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ABSTRACT

We study “selective” or “conditional” classification problems under an agnostic
setting. Classification tasks commonly focus on modeling the relationship between
features and categories that captures the vast majority of data. In contrast to
common machine learning frameworks, conditional classification intends to model
such relationships only on a subset of the data defined by some selection rule. Most
works on conditional classification either solve the problem in a realizable setting
or do not provide error guarantees compared to an optimal solution. In this work,
we consider conditional classification by sparse linear classifiers for subsets defined
by halfspaces. We give both positive and negative results for Gaussian feature
distributions. On the positive side, we present the first PAC-learning algorithm for
homogeneous halfspace selectors with error guarantee Õ(

√
opt), where opt is the

optimal conditional 0-1 loss over the given class of classifiers and homogeneous
halfspaces. On the negative side, we find that, under cryptographic assumptions,
approximating the conditional loss within a small additive error is computationally
hard even under Gaussian distribution. We prove that approximating conditional
classification is at least as hard as approximating agnostic classification in both
additive and multiplicative form.

1 INTRODUCTION

Classification is the task of modeling the relationship between some features and membership in some
category. Classification tasks are common across various fields, such as spam detection (classifying
emails as ”spam” or ”not spam”), and image recognition (identifying objects like ”cat” or ”dog”).
Standard classification approaches seek to model the whole data distribution. By contrast, we consider
the problems where a better classifier exists on a subset of the data. In particular, we will consider
cases in which classifiers are sparse linear functions (or more generally, any small set of functions),
and subsets are described by selector functions, given here by homogeneous halfspaces.

We study the distribution-specific PAC-learnability (Kearns et al., 1994) of the classifier-selector class
in the presence of adversarial label noise. In the literature, this problem is known as “conditional”
classification, but also part of a family that is generally known as “selective” classification.

1.1 BACKGROUND AND MOTIVATION

The first “selective classification” problem was introduced decades ago (Chow, 1957; 1970). The
focus was on finding Bayes classifiers for the case where the data distribution is fully known. The
appeal of effective selective classification is clear in applications where partial domain coverage is
acceptable, or in scenarios where achieving extremely low risk is essential but unattainable with
standard classification methods. Classification tasks in medical diagnosis and bioinformatics often
fall into this category (Khan et al., 2001; Hanczar & Dougherty, 2008).

El-Yaniv et al. (2010) gave a thorough theoretical analysis for selective classification based on a
“risk-coverage” model. They proved that, for the optimal classifier and selector, there exists a natural
trade-off between the performance of the classifier on the selected subset and the size of the subset.
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Prior work has either considered the “realizable” case (El-Yaniv & Wiener, 2012; Gangrade et al.,
2021), where there exists a classifier-selector pair that does not make any errors, or endowed the
learner with a rejection mechanism using heuristic rules or confidence scores (Geifman & El-Yaniv,
2017; Pugnana & Ruggieri, 2023). For the “agnostic” case, where no perfect classifier-selector pair
exists, few works had been done on model-based selective learning (Wiener & El-Yaniv, 2011; 2015;
Gelbhart & El-Yaniv, 2019). More importantly, these works do not guarantee both computational
efficiency together with good performance with respect to the optimal classifier and selector.

We consider a more general formulation of agnostic selective classification under the PAC-learning
semantics in Definition 1.1. In particular, we do not make any assumptions on the labels while the
performance of the learned classifier and selector are guaranteed to be close to the optimal solution.

Definition 1.1 (Agnostic Conditional Classification). Let D be any distribution on Rd × {0, 1}, C be
a finite class of classifiers on Rd × {0, 1}, and Ga,bD = {S ⊆ Rd | Prx∼Dx{x ∈ S} ∈ [a, b]}. For
any 0 ≤ a ≤ b ≤ 1, suppose minS∈Ga,b

D ,c∈C Pr(x,y)∼D{y ̸= c(x) | x ∈ S} ≤ opt, a C-approximate
algorithm (or an algorithm with approximation factor C) for some C > 1, given sample access to D,
outputs an S′ ∈ Ga,bD and c ∈ C such that PrD{y ̸= c(x) | x ∈ S′} ≤ Copt with high probability.

The imposed “population” bounds on the subsets S ∈ Ga,bD are critical. On the one hand, the lower
bound, Pr{x ∈ S} ≥ a can both prevent trivial optimal solutions such as S′ = ∅ and make the
selected subsets statistically meaningful. On the other hand, if the selector chooses a majority of
the data, the performance advantage of the optimal solution of selective classification could vanish
compared with that of the regular classification model (El-Yaniv et al., 2010; Hainline et al., 2019).

Consider a halfspace h, i.e., a subset of Rd such that the membership in h is defined by some linear
threshold function. In this work, we wish to solve the problem of agnostic conditional classification
with halfspace selectors under standard normal distributions described as follows.

Problem 1.2 (Distribution-Specific Agnostic Conditional Classification With Halfspaces). Let D
be any distribution on Rd × {0, 1} with standard normal x-marginal on Rd, C be a finite class of
classifiers on Rd × {0, 1}, and Ha,bD be the class of halfspaces on Rd with population size in the
range of [a, b] over Dx. For any 0 ≤ a ≤ b ≤ 1, suppose minh∈Ha,b

D ,c∈C Pr(x,y)∼D{y ̸= c(x) | x ∈
h} ≤ opt, how close to opt can a polynomial-time algorithm achieve onHa,bD with high probability?

