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ABSTRACT

As machine learning models become increasingly complex and are deployed in
critical domains such as healthcare, finance, and autonomous systems, the need
for effective explainability has grown. Graph Neural Networks (GNNs), which
excel in processing graph-structured data, have seen significant advancements, but
explainability for GNNGs is still in its early stages. Existing approaches fall into
two broad categories: post-hoc explainers and inherently interpretable models.
Their evaluation is often limited to synthetic datasets for which ground truth ex-
planations are available, or conducted with the assumption that each XAI method
extracts explanations for a fixed network. We focus specifically on inherently in-
terpretable GNNs (e.g., based on prototypes, graph kernels) which enable model-
level explanations. For evaluation, these models claim inherent interpretability
and only assess predictive accuracy, without applying concrete interpretability
metrics. These evaluation practices fundamentally restrict the utility of any dis-
cussions regarding explainability. We propose a unified and comprehensive frame-
work for measuring and evaluating explainability in GNN’s that extends beyond
synthetic datasets, ground-truth constraints, and rigid assumptions, while also sup-
porting the development and refinement of models based on derived explanations.
The framework involves measures of Accuracy, Instance-level explanations, and
Model-level explanations (AIM), inspired by the generic Co-12 conceptual prop-
erties of explanations quality (Nauta et al., |2023). We apply this framework to
a suite of existing models, deriving ways to extract explanations from them and
to highlight their strengths and weaknesses. Furthermore, based on this analysis
using AIM, we develop a new model called XGKN that demonstrates improved
explainability while performing on par with existing models. Our approach aims
to advance the field of Explainable AI (XAI) for GNNs, offering more robust and
practical solutions for understanding and interpreting complex models.

1 INTRODUCTION AND RELATED WORK

Explainability in machine learning is gaining importance, especially as models are applied in ar-
eas like healthcare (Ahmedt-Aristizabal et al.l [2021), finance (Wang et al.| |2022)), and autonomous
systems (Li et al. 2024). Meanwhile, Graph Neural Networks (GNNs) (Kipf & Welling| 2017)
have emerged as powerful tools for handling graph data. While both fields are evolving rapidly, the
exploration of Explainable Al (XATI) within the context of GNNs—and specifically for inherently
interpretable GNNs—remains limited.

Most existing models serve as post-hoc explainers that aim to identify importance maps over input
graphs (Ying et al., 2019a; Luo et al., 2020; Vu & Thai, 2020; |Yuan et al., |2021}; Magister et al.,
2021} [Lucic et al., 2022} Shin et al.,[2022). Some leverage the Shapley-values approach from game
theory (SHAP (Lundberg & Lee,|[2017)) (Duval & Malliaros} 2021; |Akkas & Azadl[2024). Thresh-
olding these importance maps yields induced subgraphs that serve as explanations. While these
methods offer some insights, they often lack reliability as they provide approximations rather than
accurately reflecting the model’s decision-making process. They can be inconsistent, oversimplify
complex models, and do not guarantee trustworthiness, leading to potentially misleading explana-
tions. Furthermore, since they do not influence the training phase, they fail to promote transparency
from the start, making them less suitable for critical applications where interpretability is essential.
Furthermore, prevailing practice in evaluating explainers relies on the availability of ground truth ex-
planations, leading to experiments predominantly conducted on simple synthetic benchmarks (Ying
et al., 2019b}; Baldassarre & Azizpour,|2019; Luo et al.,2020; Azzolin et al., 2023} Lin et al.| [2020).
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For cases without available ground truths, metrics such as fidelity (Amara et al., 2024} [Zheng et al.,
2024} Longa et al.,[2024), robustness (Bajaj et al., [2022)), sufficiency, and necessity [Tan et al.|(2022));
Chen et al.| (2022) were proposed to assess how predictions change when input graphs are altered
based on explanations from explainers. Since all explainers are applied to the same network, predic-
tion differences can be compared directly across them. In contrast, our work focuses on inherently
interpretable GNNs, where each method produces scores with different distributions, adding com-
plexity to the evaluation process. Additionally, measures of explanation size sparsity are used in
evaluations (Yu et al.| [2022; |Lucic et al.| 2022). |Agarwal et al.| (2023) present an approach similar
to ours by considering a broader range of metrics and examining changes in explanations. However,
their work is also limited to post-hoc methods only.

