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ABSTRACT

We study the recovery of training data from overparameterized autoencoder models.
Given a degraded training sample, we define the recovery of the original sample as
an inverse problem and formulate it as an optimization task. In our inverse problem,
we use the trained autoencoder to implicitly define a regularizer for the particular
training dataset that we aim to retrieve from. We develop the intricate optimization
task into a practical method that iteratively applies the trained autoencoder and
relatively simple computations that estimate and address the unknown degradation
operator. We evaluate our method for blind inpainting where the goal is to recover
training images from degradation of many missing pixels in an unknown pattern.
We examine various deep autoencoder architectures, such as fully connected and U-
Net (with various nonlinearities and at diverse train loss values), and show that our
method significantly outperforms previous methods for training data recovery from
autoencoders. Importantly, our method greatly improves the recovery performance
also in settings that were previously considered highly challenging, and even
impractical, for such retrieval.

1 INTRODUCTION

Deep neural networks (DNNs) are usually overparameterized models with many trainable parameters
that can lead to memorization of their training samples. This modern overparameterized regime
differs from the classical regime where overfitting is avoided (by small models, strong regularization,
etc.) and the general data pattern is learned without significant memorization. Consequently, training
data memorization raises potential privacy issues, including the extraction of private training data
from the trained DNN.

Recent research works showcased the ability to extract training data from generative DNNs. Carlini
et al. (2021) showed that generative language models like GPT-2 can unintentionally memorize and,
later, accurately generate sentences from their training data without being explicitly programmed to
do so. This indicates that private text data used to train large language models could be extracted or
reconstructed by analyzing the trained model. For images, Carlini et al. (2023) showed that generative
diffusion models can memorize individual images from their training data and emit them at generation
time.

Another line of works (Radhakrishnan et al., 2018a;b; 2020; Jiang & Pehlevan, 2020; Nouri &
Seyyedsalehi, 2023) utilizes the associative memory of overparameterized autoencoder DNNs to
recover their training data from degraded forms. The autoencoder architecture typically consists of an
encoder that maps the input to a latent space representation of a lower dimension, and a decoder that
reconstructs the input from the latent representation back to the input space. The training loss often
seeks to minimize the mean squared error (MSE) between the training inputs and their reconstructed
outputs. This architecture and training procedure can lead to associative memorization of training
data as attractors, i.e., fixed points (of the autoencoder function) that inputs from their surrounding
region can converge to by iterative application of the autoencoder. Accordingly, Radhakrishnan et al.
(2018a;b; 2020); Jiang & Pehlevan (2020); Nouri & Seyyedsalehi (2023) showed that a training
sample can be recovered from its degarded version by a simple iterative application of the trained
autoencoder. This approach to training data recovery was proved useful only under restrictive
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Figure 1: Iterative reconstruction of degraded training images using our proposed approach

conditions such as very specific activation functions, sufficiently small training dataset size, and
sufficiently low train loss.

In this work, we provide a new perspective on the recovery of training data from overparameterized
autoencoders. We define an inverse problem that aims to recover a training sample from its degraded
version, while not knowing the degradation operator. This inverse problem is formulated as an
optimization with a regularizer that implicitly depends on the overfitting of training data in the
trained autoencoder. To practically solve this optimization problem, we employ the alternating
direction method of multipliers (ADMM) (Boyd et al., 2011) and extend the plug-and-play priors
(Venkatakrishnan et al., 2013) to our task. Whereas the plug-and-play priors concept is usually used
for solving imaging inverse problems based on iterative application of a black-box image denoiser
(Venkatakrishnan et al., 2013; Sreehari et al., 2016; Dar et al., 2016; Rond et al., 2016), we use it to
solve our training data recovery problem based on the black-box application of the given autoencoder
(which is not necessarily trained to be a denoiser). Consequently, we get an iterative algorithm that
not only iteratively applies the trained autoencoder (as in previous works), but also estimates the
degradation operator and attempts to invert it.

Our new approach to recovery of autoencoders’ training data significantly outperforms previous
methods. The recovery rate, i.e., the percentage of the training dataset that can be accurately recovered,
is significantly increased by using our method. Moreover, our method is able to recover training data
in settings where previous methods performed very weakly and even completely failed to recover
training data at all.

While our method succeeds to recover training data from autoencoders at higher training loss values,
our results also demonstrate the reduction in the recovery ability as the autoencoder is trained to a
higher train loss and less overfits its dataset. This, as well as our other results, are useful to understand
the privacy risk of training data recovery in autoencoders.

2 RECOVERY OF TRAINING DATA AS AN INVERSE PROBLEM

2.1 OVERPARAMETERIZED AUTOENCODERS: A DEFINITION

Let us start with a general definition of an autoencoder.
Definition 1. An autoencoder, f : Rd → Rd can be formulated as

f(x) = fdec(fenc(x)) for x ∈ Rd (1)

where fenc : Rd → Rm is an encoder from the d-dimensional input space to an m-dimensional latent
space, and fdec : Rm → Rd is a decoder from the latent space back to the input space.