An algorithm for Problem 1.2 may be leveraged to perform conditional classification for large or
infinite classes C by using an algorithm for list learning of classifiers for some richer class (Charikar
et al., 2017), taking C in Problem 1.2 to be the list of classifiers produced by the list learning algorithm:

Definition 1.3 (Robust list learning). Let D = αD∗ + (1 − α)D̃ for an inlier distribution D∗

and outlier distribution D̃ each supported on Rd × {0, 1}, with α ∈ (0, 1). A robust list learning
algorithm for a class of Boolean classifiers C, given α and parameters ϵ, δ ∈ (0, 1), and sample
access to D such that for (x,b) in the support of D∗, b = c∗(x) for some c∗ ∈ C, runs in time
poly(d, 1

α ,
1
ϵ , log

1
δ ), and with probability 1− δ returns a list of ℓ = poly(d, 1

α ,
1
ϵ , log

1
δ ) classifiers

{h1, . . . , hℓ} such that for some hi in the list, PrD∗{ci(x) = c∗(x)} ≥ 1− ϵ.

As we will review, it is known in particular that, for sparse linear classifiers (with s = O(1) nonzero
coefficients), list learning from a sample of size m = O( 1

αϵ (s log d+ log 1
δ )) is possible in time and

list size O(mds) (Juba, 2017; Mossel & Sudan, 2016).

1.2 CHALLENGES OF DISTRIBUTION-SPECIFIC CONDITIONAL CLASSIFICATION

Problem 1.2 is similar to agnostic linear classification, where we seek to minimize the classification
error over the vast majority of data. In particular, it was clear that agnostic classification can be
reduced to (distribution-free) conditional learning (Juba, 2017). Agnostic linear classification has been
extensively studied over decades, and it is known to be computationally hard in both distribution-free
(Kearns et al., 1994) and distribution-specific settings (Diakonikolas et al., 2023).

Despite the intractability of agnostic learning, numerous distribution-specific approximation schemes
have been developed with approximation factor of O(1/

√
opt) or even constants (Frei et al., 2021;

Diakonikolas et al., 2020c; 2022; 2024; Shen, 2021). Given the similarity between agnostic linear
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classification and Problem 1.2, and that it was the only formal barrier known, it is natural to ask if we
can leverage the existing techniques for standard agnostic classification in conditional classification.

However, it is not clear how these could lead to a meaningful error guarantee for conditional
classification. Directly, Definition 1.1 (correspondingly, Problem 1.2) can be reduced to a “one-sided”
classification problem, where we seek to minimize the error rate of the classifier on only the selected
halfspace (one side). As the error rate could be extremely unbalanced across the selected side and its
complement, a constant factor approximation scheme for the agnostic linear classification problem
may not yield approximation guarantees for the one-sided agnostic classification problem.

An analogous difficulty arose in “fairness auditing” (Kearns et al., 2018). In the problem of fairness
auditing, instead of minimizing the classification error, we wish to verify some specific fairness
criteria for a subset of the data. Kearns et al. (2018) showed that the auditing problem is equivalent to
agnostic classification for any simple representation classes (including halfspaces) under distribution-
free settings. Despite the similarity between these two problems, as well as the existence of constant
factor approximation algorithms for agnostic linear classification under distributional assumptions,
recent work by Hsu et al. (2024) showed there does not exist any nontrivial multiplicative factor
approximation algorithm for auditing halfspace subgroup fairness even under Gaussian distributions.
The connection in the distribution-free setting simply does not carry over to Gaussian data.

1.3 OUR CONTRIBUTION

Let opt be as defined in Problem 1.2 for H being the class of homogeneous halfspaces. Our first
contribution is a polynomial-time Õ(1/

√
opt)-approximation algorithm to learn a pair of classifier

and selector for Problem 1.2 with homogeneous halfspace selectors for finite C (cf. Theorem 3.1).
We also generalized our approach to work with any sparse linear classifiers (cf. Theorem 3.5). This is
the first polynomial-time algorithm for agnostic conditional/selective classification with a provable
approximation guarantee w.r.t. the optimal solution.
Remark 1. Even for homogeneous halfspace selectors, the imbalance of error rates between classes
could still exist, as we will show in our hardness result that the difference between the error rates of
different classes of the homogeneous halfspace always equals to the amount that the probability of
either label deviates from 1/2; see Lemma 4.4 for details.
Remark 2. Note that the extension of our approach on sparse classes leverages the power of an list
learning algorithm for linear sparse classifiers (cf. Theorem A.1). It is an open question whether our
method can be extended to other families of classifiers. Polynomial-time algorithms for list-decodable
(dense) linear regression (as opposed to classification) have been found (Karmalkar et al., 2019;
Raghavendra & Yau, 2020), so as other list-decodable estimation tasks as mentioned earlier, but little
is known for learning classifiers at present. It is an interesting broader open question which families
of classifiers are learnable in the list-decodable setting.

