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ABSTRACT

In-context learning (ICL) is a central capability of Transformer models, but the
structures in data that enable its emergence and govern its robustness remain
poorly understood. In this work, we study how the structure of pretraining tasks
governs generalization in ICL. Using a solvable model for ICL of linear regres-
sion by linear attention, we derive an exact expression for ICL generalization error
in high dimensions under arbitrary pretraining—testing task covariance mismatch.
This leads to a new alignment measure that quantifies how much information
about the pretraining task distribution is useful for inference at test time. We
show that this measure directly predicts ICL performance not only in the solvable
model but also in nonlinear Transformers. Our analysis further reveals a tradeoff
between specialization and generalization in ICL: depending on task distribution
alignment, increasing pretraining task diversity can either improve or harm test
performance. Together, these results identify train-test task alignment as a key
determinant of generalization in ICL.

1 INTRODUCTION

Pre-training on simple next-token prediction enables Transformer models to acquire a remarkably
broad array of capabilities, from language translation to code generation and mathematical reasoning
(Achiam et al., 2023; Anthropic, 2024; DeepSeek-Al et al., 2025; Vaswani et al., 2017). Among the
emergent abilities that enable Transformers to flexibly execute a myriad of tasks, their capacity for
in-context learning (ICL) is particularly striking, as it allows for test-time task execution without
task-specific pretraining (Von Oswald et al., 2023; Wei et al., 2022). In other words, ICL reflects
the ability to emergently meta-learn a learning algorithm during pretraining, which is then applied
to learn from data within a context at test time (Akyiirek et al., 2023; Raventos et al., 2023; Zhang
et al., 2024a).

For ICL to be effective, the tasks encountered at test time must not be totally unrelated to those
encountered during pretraining, as there is no free lunch. Though substantial theoretical attention
has been devoted to the question of why and how ICL emerges and how well the resulting algorithms
perform, this key issue of how pretraining tasks should be selected to enable ICL in the real, test-
time world remains underexplored (Lu et al., 2025; Zhang et al., 2024a;b). This motivates the central
question of our work:

Central Question

How does mismatch between the structure of tasks seen in pretraining and the structure of
tasks faced at test time affect the ability of in-context learners to generalize?

Here, we investigate how pretrain-test task alignment affects generalization in a simple model set-
ting, ICL of linear regression. Our main contributions are as follows:

* We give a precise mathematical analysis of the performance of a simplified linear Attention mod-
ule learning to do linear regression in-context. We model pretraining and test task distributions
with arbitrary covariance structure, generalizing previous works on this model that assumed iden-
tical task distributions (Lu et al., 2025; Zhang et al., 2024a). In this solvable model, ICL general-
ization is governed by a particular alighment metric between pretraining and test task distributions.
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* Though derived for a simplified linear model, we show that this alignment measure predicts the
generalization performance of nonlinear Transformers trained to do linear regression in-context.

* Finally we show in the solvable model that it is not always optimal from a generalization stand-
point to pretrain on the same distribution of tasks that the model will encounter at test time, as
echoed in kernel regression (Canatar et al., 2022).

In all, our work sheds light on how pretrain-test task alignment shapes the performance of in-context
algorithms. It reveals how the inductive biases of Transformers can result in optimal task misalign-
ment: rather than teaching to the test, a different curriculum of pretraining tasks may better enable a
Transformer to learn the algorithm that enables it to generalize well at test time.

1.1 RELATED WORK

Empirical studies of ICL. Empirical work has shown that LLMs can learn diverse tasks from ex-
amples alone, with performance improving predictably with scale (Achiam et al., 2023; Anthropic,
2024; DeepSeek-Al et al., 2025; Vaswani et al., 2017; Von Oswald et al., 2023; Wei et al., 2022).
Several studies document how architectural components, such as attention heads or MLP layers, are
recruited during training to implement ICL (Kratsios & Furuya, 2025; Reddy, 2024; Tong & Pehle-
van, 2025; Zhang et al., 2024b). Various works have also focused on understanding what algorithms
transformers can learn to perform, including gradient descent, Bayesian inference, and compression.
(Ahn et al., 2023; Cole et al., 2025; Elmoznino et al., 2025; Lee et al., 2025; Liu et al., 2024; Ma-
hankali et al., 2023; McCracken et al., 2025; Shen et al., 2025; Singh et al., 2023; Wurgaft et al.,
2025; Zhang et al., 2023). Others have explored the role of task diversity in shaping generalization,
showing that diverse pretraining induces transitions from memorization to generalization (Raventos
et al., 2023). The specific effect of data structure and its role in ICL emergence has also been
studied empirically, notably by Chan et al. (2022) highlighting the importance of anisotropic data
for the emergence of ICL abilities. Our work provides a theoretical counterpart to these empirical
investigations, as we model the generalization effects of structured task distributions.

Theoretical studies of ICL. Theoretical work has flourished in simplified Transformer models,
particularly with linear or kernelized attention. A number of studies show that these architectures
can implement classical learning algorithms, including kernel regression, ridge regression, or gra-
dient descent, purely from in-context tokens (Akyiirek et al., 2023; Bai et al., 2023; Li et al., 2023;
Von Oswald et al., 2023; Zhang et al., 2024b). These insights have advanced our mechanistic un-
derstanding of ICL as algorithm emulation. However, most of these works make restrictive assump-
tions. Commonly, data is drawn from isotropic Gaussians, train and test distributions are matched,
and generalization is studied only in the infinite-sample or population limit. Even recent studies of
finite-sample ICL retain these simplifying assumptions i.e. without full generality of training and
testing task distribution (Fu et al., 2023; Li et al., 2024; Lu et al., 2025; Zhang et al., 2024b). A
notable exception is the work of Goddard et al. (2025) that studies tasks sampled from separate por-
tions of a spherical task manifold. Our work advances this “task generalization” frontier by deriving
an exact expression for the ICL generalization error in the presence of arbitrary task covariances and
finite-sample regimes. This allows us to explore how task-structure mismatch affects generalization,
a setting largely absent from prior theoretical models.

Train-Test task alignment in other settings. Outside of ICL, the idea of train-test task alignment
in linear regression has been studied in the context of out-of-distribution generalization under tar-
get vector and covariate shifts. In particular, past works have studied which measures of alignment
between train and test feature covariance matrices determine out-of-distribution generalization in
high-dimensional ridge regression (Atanasov et al., 2025; Canatar et al., 2021b; Patil et al., 2024;
Tripuraneni et al., 2021). These works build on a substantial body of results showing how the gen-
eralization performance of ridge regression is determined by the structure of the training feature
covariance—principal directions with larger population variance are learned first—and the align-
ment of the task vector with those high-variance directions (Advani et al., 2020; Atanasov et al.,
2024; Canatar et al., 2021a; Dobriban & Wager, 2015; Hastie et al., 2022). Our work brings this
perspective into the ICL setting by analyzing the effects of the pretraining covariance, and pretrain-
test misalignment on generalization. We show that even in simple linear regression settings, struc-
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ture mismatch induces rich, nontrivial behavior, reinforcing the broader principle that distributional
alignment between pretraining and test-time data is a key driver of generalization.

2 MODEL SETUP

We begin by setting up the solvable model used to derive the results of this work. This setup builds
on previous works that apply a reduced-parameter version of linear attention to linear regression
ICL (Lu et al., 2025; Wang et al., 2020; Wu et al., 2024; Zhang et al., 2024a).

ICL of linear regression. We consider an in-context regression task: the input to the model is
a sequence of the form {@1,y1, T2,Y2,...,Te, Ye, Tet1}, and the required output is the matching
ye41 corresponding to @y, 1. This input is called a context, and ¢ the context length. We consider
the case that the relationship between x and y is approximately linear:

yi = (Ti, w) + ¢ (1
for noise ¢; and task vector w. Thus, the model needs to form an estimate of w using
{x1,y1,%2,Y2, ..., %s, ye} and then apply it to &y to estimate Yo 1.

Pretraining data. The pretraining data batch will contain n sample sequences of the above form,

ie, for p = 1,...,n, the uth sample sequence {x1,y1,x2,y2,..., %, Y¢, Ter1} related by the
approximate linear mapping from (1), y¥ = (x',w") + €/, where now w* is the task vector
corresponding to the p-th sample context.
We will sample the pretraining batch as follows: Fori =1,...,fandu=1,...,n,

xl! ~iia N(0,14/d), el ~iia. N(0,p), )

wh ~unie {t1, - St} where t; ~jjda N(0, Ciain) forj=1,... k.
The parameter k here is called fask diversity. Note that if k& < n, the pretraining batch contains
some tasks repeated across the contexts. In this way, we control both the amount & of actually
unique tasks seen during pretraining, as well as the structure of the task distribution using Cl;ain-

This distinguishes our setup from previous studies which typically focus on isotropic or matched
tasks (Fu et al., 2023; Li et al., 2024; Lu et al., 2025; Raventds et al., 2023).