We consider an autoencoder f to be overparameterized if it has the ability to perfectly fit its n training
samples x1, . . . ,xn ∈ Rd. Namely, the perfect fitting condition implies that each of the training
samples is a fixed point of the trained autoencoder

f(xi) = xi, i = 1, . . . , n. (2)
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In practice, the perfect fitting condition (2) can be approximate due to numerical precision or early
stopping of the training. Moreover, perfect fitting usually requires a latent space dimension (denoted
as m in Definition 1) larger than the number of training samples; this condition appeared, for
example, in (Radhakrishnan et al., 2020) for autoencoder neural networks, and in (Dar et al., 2020)
for PCA-based linear autoencoders.

2.2 THE RECOVERY PROBLEM

We are given an overparameterized autoencoder f that was trained to perfectly (or approximately) fit
its training data. We also get a degraded version of the autoencoder’s jth training sample

yj = Hxj + ϵ (3)

where H ∈ Rd×d is a deterministic degradation operator that may, e.g., erase components by zeroing
the respective entries of a d-dimensional vector; and ϵ ∼ N (0, σ2

ϵ Id) is a d-dimensional Gaussian
noise vector.

The recovery task aims to estimate the original training sample xj given its degraded version yj and
the trained autoencoder f . The recovery performance is evaluated in terms of the mean squared error
(MSE)

Erec (x̂j ,xj) =
1

d
∥x̂j − xj∥22 (4)

where x̂j is the estimate of xj . Note that we consider here the recovery of a single training sample by
using only its degraded version and the trained autoencoder. Importantly, the specific degradation
operator H is unknown for the recovery task, although the general type of H is assumed to be known
(e.g., it is known that H is a pixel erasure operator but without knowing how many and which pixels
were erased and what are their new values).

2.3 THE INVERSE PROBLEM PERSPECTIVE TO TRAINING DATA RECOVERY

The recovery problem in Section 2.2 can be considered as an inverse problem whose optimization
form is

{x̂, Ĥ} = argmin
x∈Rd,H̃∈Rd×d

∥∥∥H̃x− y
∥∥∥2
2
+ λ1s(x) + λ2ϕ(H̃) (5)

where s : Rd → R≥0 is a regularizer that returns a smaller value for a more probable estimate x̂ (to
ease notations, the training sample indexing j is removed from x̂j and yj). Also, ϕ : Rd×d → R≥0

is a regularizer that returns a smaller value for a more probable estimate for H. The regularization
parameters λ1 > 0 and λ2 > 0 determine the regularization strength of s and ϕ, respectively.

In usual inverse problems, the regularizer s is set according to the type of the recovered data, e.g.,
natural images (Rudin et al., 1992). However, in our current problem of training data recovery, we
can be more specific in the definition of the regularizer s and use the knowledge that the data of
interest was a training sample in the learning of the given autoencoder f .

Let us choose s to be the regularizer that is implicitly induced by the trained autoencoder f . Specif-
ically, the trained autoencoder f is based on learning from its training samples. Furthermore, we
assume that f is overparameterized and its training allows it to overfit, and possibly to (numerically)
perfectly fit, its training samples. Accordingly, there is a potential ability to use the trained autoen-
coder f to understand if a given data sample was in its training dataset (for example, as explicitly
done in membership inference of training data (Shokri et al., 2017; Carlini et al., 2022; Hu et al.,
2022), although not necessarily for autoencoders). We rely on this potential ability to implicitly define
sf : Rd → R≥0 as a function that returns a lower value for an input that is more likely to be from the
training dataset of the autoencoder f .

The regularizer ϕ for the estimate of H is defined based on the general assumptions on the degradation
that was applied on the given training sample. In this paper, we focus on degraded training samples
with many missing pixels. Namely, H is a pixel erasure operator, but the number and pattern (mask)
of missing pixels is unknown in the recovery process. The accurate description of ϕ for our setting
will be given later in this paper.
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At this point, we are motivated to address the training data recovery task as the inverse problem in (5)
with the regularizer sf that is induced by the trained autoencoder f and a suitable ϕ for pixel erasure.
Clearly, the optimization in (5) cannot be directly addressed due to having two intricate regularizers
in its optimization cost and, more crucially, due to the implicit definition of the regularizer sf based
on f . Remarkably, in the next section we develop a practical approach to solve this intricate inverse
problem.

3 A PRACTICAL ALGORITHM FOR TRAINING DATA RECOVERY

Now we turn to develop a practical approach to address (5) with the regularizers sf and ϕ. For a start,
we decouple the joint optimization of x and H̃ via alternating minimization that yields an iterative
procedure whose tth iteration includes the optimizations

x̂(t) = argmin
x∈Rd

∥∥∥Ĥ(t−1)x− y
∥∥∥2
2
+ λ1sf (x) (6)

Ĥ(t) = argmin
H̃∈Rd×d

∥∥∥H̃x̂(t) − y
∥∥∥2
2
+ λ2ϕ(H̃). (7)

Here, x̂(t) and Ĥ(t) are the estimates in the tth iteration (for t = 1, 2, . . . ). The procedure needs to
be initialized with some Ĥ(0) ∈ Rd×d and to have a stopping criterion (see Appendix D.1).

Next, we explain how to address the optimizations (6) and (7) in Sections 3.1 and 3.2, respectively.