Our second contribution is a negative result for Problem 1.2. We show that agnostic conditional
classification in Definition 1.1 is at least as hard as agnostic linear classification under any distribution
(cf. Proposition 4.5). With the distribution-specific hardness result of agnostic linear classification
(Diakonikolas et al., 2023), we prove that no polynomial-time algorithm can achieve an error
guarantee of opt +O(1/ log1/2+α d) for any constant α > 0 for Problem 1.2 (cf. Theorem 4.3). We
show more generally that approximating the conditional classification objective is at least as hard as
approximating the regular classification objective (cf. Proposition 4.5 & Claim 4.7).
Remark 3. We believe our upper bound Õ(

√
opt) is sub-optimal. Obviously, it is consistent with

the known negative results, even for general halfspaces. Meanwhile, it was possible to reach O(opt)
error for agnostic learning of halfspaces w.r.t. Gaussian data (Diakonikolas et al., 2022). Also, in
other, simpler list-decodable robust estimation tasks (Kothari et al., 2018), it was possible to use kth
moments to obtain opt1−O(1/k) error, and for list-decodable linear regression it is similarly possible
to approach optimal error by spending more on the running time (Bakshi & Kothari, 2021). Thus,
there does not seem to be a hard barrier at some suboptimal error rate.

Organization. In Section 2, we give some necessary background. We will present our algorithmic
results in Section 3. The distribution-specific hardness result for conditional classification with
general halfspaces is in Section 4. In the last section, we will discuss the limitations of our results
and a few possible directions for extensions.
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1.4 RELATED WORKS

Selective Learning. For realizable setting, El-Yaniv & Wiener (2012) reduced active learning to
selective learning and proved a exponential lower bound on label complexity for linear classification .
Gangrade et al. (2021) proposed a optimization-based selective learning framework that guarantees
to maximize the classifiers’ coverage with a specified one-side prediction error rate. They proved that
any representation class with finite VC-dimension can be used successfully in their models. For the
agnostic cases, Wiener & El-Yaniv (2011; 2015); Gelbhart & El-Yaniv (2019) presented a selective
learning approach to learn a classifier-selector pair that is at least as competitive as the ERM of the
non-selective learning task. However, the computation of both the classifier and selector in these
methods relies on an agnostic learning oracle, and the selector function is not guaranteed to minimize
the conditional classification error down to any approximation factor. Geifman & El-Yaniv (2017)
proposed a heuristic method to design selector functions for any given deep neural network with
provable guarantees. Empirically, Pugnana & Ruggieri (2023) developed an model-agnostic learning
algorithm to learn a confidence-based selective classifier that seeks to minimize the AUC-based loss
within the selected region. Geifman & El-Yaniv (2019) proposed the SelectiveNet architecture that
simultaneously learns a pair of classifier and selector in a single neural networks with given coverage.

Conditional Learning. The problem of conditional learning (including conditional classification)
incorporates two sub-problems, obtaining a finite list of predictors as well as learning a predictor-
selector pair out this finite list and some class of selector functions. For the former task, a series of
positive results (Charikar et al., 2017; Kothari et al., 2018; Calderon et al., 2020; Bakshi & Kothari,
2021) have been obtained under the “list-decodable” setting of Definition 1.3. For the latter task, Juba
(2016) introduced the problem of learning abduction, where they propose to learn a subset of the data
distribution where e.g., no errors occur. In their work, they showed that subsets defined by k-DNFs
can be efficiently learned in realizable cases without any distributional assumptions. Subsequent
improvements were obtained for the agnostic setting (Zhang et al., 2017; Juba et al., 2018).

Learning To Abstain. Cortes et al. (2016) considered a different formulation of selective classifica-
tion. Instead of optimizing the classification error conditioned the selected subgroup, they proposed
to minimize the classification error jointly with the selector function while enforcing a cost for
“abstaining”. They designed a few convex surrogate losses to upper bound the joint classification loss
in the setting that abstaining has a cost. Later works (Mao et al., 2024c;a;b) proposed new families
of surrogate losses to approximate the classification loss with abstaining and proved various upper
bounds classification error of any classifier-selector pair in terms of different surrogate loss measures
for two different selective learning strategies.

2 PRELIMINARIES

In general, we use lowercase italic font characters to represent scalars, e.g. x ∈ R, lowercase bold
italic font characters to represent vectors, e.g. x ∈ Rd, and uppercase bold italic font characters to
represent matrix, e.g. A ∈ Rm×d. In particular, subscripts will be used to index the coordinates
of any vector, e.g., xi represents the ith coordinate of the vector x. Similarly, we use normal font
characters to represent random variables, e.g. x ∈ R, x ∈ Rd and A ∈ Rm×d.

For x ∈ Rd, let ∥x∥p = (
∑d
i=1 |xi|

p
)1/p denote the lp-norm of x, and x̄ = x/∥x∥2 denote the

normalized vector of x. We will use ⟨x,u⟩ to represent the inner product of x,u ∈ Rd and x⊗k to
represent the outer product of x ∈ Rd to the kth degree. Additionally, we will use θ(u,w) to denote
the angle between two vectors u,w ∈ Rd. For any subspace V ⊆ Rd, let xV denote the projection of
x onto V . Further, we will write w⊥ = {u ∈ Rd | ⟨u,w⟩ = 0} as the orthogonal space of w ∈ Rd,
and, therefore, xw⊥ = (I − w̄⊗2)x as the projection of x ∈ Rd onto w⊥.