Compared to the abundance of post-hoc methods, work on inherently interpretable GNNs is rela-
tively limited [Kakkad et al.| (2023). Some methods use information constraints, such as attention
mechanisms (Miao et al.| 2022)), while others employ structural constraints, which can additionally
enable extraction of model-level explanations. Our focus is on the latter category, where the most
prominent models include Prototypical Networks (Ragno et al.,2022;[Zhang et al.,[2021)) and Graph
Kernel Networks (GKNs) (Nikolentzos & Vazirgiannis,[2020;|Cosmo et al., 2021} [Feng et al.,[2022).
Both models employ unsupervised concept learning (Koh et al., 2020), where the model learns to
identify concepts (trainable prototypes or graph filters) against which input graphs are compared.
This comparison yields similarity scores that guide the prediction process. While investigation of
these learned concepts aims to unravel the model’s decision-making process, instance-level explana-
tions that support their predictions are not available. Furthermore, these models claim explainability
based solely on their design, without assessing any specific measures of explainability.

We contend that the evaluation practices for GNN explainers and interpretable GNNs is inadequate
in the context of XAI. We argue that the advancement of XAl in GNNs is hampered by the lack of
standardized metrics for evaluating explainability, making it difficult to determine which models are
superior and under what circumstances, ultimately limiting their impact and practical applicability.

ods, it is essential to assess aspects such as correctness, con- iy
tual properties of explanation quality, aiming to standardize
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The primary objective of our research is to advance the field of
Explainable Al for Graph Neural Networks. Recognizing the Figure 1: Evaluation of various
relative lack of exploration of evaluation metrics, we introduce  x AT GNN methods over MUTAG
a comprehensive set of metrics and a framework for evaluating  34¢4 with proposed AIM metrics,
XAI methods for GNNs, inspired by Co-12 properties. We including our XGKN model.
derive ways to extract instance-level explanations from Proto-

typical Networks for graphs and Graph Kernel Networks, and asses these models in terms of their
explainability. Building on our analysis of existing approaches and prior research on Graph Kernel
Networks, we propose XGKN, a GKN model that demonstrates enhanced X Al capabilities.

Our contributions are as follows:

1. Proposal of AIM, a new evaluation framework for GNN explainability

(a) Definition of AIM metrics for evaluating the XAl capabilities of GNN methods in
terms of Accuracy, Instance-level explanations, and Model-level explanations.

(b) Development of a universal method for extracting instance-level explanations from
Prototypical Networks for graphs and Graph Kernel Networks via SHAP propagation.

(c) Comprehensive assessment of existing XAl approaches for GNNGs.

2. Proposal of XGKN, a Graph Kernel Network with improved explainability.
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Table 1: Summary of Co-12 properties covered by AIM.

Property Description

Al: Accuracy (instance-level) Instance-level explanations should match with ground truths.

A2: Accuracy (model-level) Model-level explanations should match with ground truths.

I1: Completness (with) The graph and its explanation should both be classified into the same class.

12: Completness (without) Removing explanation from the graph should change the predicted class.

13: Consistency The explanation method should provide consistent results.

14: Continuity (nodes) Minor noise in node features should not significantly alter the explanation.

I5: Continuity (edges) Minor noise in edges should not significantly alter the explanation.

16: Contrastivity Explanations for graphs of different classes should be distinguishable.

I7: Compactness Explanations should be concise, small.

M1: Correctness (nodes) If nodes in model-level explanation are altered, instance-level explanations should change.
M2: Correctness (edges) If edges in model-level explanation are altered, instance-level explanations should change.
M3: Compactness The set of all model-level explanations should be concise.

2 AIM METRICS

Here, we outline the key properties of explainable GNN methods and propose a set of metrics for
their evaluation. However, prior to that, it is crucial to define what constitutes an explanation in this
context, considering current practices and their universality.

We assume that instance-level explanations take the form of induced subgraphs derived from the in-
put graphs, whereas model-level explanations are graphs within the input space that are determined
by identified concepts (prototypes in Prototypical Networks, or graph filters in Graph Kernel Net-
works). We choose to consider induced subgraphs (thresholded maps of importance over the input
graphs) because the values within importance maps can vary in interpretation, range, and distribution
across different models, which affects measures of similarity between maps.