3.1 ESTIMATION OF A TRAINING SAMPLE x FOR A GIVEN DEGRADATION OPERATOR
ESTIMATE

Let us address the optimization in (6) where a training sample is estimated using the implicit
regularizer sf of a given trained autoencoder f , and for a degradation operator estimate Ĥ(t−1). In
this section we will develop a practical algorithm for this task using the alternating direction method
of multipliers (ADMM) technique (Boyd et al., 2011; Afonso et al., 2010) and by extending the
principle of plug and play priors (Venkatakrishnan et al., 2013; Sreehari et al., 2016) to autoencoders.

In this subsection we develop an iterative procedure to address (6). To avoid mixing the iteration
indexing t of the alternating minimization (6)-(7) with the to-be-defined iteration indexing k of the
ADMM procedure of (6), we use the following notations

Θ ≜ Ĥ(t−1), ξ̂ ≜ x̂(t). (8)

3.1.1 THE ADMM FORM OF THE RECOVERY OPTIMIZATION

First, we will apply variable splitting on (6), and also use the notations in (8), to get

{ξ̂, v̂} =argmin
x,v∈Rd

∥Θx− y∥22 + λ1sf (v) (9)

subject to x = v

where v ∈ Rd is an auxiliary vector due to the split. Next, we develop (9) using an augmented
Lagrangian and its corresponding iterative solution (of its scaled version) via the method of multipliers
(Boyd et al., 2011, Ch. 2), whose kth iteration is

{ξ̂
(k)

, v̂(k)} = argmin
x,v∈Rd

∥Θx− y∥22 + λ1sf (v) +
γ

2

∥∥∥x− v + u(k)
∥∥∥2
2

(10)

u(k+1) = u(k) + (ξ̂
(k)
− v̂(k)) (11)

where u(k) ∈ Rd is the scaled dual-variable and γ > 0 is an auxiliary parameter that are introduced
in the Lagrangian.
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Then, applying one step of alternating minimization on (10) provides the iterative solution in the
ADMM form (Boyd et al., 2011) whose kth iteration is

ξ̂
(k)

= argmin
x∈Rd

∥Θx− y∥22 +
γ

2

∥∥∥x− ṽ(k)
∥∥∥2
2

(12)

v̂(k) = argmin
v∈Rd

λ1sf (v) +
γ

2

∥∥∥∥v − ξ̃
(k)

∥∥∥∥2
2

(13)

u(k+1) = u(k) + (ξ̂
(k)
− v̂(k)) (14)

where ṽ(k) ≜ v̂(k−1) − u(k) and ξ̃
(k)

≜ ξ̂
(k)

+ u(k).

At this point, the main question is how to practically address the optimization in (13) that includes
the implicitly-defined regularizer sf .

3.1.2 ADDRESSING THE OPTIMIZATION IN (13) AND ITS IMPLICIT REGULARIZER sf

To explain how to practically address (13), we will start by understanding this optimization task
under a few assumptions that will be later relaxed. For a proper, closed, and convex function
sf : Rd → R ∪ {∞}, the optimization in (13) is a Moreau proximity operator (Moreau, 1965;
Hertrich et al., 2021; Sreehari et al., 2016). We will now turn to prove that there is a class of
autoencoder architectures that correspond to Moreau proximity operators, and therefore correspond
to the optimization in (13). Then, this association of (13) with some autoencoders will support our
suggestion to replace (13) with a black-box application of any autoencoder (whose training data is
asked to be recovered), regardless to whether it accurately corresponds to the optimization in (13).

A similar design philosophy is used in the plug-and-play priors approach (Venkatakrishnan et al.,
2013; Sreehari et al., 2016) and its many applications (e.g., Dar et al., 2016; Rond et al., 2016;
Brifman et al., 2016; Chan et al., 2017; Kamilov et al., 2017)) where a black-box image denoiser
is applied within the ADMM iterations instead of solving an optimization that corresponds to a
proximity operator for a regularization function that is implicitly defined by the denoiser.

For our current analysis of autoencoders, we start with a mathematical definition.
Definition 2. A 2-layer tied autoencoder is defined for a weight matrix W ∈ Rm×d and compo-
nentwise activation function ρ : Rm → Rm as follows. The encoder is fenc(x) = ρ(Wx) for
x ∈ Rd, and the decoder is fdec(z) = WT z for z ∈ Rm. Accordingly, the entire autoencoder can
be explicitly formulated as

f(x) = WT ρ(Wx). (15)

Definition 2 implies that a 2-layer tied autoencoder has a decoder weight matrix that is constrained to
be the transpose of the encoder weight matrix. The next theorem is proved in Appendix A.
Theorem 1. Any 2-layer tied autoencoder with

• a differentiable and componentwise activation function ρ whose componentwise derivatives
are in [0, 1]

• a weight matrix W whose singular values are in [0, 1]

is a Moreau proximity operator.
Corollary 1.1. If f is a 2-layer tied autoencoder that satisfies the conditions of Theorem 1, there
exists sf such that the optimization (13) corresponds to the application of f .

Now, after we showed that some autoencoders correspond to optimization (13), we return to the
practical setting where the given autoencoder f can have various architectures. Similar to the plug-and-
play priors approach (Venkatakrishnan et al., 2013; Sreehari et al., 2016) and its many applications
(e.g., Dar et al., 2016; Rond et al., 2016; Brifman et al., 2016; Chan et al., 2017; Kamilov et al.,
2017)), we suggest to replace the optimization in (13) by the application of the trained autoencoder

on ξ̃
(k)

, namely,

v̂(k) = f

(
ξ̃
(k)

)
. (16)
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Although (16) does not necessarily accurately correspond to (13) for any autoencoder f , our experi-
ments in Section 4 support this approach by showing the great empirical performance.