We use Dx to denote the marginal distribution of D on x ∈ Rd, Prz∼D{z ∈ E} to denote the
probability of an event E, Ez∼D[f(z)] to denote the expectation of some statistic f(z), and therefore,
∥̂f(z)∥̂p =

(
Ez∼D[∥f(z)∥pp]

)1/p
. In particular, for an i.i.d. sample D̂ ∼ D, we define the empirical

probability and expectation as Prz∼D̂{z ∈ E} = 1/|D̂|
∑

z∈D̂ 1{z ∈ E} and Ez∼D̂[f(z)] =

1/|D̂|
∑

z∈D̂ f(z). In particular, letN d(0, 1) denotes the d-dimensional standard normal distribution.
We may dropD from the subscript when it the context is clear, i.e., we may write Pr{z ∈ E},E[f(z)]
for Prz∼D{z ∈ E},Ez∼D[f(z)].
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In this paper, we denote halfspaces as a subset of Rd in the following way. For any t ∈ R,w ∈ Rd,
let lt : Rd → R be an affine function such that lt(x,w) = ⟨x,w⟩ − t. Then, a halfspace in Rd
with threshold t ∈ R and normal vector w is defined as ht(w) = {x ∈ Rd | lt(x,w) ≥ 0} (resp.
hct(w) = {x ∈ Rd | lt(x,w) ≤ 0}). When a halfspace is homogeneous, we will drop the threshold
from the subscript, i.e., when t = 0, we will write h(w) instead of h0(w).

3 CONDITIONAL CLASSIFICATION WITH HOMOGENEOUS HALFSPACES

In this section, we present our algorithmic results for conditional classification with homogeneous
halfspaces (selectors) on Rd for sparse linear classifiers or, more generally any small set of binary
classifiers C under any distribution D with standard normal x-marginals.

In the case that C is finite, we find a homogeneous halfspace as the selector that minimizes its
conditional classification loss, Pr{c(x) ̸= y | x ∈ h(w)}, for each classifier c ∈ C. Eventually, we
choose the best classifier-selector pair as the output. To extend to the case of any sparse linear classes,
our strategy is to generate a finite C using a list-learning algorithm, then run our conditional learning
algorithm on the obtained C to find a classifier-selector pair.

Notice that, for homogeneous halfspaces under Gaussian x-marginals, minimizing Pr{c(x) ̸=
y | x ∈ h(w)} equals to minimizing Pr{c(x) ̸= y ∩ x ∈ h(w)} since every homogeneous halfspace
satisfies Prx∼Nd(0,1){x ∈ h(w)} = 1/2. Hence, we will only consider minimizing Pr{c(x) ̸=
y ∩ x ∈ h(w)} in this section. The core challenge for our strategy is finding such a halfspace for
each c ∈ C. We give the details in the following sections.

3.1 ALGORITHM OVERVIEW

Algorithm 1: Conditional Classification For Finite C
1 procedure CCFC(D, C, ϵ, δ)
2 T ← 12d2 ln(8 |C| /δ)/ϵ4
3 N ← O(ln(16T |C| /δ)/ϵ2 ln ϵ−1)

4 D̂ ← ln(4 |C|T/δ)/2ϵ i.i.d. examples from D
5 w(0) ← any basis
6 for c ∈ C do
7 D(c) ← Dx × 1{c(x) ̸= y}
8 W(c) ← PSGD

(
D(c), T,N,w(0)

)
∪ PSGD

(
D(c), T,N,−w(0)

)
9 w(c) ← argminw∈W(c) PrD̂{x ∈ h(w) ∩ c(x) ̸= y}

10 end
11 return argminw(c) PrD̂

{
x ∈ h(w(c)) ∩ c(x) ̸= y

}
In Algorithm 1, for each binary classifier c ∈ C, we map the label y from D to 1{c(x) ̸= y} to form
a new distribution D(c), then pass D(c) to Algorithm 2 to obtain a sequence of halfspaces, and only
keep h(w(c)) with the smallest empirical conditional 0-1 loss for this classifier c. At last, it returns
the classifier-selector pair that performs the best among all c ∈ C estimated on D̂.

Notably, the mapping step (line 7) for each c ∈ C essentially just creates another adversarial
distributionD(c), which is a key step to reduce the conditional classification problem to a “one-sided”
agnostic linear classification problem. While directly optimizing over the conditional classification
loss Pr{x ∈ h(w)∩c(x) ̸= y} is intractable in general, it turns out that an approximately stationary
point of a simple convex surrogate approximation to the classification loss, LD(w), suffices to
approximately capture an optimal halfspace selector under Gaussian distributions. Formally, we
define LD(w) = E(x,y)∼D[y ·max(0, ⟨x,w⟩)] with respect to the distribution D.

Algorithm 2 is inspired by Diakonikolas et al. (2020b) that the gradient step (line 5) uses the projected
gradient gw(x, y), defined as gw(x, y) = y · xw⊥1{x ∈ h(w)}. We will show in the next section
that Algorithm 2 is guaranteed to converge to an approximately stationary point, i.e., small ∥E[gw]∥2.
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Algorithm 2: Projected SGD for LD(w)

1 procedure PSGD(D, T,N,w(0))

2 β ←
√
1/Td

3 for i = 1, . . . , T do
4 D̂(i) ← N i.i.d. samples from D
5 u(i) ← w(i−1) − β E(x,y)∼D̂(i) [gw(i−1)(x, y)]

6 w(i) ← u(i)/∥u(i)∥2
7 end
8 return (w(1), . . . ,w(T ))

Note that the objective function considered in Diakonikolas et al. (2020b) is completely different
from ours so that their convergence analysis does not obviously hold for our surrogate loss LD(w).
Also, our choice of gw(x, y) is similar to that of Shen (2021). Nonetheless, the problem they were
solving is agnostic linear classification and they used a quite different gradient descent policy.