Note that Prototypical Networks and Graph Kernel Networks can be defined as a composition of
three functions f = fpred © fagg© fsim, Where fg;n, yields similarity scores between input subgraphs
and concepts, f,q4 aggregates scores over subgraphs, and f,.q does the final prediction. For Graph
Kernel Networks, the input subgraphs correspond to the k-hop neighborhoods of each node, with
the aggregation function usually being a summation. Prototypical Networks compare an encoded
input graph against learned prototypes, while allowing subgraphs that contribute to the similarity
scores to be identified. We assume that f is a graph classification network, although this assumption
can be omitted, and the formulas for the evaluation metrics can be easily adjusted.

2.1 PROPERTIES TO COVER

Co-12 (Nauta et al., 2023) is a set of conceptual properties, such as Compactness and Correctness,
that are essential for a comprehensive assessment of explanation quality. Inspired by it, we propose
AIM, a set of 12 metrics divided into 3 categories to assess: accuracy (A1-A2), instance-level expla-
nations (I1-17) and model-level explanations (M1-M3). These metrics cover 12 desired properties
of GNN explanations that we describe in Table

2.2 AIM EVALUATION FORMULAS

Let G € D be a graph from the dataset D C G. Let f be a network that we want to explain—
either an interpretable GNN or a GNN examined through post-hoc explainers. Let h be an explainer,
which for a graph G, produces an induced subgraph h(G) C G as an explanation, for the prediction
f(G) = ¢, where c is the predicted class label. Let IoU(G;, G2) denote the intersection over union
of the node sets of induced subgraphs G1,Gs C G. Let I represent the indicator function. Note that
h depends on f, and i does not have to be deterministically defined—for example, when it has to
be trained—while f always returns the same result for the same input.

We now define the formulation for each of the AIM metrics using this notation. For specific details
regarding perturbation methods and other hyperparameters, see Appendix
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2.2.1 INSTANCE-LEVEL

Al: Accuracy (instance-level) Compares the instance-level explanation against the ground truth:
IoU (h(g ), € ) where £ represents the ground truth explanation for the considered task, £ C G.

I1: Completeness (with) Assesses class predictions for the explanation: I(f(h(G)) = ¢)

I12: Completeness (without) Assesses class prediction for the induced subgraph that contains
nodes not included in the explanation: I(f(G\h(G)) # c)

I3: Consistency Measures consistency of the explainer: IoU(hy, ha), where hy, ha ~ h(G).

I4: Continuity (nodes) Evaluates the differences in the explanation when the node features of the
input graph are slightly modified: IoU(h(G), h(G"*%*)), where G"%S is graph G with features
altered in a few nodes.

IS: Continuity (edges) Evaluates the differences in the explanation when the edges of the input
graph are slightly modified: IoU(h(G), h(G®¥)), where G is graph G with a few altered
edges.

I6: Contrastivity Assesses ability to distinguish between explanations for graphs classified into
different classes: I(f*(h(G)) = f(G)), where f” is a model trained on explanations h(G) and
predicted labels f(G).

I7: Compactness Measures size of the explanation: |h(G)|/|G|, where | - | measures graph size.

2.2.2 MODEL-LEVEL

Let f(-|0,{H:},) be an interpretable GNN network to be investigated (Prototypical Network or
Graph Kernel Network), where H1, ..., H,, denote graphs that represent identified concepts (pro-
jected prototypes or graph filters) and 6 represents the rest of the model’s parameters, m € N,.
Note that H, ..., H,, are model-level explanations.

A2: Accuracy (model-level) Compares model-level explanation against ground truths:

model-level explanations, | € N, and GED denotes normalized graph edit distance.

M1: Correctness (nodes) Evaluates the difference in the instance-level explanations, when node
features in concepts are modified: ) ;. IoU(h(G), h'(G)), where ' is the explainer function
of network f(+|@, {H°ds}m ), where H1°% is H,; with modified node features.

M2: Correctness (edges) Evaluates the difference in the instance-level explanations, when node
features in concepts are modified: > ;. IoU(R(G), #'(G)), where i’ is the explainer function

of network f (-0, {H}m ), where H2* is H; with altered edges.