3.1.3 ADDRESSING THE PIXEL ERASURE DEGRADATION IN (12)

Let us examine the solution of optimization (12) in the ADMM procedure. This optimization does not
involve the autoencoder f nor its sf , but it involves the (estimate of the) degradation operator. The
degradation operator is represented by a d× d diagonal matrix Θ ≜ Ĥ(t−1) whose main diagonal
values are either 0 or 1, indicating the positions of missing or available pixels, respectively. When
Θ is multiplied with x, the resulting vector Θx has its ith component either erased (set to 0) or
unchanged based on the value of Θi,i. This structure of Θ allows us to get the following simple,
closed-form solution to the optimization in (12):

ξ̂
(k)
i =

{
yi+

γ
2 ṽ

(k)
i

1+ γ
2

if Θi,i = 1

ṽ
(k)
i if Θi,i = 0

(17)

where ξ̂
(k)
i , yi, ṽ

(k)
i are the ith components of the vectors ξ̂

(k)
, y, ṽ(k), respectively. More details on

the development of (17) are provided in Appendix B.

The ADMM-based solution to (6), as developed in Section 3.1, is summarized in Algorithm 1.

Algorithm 1 ADMM-based Solution to Optimization (6) for a Given Degradation Operator Estimate

1: Inputs: trained autoencoder f , degraded training sample y, degradation operator estimate Θ, γ.
Recall the notations of (8).

2: Initialize k = 0, v̂(0) = 0,u(1) = 0.
3: repeat
4: k ← k + 1
5: ṽ(k) ≜ v̂(k−1) − u(k)

6: ξ̂
(k)

= argminx∈Rd ∥Θx− y∥22 +
γ
2

∥∥x− ṽ(k)
∥∥2
2

(see the closed form solution in (17))

7: ξ̃
(k)

≜ ξ̂
(k)

+ u(k)

8: v̂(k) = f(ξ̃
(k)

)

9: u(k+1) = u(k) +
(
ξ̂
(k)
− v̂(k)

)
10: until stopping criterion is satisfied

11: Output: The training sample estimate ξ̂
(k)

from the last iteration, this should be used as the
solution x̂(t) to the optimization in (6).

3.2 ESTIMATION OF A DEGRADATION OPERATOR FOR A GIVEN TRAINING SAMPLE ESTIMATE

Recall that our recovery problem has the alternating minimization form of (6)-(7). In Section 3.1
we showed how to address (6) via ADMM, which by itself is an iterative procedure (see Algorithm
1). Now we turn to address the second optimization in the alternating minimization, namely, the
estimation of the degradation operator in (7).

In this paper, we consider degradations that erase many pixels from the original images used for
training the autoencoder f . Therefore, the degradation operator H is a d× d diagonal matrix whose
main diagonal includes zeros and ones only. We assume that this general structure is known and can
be used in the recovery procedure, although without knowing the number and pattern of missing
pixels.

According to the assumption on the pixel erasure degradation, we define the regularizer ϕ as the
indicator function

ϕ(H̃) =

{
0 if H̃ is a diagonal matrix with H̃i,i ∈ {0, 1} for i = 1, . . . , d

∞ otherwise.
(18)
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Figure 2: The estimation of Ĥ along the iterations. Ĥ(t) is the estimate of H at the tth iteration of
the proposed recovery algorithm via alternating minimization (6)-(7). Here, the diagonal matrix Ĥ(t)

is shown as an image.

This indicator function of ϕ forces the estimate Ĥ(t) in (7) to be a diagonal matrix with zeros and
ones on its main diagonal. Note that this indicator function implies that the specific positive value of
λ2 does not matter.

Using the definition of ϕ in (18), we can write the optimization (7) as Ĥ(t) = diag{Ĥ(t)
1,1, . . . , Ĥ

(t)
d,d}

where

{Ĥ(t)
i,i }

d
i=1 = argmin

{H̃i,i}d
i=1∈{0,1}

∑
i: H̃i,i=1

(x̂
(t)
i − yi)

2 +
∑

i: H̃i,i=0

y2i . (19)

Here x̂
(t)
i and yi are the ith components (i ∈ {1, . . . , d}) of the vectors x̂(t) and y, respectively, and

H̃i,i is the ith component on the main diagonal of H̃. Then, under the assumption that yi ∈ [0, 1] for
any i, the minimization in (19) can be solved by the diagonal matrix Ĥ(t) whose ith component on
the main diagonal is

Ĥ
(t)
i,i =

{
0 if x̂(t)

i > 2yi or x̂(t)
i < 0

1 otherwise.
(20)

The recovery procedure requires the initialization of H̃(0). For U-Net autoencoders, we set H̃(0) = 0;
otherwise, we set H̃(0) = Hrand where Hrand is a diagonal matrix with main diagonal components
that are 0 or 1, each of these values independently drawn with 50% chance. We determined the
mask initialization form by training models on a validation set and evaluating the validation recovery
performance.