Linear attention. We will study the performance of the linear self-attention block (Wang et al.,
2020) on this in-context regression task. The input to the linear self-attention model is an embedding
matrix Z made up of our context sequence. Here, following the convention of Wang et al. (2020);
Wu et al. (2024); Zhang et al. (2024a), we chose to embed {x1,y1, T2, Y2, . . ., e, Y, Tyy1} aS

7 Ty T2 ... Ty Ty ER(d-t,-l)x(Z—&-l)’ (3)
oYy .. Y 0

where 0 in the lower-right corner is a placeholder token for the y,4; we wish to predict. The model’s
output (Katharopoulos et al., 2020; Shen et al., 2021; Wang et al., 2020) is given by

A=Z2+VZ(KZ)(QZ)/t (4)
for value matrix V € R(4+1D*(4+1) and key, query matrices K, Q such that KT Q € R(4+1Dx(d+1),
Following the positional encoding in (3), the linear attention model’s prediction for y,; is

U= Adi1,041- )
Previous works from Zhang et al. (2024a) and Lu et al. (2025) have shown that the output § =

Ad+1,¢+41 of the model can be reduced to give a simpler, analytically-tractable model. Writing the
attention and value matrices as

Vii v My mas T
V= , M= =K'Q, 6
{ vy U My Ma2 @ ©
the predictor expands as
1 ¢ ¢ £+1 ¢
i T . 2 T T T
Y= % <U22M11 ;yﬂ?z + V2221 ; y; + My, ; TiT; V21 + M2y ; Yi; ’021) (7)

Zhang et al. (2024a) and Lu et al. (2025) argued that that the final two terms depending on v2; can
be removed without affecting the performance of the estimator: the first, depending on a:iw;vgl,
does not contain any task information, and thus does not help us estimate w. The second, depending
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on y;x va; provides only a one-dimensional projection of z and w, and so for large-dimensional
tokens, does not effectively contribute to good estimate of w either. For this reason, we set vo; = 0.
Zhang et al. (2024a) showed that this choice of parameter initialization is stable under SGD, further
validating this assumption. With this simplification, we can rewrite the simplified model’s output as

Jer1 = tr(THy) ®)
for a parameter matrix
I'=wg [M{/d my]| € RP*ETD )
and a data matrix
Hy =@ [§ 2,0 i®]  § 2,0 97) € REHD. (10)
Reduced model optimization. Given a batch {x},y{’,..., 2} ,,y) }/i—; of pretraining data

(as explained above), we can find finite-sample optimal parameters by minimizing MSE loss on
next-output prediction with ridge regularization, giving

I* = arg min Y (g, — te(C(HYT))* + SAee(TTT), (11)
roo= d
where A > 0 is a regularization parameter, and H* is defined by (10) for the uth context. We will
focus on the minimum-norm predictor, i.e., on the limit where A — 0 (Hastie et al., 2022).

Test error. We finally wish to test the pretrained model on a general task to see if the model can
genuinely perform in-context regression. The test distribution Py is then

™ ~iia N(0,Ig/d), e ~iia N(0, p), W' ~iiq N(0, Chest) - (12)

1 3
We will measure ICL performance by the average MSE error of our optimal estimator g;,, =

tr(I'*H T) over the test distribution,

&ien(l") = Ep,,., [(ye1 — tr(D7H )] (13)
We highlight here the generality of the test task distribution through the new matrix Ciegst, allowing
us to study the interaction of training and testing task structure.

Data parameters in the high-dimensional limit. We have introduced four data parameters: token
dimension d, context length ¢, pretraining batch size n, and task diversity k. As is standard in the
theory of high-dimensional regression (Advani et al., 2020; Atanasov et al., 2024; Hastie et al.,
2022; Lu et al., 2025), we will consider a scaling limit where all four of these parameters are taken
to infinity in a way such that the following ratios remain constant:

12 n k

p =aq, pol =T, and i = K. (14)
Considering this limit makes the model analytically tractable, but preserves interesting phenomena
that are present at finite size. Going forward, we will refer to «, 7, and & as the context length, batch
size, and task diversity parameters, respectively.

Pretraining task quantities. Before presenting our formula for this ICL test error, it will be help-
ful to first define some task-distribution quantities, which depend on the pretraining task covariance
Clrain and task diversity parameter x. These quantities effectively tell us how well we can recon-
struct Cly,i, from the k-sample task covariance that the model sees during pretraining,

1
Ry = > tt]
JE[K]
Because the pretraining tasks {¢1, ..., ¢y} are random, Ry, is a random matrix. However, in high
dimensions, the following deterministic quantities capture the relevant information about Ry: let the
deterministic matrix F);(z) and deterministic scalar M ;(z) be defined through the implicit equations

-1
1
FN(Z) = ((1 - E + IiMN(Z)) Ctrain + ZId) (15)
M, (2) = tr[F(2)] . (16)
Then, we have the high-dimensional equivalence
(R + 213) " ~ F,. (). (17)
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As we define formally in Definition 1 of Appendix B, this equivalence holds in the sense that the
traces of (Ry +21;)~! and F,(z) against test matrices coincide in the high-dimensional limit. Here,
z € Ry is a noise threshold parameter suppressing smaller eigenvalues of Ry.

Intuitively, F;(z) and M (z) give us information about how much signal in C;,in can be recovered
after a finite number £ of pretraining samples, filtered by noise level z. As z — 0 and Kk — o0, Ry
approaches Cipain, and we therefore fully recover the original distribution of tasks. We will use
F!(z) to refer to the derivative of F,;(z) with respect to z; this gives a measure of the sensitivity
of this covariance recovery matrix to the noise level z. These quantities will play a key role in our
discussion of task alignment.

Given this setup, we compute a formula for the ICL generalization error Ercr,(I'*) in terms of the
data parameters «, &, T, the pretraining task covariance C;ain, and the testing task covariance Cest.
We present this formula and discuss its implications in the following sections.

Notation. We write tr[A] = tr(A)/d for the dimension-scaled trace of matrix A. We use a nor-
malized Frobenius inner product between two matrices, i.e. (A, B) = tr[AB"] = tr(AB")/d. We
abbreviate the normalized traces of the task covariances as Ceain = tr[Cirain] and cresy = t1[Chest)-
We denote high-dimensional equivalence (as in Appendix Definition 1) by ~.

3 ICL TEST ERROR DEPENDS ON TASK MISALIGNMENT

3.1 TASK ALIGNMENT DETERMINES GENERALIZATION IN THE SOLVABLE MODEL

We state the main result of our analysis of the simplified linear attention model, which is an analytical
formula for the ICL error (13) in high dimensions. Here we give only an informal statement of this
result and focus on its implications; the formal statement is given by (C.2) in Appendix C.

Result: High-dimensional formula for the ICL error £(I'™*)

The ICL test error (13) of the simplified linear attention model set up above is given by

gICL(F*) = escalar()\trainv Ctest) + 6misalign(c(trainy Ctest) = EICL(C‘C!‘ainv Ctest) (18)
in the high-dimensional limit, where

emisalign(otraim Ctest) = <Ctesta ]C> (19)
measures the alignment between Cleg; and
K = qF.(0) + (gA — 0°)F(0). (20)

Appearing in this formula are an effective ridge variable A and effective noise variable o
given by the solution of the joint equations

MM, (0)=1—7 forT <1, A=0 forT>1 (21)

0 = (,0 + Ctrain)/a + A (22)
where M (-) is determined self-consistently as in (16). Finally ¢ is a pretraining-error
term given by (C.10) and escatar(Atrain, Ctest ) 1S given by (C.12); note that both ¢ and escajar
only depend on Cig; through its trace ciest, and egca1ay only depends on Ciyaiy through its
spectrum A¢yain-

We first support this result through Figure 1, which shows agreement between our theory curve
formula e, (Cirain, Ctest) and numerical simulations of MSE error Ecr, (I'*) given by (11) and
the test distribution (12). By comparing the left (ercr,) and right (€misalign) panels of Figure 1 we
see that the behavior of ercy, is highly dependent on the epjsatign term: for well-aligned training and
testing distributions, low and decreasing eisalign in < immediately leads to a monotonic decrease
in ejcr, in k; for worse-aligned training and testing distributions, ercy, can be nonmonotonic or
even monotonically increasing in «. This is intriguing, as one would naively expect additional task
samples to improve in-context performance, but this is not true in general: whether additional task
samples are helpful for ICL depends on the alignment of the pretraining and testing distributions.

To gain intuition for this misalignment error (19), a useful analogy is to consider the simplest matrix

“misalignment” measure (Cies;Cy,,)- Firstly, this measure captures misalignment that can occur
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Figure 1: Theoretical ercy, (left panel) and emisalign (right panel) curves plotted against numerical
simulations of £(I'*) computed directly from sampled data. We choose Ciyain With uniform
eigenvalue distribution: Clyain o diag([d,d — 1,- - ,1]) such that tr(Ctrain) = d. We compare
Chest = Cirain (red curves) with testing on single task directions, i.e., the “idx 1i/d” labels
correspond to rank-1 test covariances Cj ., = de;e, spiked at index i. In this way, CL,, captures
the strongest task direction of Cl;,;, and C{iest captures the weakest. Parameters: d = 120, o = 2,
7 =4, p = 0.01. Shading represents £std of numerical simulations. We calculate the simulation
values of emisalign in the right panel by subtracting escalar from the MSE simulation values £ ().

from misalignment of the eigenvectors of Ciest and Clain; see Corollary 4.1 and its proof for further
discussion. Going beyond eigenvectors, because the eigenvalues of Ct;;in are ordered opposite to
the eigenvalues of C',.in, this measure effectively captures the relative strength of signal directions
between Clesy and Cipain: if Cipain and Ciest share the same eigenvalues, alignment will be max-
imized when these eigenvalues appear in the same order, and minimized when these eigenvalues
appear in opposing orders. This is precisely why (Ciest C’t_r;in> can be interpreted as a misalignment
measure, as even this very simple Ansatz shows how misalignment arises from mismatches in the
relative weighting of signal directions between train and test tasks. This relative strength argument
holds for our alignment measure, where instead of (Clest Ct_r;ir) we use (Ctest/C). Here K obviously
depends on C,,in—they share the same eigenvectors—and importantly, has the same property as

C{r;in that its eigenvalues are oppositely ordered to the eigenvalues of Ci,.i, (see Appendix D).

