—zlrnTQ) + 0(1)7

2
(pPet+c—1—/(1—c+p2e)2 +4c2p2)?(pPc+c+ 1 — /(1 — e+ p2c)? + 4c2p?)
2¢/(1 — ¢+ p2c)? + 4c2 2

2 1 2 1 14 2c— /0= 2002 & 4c2,2
whereleu— tetpc —1|+-+ tte— -t pte?+ CM,
V(1= c+ p2e)? + 4pc? 2 2c

andTy =
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715 Proof. Note that we have:

Xrn - Wo Y'r‘n 2 1
EAtrn ” t Pt ”F = ]EAtrn U|Xtrn_WOPt(Xtrn+Atrn))||%]
Ntrn Ntrn
1 1
= —E[|Xern — WoprXern |2 + ——E[||Wopt Agrnl|?
N (1 Xtrn = Wopt Xern 7] + N U Wopt Atrn "]
+ N E [Tr((Xtrn - Wothtrn)TWoptAtrn)] .
trn

716 First, by Lemma 2, we have Xy, — Wop Xipn, = %Xtm. Then, E[|| X¢rn — Woththz] =
77 Z—EE[HXWLHQ] = % Then, let us look at the E 4, |

WoptAt’r‘n ||%] term.

Ea,,. [[Wopt Atrnl| 7] = E[Tr(Af,, We,

trn "’ opt

WoptAtrn )]

i iALTuTuiLAtrn)}

0'27‘”"3/2
= 2 L E[Tr(A],

U?m’AYHﬂP T 3T, T, T it
+ 72 E[T‘r(Atrnh u’ uk AtrnAtTTb)]
Bl
7’:2
v l1E]]*

722

0-27%;}/2 7 7
= L R[Tr(hAyn AL, h "))

t
7 ™

+ E(Tr(A7, (A],,) ku"uhAyy))

+ E[Tr(Az;n(AITH)TI%U’TU’];-TAITTLAWN)]

trn AtTﬂA;&J;‘n iLT)]

3 A £2 SO
+ o'trn;H || E[TI‘(]CTAT

ot A

O’?T'TLH£||4 ATAT A AT AT T3,

+ 72 E[Tr(k trn<itrn trn( trn) k)]

O—Zrn:yz ~ 1 A -

= t7A_2 E[Tr(vtj;nAIrnAt?”nAz;n(Azrn)Tth;n)]

3 2 £2 R R ~

+ WE[TI‘(HT(Azrrn)TAIrnAtrnAg;n (Airn)Tﬁg;‘n)]
T L I

+ %J‘”E[Tr(vg‘nAzrnAtrnAz;n (Azrn)TAIrnu)]
el TAT YTAY A, AT (AT VT AT

+ 72 ]E[TI‘(U ( trn) trn<itrn trn( trn) trnu)]
2 22

&

g I * T( At T 4t T (it \T it

+ E[’I‘r(u (Atrn) AtrnAtTnAtrn(Atrn) Atrnu)]'

712
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723

724
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727

Then, we look at the Tr((Xyrn — Wopt Xern)? Wopt Agrn) term. By Lemma 2, we have X, —
WothtTn = %Xtrn- Then,

SN

S 2
rI\r(XtZ;n optAtrn) — /7 TI' (Xg;n (Ut;nlyuh + trnTH || kTAIrn) At'r‘n)

_ Ut”” T (X7

trn

uhAtm)

o t]|?
+ tvn’:;” H Tr (X3;7LUkTAIrnAtrn>

Tr (Jtrnvtrnu (AA]L

trn

)TAIrnAtrn>

o7’
__ Ytrn
- 72 Tr ('UtrnAtrnAtrnvtrn)

O Y|t .
+ trn;;ll H ( (Azrn)TAIrnAtrnvtrn)

2 22
OtrnY
trn
= Tr (vththtmvtm) .

In conclusion, we have the training error:

| Xtrn — Woz)thrnH%“ '?20152 Ut o AT NTAT
E = L ™ Al A rnA A
Atrn Ny NtrnT + NtrnT [ (vtrn trn<it trn( trn) Ut’r‘n)]
prnll])*
+ . E[ ( (Azrn)TAIrnAtT"Ag"n (Azrn)TAIrn )]

«Z\ftrnf—2

+ 2_]\[””7 E [TI“ (UtrnAtrnAtrnvtTn)} ’

2
trnT

Now we estimate the above terms using random matrix theory. Here we focus on the ¢ < 1 case. For
¢ < 1, we note that

Al Ay AT (Al )T = ps-ienTs-197,
Thus, forc < 1
d A)t
UtrnAtrnAtanz;n( trn vfm, Z —+'u)
where a = v V;.4. Taking the expectation, and using Lemma 9 we get that