At this point, we conclude the development of the iterative recovery algorithm via alternating
minimization in (6)-(7): The optimization (6) is solved by (20), and optimization (7) is addressed via
ADMM as in Algorithm 1. The stopping criteria for the iterations in our method are described in
Appendix D.1.

4 EXPERIMENTAL RESULTS

In our first set of experiments, we examined two main autoencoder architectures: (i) a 10-layer fully
connected (FC) network, which was examined for LReLU and PReLU activations; and (ii) a U-Net
model (Ronneberger et al. (2015)) that was examined for LReLU, PReLU, and SoftPlus activations.
The FC model was trained on a random balanced subset of 600 images across all classes from Tiny
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ImageNet. The U-Net was trained on 50 random samples from the SVHN dataset. We trained the
models up to perfectly fitting the data at an MSE train loss of 10−8. We also saved model checkpoints
during training at higher train losses to evaluate the recovery ability at lower overfitting levels. For
more details on the model architecture and recovery method implementation, see Appendices C and
D, respectively.

We examine the recovery performance for the trained models based on the following three metrics. (i)
Accurate-recovery rate: the percentage of training samples for which the MSE between the original
and reconstructed images is less than 10−7 (i.e., the PSNR1 is higher than 70dB). (ii) Approximate-
recovery rate: the percentage of training samples for which the reconstruction MSE is less than
5 · 10−4 (i.e., PSNR>33.01dB). (iii) Average PSNR of all the reconstructions of the training data.

We evaluated our proposed method, without the knowledge of the true missing pixel mask H, and
compared it to three alternatives: (a) Our proposed method but with knowing the true missing pixel
mask H, see details in Appendix E. (b) The simple iterative application of the trained autoencoder
(AE) only, as was analyzed and shown by Radhakrishnan et al. (2020) to have good recovery
performance in very specific settings. (c) A generic image inpainting method that utilizes the true
mask of missing pixels. For this we use the Denoising Diffusion Null-space Method (DDNM) of
Wang et al. (2023), which is a relatively recent technique with good inpainting performance also for
ImageNet images. Note that alternatives (a) and (c) have the advantage of knowing the true pixel
mask, which is unavailable for our proposed method and alternative (b).

Our method outperformed the three alternatives in recovery rate for both the accurate and approximate
definitions. For accurate recovery, Figure 3 shows that our method outperformed the alternatives, e.g.,
for U-Net autoencoder at train loss of 10−8 and missing pixel mask 6, our proposed method (with
unknown H) achieves 78% recovery, versus 4% for the simple iterative autoencoding and 0% for
DDNM generic inpainting. Interestingly, sometimes our method succeeds to recover from models
at higher train loss values (lower overfitting) where competing methods (b)-(c) have 0% recovery
rate (e.g., see results for masks 1,2,3 at train loss 10−7 in Figure 3). Yet, the results clearly show
that a sufficiently high train loss (i.e., a sufficiently low or no overfitting) can prevent the recovery
from all the examined methods. More evaluations are provided in Appendix F (specifically, the
approximate-recovery rate and average PSNR evaluations appear in Figures F.1 and F.2). Unless
otherwise specified, we consider pixel erasure without additive noise (i.e., σϵ = 0 in the degradation
model (3)). Results for degradation with noise are provided in Appendix G.

To validate that our method’s effectiveness stems from the autoencoder’s induced regularization,
we created Tiny ImageNet and SVHN test sets with 600 and 50 images respectively, matching the
training set sizes. The most overfitted models (MSE of 10−8) were examined. We applied our method
on to recovery test data from pixel erasure according to the same masks as in Figure F.1. For the
test data, our method had 0% accurate recovery rate across all architectures and masks, and 0%
approximate recovery rate for all except Mask 3 with the FC model which had 2/600 recovered
images. These results demonstrate that our method is indeed for recovery of the specific training
samples of a given autoencoder, and not just to generically recover the missing pixels from images
that were not used in the training.

To evaluate our method in the regime of moderate overfitting, we trained autoencoders on larger
datasets and up to MSE training loss of 10−4 (which is higher than the perfect fitting loss of 10−8 in
our previous experiment). The two examined architectures in this experiment are: (i) A 20-layer FC
autoencoder with Leaky ReLU activations, trained on a subset of 25,000 images from Tiny ImageNet.
(ii) A U-Net autoencoder with Softplus activations, trained on 1000 CIFAR-10 images. Tables 1-2
shows that our method achieved higher approximate-recovery performance compared to the simple
iterative autoencoder application. This further establishes the significant improved recovery that our
method achieves.

5 CONCLUSION

In this work, we have established a new perspective on the recovery of training data from overparame-
terized autoencoders. We defined an inverse problem with a regularizer that is implicitly defined based
on the trained autoencoder. We addressed this problem using the ADMM optimization technique

1In our case where the original image pixel values are in [0, 1]: PSNR = 10 log10
(

1
MSE

)
8



Under review as a conference paper at ICLR 2024

Figure 3: Accurate recovery rates for recovery from degradation due to various missing pixel
masks. The results are obtained from three different architectures (each at various train loss values):
Masks 1 and 2 were examined for a 10-layer FC autoencoder with LReLU activations; Mask 3 was
examined for a 10-layer FC autoencoder with PReLU activations; Masks 4, 5, 6 were examined for
the U-Net architecture with LReLU, softplus, and PReLU activations, respectively. The evaluated
recovery methods are the proposed method for unknown mask (orange curves), the proposed method
for a known mask (blue curves), the simple iterations of the autoencoder only (green curves), and
the generic inpainting method DDNM that got 0% accurate-recovery rate for all these settings and
therefore is not graphically shown.