However, this eigenvalue-ordering argument is incomplete for the ICL setting. It assumes that Ci,ain
can be fully learned, but with finite context length, finite task diversity, and label noise, this cannot
be the case. Thus, the model cannot access the full covariance structure, only a partial version,
whose resolution depends on both sampling and noise. This is precisely what the resolvent terms
F,.(-) and F(-) in K can capture, as explained in the setup. This is analogous to the alignment
measures that emerge in ordinary ridge regression under covariate shift, which capture how much of
the training feature covariance can be resolved from finitely many samples (Atanasov et al., 2025;
Canatar et al., 2021b; Patil et al., 2024; Tripuraneni et al., 2021). Furthermore, the effective noise o
must play a key role in alignment, as the model does not know a priori that this is an “in-context”
learning problem, and must learn to decouple the tokens from the task for each context in order to
extract the task information implicit in that context. The ability of the model to do this depends on

both the label noise (p), the context length (), and a sufficient number of contexts (). In fact, the

form of 0 = (p + tr[Cirain])/ + A is also familiar from ordinary ridge regression as an effective
noise-to-signal term: the optimal ridge regularization parameter balances the variance due to label
noise (p) with the estimation error from having finite data (Atanasov et al., 2024; Canatar et al.,
2021a; Hastie et al., 2022; Patil et al., 2024). At infinite sample size, the optimal ridge is simply
p, the label noise. However, at finite sample size, the effective regularization is increased due to
the finite-sample estimation error, and becomes (p + 02,)/c, where o2 characterizes variability or
complexity of the regression task. In the same way, our model has to resolve the statistics of the
tokens x over samples (¢, measured by «), and so we expect terms familiar from linear regression
to appear in our formula.
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In summary, our alignment measure is motivated both by arguments regarding spectral ordering and
relative strength, as well as having all components necessary to capture finite size effects. In Figure
2 we compare our alignment measure to three others: the population matrix measure (C’tminC’t_e;Q,
a simpler version of our alignment measure involving just the resolvent (CiyainFi(0)), and finally
the Centered Kernel Alignment (CKA) measure (Kornblith et al., 2019). This comparison illustrates
how different measures emphasize different aspects: (CirainFi (o)) accounts for finite-sample res-
olution effects but not as specifically as (C.inkC) does, while (C’tminC’;iQ and CKA both miss
finite-sample effects altogether, CKA instead being designed to detect nonlinear representational
similarity. We perform this comparison by first noting that, trivially, eyisalign 1S monotonically re-
lated to ercy,: larger emisalign implies larger ercr,. Figure 2 shows ercr, for fixed Clrain and varying
Ciest plotted against the above matrix alignment measures between Cirain and Ciess. We see that
(Ctrain/C) and (Clyain F; (o)) are the strongest drivers of ercy, (i.e. most monotonically related, with
(Ctrain/C) obviously being perfectly correlated), while the performance of <CteStCt_r;in> and CKA
as predictors of ejcy, is lacking.

e Test on powerlaw a4 Teston low ranks * Test on pretrain
1.0

o
©

o
®

e

o
>

°

eicL(Cir, Crest)

<
=

o

02 0.4 0 0.8 04 06 08 10 12 14 16 050 075 1.00 125 150 175 2.00 225 08 1.0 12 14 16 18 20 22

ermisaiign = (CronK) (CrestF(0)) (CreatCirlin) CKA(Cyr, Crest)
Figure 2: ercr,(Cirain, Ctest) against alignment measures: emisalign (Crain, Ctest )» t1[Crest F],
t1[Clest Ct_r;in], and 1/CKA (Clrain, Ctest) from left to right. Ct,aiy is fixed to be a diagonal matrix
with powerlaw spectrum Clpain o diag([17P, ..., d~P] with power p = 0.9 and tr[Ctyain] = 1.
Ciest 18 varied over a range of different covariance matrices that are simultaneously diagonalizable
with Cl,ain, specifically power spectrum with different powers (circles connected by solid line),
and low-rank covariance matrices C, = diag[(d/r)1, ,04_,| (triangular markers connected by
dashed line). Changing the power of the powerlaw tests or the rank of the low-rank tests will make
them either more or less aligned with Cl, ;. Parameters: d = 120, « =2, 7 =4, p = 0.01.

3.2 TASK ALIGNMENT PREDICTS GENERALIZATION IN NONLINEAR TRANSFORMERS
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Figure 3: ICL test loss of a nonlinear transformer against different alignment measures. The setup
of the covariances is identical to Figure 2, the only difference is that here ICL error is computed as
the MSE on the test task as performed by a trained two-layer architecture with softmax attention
and MLP connections. Our measure ep;salign achieves the best correlation with ICL error: the
Spearman coefficients (measuring monotonicity, over all test covariances and averaged over the
different x values) are 0.99 (ours), 0.98, 0.96, and 0.39 from left to right. Parameters: d = 20,
a=2,7=4,p=0.01

We further support the predictive power of our alignment measure defined by eisalign for ICL error
in a two-layer transformer architecture with softmax attention by Figure 3. See Appendix H for
details on the architecture setup. We see that even for an architecture far from the linear attention
considered by the theory, our theoretically-derived alignment measure is still the best predictor of
how changing the test distribution affects ICL error, compared to other alignment measures.
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4 MISMATCHED TASK DISTRIBUTIONS ARE OFTEN OPTIMAL

We have identified the relevant measure of alignment between the pretraining and testing task
distributions for linear transformers learning to perform ICL. It is then natural to ask whether
for a fixed test distribution Ciegt, is it always optimal to pretrain on the test distribution, i.e., is
e10L (Ctest, Crest) < €1¢L(Chrain, Ctest)? In this section, we show that the answer to this question
is in general no, it is not always optimal to pretrain on the test distribution.

Covariance Alignment and Eigenspace Structure. We first show that it suffices to consider the
case in which Cl i and Clegs are co-diagonalizable, as the ICL error is extremal in this case. Note
that we can focus on epigalign, as other terms in the ICL error (18) contained in egcalar (C.12) are
independent of the eigenvectors of these two matrices.

Corollary 4.1: Eigenspace alignment extremizes misalignment error

The misalignment error emisalign (Cirain, Ctest) = (Chest, K) i8 extremized when Cieqy and
C'rain are co-diagonalizable. Concretely, letting A1 (Ciest) > -+ - > Ag(Chest) and Aq (IC) >

-+« > Ag(K) be the ordered eigenvalues of these two real symmetric matrices, we have

d d
1 1
2D X(Crest)Aa—j41(K) < emisatign < 5 D i (Crest) 15 (K0), (23)
Jj=1 j=1
with equality in either the upper or lower bound if and only if Cl,,i, and Ciest are co-
diagonalizable.

To show that this result holds, we observe that, as Cest and /C are real symmetric matrices, the
desired bound (23) is simply a restatement of Ruhe’s trace inequality normalized by 1/d, where
equality holds if and only if Cl.s and IC are co-diagonalizable. We give a self-contained proof of
this inequality in Appendix E (see also Marshall et al. (2010) or Li (2020)’s expository blog post).
By its definition (20), K and Ci,,i, have the same eigenvectors, so the claim follows.

Therefore, the misalignment error can be minimized or maximized if we assume that Ci;,i, and
Chest are simultaneously diagonalizable. We therefore restrict our attention to the co-diagonalizable
setting, and write the ordered eigenvalues of Ciyain and Ciest as A1(Crain) >« -+ > Aq(Chrain) and
)\1 (Ctest) > 2 Ad(ctest)’ respectively.

Optimal Test Covariance for Fixed Pretraining Distribution. Before presenting results on op-
timal pretraining structure for fixed task structure, which is a more practical question to answer, we
begin first with a simpler question: For fixed training distribution Clyain, is it always optimal to test
on the pretraining distribution, i.e., is e1crL(Ctrains Cirain) < €10L(Ctrains Ctest)? The following
result answers this question in the negative:

Corollary 4.2: Trace-constrained optimal test covariance

For fixed Clyain and fixed Ctrain = Ctest, We have that eror, (Cirain, Ctest) is minimized by
the single-index spike covariance with eigenvalues

[)\1 (Ctest) T )\i(ctest) e Ad(ctest)] = [dctrain 0 0]
i.e., all test signal is aligned with the largest eigenvector of Cy,aip.

To see that this holds, note that ejcr,(Cirain, Ctest) 1S a linear function of the eigenvalues of Ciegt
as emisalign(ctraina Ctest) is linear in Ctest and escalar(Atraina Ctest) does not depend on Otest when
Ctest = Ctrain. Furthermore, the constraint cegst = Ctrain 1S @ simplex in the space of Ciest eigenval-
ues. The minimum will thus be attained along the simplex, at the vertex corresponding to the lowest
eigenvalue of K. As argued in Appendix D, this corresponds to the largest eigenvalue of Ci,aip.

This result illustrates a bias towards exploiting low-dimensional structure seen in pretraining to opti-
mize performance at test time. In these cases, where we are optimizing test structure Cyes for a fixed
pretraining structure Cl,,in, We observe that the best generalization is achieved by concentrating all
signal into a single shared direction, collapsing the task manifold into a single dimension. In other
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words, it is easier to learn to generalize over a degenerate low-rank test structure highly aligned to
the pretraining structure than to generalize over the entire pretraining structure learned from lim-
ited samples. This is familiar from spectral bias results of ordinary ridge regression (Canatar et al.,
2021a;b). Note that, had our training distribution been isotropic (Cain = Ig) then all trace-fixed
test covariances will perform equally; utilizing anisotropy is crucial.