K3
M3: Compactness Assesses correlation between similarity scores with respect to different con-

cepts: 1/(m(m — 1)) 3772, 377, CORR({s(9)}gep. {5;(9)}gep), where si(G) = S;
for S = fagg © feim(G|0, {H;}™,) € R™ andi = 1,...,m.

Each proposed metric takes values in the range [0, 1]. Metrics I1-I6 should be maximized, while
Al-A2, I7, M1-M3 should be minimized. Completeness is analogous to fidelity, sufficiency, or
necessity as discussed in other works (Zheng et al., 2024; Tan et al., 2022} |Chen et al., [2022)), while
continuity is comparable to robustness (Bajaj et al., 2022]).

3 EVALUATION OF EXISTING XAI FOR GNNS USING AIM

3.1 EXTRACTING EXPLANATIONS FROM INTERPRETABLE GNNSs

Post-hoc explainers for instance-level explanations provide methods for deriving explanations from
existing GNNss in the form of importance maps over input graphs, whereas explanations from inter-
pretable GNNs, such as Prototypical Networks for graph and Graph Kernel Networks, need to be
extracted. First, we outline how the identified concepts are projected onto the input space to serve as
model-level explanations. Next, we propose a SHAP-based approach for extracting instance-level
explanations from concept-based interpretable GNNs.

As in the previous section, let f = fprea © fagg © fsim represent an interpretable GNN, where
fsim yields similarity scores between input subgraphs and concepts, f,,, aggregates scores over
subgraphs, and fp,.q does the final prediction.
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3.1.1 MODEL-LEVEL EXPLANATIONS

Existing interpretable GNN methods rely on trainable concepts to make predictions, which are re-
garded as model-level explanations. These concepts are either explicitly given in graph form (in
Graph Kernel Networks) or as embeddings (in Prototypical Networks), which can be projected onto
the input space to obtain their graph representations (Zhang et al.,|2021)). If graph filters in GKN are
represented using continuous node features and a continuous adjacency matrix, they can be projected
onto the input space by discretizing the adjacency matrix and identifying node features present in
the dataset that show the highest similarity with respect to f;.,-

3.1.2 INSTANCE-LEVEL EXPLANATIONS VIA SHAP PROPAGATION

For instance-level explanations, since no framework exists in prior work on interpretable GNNs, we
define a method based on SHAP (Lundberg & Leel,|[2017)). While the described approach is tailored
for graph classification tasks, it can be easily adapted to other use cases.

Let G be an input graph, let m be the number of concepts identified by the network f, m € Ny.
Let S = fsim(G) € R™*™, where n denotes number of input subgraphs that are compared against
concepts, z = fuq4(S) € R™, and p = fprea(2) € RC, where c is the number of classes, ¢ € Ny.
Let p be the logit predicted for the class that G will be classified as: p = max;—1,... ¢ P;-

First, we compute the SHAP values for the function f,,..q, with input z and prediction p, yielding
a set of values {¢; }7", where ZZO ¢; = p. Here, ¢ represents the expected value, while ¢, for
i = 1,...m corresponds to the importance of each respective concept. For simplicity, we assume
that the aggregation function f,4, is a summation over subgraphs, z; = Z?:l S;i. However, this
can easily be adapted to accommodate other aggregation techniques. We define a map of importance
over input subgraphs w € R™ such that w; = 37| (¢; - Sji)/zi, and hence ¢o + >_7_, w; = p.

For Prototypical Networks, input subgraphs are subgraphs that contribute to the similarity scores
the most. Let G, represent input subgraph that is associated with similarity score z;, 7 = 1,...,m.
We define importance of a node v € G as ¥(v) = Y . w; fori : v € G;,i = 1,...,m. For Graph
Kernel Networks, input subgraphs are defined as the neighborhoods of individual nodes. Assuming
that nodes in G are ordered, let v € G be the i-th node in graph G, ¢ = 1,...,n. Then G; represents
the subgraph centered around v. The importance of node v is then defined as 1 (v) = w;.

The final map of nodes importance is defined as softmax({1(v)},ecg). Using softmax normalizes
the importance scores into a probability distribution, enabling clear comparison of each element’s
contribution. To identify the set of important nodes and, subsequently, the induced subgraph of G
that serves as the explanation, we apply thresholding techniques.

