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Abstract—A fundamental question in natural language pro-
cessing is - what kind of language structure and semantics is
the language model capturing? Graph formats such as knowl-
edge graphs are easy to evaluate as they explicitly express
language semantics and structure. This study evaluates the
semantics encoded in the self-attention transformers by lever-
aging explicit knowledge graph structures. We propose novel
metrics to measure the reconstruction error when providing
graph path sequences from a knowledge graph and trying to
reproduce/reconstruct the same from the outputs of the self-
attention transformer models. The opacity of language models
has an immense bearing on societal issues of trust and explainable
decision outcomes. Our findings suggest that language models
are models of stochastic control processes for plausible language
pattern generation. However, they do not ascribe object and
concept-level meaning and semantics to the learned stochastic
patterns such as those described in knowledge graphs. This has
significant application-level user trust implications as stochastic
patterns without a strong sense of meaning cannot be trusted in
high-stakes applications.

Index Terms—Knowledge Graph, Graph Neural Networks,
Transformers

I. INTRODUCTION

Recent studies have studied self-attention models such as

transformers for their ability to encode underlying graph struc-

tures by drawing parallels with graph neural networks (GNNs)

[1] Intuitively, there is a correspondence between the self-

attention map in the transformer and the normalized adjacency

matrix in GNNs. Also, there is a correspondence between

GNN node representations and the output value vectors from

a transformer. The multiple routings of the transformer output

through layers of the transformer are similar to multiple graph

convolution aggregations in a GNN. Thus, both transformers

may be an effective way to learn graph contexts between

language tokens. In this study, we aim to test this perceived

equivalence rigorously.

Do transformers encode semantic graphs between input

sequence tokens? We perform simple experiments that feed

various graph path sequence inputs to transformers (we test

with multiple KGs and LMs) and try reconstructing the input

graph from transformer outputs. In our experiments, we find

that in doing so, a high reconstruction error is observed for

certain types of graph paths, paths that require strongly typed
real-world concept level knowledge (e.g., Volvo is typically

a type of high-performance car which is, in turn, a type of

car). Several previous works have performed similar knowl-

edge graph-based reconstruction experiments. However, they

have measured link prediction performance alone and not

path predictions [2]. Link prediction is a weak evaluation

of knowledge graph semantics as the richness of concepts

in a knowledge graph comes from graph paths connecting

concepts comprising multiple relationships. Furthermore, they

have not qualitatively analyzed the results of successful and

failed outcomes. In this study, we quantitatively measure the

ability of transformers to predict relationships and concepts in

knowledge graph paths. We also qualitatively inspect the paths

on which the model makes errors to evaluate their conceptual

understanding capabilities.

II. METHDOLOGY

First, we extract masked graph paths from the knowledge

graphs for processing by the language model. Figure 1 il-

lustrates the masked graph path extraction process from the

knowledge graph. Next, we predict the masked tokens and

Fig. 1. Steps 1, 2, and 3 show the process of converting the knowledge graph
links to paths. Step 4 shows the masked inputs to the language model that will
predict the masked tokens. The links are connected two make longer paths
through the use of inverse relationships, e.g., has-1.

calculate the percentage of times the language models assign

the correct token top five prediction ranks (measured using

softmax over logits). Figure 2 illustrates this process. The final

softmax logits obtained can be ranked in order of probability
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values. For our evaluation metric, we calculate the percentage

of times the correct answer is within the top five probabilities.

We call this metric %Top@5.

Fig. 2. The figure shows how the masked graph path inputs are processed
through the self-attention transformer models to obtain softmax logit outputs.

III. EXPERIMENTS

We extract approximately 300K knowledge graph links

from the knowledge graphs DBPedia, ConceptNet, Wiktionary,

WordNet, and OpenCyc Ontology [3]. The relationships we

find are Antonym, DistinctFrom, EtymologicallyRelatedTo, Lo-
catedNear, RelatedTo, SimilarTo, Synonym, AtLocation, Capa-
bleOf, Causes, CausesDesire, CreatedBy, DefinedAs, Derived-
From, Desires, Entails, ExternalURL, FormOf, HasA, Has-
Context, HasFirstSubevent, HasLastSubevent, HasPrerequi-
site, HasProperty, InstanceOf, IsA, MadeOf, MannerOf, Moti-
vatedByGoal, ObstructedBy, PartOf, ReceivesAction, SenseOf,
SymbolOf, and UsedFor. The data can be found at this link.

For the language models, we use bert-base-uncased, bert-large,

GPT-Neo small, medium, and large with 0.1B, 0.3B, 1B, 2.7B,

and 6B parameters, respectively (B stands for billion) [4].

A. Quantitative Results

Figure 3 shows the quantitative results. We explain the

results in the figure caption due to space limitations.

B. Qualitative Results

We manually inspect the knowledge graph paths at which

the language models fail, which we will call false paths. Inter-

estingly, the false paths almost exclusively involve knowledge

of strongly typed objects and their properties as seen in the

real world. Some examples include “volvo IsA car CapableOf

slow down”, “retrograde motion HasContext astronomy IsA

physics”, “handicapped SimilarTo unfit RelatedTo unhealthy”,

and “ultimate frisbee IsA field game IsA outdoor game”.

The remaining examples are at this link. This finding is

particularly interesting as it supports third-party observations

Fig. 3. The X-axis denotes the number of parameters in billions, and the
Y-axis measures the %Top@5. The performance measured using %Top@5
increases steadily with the number of model parameters. However, after a
certain amount of parameters is reached (∼ 1 billion), the performance starts
to flat-line. The variance across different runs remains significant (∼ ± 5),
although it also shows a decreasing trend with increased model parameters.

about language models’ fundamental lack of a conceptual

world model when asked about physics-related questions (e.g.,

block-stacking) [5].

IV. CONCLUSION

This paper opens the black-box language models’ ability

to model knowledge graph semantics by proposing masked

prediction tasks on graph paths. We do this to understand a

language model’s conceptual understanding and its bearings

on application-level user trust issues. We introduce metrics

for the evaluation of the results and also manually inspect the

outcomes.

Our findings suggest that language models are models of

stochastic control processes for plausible language pattern

generation. However, they do not ascribe object and concept-

level meaning and semantics to the learned stochastic patterns

such as those described in knowledge graphs. This has signif-

icant application-level user trust implications for applications

requiring concept-level understanding (e.g., healthcare) and

physical simulations (e.g., war-time strategies). Our findings

suggest that using language models alone, which are stochastic

control models, to drive high-stake application-level decisions

would be highly unsafe and irresponsible.
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