Non-Optimality of Pretraining on Test Structure We now investigate the original question of
the optimal pretraining task covariance Ci,,in, given a particular test task covariance Ciest. We
will provide an example showing it is in fact not optimal in general to have Ciyain = Chest- We
particularly emphasize that whether or not a particular task structure is better for pretraining depends
strongly on the task diversity .

Consider the case of power-law task distributions at both training and test time, i.e.,
Clrain o diag [1—pnam . d_l)train} , Chest o diag [1_ptest - d_ptest] ) (24)

with the normalization constant chosen such that tr[Ctrain] = tr[Ctest]. We can study the effect of
changing C';aiy, relative to Ciest On egcr, by changing the exponent py,iy relative to fixed piest-

Figure 4 shows that, for low &, pretraining on C},,;, with higher spectral power relative to the
test power can improve ICL error. We see that focusing pretraining on a low-dimensional subspace,
effectively creating a strong inductive bias, can improve in-context learning performance when train-
ing data is scarce. The model generalizes better by overfitting to fewer directions, rather than learn-
ing more directions weakly. However, increasing the pretraining power too much relative to the test
power will worsen ICL performance, as the pretraining task set is now too low-dimensional to cover
enough variation at test time. We highlight that the potential advantage coming from increasing
training spectral power weakens as soon as  is large enough for the model to be able to resolve
enough task directions during pretraining.

Figure 4: Heatmap of theoretical ICL error given
by (18) for simultaneously diagonalizable
powerlaw task covariances Clain and Ciegsy With
spectral power pi ain (variable) and piest (fixed).
The x-axis shows task diversity s and the y-axis
shows the difference pipain — Prest between task
spectral powers. The colourbar shows the %
improvement in error by training on C},,j, instead
of Cless. This shows that increasing spectral power
T T ———————— | in the pretraining tasks can markedly improve ICL
error on the same test distribution. Parameters:

@ 9 o 3 5 o - dZ100,ptest20.9,0421,T=4,p=0.01.
Kk = kld

Train power — Test power
% Improvement in Error

5 CONCLUSIONS

We have developed a framework of in-context task alignment, showing that our derived measure of
error from task misalignment is a robust predictor of ICL performance, even in nonlinear architec-
tures. This derivation builds on a model of in-context learning of linear regression, which we extend
to fully general task covariates. Previous works have shown that the performance of ICL models
can suffer under task shift, particularly in cases of low task diversity (Garg et al., 2022; Goddard
et al., 2025; Zhang et al., 2024a). We highlight that, while task misalignment is provably a driver of
ICL error, our fully-general covariance framework can be used to show that task misalignment can
indeed be utilized to improve ICL performance in cases of limited data.

Looking forward, our analysis provides a rich model of ICL with many further avenues of inves-
tigation. A more detailed analysis of the interaction between pretraining-specific error ey, and
misalignment error epyjsalign could be used to derive a general heuristic for optimal pretraining,
with potential implications for practical settings. Beyond task alignment, additional highly relevant
phenomena can be investigated: we highlight (1) a generalized learning transition in task diver-
sity (empirically studied by Raventés et al. (2023); see Appendix F) and (2) test-time scaling (see
Gozeten et al. (2025) and Appendix G). We leave exploration of these phenomena to future work.
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SUPPLEMENTARY INFORMATION

In the following sections, we provide proofs of the results presented in the main document. We begin
in Section A with some preliminary simplifications of the ICL and IDG population risk for general
I". Then in Section B we will set up and complete the random matrix theory calculation necessary
to justify our main result, equation 18, which will be done in Section C. Section E will cover the
proof of the phenomena-based Corollary 4.1. Then, we provide additional analysis of transitions
in the behavior of the ICL error as a function of the task diversity x in Section F, and of shifts in
the test-time context length in Section G. We conclude with details of our numerical experiments in
Section H.

Notation Here vec(-) will mean the vectorization operation under the row-major convention: for
ad; x do matrix A, vec(A) is a vector in R%%2, formed by stacking the rows of A together. We will
use this together with the matrix Kronecker product ®, where by standard results we have

vec(uv') =u @ v (25)

(@) (wes) =(uw')e (vs'). (26)
We will also use the notation [M],, to mean the principal minor of a matrix M (i.e., first row and
column removed). We use the following normalized trace

tr[A] = étr(A) .

We use = when defining new quantities. We use ~~ for deterministic equivalence, which describes
the large-dimensional limit of a random quantity (either a scalar or matrix) that concentrates to a
deterministic value as dimension approaches infinity.

A GENERAL ERROR FORMULAS

Here we will set up the definition of various test errors more generally than in the main document. As
this is an in-context learning setup, there are different types of “generalization” that can be studied:
generalization over the tokens and generalization over the tasks. We will define two test errors to
capture these separately.

In general, we wish to understand the performance and behavior of this estimator I'*, which is
pretrained on data from the pretraining distribution Py, ain, When tested on new data. Namely, we
will analyze the average performance of an estimator § = tr(I', Hyz) as a function of given fixed I'
under the MSE loss, which is the natural loss for a regression test. The most general this expression
can be is

Luse(D) = Ep,.., |(yer1 — tr(T, Hy))? (A1)

for a general test distribution Pys; detailing how to sample tokens z, tasks w, and noise € at test
time.

We will consider two different testing regimes: the in-context learning (ICL) test, where the model
sees new tasks w, and the in-distribution generalization (IDG) (or in-weights) test, where the model

sees the exact same tasks used in pretraining {¢;,--- , ¢}, where each t; ~jia N(0, Cirain)-
Explicitly, we define these test distributions and corresponding error functions as follows:
Emc(I') = Eppg {(WH — tr(T, HZ))2} (A.2)

Ping = & ~iia N(0,15/d), w" ~umie {t1,--- ,tx}, €' ~iia N(0,p),
where ¢ € [¢] and p € [n], and
EicL(T') = Ep [(y5+1 - tl"(F,HZ))Q} (A.3)
PrcL =&t ~iia N(0,14/d), w" ~iia N(0,Crest), € ~iia N(0,p),
where i € [(iest] and p € [n].
Notice here that we’ve introduced two different context lengths: ¢ for the IDG distribution, which
is the same context length as the pretraining setup Pyrain given by (2), and £ which is the con-

text length at testing time. This allows us to later explore the effect of pretraining and testing on
sequences of different context lengths.
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We assume that both task covariance matrices Cypain and Ciest are well-behaved in high dimensions,
specifically that tr[Clyain], tr[Ctest] = ©(1). This ensures the task signals are not over or under
amplified as d — oo.

Lemma 1. Simplified test losses. Consider IDG and ICL test distribution and corresponding error
functions as given by (A.2) and (A.3). For fixed parameters T € R+ and data sampled ac-
cording to test distribution Pipg or PicL, the corresponding errors eipg and erci, can be expressed
as

Ema(T) =~ p+ tr[XRy] — 2tr[[Ajpa] + tr[ST Bipel' ' (A4)
Eren(T) =~ p + tr[E2Chest] — 2tr[TAfqy ] + tr[ETBierT '] (A.5)
where
Aipg = [ERpX  (tr[XRk] + p) Zby] (A.6)
Ajcr, = [ECtestX 0], (A7)
Bu: — [ERkE + L (&SR] + ) (r[SRy] + p) E2bk] AS)
(tr[ZRk] + p) (Zbx) " (tr[XRk] + p)
YCiestE + 7 (tr[ECtest] + p) T 0
Bioy — { fremt (ET [ I+ ) ) ) 2] (A.9)
for by, and Ry, defined by the pretraining task sample {wy , ... ,wy} as
by = % Z] tj, R,= % Z] tit] . (A.10)

Jjelk jelk
The “~” in these formulas comes from ignoring terms of order 1/d and weaker, i.e. a high-
dimensional treatment.

Remark 1. Note that Result 1 is a more general result than the setting considered in the main
paper, as Result 1 allows for general token covariance X. The rest of this work will take ¥ = 1, for
computational tractability.

Lemma 2. Fix the task vector w that defines y; = w ' «; + €; for context Z. Denote the conditional
expectation over only x;, €;, holding w fixed, by E. .. Then we have the following

Eg,[yer1] =0 (A.11)
Eq.[Hz] =0 (A.12)
Eec[yis1] = tr[Sww ]+ p (A.13)
1
Eg clyer1Hz] = p Fww'S (trSww']+p) Sw] (A.14)
1 Sww 'S+ ¢ (r[Sww ] +p) L (tr[Sww']+p) Zw
B [vec(H Hz) ']~ =% £
w,c[vec(Hz) vec(Hz) '] =@ (tr[Sww ] + p) (Sw) T (tr[Sww ] + p)z
(A.15)
where recall
Hy =2 [$icovim] 1< v] € RETD, (A.16)

Proof. Equation (A.11) follows immediately from the linearity of y,4; in € and «;, which are both
mean-0 random variables. Similarly for (A.12), as Hz is linear in x4 ;.