3.2 EXPERIMENTS
3.2.1 SETUP

Models We evaluate different types of XAl models: 1) post-hoc explainers: GNNExplainer (Ying
et al.,|2019a) and PGExplainer(Luo et al., 2020), 2) Protypical Network: ProtGNN (Zhang et al.,
2021), and 3) Graph Kernel Networks: KerGNN (Feng et al., [2022) and GKNN (Cosmo et al.,
2021). Additionally, we train a GIN (Xu et al.| 2019) for evaluation of post-hoc explainers.

Datasets We use 6 well-known datasets that contain: Table 2: Dataset statistics summary.
1) synthetic graphs: BA2Motifs (Luo et al., [2020) and
BAMultiShapesDataset (Azzolin et al., 2023), 2) molec-  Dataset #Graphs Y& # Classes

ular graphs: MUTAG (Debnath et al., [1991) and PRO- # Nodes

TEINS (Borgwardt et al., |2005), and 3) social graphs: ﬁﬁﬁﬁﬂ‘;ﬁapes 1100000 421(5) %
IMDB-BINARY and IMDB-MULTI (Yanardag & Vish-| MUTAG 188 18 2
wanathan, 2015)). Following common practices, we don’t fMRng;_E];NS 18(1)(3) ;g %
use node features in synthetic datasets, whereas in social ~ IMDB-M 1500 13 3

datasets, node degree is used as the feature if model al-
lows for it (all except GKNN). Table 2] summarizes statis-
tics for the datasets.
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Figure 2: AIM metrics measured for post-hoc explainers (GNN-Explainer, PGE-Explainer), Proto-
typical Network (ProtGNN), and Graph Kernel Networks (KerGNN, GKNN). Note that the metrics
have been oriented such that higher values indicate better performance.

Metrics We evaluate prediction accuracy of each model as a reference point, and AIM matrices
defined in Section Each AIM metric has values in the range [0, 1]. For evaluation, minimization
metrics are adjusted by using 1 — -, where y represents the metric value, ensuring that a higher score
consistently indicates better performance across all metrics.

Hyperparameters We select hyperparameters based on the authors’ guidelines and optimize them
for the best predictive accuracy. However, we observe that higher accuracy can sometimes result in
lower XAl performance, as we notice in the case of KerGNN. For calculating SHAP, we use Deep
SHAP (Lundberg & Lee| 2017). Hyperparameters specific to the calculation of AIM metrics are
provided in the Appendix [A.]

Thresholding To determine which nodes or edges should be included in the explanation based on
maps of importance, we use elbow points as a thresholds. We evaluate node importance for all mod-
els, except for PGExplainer, which considers edge importance. Results for alternative thresholding
techniques are in Appendix [A.2]

3.2.2 RESULTS

Prediction accuracies of each model are shown in Table 3, while Table 3b] shows time needed to
extract explanations using each method. Evaluation of AIM metrics is presented in Figure 2]

GNNExplainer Based on Figure da] we observe that GNNExplainer does not provide consistent
explanations (I3-15), which may be attributed to the small size of the extracted explanations (I7).
Refining the thresholding technique could improve this (see Appendix [A.2). While the explanations
are distinguishable between classes (I16), the model struggles to identify the most relevant parts of
the graph for the task (I1-12). Its similarity to ground truth is the weakest among all evaluated mod-
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els. However, the method demonstrates robustness by maintaining consistent performance across
datasets.

PGExplainer While PGExplainer, in Figure @b] is a non-deterministic algorithm (has to be
trained), it exhibits notable consistency (I3-14), though it is understandably more sensitive to changes
in edges, as they are central to its approach (I5). However, PGExplainer struggles to differentiate
between relevant and irrelevant parts of the graph (I1-12). Compared to other methods, its expla-
nations lack clarity in distinguishing between classes (I6), which correlates with the size of the
extracted subgraphs (I7).

ProtGNN ProtGNN’s, in Figure [4c] limitations stem from its mechanism of sampling input sub-
graphs to generate prototype projections and identify the most relevant subgraphs. Since the sam-
pling process heavily relies on edges, it becomes inconsistent when the input edges are altered (I5).
While the prototypes are not explicitly in graph form and require projection onto the input space,
ProtGNN still demonstrates a good level of explainability. However, the model’s main drawback
is its computational time (see Table [3b)), largely due to the sampling strategy. Not only is the ex-
planation extraction process slow, but the projection phase during training is also time-consuming,
as it requires iterating over the dataset to identify subgraphs that best match the prototypes. This
approach limits the model’s scalability compared to others.