Algorithm 3: Conditional Classification For Sparse Linear C
1 procedure CCSLC(D, ϵ, δ,m)
2 C ←SPARSELIST(D,m)
3 return CCFC(D, C, ϵ, δ)

Algorithm 3 solves conditional learning of sparse linear classifiers. Specifically, SPARSELIST (cf.
Algorithm 4) generates a list of sparse linear classifiers, at least one of which is guaranteed to be
close to a minimizer of the conditional classification error with homogeneous halfspace selectors
(cf. Theorem A.1). Run Algorithm 1 on the obtained C gives the optimal classifier-selector pair.

3.2 CONDITIONAL CLASSIFICATION FOR FINITE CLASSES

We introduce our main guarantee at first, but postpone the proof to Appendix C due to the page
limit. As a sketch of the proof, we will see Proposition 3.2 and Proposition 3.3 together indicate the
optimality of Projected SGD, as captured by Lemma 3.4. Combined with a standard concentration
analysis, this implies our main theorem.
Theorem 3.1 (Main Theorem). Let D be a distribution on Rd × {0, 1} with standard normal x-
marginal, and C be a class of binary classifiers on Rd × {0, 1}. If there exists a unit vector v ∈ Rd
and a c ∈ C such that, for some sufficiently small ϵ ∈ [0, 1/e], Pr(x,y)∼D{x ∈ h(v)∩ c(x) ̸= y} ≤ ϵ,
then, with at most Õ(d2/ϵ6) examples, Algorithm 1 will return a w(c′), with probability at least 1− δ,
such that Pr(x,y)∼D{x ∈ h(w(c′)) ∩ c′(x) ̸= y} = Õ(

√
ϵ) and run in time O(d2 |C| /ϵ6).

The most important component that enables our approach is the following proposition, which states
that, for any sub-optimal halfspace h(w), the projected negative gradient E[−gw] of the surrogate
loss LD(w) must have non-negligible projection on the normal vector of the optimal halfspace h(v).
Proposition 3.2. Let D be a distribution on Rd × {0, 1} with standard normal x-marginal, and
gw(x, y) = y ·xw⊥1{x ∈ h(w)}. Suppose v,w ∈ Rd are unit vectors such that θ(v,w) ∈ [0, π/2)

and Pr(x,y)∼D{x ∈ h(v) ∩ y = 1} ≤ ϵ, then, if Pr(x,y)∼D{x ∈ h(w) ∩ y = 1} ≥ 5
2 (ϵ
√
ln ϵ−1)1/2,

we have ⟨E(x,y)∼D[−gw(x, y)], v̄w⊥⟩ ≥ 2
5ϵ
√
ln ϵ−1 for sufficiently small ϵ.

We leave the formal proof to Appendix C due to the page limit. The proof is based on the following
observation (also see Figure 1): When a homogeneous halfspace h(w) is substantially sub-optimal,
the probability of labels being true within the domain that the optimal halfspace h(v) disagrees with
it, i.e. h(w)\h(v), must be large. However, the same probability cannot be too large in the optimal
halfspace h(v) and, hence, h(v) ∩ h(w). Then, if the underlying distribution has a well-behaved
x-marginal, the l2 norm of the expectation of x within that domain should also be large.

In fact, the observation gives an insight of why LD(w) suits for the one-sided classification problems.
As we are concerned about the one-sided loss, Pr{x ∈ h(w)∩y = 1}, there are error no assumptions
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O
e1

e2(w)

v

θ(v,w)

Figure 1: Blue area represents h(v) ∩ h(w), orange area represents h(w)\h(v).

on hc(w), which is also the key difference between regular classification and conditional classification.
Therefore, we want to ensure the projection of E[gw(x, y)] on to v̄w⊤ is zero on hc(w), which, in
turn, requires the objective loss to be zero on hc(w). Since LD(w) = 0 on hc(w), we will only need
to discuss the properties of E[gw(x, y)] on the domain where we have control.

Besides, an important implication of Proposition 3.2 is that, once θ(v,w) ∈ [0, π/2) and h(w) is
sub-optimal, E[−gw(x, y)] always “points” to v. Then, the update step (line 5) in Algorithm 2 will
make θ(v,w) contractive, which will, in turn, guarantee that the assumption θ(v,w) ∈ [0, π/2) is
satisfied in the next iteration. This property plays a key role in proving Lemma 3.4.

To effectively utilize Proposition 3.2, we also have to show that its assumption is satisfied. That is, at
least one of the weight vectors, w(1), . . . ,w(T ), produced by Algorithm 2 has small ∥E[gw(x, y)]∥2.
We show this can be achieved within a bounded number of iterations as the proposition below.

Proposition 3.3. Let D be a distribution on Rd × {0, 1} with standard normal x-marginal,
gw(x, y) = y ·xw⊥1{x ∈ h(w)}, and LD(w) = E(x,y)∼D[y ·max(0, ⟨x,w⟩)]. With β =

√
1/Td,

after T ≥ 12d2 ln(1/δ)/ϵ4 iterations, the output w(1), . . . ,w(T ) in Algorithm 2 will satisfy
mini=1,...,T ∥E(x,y)∼D[gw(i)(x, y)]∥2 ≤ ϵ with probability at least 1− δ.

We defer the proof to Appendix B. Our technique resembles the work of Diakonikolas et al. (2020b),
which showed that, if the objective function is bounded and has Lipschitz continuous gradient, then
the norm of its gradient converges in boundedly many iterations of (Projected) SGD.

O

w(i) β E−gw(i) u(i+1)

w(i+1)

(a) Weight update step (line 5) and
projection step (line 6) in algorithm
2.