Missing pixel mask
AE iterations only 7.64% 0.78% 1.92%
Proposed method
(unknown H) 54.2% 45.2% 56.9%

Proposed method
(known H) 80.6% 75.9% 84.2%

Table 1: Approx.-recovery rates for 20-layer
FC (25k Tiny-ImageNet training samples)

Missing pixel mask
AE iterations only 0.6% 10.2% 1.2%
Proposed method
(unknown H) 50.3% 75.9% 22.9%

Proposed method
(known H) 59.3% 86.2% 28.8%

Table 2: Approx.-recovery rates for U-Net
(1000 CIFAR-10 training samples)

and an extension of the plug and play priors idea, and developed a practical iterative method for the
recovery of training data based on applications of the trained autoencoder.

Our new approach significantly improves the training data recovery performance, compared to
previous methods. We showed for a variety of settings that our method is able to recover up to tens of
percents more of the training dataset, and to operate well also on models with moderate overfitting
(unlike previous methods that require a stricter overfitting, or perfect fitting). Specifically, our results
show that various settings do not maintain the privacy of their training data as can be understood
from the results of previous methods. More generally, we believe that our work provides useful study
cases and insights that can pave the way for a better understanding of memorization phenomena and
how to design autoencoders that keep the privacy of their training data.
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A PROOF OF THEOREM 1

In this Appendix, we prove Theorem 1.
Lemma A.1. Given a 2-layer tied autoencoder, f , which can be formulated as

f(x) = WT ρ(Wx)

for x ∈ Rd, where W ∈ Rm×d, ρ : Rm → Rm. Specifically, the activation function has a (separable)
componentwise form

ρ(z) = [ρ̄(z1), . . . , ρ̄(zm)]T for z ∈ Rm (21)
whose jth component is denoted as zj , and for a scalar activation function ρ̄ : R→ R. We denote
z ≜ Wx.

Then, the Jacobian matrix of f is

df(x)

dx
= WTdiag

(
dρ̄(z1)

dz1
,
dρ̄(z2)

dz2
, . . . ,

dρ̄(zm)

dzm

)
W. (22)

where diag(·) represents a diagonal matrix with the given components along the main diagonal.

Proof. Let us define auxiliary variables. In addition to z ≜ Wx, we also define a ≜ ρ(z) and
ξ ≜ f(x) = WTa.

Then, by the chain rule, we get

df(x)

dx
=

dξ

da
· da
dz
· dz
dx

= WT · da
dz
·W (23)

Next, by definition, da
dz = dρ(z)

dz , and since ρ(z) is a vector of componentwise activation functions
(see (21)), this Jacobian is a m×m diagonal matrix in the form of

dρ(z)

dz
= diag

(
dρ̄(z1)

dz1
,
dρ̄(z2)

dz2
, . . . ,

dρ̄(zm)

dzm

)
(24)

Substituting (24) back into (23) gives the Jacobian formula of (22).

Corollary A.1. Let ρ̄ : R → R be a scalar activation function that is differentiable and has
derivatives in [0, 1], namely, dρ̄(z)

dz ∈ [0, 1] for any z ∈ R. Then, for such activation function, a
2-layer tied autoencoder has a Jacobian in the form of WTDW, where D is a diagonal matrix
whose values are in [0, 1].
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Lemma A.2. Let W ∈ Rc2×c1 and D is a c2 × c2 diagonal matrix with values in [0, 1]. Then,
WTDW is a symmetric positive semi-definite matrix.

Proof. First, we show that the matrix is symmetric:

(WTDW)T = WTDTW = WTDW,

where DT = D due to the symmetry of a diagonal matrix.

Now, we prove that the matrix WTDW is positive semi-definite. Namely, we need to show that for
any r ∈ Rc1 , rTWTDWr ≥ 0. Define r̃ ≜ Wr, then we need to show that r̃TDr̃ ≥ 0. This holds
because, by denoting r̃i as the ith component of r̃ and Di,i as the ith main diagonal component of D,
we get r̃TDr̃ =

∑c1
i=1 Di,ir̃

2
i ≥ 0 because Di,i ∈ [0, 1] for any i.

Now we proceed to prove Theorem 1, i.e., that a tied autoencoder f from the class described in the
theorem is a Moreau proximity operator.

Proof. We prove that f(x) is a Moreau proximity operator by showing that the Jacobian matrix of
f(x) w.r.t. any x ∈ Rd satisfies two properties: (i) the Jacobian is a symmetric matrix, and (ii) all
the Jacobian matrix eigenvalues are real and in the range of [0, 1]. Note that previous works on plug
and play prior used conditions (i)-(ii) to prove that special types of denoisers are Moreau proximity
operators, for example, see (Sreehari et al., 2016).