KerGNN KerGNN’s issues, highlighted in Figure [4d] arise from its heavy reliance on node fea-
tures rather than edges. While edges define the input subgraphs compared against graph filters, the
model often performs best when the Random Walk Kernel—used as the kernel function—considers
only paths of length 1. This essentially reduces the kernel function to a comparison of the node
sets of graphs, largely ignoring edge structures. Additionally, KerGNN combines input node feature
information with similarity scores for final predictions, which limits the model’s ability to identify
meaningful concepts, as it can infer much of the information just from node features (such as node
degree in IMDB datasets).

GKNN  As illustrated in Figure e} GKNN’s explanations are consistent (I3-15) and dependent on
the learned concepts (M1-M2). Moreover, these concepts are both relevant (A1-A2) and concise
(M3). We observe that the explanations tend to be larger (I7), which correlates with other metrics
(I1-12 and 16). This occurs because many subgraphs within a graph receive similar kernel responses
from graph filters, making it more challenging to differentiate between relevant and irrelevant sub-
graphs, and consequently, individual nodes. The time required to extract explanations from GKNN
is approximately 40% longer (see Table due to the use of graph kernels, such as the Weisfeiler-
Lehman Graph Kernel, which cannot be executed on GPUs and involve slower operations compared
to the Random Walk Kernel used in KerGNN. GKNNs employ non-differentiable graph kernels,
and hence require training through a Discrete Randomized Descent strategy, which limits fast GPU
computations and ultimately restricts their scalability.

Our observations suggest that KerGNNs do not effectively identify graph concepts. However, we
acknowledge KerGNN’s conceptual advantage over other methods, particularly in their scalability.
In the following section, we introduce a new model built on the principles of KerGNN and other
GKNs, designed to achieve a higher level of explainability by: 1) extracting more relevant concepts,
and 2) simplifying the differentiation between relevant and irrelevant nodes in importance maps.

Table 3: Evaluation of models

(a) Accuracy for GNN classifiers. (b) Average runtime (s) for extracting explanations.
Dataset GIN  ProtGNN KerGNN GKNN Dataset GNNExp. PGExp. ProtGNN KerGNN GKNN
BA-2motifs 99.80  99.80 98.64 9920  BA-2motif 0.014 0.029  44.948 0.033  0.043
BAMultiShapes  95.10  87.00 90.30 9390  BAMultiShapes  0.014 0.029 164462  0.037  0.051
MUTAG 84.74  89.47 80.05 8263  MUTAG 0.018 0.038  13.457 0.010 0016
PROTEINS 74.48  85.00 73.94  73.05  PROTEINS 0.012 0.027  43.497 0.038  0.058
IMDB-B 76.00  71.78 71.10  66.00  IMDB-B 0.014 0.043  71.696 0.032  0.044
IMDB-M 4613 46.00 4713 4400  IMDB-M 0.011 0.039  10.223 0.066  0.081
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Figure 3: Overview of XGKN. Trainable components highlighted in yellow. Upper section illus-
trates the forward pass for prediction, and lower section demonstrates the extraction of explanations.
Input graph G of size n is processed as a set of node-centered subgraphs Gy, ..., G,,. Each subgraph is
compared against graph kernels H, ..., H,,, using kernel function K, which yields similarity scores.
These scores are then aggregated using f,g, and passed to the predictor fyeq Which determines the
class label c. For explanation extraction, SHAP values obtained for fy.q are propagated back onto
the input graph G by reversal of the aggregation of similarity scores.

4 XGKN

In this section, we introduce a new model that builds upon existing GKN principles and demonstrates
enhanced explainability capabilities. Our primary objective is to refine the GKN model’s ability to
identify more relevant concepts and generate maps of node importance that offer a clearer distinction
between relevant and irrelevant nodes compared to existing GKNs, particularly KerGNNs.

4.1 METHOD

Consistent with previous notations, we define the network XGKN as a composition of three func-
tions fpred© fagg© fsim. Function fg;,, extracts similarity scores (kernel responses), f, 44 aggregates
them, and f,,..q produces final prediction.