O

e1

w

w′

e2

e3

∆θ

(b) Orange plane is the decision boundary of h(w′), while blue
plane is that of h(w). ∇wLD(w) and ∇wLD(w′) only differs in
the two pink spherical sectors, which is dominated by ∆θ.

Figure 2: Boundedness of LD(w
(i)) and almost Lipschitz continuity of∇wLD(w).

However, the magnitude of LD(w) is dominated by ∥w∥2, which could grow unbounded after
many iterations, and its gradient ∇wLD(w) has a “jumping” point at zero, which is not Lipschitz
continuous in general. So, the key to proving Proposition 3.3 is to overcome these issues.

Observe that the gradient update (line 5) of Algorithm 2 will always produce ∥w(i)∥2 ≥ ∥w(i−1)∥2,
while the projection step (line 6) of Algorithm 2 will always make LD(w) bounded, cf. Figure 2a.
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On the other hand, it turns out that∇wLD(w) is almost Lipschitz continuous under nice distributions
such as a standard normal. Intuitively, if we perturb w a little bit to change it to w′, it will only
rotate the halfspace h(w) by a very small angle, i.e. ∆θ = θ(w,w′) is small. And, it suffices to
consider the difference between ∇wLD(w) and ∇wLD(w

′) on a 3-dimensional subspace as shown
in figure 2b. Now, if the density of distribution D is not concentrated too much in any small spherical
sectors in the subspace, it implies that the change of ∇wLD(w) is dominated by ∆θ (see Figure
2b), which is insignificant. This observation indicates that∇wLD(w) is Lipschitz continuous under
anti-concentrated distributions unless ∥w∥2 is extremely small.

Given Proposition 3.2 and Proposition 3.3, we show that in the list of parameters returned by
Algorithm 2, at least one of them is approximately optimal:

Lemma 3.4. Let D be a distribution on Rd × {0, 1} with standard normal x-marginal, and
gw(x, y) = y · xw⊥1{x ∈ h(w)}. Suppose v ∈ Rd is a unit vectors such that Pr(x,y)∼D{x ∈
h(v) ∩ y = 1} ≤ ϵ, if T ≥ 12d2 ln(2/δ)/ϵ4, N ≥ ln(4T/δ)/Cϵ2 ln ϵ−1 for some constant C > 0,
and θ(v,w(0)) ∈ [0, π/2), it holds that at least one w ∈ W returned by Algorithm 2 satisfies
Pr(x,y)∼D{x ∈ h(w)∩y = 1} ≤ 5

2 (ϵ
√
ln ϵ−1)1/2 w.p. 1− δ for some sufficiently small ϵ ∈ [0, 1/e].

We defer the formal proof to Appendix C, but sketch the idea here. Observe that combining the
negation of Proposition 3.2 and Proposition 3.3 already yields Lemma 3.4. So, all we need to do is
make sure that the assumption θ(v,w) ∈ [0, π/2) in Proposition 3.2 is satisfied.

Notice that, in the sequence of parameters w(1), . . . ,w(T ) returned by Algorithm 2, every w(i) must
be significantly sub-optimal until we see a w such that Pr{x ∈ h(w) ∩ y = 1} ≤ 5

2 (ϵ
√
ln ϵ−1)1/2.

If such a sub-optimal halfspace h(w(i)) also satisfies θ(v,w(i)) ∈ [0, π/2), its negative projected
gradient E[−gw(i) ] must has positive projection on v̄w⊥ by Proposition 3.2. Using such a E[−gw(i) ]
to update w(i) in Algorithm 2 will always produce θ(v,w(i+1)) ≤ θ(v,w(i)). Thus, by an induc-
tive argument, we can show that the first w(t) such that ∥E[gw(t) ]∥2 < 2

5ϵ
√
ln ϵ−1 must satisfy

θ(v,w(t)) ∈ [0, π/2), which enables the application of Proposition 3.2.

3.3 GENERALIZATION TO SPARSE LINEAR CLASSEIFIERS

Although Algorithm 1 only applies to finite C, we can generalize our approach to work with infinite
classes of classifiers whenever they are list-learnable (Definition 1.3); for example, sparse linear
classifiers are list-learnable in polynomial time. We present the corresponding performance guarantee
for Algorithm 3 as follows while deferring the formal proof to Appendix D due to the page limit.

Theorem 3.5. Let D be a distribution on Rd × {0, 1} with standard normal x-marginal, and C be
a class of sparse linear classifiers on Rd × {0, 1} with sparsity s = O(1). If there exists a unit
vector v ∈ Rd and a c ∈ C such that, for some sufficiently small ϵ ∈ [0, 1/e], Pr(x,y)∼D{x ∈
h(v) ∩ c(x) ̸= y} ≤ ϵ, then, with at most poly(d, 1/ϵ, 1/δ) examples, Algorithm 3 will return a
w(c′), with probability at least 1 − δ, such that Pr(x,y)∼D{x ∈ h(w(c′)) ∩ c′(x) ̸= y} = Õ(

√
ϵ)

and run in time poly(d, 1/ϵ, 1/δ).