Consider a 2-layer tied autoencoder, f , which can be formulated as

f(x) = WT ρ(Wx)

where W ∈ Rm×d has all its singular values in [0, 1], and ρ : Rm → Rm is a componentwise
activation function as in (21) that is based on a differentiable scalar activation function ρ̄ : R→ R
whose derivative is in [0, 1].

We will now prove that f is a Moreau proximity operator.

From Corollary A.1 and Lemma A.2, we get that f has a Jacobian matrix WTDW, which is
symmetric and positive semi-definite.

We will now prove that the eigenvalues of WTDW are all in [0, 1]. First, notice that the singular
values of D are the same as the eigenvalues, which are the diagonal elements that are in [0, 1]. In
addition, the singular values of WT are the same as the singular values of W, which are in [0, 1]
by the assumption of Theorem 1. Hence, the singular values of each of the matrices in the product
WTDW are in [0, 1]. It is also well known that for every two matrices, A ∈ Rq1×q2 , B ∈ Rq2×q3 ,

σi(AB) ≤ σ1(A)σi(B) (25)

where σi denotes the ith largest singular value of a corresponding matrix. Hence, for C ∈ Rq3×q4 ,

σi(ABC) ≤ σ1(A)σ1(B)σi(C).

In our case, σ1(W
T ) ≤ 1, σ1(D) ≤ 1, σi(W) ≤ 1, and therefore

σi(W
TDW) ≤ σ1(W

T )σ1(D)σi(W) ≤ 1. (26)

Consequently, all the singular values of the Jacobian matrix are in [0, 1]. Moreover, for real symmetric
matrices, the absolute values of the eigenvalues are equal to the singular values. Since the Jacobian
of our 2-layer tied autoencoder is real and symmetric, by (26) we get that the eigenvalues of this
Jacobian are in [−1, 1]. Moreover, by Lemma A.2, the Jacobian is symmetric positive semi-definite
and therefore its eigenvalues are non-negative; accordingly, all the eigenvalues of the Jacobian are in
[0, 1].

To sum up, we showed that a 2-layer tied autoencoder that satisfies the conditions in Theorem 1
has a symmetric semi-positive definite Jacobian with eigenvalues in [0, 1]; therefore, such a 2-layer
autoencoder is a Moreau proximity operator.
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B PROOF OF EQUATION (17)

Recall the notations in (8). The optimization problem (17), i.e.,

ξ̂
(k)

= argmin
x∈Rd

∥Θx− y∥22 +
γ

2

∥∥∥x− ṽ(k)
∥∥∥2
2

(27)

has a closed form solution

ξ̂
(k)

=
(
ΘTΘ+

γ

2
I
)−1 (

Θy +
γ

2
ṽ(k)

)
(28)

Then, the diagonal structure of Θ with zeros and ones on its main diagonal implies that ΘTΘ = Θ
and, therefore,

ξ̂
(k)

=
(
Θ+

γ

2
I
)−1 (

Θy +
γ

2
ṽ(k)

)
(29)

that can be further simplified to the componentwise form of

ξ̂i
(k)

=

{
ṽ
(k)
i , if Θi,i = 0

yi+
γ
2 ṽ

(k)
i

1+ γ
2

, if Θi,i = 1

where ξ̂
(k)
i , yi, ṽ

(k)
i are the ith components of the vectors ξ̂

(k)
, y, ṽ(k), respectively.

C THE EXAMINED AUTOENCODER ARCHITECTURES

We trained two fully connected (FC) autoencoder architectures, one with 10 layers and one with 20
layers. We also trained a U-Net autoencoder model. The activation functions used for training the
models were Leaky ReLU, PReLU, and Softplus. To ensure reproducibility, all experiments were
with seed 42.

C.1 PERFECT FITTING REGIME

In the experiments that arrive to the perfect fitting regime, the FC models were trained on 600 images
from Tiny ImageNet (at 64× 64× 3 pixel size) up to a minimum MSE loss of 10−8, which can be
considered as numerical perfect fitting. During training, intermediate models at higher train loss
values were saved and used later for evaluation of the recovery at lower overfitting levels (see, e.g.,
Figure F.1). We trained two versions of the 10-layer and 20-layer fully connected models using Leaky
ReLU and PReLU activations for each architecture.

The U-Net model was trained on 50 images from the SVHN dataset (at 32× 32× 3 pixel size) also
to an MSE train loss of 10−8, while saving intermediate models at higher train loss values. We
examined U-Net architectures for three different activation functions: Leaky ReLU, PReLU, and
Softplus.

C.2 MODERATE OVERFITTING REGIME

In the moderate overfitting regime, we trained a 20-layer FC model on a larger subset of 25,000
images from Tiny ImageNet (at 64 × 64 × 3 pixel size) with Leaky ReLU activations to a loss of
10−4. This achieves moderate overfitting, yet not perfect fitting of the training data.

The U-Net model was trained on 1000 images from the CIFAR-10 dataset (at 32 × 32 × 3 pixel
size) to an MSE train loss of 10−4. We examined U-Net architectures for three different activation
functions: Leaky ReLU, PReLU, and Softplus.

D THE PROPOSED METHOD: ADDITIONAL IMPLEMENTATION DETAILS

D.1 STOPPING CRITERION OF THE PROPOSED METHOD

The stopping criterion for the ADMM via Algorithm 1 (which solves equation (6)) is a predefined
number of iterations. We set this to 40 iterations. Each alternating minimization iteration in our
overall algorithm includes one ADMM procedure.
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Figure C.1: Architecture of 10 layers and 20 layers fully connected autoencoders for the Tiny
ImageNet dataset (a subset of images, at 64× 64× 3 pixel size).