Let G be an input graph of size n. Let G, be a k-hop neighborhood of node v, k¥ € Ny. Let
Hi, ..., Hm be the set of m graph filters, m € N,. Here, nodes in graphs are ordered. To simplify
the notation, for v € G, v denotes a node in G and also corresponds to its index in G, v =1,...,n.

Function f;,, represents the graph kernel module which extract kernel responses. In XGKN, we
use Random Walk Kernel as it is computationally efficient and differentiable. It counts the number
of walks that two graphs have in common. Let G,G’ € G be graphs. Since performing a random
walk on the direct product graph G, = G x G’ is equivalent to performing the simultaneous random
walks on graphs G and G, the P-step random walk kernel can be defined as

P P
Kpw(G.G)) =Y Kby (G,¢) =Y STALS, ()
p=0

p=0

where A is an adjacency matrix of G, and S = X X' T where X and X' represents node features
of G and G’, respectively. .S;; corresponds to similarity between i-th node in G and j-th node in G'.

We want to associate kernel responses for G, with the importance of node v, hence we define the
kernel function K : G x G — R, as a Random Walk Kernel in which only walks that start in v are
counted. To improve the fairness of the comparison of kernel responses from different graph filters,
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we normalize feature embeddings of compared node features. For filter 7;,7 = 1, ... m, we obtain

|l
K(gani) = Z Z (STAZ; S)(v,v’),(u,u’)a 2
p=0 wueg,
v’ u' €H;

where A, is an adjacency matrix of G, x H;, and S = Xg, X7, , where Xg, and X3, represent
normalized (encoded) node features of G, and H,;, respectively. We define

fsim(G) = [K(QU7H1‘)}@_=11,.4.,”, € R’_ﬁxm. (3)

R 2%

Let R = fsim(G). Instead of using the default summation as the aggregation function f,,,, we opt
to normalize R and take the negative entropy to capture the relative contributions of each node and

graph filter. We define the aggregation function fogy = ( (E_},)g, o fa(g;)), where
1 = Rvi Rvi
9 (R) = log eR, i=1,...,m. 4)
w0 =2 TR TR

For the final predictor fy,.q, we employ a single linear layer or MLP, preceded by batch normal-
ization, but aim to use as little layers as possible to achieve desired accuracy. This setup facilitates
optimization, encourages the model to learn a more effective set of graph filters, and helps prevent
overly complex dependencies between them and final predictions. The graph filters H1, ..., H.n,,
along with the parameters of the predictor function fp,.q, are parameters of the network optimized
during training using gradient descent. Figure [3|shows an overview of XGKN.

4.2 EXPERIMENTS
4.2.1 SETUP
In terms of datasets, metrics and thresholding, we follow the same setup described in Section

Hyperparameters For GKN-specific hyperparameters, we do a grid search considering those best
suited for GKNs models from Section[3] Searched features include: number of graph filters (4, 8 or
16), size of graph filters (6 or 8), dimension of the node feature encoder (16), radius of node-centered
subgraphs (2 or 4) and their max size (10). We employ a single-layer classifier, preceded by batch
normalization, to make the final prediction. We train XGKN for up to 1000 epochs using the Adam
optimizer, with a learning rate of 0.01, a weight decay of le-4, and a batch size of 64.

4.2.2 RESULTS

Tablef4] shows predigtive accuracy .and time needed to ex- Table 4: XGKN performance
tract explanations using XGKN. Figure[|shows achieved
AIM metrics. Accuracy (%) Time (s)
. . BA-2motifs 99.4 0.028
XGKN outperforrqs its prqdecessor, KerGNN, delivering AMEll(t)iétfapes 91.2 0.028
superior results while requiring less time to extract expla-  MUTAG 84.74 0.006
nations compared to other methods. It identifies more rel- ~ PROTEINS 73.31 0.031
evant concepts, as evidenced by higher scores in A2 and  IMDB-B 67.30 0.028
M1-M3. Additionally, XGKN demonstrates consistency IMDB-M 46.40 0.063

across different datasets, with more balanced metric val-
ues. Unlike other methods, where strong performance in one often leads to significant declines in
others, XGKN maintains a more stable performance. For easier model comparison, refer to Ap-