4 CONDITIONAL CLASSIFICATION WITH GENERAL HALFSPACES IS HARD

In this section, we show that it is computationally hard to obtain a small additive error for conditional
classification with general halfspaces for any finite class of classifiers C, even under distributions with
standard normal x-marginals. Specifically, we show that, for each classifier c ∈ C, approximating the
optimal conditional classification loss over the class of general halfspaces on Rd with an additive
error is at least as hard as achieving the same additive error for agnostic linear classification, which
is known to be computationally hard (Diakonikolas et al., 2023). Further, we show that any (1 + α)-
approximation algorithm for conditional classification implies an (1 + α)-approximation algorithm
for standard classification, down to polynomially small losses. (The converse is not known to hold.)

The hardness of distribution-specific conditional classification is based on the sub-exponential
hardness of “continuous Learning With Errors” (cLWE), which is a variant of the “Learning With
Errors” (LWE) assumption. Informally speaking, in the problem of LWE, we are given labelled
examples from two hypothesis cases. In one case, the labels are biased by some secret vector, while,
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in another case, the labels are generated uniformly at random. We wish to distinguish between these
cases. We formally define the problem of LWE (Regev, 2009), following Diakonikolas et al. (2023):
Definition 4.1 (Learning With Errors). For m, d ∈ N, q ∈ R+, let Dsample,Dsecret,Dnoise be
distributions on Rd,Rd,R respectively. In the LWE(m,Dsample,Dsecret,Dnoise,modq) problem,
with m independent samples {(x(1), y(1)), . . . , (x(m), y(m))}, we want to distinguish between the
following two cases:

• Alternative hypothesis: each (x(i), y(i)) is generated as y(i) = modq(⟨x(i), s⟩+ z), where
x(i) ∼ Dsample, s ∼ Dsecret, z ∼ Dnoise.

• Null hypothesis: each y(i) is sampled uniformly at random on the support of its marginal
distribution in the alternative hypothesis, independent of x(i) ∼ Dsample.

An algorithm is said to be able to solve the LWE problem with ∆ advantage if the probability that
the algorithm outputs “alternative hypothesis” is ∆ larger than the probability that it outputs “null
hypothesis” when the given data is sampled from the alternative hypothesis distribution.

Let Sd−1 :=
{
x ∈ Rd | ∥x∥2 = 1

}
, Rq := [0, q), and modq : Rd → Rdq to be the function that

applies modq operation on each coordinate of x. Essentially, the hardness of cLWE is based on
the sub-exponential hardness of LWE (see Appendix E). We formally state the assumption of sub-
exponential hardness of cLWE as follows.
Assumption 4.2 ((Gupte et al., 2022; Diakonikolas et al., 2023) Sub-exponential cLWE Assumption).
For any d ∈ N, any constants κ ∈ N, α ∈ (0, 1), β ∈ R+ and any logβ d ≤ k ≤ Cd where C > 0 is
a sufficiently small universal constant, the problem LWE(dO(kα),N d(0, 1),Sd−1,N (0, σ2),modT )
over Rd with σ ≥ k−κ and T = 1/C ′√k log d, where C ′ > 0 is a sufficiently large universal
constant, cannot be solved in time dO(kα) with d−O(kα) advantage.

For simplicity, we define y ≡ 1{c(x) ̸= y′} for (x, y′) ∼ D′ and construct the distribution
(x, y) ∼ D. Notice that, in agnostic settings, since D′ is worst case, D is also worst case. Therefore,
this replacement does not affect the difficulty of the problems we consider.

Normally, one would consider the classification loss to be the expected disagreement between
the classifier and the labelling. However, it is more convenient for us to view a labelling y = 1
as an ”occurrence of error” and define the loss in terms of such occurrences. Specifically, for
any subset S ⊆ Rd and any distribution D on Rd × {0, 1}, we define the classification loss as
errD(S) = Pr(x,y)∼D{y = 1{x ∈ S}}. Note that this definition of classification loss is essentially
the same as the “traditional” classification loss that defined in terms of disagreement since we
can convert from one to another by simply negating the labelling. Analogously, for any subsets
S, T ⊆ Rd and any distribution D on Rd × {0, 1}, we denote the conditional loss by errD|T (S) =
Pr(x,y)∼D{y = 1{x ∈ S} | x ∈ T}. When S ≡ T , we abbreviate errD|T (S) to errD|T .

Theorem 4.3 (Hardness Of Conditional Classification). Let D be any distribution on Rd × {0, 1}
with standard normal x-marginals, H be the class of halfspaces on Rd, and define Ha,bD =
{ht(w) ∈ H | Prx∼Dx{x ∈ ht(w)} ∈ [a, b]} for any 0 ≤ a ≤ b ≤ 1. Under Assumption 4.2,
for any constant α ∈ (0, 2), γ > 1/2 and any c/

√
d log d ≤ ϵ ≤ 1/ logγ d where c is a suffi-

ciently large constant, there is no algorithm that can find a halfspace ht′(w) ∈ Ha,bD such that
errD|ht′ (w) ≤ minht(u)∈Ha,b

D
errD|ht(u) + ϵ and runs in time dO(1/(ϵ

√
log d)α).

Theorem 4.3 states our hardness result for conditional classification, which is a simple consequence
of Proposition 4.5 and Lemma 4.6. The former one shows that conditional classification is at least as
hard as agnostic classification and the latter one shows that agnostically learning halfspaces is hard.

Our main contribution is Proposition 4.5, but before getting into it, we first show a simple but critical
observation that reveals the relationship between errD(S) and errD|S . That is, the loss of agnostic
classification can be explictly expressed by the loss of conditional classification.
Lemma 4.4 (Classification Error Decomposition). Let D be any distribution on Rd × {0, 1} and S
be any subset of Rd, we have errD(S) = 2errD|S PrD{x ∈ S} + PrD{y = 0} − PrD{x ∈ S} as
well as errD(S) = 2errD|Sc(S) PrD{x ∈ Sc}+ PrD{y = 1} − PrD{x ∈ Sc}.