For the conditional expectation of y7 1 in (A.13), simply expand

Eue [9741] = Bae [(w' o1 + eer1) (@ w + €41)] (A17)
= Eoe [w ez w + 4] (A.18)
= wTSwtp (A.19)
= tr[Sww ' |+ p. (A.20)

15
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For (A.14), have

d d
Eoe |5 > ynyiweaz | = 7 Y Boe[wo(@lw+e)(w e +e)z]]  (A21)

i<t i<t
d
= 7 ZIE:C)6 [zcgﬂwzﬂww—rwi:c;r] (A.22)
i<t
d
=3 > (B/d)ww’ (£/d) (A.23)
i<t
1 T
= &wa by (A.24)

and

1 1
Eae | Y yenmey;| = 7 D Eoc [z (@lw+ ) (w @i + ) (@] w + 6)]

i</l i<e

(A.25)
= % D Eoe[zenzlw(w za]w+ )] (A.26)

i<t

1

=7 > (E/dw(w " (S/d)yw + p) (A.27)

i<t
= (trSwwT] + p)Sw (A28)

as required for (A.14).
Finally, for (A.15,) first it will be helpful to note, by Isserlis’s theorem / Wick’s theorem, that

Ep. [:clzclTw'wT:cl:clT] = %Ew'wTE + étr[Ewa]E. (A.29)
It will also be useful to rewrite

d
7 2ui<e YiTi
VeC(HZ) VeC(HZ)T = (33@+1:c;+1) ® ({zlzzégjz yz :| [% Zige yzx;r % Eige yﬂ)
4 i<l Ji

by converting between vec() and matrix Kronecker. The components of this Kronecker product are
independent and can therefore be averaged separately. Clearly

by

d )

so we focus on the second matrix in the product. This matrix will have blocks that sum over two
¢ sums, leading to both ©(1) and ©(1/¢) terms in the final expression. We will ignore terms of
order 1/ as we eventually will only use this formula in a proportional limit of £,d — oo such that
¢/d = ©(1), and thus 1/¢ is negligible in this limit.

]Ez,e[xbrlfcz“] =

16
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We proceed block-by-block. Firstly,

d? d?
Eoc | 7z > yiwiyx] | = 7 2:]1'35,:76 [zi(z]w+e)(w x; + ¢ |

i<t
d? T T T
+ 5 z:]E;,376 [@i(x; w+ &) (w' x; +¢;)x; | (A.30)
i#]
d2
= KﬁEm,e[mxIwaaclwlT + Egelwlmf]
d2
+ (2 - E)ﬁEm,e[mlmemeQm;] (A.31)
42 (1 . 2 o1
2 (1 T
(=0 ( ZYww's (A32)
=(1+ 7 Sww'Y + 7 (trSww ']+ p) & (A.33)
d
~ Sww' S + 7 (tr[Zww "]+ p) . (A.34)
Secondly,
d 2 d 3 2 d 2
Em,e ﬁ Z yimiyj = gﬁEm,e [mlyl] + (E - g)ﬁEm,e [331y1] Em,e [yQ] (A35)
i,j<t
= (dtrSww']¥ + 285ww ' S) w + 3zp2w
1
+ <1 - Z) (trZww '] + p) Sw (A.36)
~ (tr[Sww ']+ p) Tw. (A37)
Finally,
1 1 02—
Eg,. 72 Z yfy]z = ZEm,e[yil] + TEm,e[y%]]Em,E[yg} (A.38)
i,j<t
1
=7 (Ex,e[w 22 ww zz w] + 6pE,[w' zz " w] + 3p?)
1
+ <1 - €> (trfww '] + p)2 (A.39)
~ (t[Sww ]+ p)° . (A.40)
Combining these pieces gives (A.15). O

Proof. [of Lemma 1] We begin by noting that for both IDG and ICL test errors, we can expand
2 2
e(T) = Eaue | (yes1 — 1(PHE))*| = Buy [Bac [(yer1 — tr(THZ))’]

=Ey {]E% [(WH — vee(I) VeC(HZ))QH

— Bu [Eoc [1211]] — 2vec(D) "By [Eoc [yes vec(H)]
+ vec(T) "Ey, [Eq,e [vec(Hz) VeC(Hz)T]] vec(T") (A41)
where the difference between IDG and ICL error comes from the different task distribution over

which we take E,,. Note this [E,, is shorthand for “expectation over task distribution,” which will
be different distributions depending on if we are using Pipg or PicL.
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Now we can use the above Lemma to simplify these terms drastically. For the IDG distribution, we
have

E,[w] = by, Eylww'] = Ry, .
Therefore,
Ew|Ea,e[y7s1] = tr[ERe] + p (A42)
1 1
E. []Ew’e[yg_HHz]] = g [ER}CE (tr[ZRk} + p) Ebk] = &AIDG (A 43)
1 SRpE 4 4 (tr[SRk] + p) T (tr[SRy] + p) Sby,
E.. H H)'~>Y® €
z.c[vee(Hz) vee(Hz) ]~ 5 (tr[SRy] + p) (Sbi) T (tr[SRy] + p)°
1
= 32 ® Bipa - (A.44)
For the ICL distribution, we have
Ew ['lU} = 07 Ew [wa] - Ctest 5
and so
Ew [Exe[yir1]] = Ew [tr[Sww ] + p] = tr[EChest] + p (A.45)
1 1
]Ew [Em,e[y€+1HZ]] = E [Zcf‘cestZ 0] = gAICL (A46)
1 YCtestZ + & (41[2Chest] + p) B 0
E E H H T ~ =% test 7 test
o [EalvectHz) veelHz) ] = 2 0" (tr[2Crea] + 9)°
1
156 Brew. (A7)
Upon noting that
vee(I') (£ ® B) vec(I') = tr (SI'BI'") ,
substituting these components into (A.41) gives the required results. O

B RANDOM MATRIX THEORY CALCULATION

Note that while Result 1 is offered for general token covariance 3, all steps and results in this section
and the following section assume > = [;.

The setup and structure of this formalism and corresponding results will follow Section SI.3 and
SI.4 of Lu et al. (2025). There will be key differences caused by the different task statistics
N(0, Cirain), N (0, Ciest ) that we use in this work compared to the isotropic tasks used in Lu et al.
(2025). Since the token structure is the same between the work of Lu et al. (2025) and our work
here, we will not prove various error bounding claims or approximations rigorously here, as such
bounds would be identical to what can be found in Lu et al. (2025). However, care will be taken to
highlight the distinction and differences required for handling the additional complexity introduced
by our consideration of non-isotropic tasks.

We will use ~ to denote two scalar quantities which converge in probability in the high-dimensional
limit, or for two matrices to represent deterministic equivalence.

Definition 1. For two d x d (possibly random) matrices Aq and By, we write Ay ~ By if
tr[M4(Aq — Bg)] — 0 in probability as d — oo for any sequence of bounded spectral norm
test matrices My (Atanasov et al., 2024; Lu et al., 2025).

As noted above, we will not attempt to control rates of convergence.

We begin by considering the closed-form optimized parameters given by (11). This optimization
problem can be solved explicitly as

n -1 5
vec(I'™) = (Z/\I + Z VCC(HZLL)VCC(HZM)T> Z Yy vec(Hzn) . (B.1)

n=1 p=1

18
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Ultimately we wish to characterize the ICL and IDG error of these parameters, which are given by
Result 1 as

Eren(T*) = p + tr[Chest] — 2tr[T* Ajey ] + tr[[* Bron (T*) '] (B.2)
Eipa(T*) = p + tr[Ry] — 2tr[T* Alpg] + tr[T* Bipa () 7] (B.3)
for
AICL = [Ctest O] (B4)
Chest + — (tr[ctest] + P) 0 :|
B — Otest B.5
1CL { oT (t0[Crast] + p)? (B.5)
Ampg = [Rk (tr[Rk] + p) bk] (B.6)
R L (tr[R tr[ Ry b
B = { et i (R 4 ) (Rl + ) Qk} | )
(tr[Rx] + p) by (tr[R] + p)
Again, as we are distinguishing between pretraining and testing context lengths, we use
Qltrain = etrain/du Qtest = Etest/d .

These expressions for I'* and its corresponding errors depend explicitly on the randomness found
in the particular sample of the data z,w, ¢; we wish to be able to characterize the typical perfor-
mance, and thus we need to average over this disorder. We will do so by following a random-matrix
style computation that computes a deterministic equivalent for the parameter matrix I'* and its cor-
responding ICL and IDG errors, valid in high dimensions in the proportional limit

Civai lios k n

% = Qrain = O(1), t;t = et = O(1), S=R= o(1), EET= e(1). (B.8)
To do this, we will express necessary quantities in terms of resolvents.

RESOLVENT AND EXTENDED RESOLVENT SETUP

I'™* above can be rewritten as

vee(T™) = G (Zuem U vec(HH)) /d, (B.9)
where G is the resolvent matrix
-1
G = (zﬂem vee(H,,) vec(H,)T /d + T)\I) . (B.10)

We will find it helpful to explicitly include an additional matrix Bplaceholder € R(d*+d)x(d*+d) (that
is positive-semidefinite)

-1
G(m) = (e vee(Hy) vee(H,) T /d + 7 Bytacanotder + TAI) (B.11)

for a non-negative scalar 7. Notice that G(0) = G. Eventually Bpjaceholder Will be explicitly related
to BicL or Bipg in a way that will allow us to more easily compute the I'BielI'T orI'BipgI' " term
in the error formulas.

We can write G in a cleaner and more useful way by concatenating y,, and vec(H,,) into an extended
vector

_ Yu/d d?+d+1
zZy = [Vec(HM)/\/E} eR . (B.12)
We also extend Bpjaceholder a8
0
ch - 5 B.13
t |: Bplaceholder:| ( )
We then define an extended resolvent (with very similar structure as G) to be
1
Gext(m) = (B.14)

Z#G[n] zuz/;r 4 TBext + TA

We see that z,, zl and Bey have block structure, and so expanding the block inverse we see

[ elm —e(r)q” ()
Gos®) = |_offram) i) et () B19
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for
1
a(m) = 55G(m) (Zue[n] Yn vec(Hu)) € RA+ (B.16)
and ¢(7) defined self-consistently by
1 1 1
o) = Z yz +TA— B Z Yy vec(H,) " G(r) vec(H,). (B.17)
RE[n] pvE(n]

At ™ = 0 we can now see that Gy, explicitly contains information about the optimal parameters I'*
we’re considering, as

q(0) = % vec(I'™) . (B.18)

We will thus proceed by computing a deterministic equivalent for this extended resolvent.