pendix [A3]
5 CONCLUSIONS

We propose AIM, a set of 12 metrics for a comprehensive evaluation of XAI methods for GNNss,
addressing not only their accuracy when ground truths are available but also assessing the reliability
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Figure 4: AIM metrics comparison for XGKN. Lower opacity figures same as Figure

of both instance-level and model-level explanations. We define a way of extracting instance-level
explanations from existing inherently interpretable GNNs, and demonstrate that AIM metrics ef-
fectively capture the strengths and limitations of XAI GNN methods. Based on observations, we
propose a new model, called XGKN, which builds upon existing GKN principles while prioritizing
XAI capabilities over just its accuracy.
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A APPENDIX

A.1 HYPERPARAMETERS IN AIM EVALUATION

For AIM evaluation, certain perturbations are performed on input graphs, model’s concept parame-
ters are altered, new classifiers are trained. Here, we specify hyperparameters for these operations.

For 14, input graph perturbation is performed by altering node features with a probability of 0.05,
where assigning each feature a randomly selected value from the dataset. For 15, perturbation is car-
ried out by removing an existing edge with a probability of 0.005 and inserting a new node between
two connected nodes with the same probability. For 16, a new classifier is trained using the hyper-
parameters from the GIN model employed for post-hoc explainers. For M1, concept modification
involves changing the features of each node with a probability of 0.5, assigning random features
from the dataset, and encoding them if required. For M2, concepts are perturbed by either adding a
non-existent edge or removing an existing edge between node pairs, each with a probability of 0.25.

A.2 THRESHOLDING

To distinguish between relevant and irrelevant parts of input graphs, it is necessary to apply a thresh-
old to the importance maps of nodes or edges. Several techniques can be used for this purpose.

One straightforward approach is the top-k method, where the k£ nodes or edges with the highest im-
portance scores are selected. Another technique involves setting the threshold based on percentiles.
In this case, importance maps are normalized to sum to one, and for a given percentile p € [0, 1],
a threshold is chosen such that the cumulative importance below it sums to p. Nodes or edges with
importance scores above this threshold are considered relevant.

A method that avoids the need for hyperparameters like k or p is identifying the elbow point of
the sorted importance scores, which serves as a natural threshold. We apply the approach based on
calculating distance from a reference line.

Figure [5] presents the results of different thresholding techniques applied to various models on the
BA-2motif dataset.

We observe correlations between different metrics. Improvement in one often comes at the cost
of another; for example, increasing the size of the explanation (I7) improves the likelihood that
the explanation will be classified in the same class as the original graph (I1). We see that AIM
evaluation for some models depends more heavily on the thresholding technique (PGExplainer,
ProtGNN, GKNN).

Ideally, importance maps should be constructed in a way that allows for clear distinction between
relevant and irrelevant nodes, for instance, by leveraging elbow points, rather than relying on hyper-
parameters such as the target number of nodes or a percentile.

A.3 SUPPLEMENTARY PLOTS FROM AIM EVALUATION

Figure [6] presents additional plots of the results shown in the main paper, aggregated based on the
used dataset for easier comparison of the models.
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Figure 5: AIM metrics measured for different thresholding techniques and models on the BA-2motif
dataset: 1) post-hoc explainers: GNN-Explainer, PGE-Explainer, 2) Prototypical Network: Prot-
GNN, and 2) Graph Kernel Networks: KerGNN, GKNN and XGKN. Since PGExplainer produces
importance maps for edges rather than nodes, for top-k experiments, we select nodes from the top
[k/2] edges to ensure a fair comparison. Note that the metrics have been adjusted such that higher
values indicate better performance.
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Figure 6: Comparison of AIM metrics achieved by different models, aggregated by datasets.

15



	Introduction and Related Work
	AIM metrics
	Properties to cover
	AIM evaluation formulas
	Instance-level
	Model-level


	Evaluation of existing XAI for GNNs using AIM
	Extracting explanations from interpretable GNNs
	Model-level explanations
	Instance-level explanations via SHAP propagation

	Experiments
	Setup
	Results


	XGKN
	Method
	Experiments
	Setup
	Results


	Conclusions
	Appendix
	Hyperparameters in AIM evaluation
	Thresholding
	Supplementary plots from AIM evaluation