Due to page limits, we defer its proof to Appendix E. Lemma 4.4 is a powerful result since it allows
us to establish a reduction from classification to conditional classification.
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Briefly speaking, if we know Pr{x ∈ S∗} for some optimal solution S∗ to the agnostic classification
problem, we can approximate errD(S

∗) by approximating its conditional classification loss, i.e.
errD|S∗ . Even though we do not know Pr{x ∈ S∗}, we can guess a small range that contains
Pr{x ∈ S∗}, and enforce such a constraint just as in Definition 1.1. Then, we sweep over all such
small intervals and one of the instances being solved must include Pr{x ∈ S}. Once we take these
intervals small enough, it won’t incur a significant error. We use this strategy to prove Proposition
4.5, but the formal proof is deferred to Appendix E due to the page limit.
Proposition 4.5 (Reduction In Additive Form). Let D be any distribution on Rd × {0, 1},
H be any subset of the power set of Rd closed under complement, and define Ha,bD =
{S ∈ H | PrD{x ∈ S} ∈ [a, b]} for any 0 ≤ a ≤ b ≤ 1. For any such a, b and ϵ, δ > 0, given
sample access to D, if there exists an algorithm A1(ϵ, δ, a, b) running in time poly(d, 1/ϵ, 1/δ), that
outputs S1 ∈ Ha,bD such that errD|S1

≤ minS∈Ha,b
D

errD|S + ϵ with probability as least 1− δ, there
exists another algorithm A2(ϵ, δ), that runs in time poly(d, 1/ϵ, 1/δ), and outputs S2 ∈ H such that
errD(S2) ≤ minS∈H errD(S) + 6ϵ with probability at least 1− δ.

Furthermore, Lemma 4.6 states that agnostically learning halfspaces up to small additive error is
computationally hard. Since Proposition 4.5 holds for halfspaces on Rd, conditional learning has at
least the same hardness by combining Proposition 4.5 and Lemma 4.6.
Lemma 4.6 (Corollary 3.2 of Diakonikolas et al. (2023)). Let D be any distribution on Rd × {0, 1}
with standard normal x-marginals, and H be the class of halfspaces on Rd. Under Assumption
4.2, for any constant α ∈ (0, 2), γ > 1/2 and any c/

√
d log d ≤ ϵ ≤ 1/ logγ d where c is a

sufficiently large constant, there is no algorithm that can find a halfspace ht′(v) ∈ H such that
errD(ht′(v)) ≤ minht(u)∈H errD(ht(u)) + ϵ and runs in time dO(1/(ϵ

√
log d)α).

Analogously, a reduction in multiplicative form can also be obtained using a similar analysis to that in
the proof of Proposition 4.5. In particular, we show that if there exists a multiplicative approximation
algorithm for conditional classification with factor 1 + α, there must exist another multiplicative
approximation algorithm for classification in agnostic setting with the same factor 1 + α.
Claim 4.7 (Reduction In Multiplicative Form). Let D be any distribution on Rd × {0, 1},
H be any subset of the power set of Rd closed under complement, and define Ha,bD =
{S ∈ H | PrD{x ∈ S} ∈ [a, b]} for any 0 ≤ a ≤ b ≤ 1. If there exists an algorithm A1(α, δ, a, b)
that given sample access to D, any such a, b, and α, ϵ, δ > 0, runs in time poly(d, 1/α, 1/δ), and
outputs S1 ∈ Ha,bD such that errD|S1

≤ (1 + α)minS∈Ha,b
D

errD|S with probability as least 1 − δ,
there exists another algorithm A2(α, ϵ, δ) that runs in time poly(d, 1/α, 1/ϵ, 1/δ), and outputs
S2 ∈ H such that errD(S2) ≤ (1 + α)(minS∈H errD(S) + 4ϵ) with probability at least 1− δ.

Again, we defer the proof to Appendix E because of page limits. Although there is an extra 4ϵ additive
error in the final guarantee of Claim 4.7, we can afford to take ϵ polynomially small w.r.t. d, α, δ, thus
obtaining the multiplicative error guarantee down to polynomially small error. Informally we observe
that Proposition 4.5 and Claim 4.7 indicate that any form of approximation algorithm for conditional
classification yields an approximation algorithm of the same factor for agnostic classification. In the
case of multiplicative approximation in particular, the reverse is not known and we observe that it
might be strictly harder to approximate the conditional classification objective.

5 LIMITATIONS AND FUTURE WORK

Our algorithmic result is limited in three aspects. First and foremost, the restriction of selectors to
homogeneous halfspaces is a major drawback especially for the task of conditional classification.
Indeed, the advantage of conditional classification with halfspaces compared with regular linear
classification really shines when we have the ability to select a minority of the population. Therefore,
moving from homogeneous halfspaces to general halfspaces would constitute a significant advance
even with worse error bound. Another limitation of our result is the strong assumption on the marginal
distribution. Real-world data almost never has standard normal marginals, and testing for a standard
normal distribution is costly. Hence, it’s worth trying to extend our result to more general classes of
distributions, such as log-concave distributions. Last but not the least, one can also try to improve our
error guarantee under the current setting as the error guarantee O(

√
opt) appears sub-optimal.
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