Figure C.2: Architecture of U-Net autoencoder for the CIFAR-10 and SVHN datasets (subsets of
images, at 32× 32× 3 pixel size). stride and padding are 1, kernel size is 3× 3, and an activation
function is applied after every convolution.

The stopping criterion for the entire recovery algorithm via alternating minimization, (6)-(7), is that
the MSE between successive estimates x̂(t) must be below a threshold for 3 consecutive iterations;
we set this MSE threshold to 10−9.

D.2 γ VALUES FOR THE PROPOSED METHOD

The γ value of the ADMM (Algorithm 1) was set as follows. γ = 0.5 for the 10-layer FC autoencoder
with LReLU activations. γ = 0.1 for the 10-layer FC autoencoder with PReLU activations, and for
the 20-layer FC autoencoder. γ = 1 for the U-Net architecture.
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E THE SPECIAL CASE OF THE PROPOSED METHOD FOR A KNOWN H

In this appendix, we will briefly discuss the case where the degradation operator H is known. In
this paper we focus on the case where H is unknown, and use the special case of a known H for the
purpose of performance comparison.

Recall the inverse problem (5) for the general case where H is unknown. If H is known, (5) can be
reduced into the form of

x̂ = argmin
x∈Rd

∥Hx− y∥22 + λ1sf (x). (30)

This problem has the same form as the optimization (6) from the alternating minimization procedure,
but here in (30) we have the true H instead of its estimate. Accordingly, we can address the
optimization in (30) via Algorithm 1 with Θ = H. Since we know H, and if we also know that the
degradation is pixel erasure without additive noise (i.e., σϵ = 0 in the degradation model (3)) we
improve the output of Algorithm 1 by setting the known (non-erased) pixels from y in the estimate x̂,
i.e.,

x̂known H = (Id −H)x̂+Hy. (31)

F ADDITIONAL EXPERIMENTAL RESULTS: ANALYSIS OF THE EXPERIMENTS
OF FIGURE 3 USING OTHER PERFORMANCE METRICS

Figure 3 shows the recovery performance in terms of accurate recovery rates, where the threshold for
considering a successful recovery is MSE of 10−7 (PSNR 70dB) between the estimated and original
images. Here, in Figure F.1 shows the corresponding approximate recovery rates, where the threshold
for considering a successful recovery is MSE of 5 · 10−4 (PSNR 33.01dB) between the estimated
and original images. Moreover, in Figure F.2 shows the corresponding average PSNR of all the
estimates (i.e., the averaging is over all the samples in the training dataset and not only those who are
considered as recovered by one of the specified thresholds).

To further understand the effect of the recovery threshold definition, in Figure F.3 we show the
recovery rate behavior of the training images as the for several recovery threshold definitions between
MSE values of 10−3 and 10−6.

The definition of the approximate recovery rate based on MSE of 5 · 10−4 (PSNR 33.01dB) in
Figure F.1 shows that our proposed method significantly outperforms the previous approach of
autoencoder iterations only (see, for example, results for masks 1,2,4 in Figure F.1). However, this
definition of approximate recovery also introduces an artifact in the form of some approximate
recovery percentages for the generic inpainting (DDNM) method (see, for example, the results for
masks 3,5,6 in Figure F.1), which can be explained by the corresponding average PSNR values in
Figure F.2 (see, for example, the results for masks 3,5,6 in Figure F.2 where the red lines show that
the generic inpainting DDNM has average PSNR near the approximate recovery threshold PSNR of
33.01). For this reason, we focus on the accurate recovery rate performance that is shown in Figure
3 and also suggest to examine the impressive performance gain of our method in terms of average
PSNR in Figure F.2.

G ADDITIONAL EXPERIMENTAL RESULTS: DEGRADATION OF PIXEL
ERASURE WITH ADDITIVE NOISE

In this appendix section, we evaluate an experiment with additive noise in addition to the degradation
operator. Recall the degradation model (3) and note that here we have noise standard deviation of
σϵ = 0.02. The degradation operator, H, is based on mask 1 that appears, e.g., in Figure 3. Our
method uses here γ = 0.1.

Figure G.1 demonstrates that, also when additive Gaussian noise is added to the pixel erasure
degradation, the proposed method significantly improves the recovery performance compared to the
simple iterations-only approach.
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Figure F.1: Approximate recovery rate results. Besides the definition of the recovery rate threshold
(and the visual presentation of the generic inpainting DDNM performance in red curves), all the other
setting details are as in Figure 3.

Figure F.2: Average PSNR results for degraded image reconstruction corresponding to Figure 3 and
Figure F.1. The average is computed over the recovery attempts of all the training dataset. All the
other setting details are as in Figure 3.
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Figure F.3: The recovery rate results according to several MSE thresholds. These results correspond
to the experiment on the U-Net architecture and mask 6.

Figure G.1: Recovery results of degraded samples with additive noise (σϵ = 0.02). The results are of
two architectures, 10-layer (first row) and 20-layer (second row) fully-connected autoencoder with
LReLU activations.
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