DETERMINISTIC EQUIVALENT FOR THE EXTENDED RESOLVENT

We will closely follow Reference Lu et al. (2025), omitting details that remain unchanged between
the formalism in their work and ours here. Intuition-based headings will be given in green.

The computation proceeds by defining a “leave-one-out” version of Gy,

1
G = . B.19
ext ZV7&M ZVZVT 4 7TBext 4 7_)\] ( )
By construction,
Goxt (Zue[n] 2,21 + 7B + 7')\]) ~ 1. (B.20)
1
S ——————GWz.2] + Gexe(mBexe + TAI) = 1. (B.21)

awelld
pem) 1120 Gexizu
Average over disorder in x, €, which concentrates. The term z;GL’ﬁtzM is well-behaved, specifically
as argued by Lu et al. (2025), it concentrates around its conditional expectation when the task w,,

and G is fixed. We thus have

ext

2l Gz, ~ " (w,) (B.22)
where 1
¥ (w,) = = tr (Gl - [T © B(w,)]) (B.23)
and T, 1 T T
ww' + = (p+trjww |) I +trlww ') w
E(w) = % rlww Do (p+ i TD 2 | (B.24)
(p+ trlww ) w (p+ trlww'])
Replacing z,] G 2, in (B.21) with x(w,,) gives
1 ’
S G2z + Gext(TBexe + TAI) = 1. (B.25)

"
e Lt (wy)

Next, we will also average the term zuz; on on the left-hand side of (B.25) over the remaining
disorder in «, €, holding w fixed, and replace zuzl with this conditional expectation. Doing so
introduces some small error which is bounded in Lu et al. (2025). From this we have

1 (] T
Hez[n] mGextEm7e[zuzlL] —+ Gext(ﬂ-BeXt —+ T)\I) ~ I . (B26)

We already have enough to compute E; [z, z;ﬂ using Lemma 2 as

1
Eoclzuz,] ~ 57, (B.27)
where because it will appear in subsequent equations we define the matrix
T= p+trfww!] Zovee ([ww” (p+ trfww w]) '] (B.28)

%VGC ([ww"  (p+ trlww))w]) Iq @ E(w)
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Now substitute this expression into (B 26) for the conditional expectation Eq, . [,z |. giving

Z Z P X“ cxtT + Gext(TBext + TAI) ~ I (B.29)
nen]
where we recall 7 = n/d>.

“Leave-one-out” terms behave like their full-sum equivalents. In high dimensions and for large n,
there is negligible difference between },, and . Thus, we replace Gt bY Gext, and x*(w),)
by
1
x(w,) = 2t ([cht]\o U ® E(wu)]> . (B.30)

So finally we have the expression for Gext

T 1
W[ Z Y ————T +7B. 7| ~r. B3l
Gost \ T L x(w) B +TA (83D
nen

Exploit finiteness of training task set. So far we are summing over n task vectors, but really only
n/k of these are unique. Thus, we can simplify (B.31) as

T 1
Gex ————— T + 7Bext +7A | ~I. B.32
% z{%} 1+ x(t)) t (B.32)
Indeed x(t;) is also self-averaging in ¢;, and as argued by Lu et al. (2025), concentrates to its mean
~ 1
Xave = 7 Z x(t). (B.33)
Jelk]

We can thus simplify our expressions by substituting (B.30) into (B.33) and performing the sum
over wy, ..., wi. Here we will use the that

- Z p+trft;t]]) = p+ tr[Ry) (B.34)
JE (k]
- Z (p+trftit)]) t; =~ (p + tr[Ry]) by (B.35)
1
k > (P+tr[tjt;—])2 ~ (p + tr[Ry])? (B.36)

where for (B.35) and (B.36) we have used that tr[t;¢] ] ~ tr[Ry] as tr[Ry] — tr[t;¢]] has mean 0
and variance ©(1/d). We thus have that

1
- > E(t;) ~ Bip (B.37)
and so

~ 1
Rove = =5 1 ([Gexd o+ [1 @ Binc]) (B.38)

Final formula for extended resolvent in terms of training task sample. The extended resolvent
G oxt () is asymptotically equivalent to
-1

g\ (71') — T Ptrain 7 vec ([Rk ptrainbk:D—r + 7B + Al
¢ T\l )?ave \/3 vec ([Rk ptrainbk}) 1; ® Bipg ext
(B.39)
with Y. defined self-consistently by
. 1 1
Rove = 1 O X(85) = S [tr ([Gextlyo - [1a ® Bina) | (B.40)

JEk]
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with
1 1
b, = E Z tj, Ry = E Z tjt;r7 Ptrain = P + tr[Rk]7 (B.41)
JE[k] JE[K]
o Rk + ptr;in Id ptrainbk
BIDG - |: ptrainb];l;— p%rain . (B42)

Simplifying self-consistency variable . x is defined in terms of the dominant component [Gex]\o
of Gext- To simplify this, choose ansatz for Beyt as

0 0
Bext = [0 L® Btest]

where Biest Will later be By or Bipg depending on which error we compute. Then [Gext]\o can
be expanded as

-1

-

1 ® Bipg + 7lq @ Biest + TAMq @ Ig4q
1+ xx

1
-
=1 B Bies A B.43
d®<1+X7r DG + TBest + T d+1> ( )

=1;® Fg(r) (B.44)
where

-
1+ xx

—1
FE(W) = ( Bipg + mBiest + T)\Id+1> .

We can use this to replace Xayve with x, defined self-consistently by

]_ —1
Xr & = tr (LBIDG + 7 Byest + Aﬂdﬂ) Bing (B.45)
d 14+ xx

Relating QA({(W) to a deterministic equivalent for I'*. Lu et al. (2025) shows that two key quantities
tr[[*AT] and tr[[*B(I'*) "] in £(I'*) can also be computed from the extended resolvent Gl (7).
As this is purely a matrix algebra claim, and independent of the particular task structure hidden
within I'*, it generalizes immediately to our case. We thus include this result here without proof and
refer to reader to Lu et al. (2025) for a derivation.

Lemma 3. [From Lu et al. (2025)] For any matrix A € R#*(d+1)]

([T AT = C(O_)i/g [0 vee(4)T] Goxe(0)er, (B.46)

. . 2 . .. .
where e, denotes the first natural basis vector in R® 7411, For any symmetric and positive semidef-
inite matrix B € R(@+1)x(d+1) if we set

Bplaccholdcr = Id ® B (B47)
in (B.13), then
d 1
tr[*B(I*) ] = — [ — . B.4
B = o (o5 - (B.48)
Using Lemma 3, we can find the deterministic equivalent for I'* from
-1
tr[[*AT] ~ 0 vec(A)T] G.(0)e B.49)
AT 2 55 [0 veol )] Ge(0)en (
_ c*(0) ] 1 ) —14T
= C(O) d tr ([Rk ptrambk:] (BIDG + )\(1 + XO)I) A ) (BSO)
~ 1 . ST
~ tr ([Rr  prrainbr] (Biog + A1+ x0)I) FA"). (B.51)
and thus
L~ [Rr  prrainbi] (B + A(1 + x0)I) ™" (B.52)
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SELF-CONSISTENCY EQUATIONS AND FINITE TASK SAMPLE AVERAGES

So far, everything is left in terms of the quantities by, Ry, Bipg that depend on a typical sample
of k task vectors wy , - - -, wi. What remains to be analyzed is the behavior of this sample and its
sample statistics, i.e., how does the finiteness of k affect I'*. The following steps will deal with this.

Characterization of o We see that we almost have a characterization for the deterministic equivalent
of I'* but we need to understand what A(1 + x¢) term is doing. From (B.45) we know g is defined
self-consistently from

1 T -1
Xo =~ g tr |:(1+XOBIDG + )\Tld+1) BIDG:| (B.53)
T 1 -1
1 —i(;)(o ~g tr |:(BIDG + A1+ Xo)Id+1) BIDG:| (B.54)
d+1 1 -1
= 4 A1+ XO)E tr {(BIDG + A1+ XO)Id+1> :| (B.55)

Remember Bipg is a (d+ 1) x (d+ 1) block matrix with upper d X d block given by Ry, + ptrain /.
We wish to express the above resolvent just in terms of Ry.

Working heuristically and block-inverting the Bipg + A(1 4 ) resolvent we have

1 -1 1
Str {(BIDG F A1+ XO)Id+1) } ~ = tx(Fr(0)) (B.56)
where _
o= % + (1 + x0) (B.57)
Fr(o) = (Ry +oly)! (B.58)

Sample covariance Ry, and the Stieltjes transform. We thus have

TXo d+1 1 Ptrain
~ =\ ~ tr[F ~1-\(1 . 1
T = T A xo) g lF(ou)] = 1= M1+ x0) M (P2 4 AL+ x0))

where M, (o) is the asymptotic equivalent of the Stieltjies transform of the Wishart resolvent
FR(J) = (Rk + O’Id)il.

Following Atanasov et al. (2024) for correlated feature wisharts, we have

1
Mis(0) = =5 tr((Curain + sol)™) (B.59)
where s is defined by the self consistency equation
1 11 1 o
-=1-—=t rain rain ]I_l =1-- — Vg B.60
. e t(Clrain (Cirain + s0I)™7) K—i— nM (o) ( )

and also only depends on o, k, and Cl;4i,. In other words, we have a self-consistency equation for

M, (o) as

1 -1

M, (o) = tr [((1 -+ ZMH(U)) Cirain + aId) ] . (B.61)

Similarly, we can express F'r in deterministic form as

1 -1
(Ri + UId)—l ~ F.(0) = ((1 - + :MN(J)> Clirain + O'Id> . (B.62)
Note that
(Ret 1) 2~ —LF(0) = —Fu(o) [ (*Mu(0) + 2L Mu(0)) Coran + 1 ) Fi(0)
k d — do K - K P K % do K train d K .