A T
EAtrn {UtvnAtrnAtT"Afrn(AIrn) vtrn] =

1 14 ple— /(1 —c+ pu2c)? +4c2u 14 c+ p2e 1
c 7_1_ /’L \/( /’[/ ) ,LL +M2 /’[’ = +0(1)
2 2c 2y/(1 —c+cp?)? +4c2u® 2

Using Lemma 11, we see that the variance is o(1). Similarly, we have that

(AL, )" AL, Apn AL (Al )T AL, =US2uxT5 207,

trn

Thus, again, using a similar argument, we see that

T AT 1+ c+ pc 1

A TnAj;‘n AT 'rn :| = +
t trn ( trntt) 2\/(1 —c+cp?)? 4 4c2p? 2

trn

Ea, . |Tr(u” (Al

trn)T‘q]L

trn

and again using Lemma 11, the variance is o(1). Finally,

Al Ay = VETIDVL

trn
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Thus,
2

~ 2 oiA)
. 2
(UtrnAtTnAtTnvtT" - Z a; o (A)2 + /1‘2 :

Thus, using Lemma 9, we get that

1 1+ p2c— /(1 —c+ p2c)? + 4c2u?
EAt'r'n [H(UtrnAtrnAtT’ﬂvtrn} =5+ a \/( K ) a + 0(1)
2 2c
and using Lemma 11, the variance is o(1). Then similar to the proof of Theorem 1, we can simplify
the above expression to get the final result. O

F.7 Proof of Proposition 1

Proposition 1 (Optimal 7y,.,,). The optimal value of o2, for c < 1 is given by

o2 oigd[2c(p? + 1) = 2T (cp® + ¢+ 1) + 2(cp® — 2¢ + 1)] + Nese (U2 + 2 +1-1T)
brn Nist(3(p2 +1)2 —=T(pu2c2 +c2 —1) —2c2 — 1) ’

Proof. Leto := 7., and

P2 (2 L Gl + o230 )
Ntst d

Notice that only 7 is a function of o, ||2]|2, ||£[|2, and ||k||2 are all functions of z. Then

OF .1, A 307 (ojq L1y ?
5 =7 27(||hH§+2aHtH3P)fQT 38 <th’1 (a|h||§+02||tll‘2‘p)>

_ o2, 1 “ N
= (Ith2+20HtHzp)—2T 1213 |k||2< itt d(0||h|§+02llt||3p))

_ 251A .
— ( (113 +201l30) — 2 IEIBIEIS (524 + olhlE + 071l )

The optimal o* satisfies g—f |o=o+ = 0. Thus, we can solve the equation

“2-0 or

_ o2, 1 ~ -
(1213 + 2011El130) — 27 (1213 |k||2< itt d(0||h§+02t||§p))-

IS

~ ~ 0_2
Let o := ||#|3||k|3, 6 :== dxt. Then
1
11131171

Notice that o < 0 implies o4y, is an imaginary number, something we don’t want. Thus, we look at
the other expression.

2=0 = 0=—

- o7 1 - R
(1513 + 20El130) — 27 1|t||2k||2< A d(0||h§+02|t||§,0)>

&\H &\H

o 1 AR
(1l + 201l30) — 2" (5 + Lol + o20il30) ) o = 3113
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Figure 19: Figure showing the value of p(u)

Then multiplying through by d and
0= (1+ao)([[hl3 + 20lEl2p) — 2a(5 + o |[All3 + o*||E]|2p) [T =1+ ao]
= (1213 + 2[[El3p0 + allh]l30 + 2alltl|3p0” — 206 — 2ahl|30 — 2af]3p0°
= ||l + 2|ltl|2p0 + allh|30 — 20 — 2a|/h|[30.
Then solving for o, we get that

200 — [|hl*_ 2d||ElI3]Ik]307s — 2] Nese

20t*p — allpl? Nese(@IIEI30 — IEIZIEIZ1A113)

Then we use the random matrix theory lemmas to estimate this quantity. O

G Experiments

All experiments were conducted using Pytorch and run on Google Colab using an A100 GPU. For

each empirical data point, we did at least 100 trials. The maximum number of trials for any experiment
was 20000 trials.

For each configuration of the parameters, Ny, N¢st, d, O¢rn, 0tst, and p. For each trial, we sampled
U, Vgrn, Vtst Uniformly at random from the appropriate dimensional sphere. We also sampled new
training and test noise for each trial.

For the data scaling regime, we kept d = 1000 and for the parameter scaling regime, we kept
Ny, = 1000. For all experiments, Ny = 1000.

H Technical Assumption on x
Notice that we had this assumption that p(u) < 0. We compute p(u) for a million equally spaced

points in (0, 100] and see that p(x) < 0. Here we use Mpmath with a precision of 1000. The result is
shown in Figure 19. Hence we see that the assumption is satisfied for . € (0, 100].
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