(B.63)

Given a particular problem with a particular C}, i, €ach of these can be computed.
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Self-Consistency equation for x Recall to characterize I';, we need to understand A1+ x0) = A
We now know this variable is defined by

Y rain Y A
M, (B 3) - S =1 (B.64)
o A
In the ridgeless A — 0 limit this equation becomes
M, (B 5) =17 (B.65)

While this equation has nontrivial solutions for 7 < 1, it’s only solution is A =0when7 > 1.

Final deterministic equivalence for I'* in terms of Wishart resolvent. Recall from above that

I'%q = (Big + A1) Y[Rk Prrainbi]
‘We can use the trick that

(B psinbi] = § (Biog + AcLass — (P2 4+ Ao ) L ) (B.66)
where S is an almost-identity matrix that selects top d x (d 4+ 1) of a (d + 1) x (d 4+ 1) matrix. We
can then simplify

* _ Ptrain 3 I\ —1
T =8 (1 (Té n )\) (Bing + M) ) (B.67)

~ [ —oFgr(c) 0]. (B.63)
We stress that this is an approximation that comes from the full block inversion of the resolvent of
Bipg, but is robustly handled in Lu et al. (2025).

CHARACTERIZATION OF QUADRATIC TERM IN ERROR.

The only remaining error term left to approximate is those with the form I'BT'". This is what we
introduced 7 and By for.

1 1 d 1
St (IsT BeestT") = - vec(I) "I vec(T) = a%(w =0) (B.69)
for Bplaceholder = Iq ® Biest- The definition of ¢(7) comes from the scalar term in the block
inversion of Gexs (1),
* * * T
G.(r) - [ L —em@m) } 7 B.70
M= (@ (m) 18 Folxe) + ¢ (ma" (M@ ()T (B70
with
1 _ TPtrain ™l ([R b] Fr(xx) [R b ]T) (B.71)
= T— 7753 rain T rain . .
(1) T+ xn A+ )2d kPt k| L'B(X ko Pt k
with
~ L1y L Bipg + 7B+ A, )_lB B.72)
X & S AT (1+Xw DG + T Tlg+1 IDG (B.
-1
r
Fr(x-) = (1 n Bip + T Btest + 7)\Id+1> (B.73)
Now following through the calculus, we get
d T d
—Fe(xx) = —Fg(xx) | Btest — ————= | —x~ | B Fr(xx B.74
i B(Xr) B(X )( st = T y0)? <d7TX ) IDG) 7 (Xx) (B.74)
d 1 d
— X = — —F B B.
g X dtr [(dw E(Xﬂ')) IDG] (B.75)

Plugging (B.74) into (B.75) and simplifying for x{, gives

™ 3t (BiestFoBigFo) L tr(BuestFo) — AJ tr(Biest F) B76)
(14+x0)? Ltr(FoBpcFoBig) — 7 1— 2;\% tr(Fp) + ;\25 tr(Fg) — 7 .

for

_ -1 ~
Fy = (BIDG + )\Id+1) , A= A1+ xo)-
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We can finally simplify the quadratic term as
d 1

(dw(ﬂ)) (r = 0) = (T BuewtTS)

X/ 1 * 3 1 * *
Tm (ptrain - E tr(rquI—BG) - )\g tr(Feq(I‘eq)T)> (B77)

DICTIONARY OF VARIOUS DETERMINISTIC EQUIVALENTS

Lemma 4. The following is a summary of formulas. Their derivations follow simply from the above
discussions and characterizations. Let

~ -1 ~
= (BIDG + )\Id+1) , A=A1+ xo0)
and I'Z, as given by (B.68). Then

tr[Fo(\)] ~ M,(0) (B.78)
tr[F5 ()] = =M (0) (B.79)
tr[T'%, AIDG] ~ tr[Clrain] — 0 + 02/\/! (o) (B.80)
AMrTe (i) T = A (1 = 20M,.(0) — 0> M, (o)) (B.81)
tr[F* AICL] ~ tr[CtCSt] — O'tr[ ( )thst] (B82)
tI‘[BID(;Fo] (0’) (B83)
[BIDGFO] = ,.;( + )\M’ ( ) (B.84)
tr[BicLFo] ~ tr (Ctest 4 Dresty ) Fu(o )} (B.85)

Qtest,
tr[BicrL F3] ~ — tr [(Ctest  Pest Id) F'( ] (B.86)

Qltest

tr[[%, Bing (i) '] = tr[T Alpa] — Mr[Th (T5,) (B.87)
tr[T%, Bior (Thy) '] ~ tr [(ctest 4 Dlesty ) Iy — 20F,(0) — 0*F(0)) (B.88)

Olest

C PROOFS OF ASYMPOTIC IDG AND ICL ERROR CHARACTERIZATION

We finally have all the necessary components to write down the deterministic equivalents of the
IDG and ICL errors given by Lemma 1 (or (B.3) and (B.2)). This will comprise our main theoretical
result.

Result: High-dimensional formula for the IDG error

For M, (o), M’.(c), \, and & defined above, we have the deterministic equivalent of (A.2)
as
P + 0 — 02 M, (0) = A1 — 20 M (0) — 02 M’ (0))

Ena (') ~ — (1 =2XM,.(0) — X2M.(5))

(C.1)

= €IDG (Ctrain)
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Result: High-dimensional formula for the ICL error

Take M, (0), M(c),F,F', o, and X as defined as above, and ¢ = Empa(I*)/7. The
deterministic equivalent of (A.3) is then

. + es N ’
Eien () = p-+ P2 (14 (g 20)Mul0) + (4 — 0*) M (0))

+ qtr [Crest Fre(0)] + (gA — 02) tr [Crest Fl.(0)] (C.2)
= eICL<Ctraina Ctest) .

Proof. Using Lemma 4 and (B.77) in (B.3) gives deterministic equivalent for Eipg (I'*) as
Ena(T™) ~ p+ Cuain — 2(Ctrain + 0 + 0° M (0)) + Corain + 0
+02M,(0) = A1 — 20M,.(0) — > M. (5))
1—2XM, () — A2M.(0)
T4 11— 20M,(0) — X2M(0)
% (purain = (i + 0 + 02 M(0)) = M1 = 20 My () = M (0))) (C3)

- (p — g — 0 My (0) — A1 — 20M,.(0) — aw;(a)))
x (1 1= 2WMy(0) = M M(0) ) (C.4)
-7+ 1—=2 \My(0) = N2 M (0)
p—0—02M(0) — A1 —20M,.(0) — 02 M. (c))

-7 _ _ (C.5)
T — (1 =2XM(0) = X2 M’ (0))

as required.

Using Lemma 4 and (B.77) in (B.2) gives

EreL(T™) >~ p+ cest (C.6)
— 2 (Crest — 0 t1 [Crest Fre(0)]) (C.7)
Ttr [(qest 4P ;‘ Crest Id) (I — 20F (o) — aZF;(a))} (C.8)

test

+tr [(Ctest + pJFC““‘Id) (Fulo) + XF;(U))]

Oltest

o P +0—0?My(o) = A1 — 20 M, (c) — c? M/ (0))
7 — (1= 2XM,(0) — X2 M’ (7)) '

(C.9)

Replacing

p+0—02M(0) = X1 —20M,(0) — > M. (0))
T — (1= 2XM,(0) — X2 M’ (o))

(C.10)

q

and gathering Clqs terms we get
+c es Y
PEEt (14 (g = 20)Mo(0) + (ah = 02 M (0))
Qlgest
+ (Crest, aFx(0) + (gA = %) F(0)) (C.11)
as required. The remaining terms only depending on the test distribution through cest, and thus not
containing any structural information about the testing tasks, we call

eICL(Ctrain7 thst) ~p +

+c es 3
excatir(Merains Crest) = p+ Et (14 (4= 20)My(0) + (A~ )M, (o)) (C.12)
test
and the remaining C'es-dependent terms form the emisalign (Ctrain, Ctest) contribution. O
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D ORDERING OF EIGENVALUES

Here we analyze the spectrum of the Cj,.i,-dependent component of the misalignment error term
(19), )

K = qF.(0) + (g\ — 0*)F.(0).
Given the self-consistent definitions of F; (o) and F. (o) in (15) and (B.63), we can write the eigen-
values of K as

B 1 2 <\ BeAi(Cirain) + 1
Ai(K) = ApAi(Cirain) + 0 (q tlom-a) A Xi(Cirain) + U) 7
for

1

Ae=1-=+Z M. (0) ©.1)
K K

1
By = —Mu(0) + %M;(a). (D.2)

Claim: Eigenvalue Ordering

‘We wish to show that
A(K) < A(K) < -+ < Ag(K)

for
A1(6(‘51‘a‘in) > >\2(Ctrain) > > )\d(ctrain)a

i.e. the ordering of eigenvalues of K is opposite that of Cl;ain-

We will separate this into two cases. For 7 > 1 we provide a rigorous proof. For 7 < 1, due to the
unclear sign of 2 — g\ we cannot currently provide a rigorous proof with the same methodology.
Instead, we provide numerical plots supporting our claim, with the goal of proving this formally for
the 7 < 1 case in subsequent iterations of this work.

Lemma. We have that 1 — k < oM, (0) < 1 and 0> M/, (0) < r — 1.

Proof. Ry is a positive semi-definite matrix and so o (R, + aId)_1 is an increasing function of o.
Therefore o tr[(Ry, + 01;) '] is increasing in o and so

dan;O otr[(Ry 4+ olg) 7 = oM, (o)
is an increasing function of . Thus we have
lim oM, () < oM (0).
oc—0
Also as Ry, is positive definite it is obvious that
oMy(o) = dliﬁ\r{.lootr[(Rk +oly) <1

By an equivalent argument,
o* M () < lim o> M/ (o).

o—0

It’s helpful to first write the self-consistency equation

1 -1
M, (o) = tr [((1 - =+ :MH(U)> Chrain + a[d> 1 (D.3)
for M, (o) equivalently as a self-consistency equation for the “renormalized ridge” & of this Wishart
resolvent, defined by
G tr[(Cirain + 7)) = oM, (0)

or equivalently
o

i 1— % + %tr [(Ctrain + &)_1} ' B

In the ¢ — 0 limit, ¢ limits to 0 when x > 1, and limits to the unique solution of

1 0 _
1——+4+ g tr |:(Ctrain + 6') 1i| =0 (D.5)
I KR
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for k < 1. For our purposes, this means that

1-xr, k<1

li (o) = ’ D.6

Jim o M(o) {0, K> 1 D-6)
Differentiating with respect to o gives

-1, k<1
lim o2 M/, (0) ="~ D.7
Sy 0" M) {0, K> 1 ©-D
<kK-—1

andso 1 —k < oMy(o) and 0> M/ (o) < Kk — 1. O

For 7 > 1,have A = 0 and so o = (p + Ctrain)/c and
1 B/{)\z (Ctrain) +1 >
)‘i ’C = + 0’2 .
( ) AmAi(Ctrain) +0o (q ANAi(C‘crain) +0o
Without loss of generality, let’s compare A; (/) and A2 (K). First we have that
1 1

<
AnAl(Ctrain) +o AK,AQ (Ctrain) +o
as A,, > 0 (follows from the Lemma above).

Furthermore, have
1
A, — 0B, = ~((k — 1) — > M (o).
K

We reason about this quantity as follows. We have that A, — 0 B,; > 0 as a result of this lemma,
and so (A, — 0B) A2 < (Ax — 0B,)A1. Rearranging gives

BNAI(C‘crain) + 1 < Bn>\2(ctrain) + 1

AnAl(Ctrain) +0o AKA2 (Ctrain) +o
and so we are done as we’ve shown A1 (K) < A2(K) for A1 (Cirain) > A2(Chrain)-

For 7 < 1, A # 0 and so the negative-definite contribution of ¢\F, (o) complicates the above
argument. We provide preliminary numerical evidence for this case as follows. We compute A
numerically from its self-consistency equation (21) to compute /C, of which we plot its eigenvalues
against the eigenvalues of Cy,,i,. As demonstrated schematically in Figure 5, for 7 values less than
1, it is consistently the case that the eigenvalues of K are negatively correlated with the eigenvalues
of Cirain- We emphasise that this is a heuristic check, and we plan to prove this rigorously in future
iterations of this work.

E TRACE INEQUALITIES FOR MISALIGNMENT

In this appendix, we give a self-contained expository proof of Ruhe’s trace inequality in the form
we require for Corollary 4.1. We actually present two lines of analysis: first a direct proof of the
inequality, and then an alternative analysis based on Riemannian optimization.

We begin by recalling the general setup: let A and B be d x d real symmetric matrices. By the spec-
tral theorem, they are orthogonally diagonalizable, with non-increasingly ordered real eigenvalues
A(A) > X(A) > -+ > Ng(A) and A\ (B) > Ao(B) > --- > My(B), respectively. We want to
show that

d d
D X (A)Aa—j41(A) < tr(AB) < Z A (A)N(B), (E.1)

with equality attained in either bound if and only if A and B are co-diagonalizable.

Writing the eigendecompositions of A and B as
A=04A40) and B =0pA0}, (E.2)

respectively, where 040} = 14, OgO} = I, [Aalij = Ni(A)d;j, and [Apli; = M\i(B)di;, we
see immediately that it suffices to consider the case in which A is diagonal, with non-decreasing
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Figure 5: Demonstration of opposing eigenvalues for 7 < 1 values, at a range of x and « values.
Cirain here is the same as in Figure 2, i.e. powerlaw spectrum.

elements, as
tr(AB) = tr(AAOAOT") where O =0}0p, (E.3)

and the matrix OAO" has the same eigenvalues as B. We can see that A and B are co-
diagonalizable if and only if OAgO is diagonal. Moreover, we can see that the claimed bounds
can be attained only if OAgOT is in fact equal to Ap up to pertmuation of its diagonal elements.
What remains is to show that they are in fact bounds.

E.1 DIRECT PROOF OF RUHE’S INEQUALITY

We now give a direct proof of the claimed inequality. We remark that the version of Ruhe’s inequality
proved in Marshall et al. (2010) is not sufficient for our purposes, as it assumes that both A and B
are positive semi-definite, i.e., that A\y(4) > 0 and A\g(B) > 0. We instead follow the proof for
general Hermitian matrices outlined in Li (2020)’s blog post.

The strategy of this proof is to proceed by induction on the matrix dimension d. The claim clearly
holds for d = 1, as then A and B are scalars equal to their only eigenvalue, and both bounds collapse.
Now consider d > 1. Assuming—as noted before—that A is diagonal with elements given by its
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ordered eigenvalues, we have

d
tr(AB) = X;(A)Bj; (E4)
j=1
d
= [N(A) = Aa(A) + Aa(A)]Bj; (E.5)
j=1
d—1 d
=Y N(A) = Ma(A)] By + > Aa(A) By (E.6)
j=1 j
We now observe that
d—1
> A(A) = Xa(A)|Bj; = tr(AB), (E.7)
j=1

where Ais a (d — 1) x (d — 1) diagonal matrix with A;; = \;(A) — A\g(A) and B is the (d — 1) x
(d — 1) principal submatrix of B given by discarding its last row and column. The ordering of the
eigenvalues of A implies the ordering

AL(A) = Ag(A) > -+ > Ag-1(A) — Aa(A) >0 (E.8)

of the eigenvalues of A.

Thus, tr(AB) is the trace of a product of (d — 1) x (d — 1) real symmetric matrices with A having
its eigenvalues in non-decreasing order along the diagonal, so on the induction hypothesis we have

the bound

d—1 dfl ~
(A))Aa—;(B) < tr(A (A)]A;(B). (E.9)

:1 ]:1

<.

By the Poincaré separation theorem (also known as the Cauchy interlacing theorem), as Bisa
principal submatrix of the real symmetric matrix B, we have the inequality

A1(B) < \(B) < A\ (B) (E.10)
forall j € [d — 1].

Combining these results and using the fact that A;(A) — A;(A) > 0 by our ordering assumption, we
thus have the upper bound

d—1
tr(AB) <> [A;(A) — Aa(4A )+ Z Aa(A (E.11)
j=1
d—1
<D (A) = a4 )+ Z Aa(A (E.12)
j=1
d-1 d—1 d
=Y N (AN (B) = Xa(A) D N(B) +Ma(A) Y By, (E.13)
j=1 j=1 j=1
d—1 d—1 d
= N (AN (B) = Xa(A) Y N (B) + Xa(A) Y A (B) (E.14)
j=1 j=1 j=1
d
=Y X(A)N(B), (E.15)
j=1
astr(B) = Z;l:l Bj; = Z;l:l A;j(B). Here, the first line uses the induction hypothesis in the form

re-stated above, the second line uses the upper bound from the Poincaré separation theorem, and the
remaining three lines are just algebraic simplification.
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Similarly, we have the lower bound

d—1
tr(AB) > > [X;(A) = Aa(A)|Aa—;(B) + Z)\d (E.16)

j=1
d—1 d

>3 (A = Ma(A)Aazjr1(B) + D Aa(A)Bj; (E.17)
Jj=1 j=1
d—1 d—1 d

=Y (A j11(B) = Xa(A) Y Aaja(B) +Aa(4) Y X(B) (E.18)
Jj=1 j=1 j=1
d—1 d d

=D A(AAamj1(B) = Aa(A) YN (B) +Aa(A) Y Mi(B (E.19)
Jj=1 Jj=2 j=1

d
=> A(A)Aaj1(B). (E.20)

<.
I
—

By induction, we therefore conclude that

ZA Ja_ji1(B) < tr(AB) (E.21)

HM&

as desired.

E.2 RIEMANNIAN OPTIMIZATION

We now give an alternative perspective on this result based on the properties of orthogonal matrices.
Consider

f(0) =tr(AAOABOT) (E.22)

as a function on the space of orthogonal matrices, where Apisa diagonal matrix with non-zero
elements given by any permutation of the eigenvalues of B. Near the identity, we can write any
orthogonal matrix as

O=1+tS+ %t252 +O(t%), (E.23)

where S is a skew-symmetric matrix (ST = —S) and ¢ is a small parameter. Substituting this
expansion into f(O), we have

_ _ 1 _ _ _
f(O) = tI‘(AAAB) — ttr([AA,AB]S) + §t2 tr(AAA352 —2A4SABS + AAS2AB) + O(tS),
(E.24)

where [X,Y] = XY — Y X is the matrix commutator. Irrespective of the permutation we have
chosen to define Ap, [A4,Ap] = 0, s0 f(O) is stationary at the identity.

We therefore consider the quadratic term
1 - - -
H= 5ur(AAABs2 —2A4SABS + AsS?Ap), (E.25)

as it will determine whether this stationary point is a local minimum, local maximum, or saddle. As
[Aa, Ap] = 0, we can immediately simplify this to
H =tr(AsApS? — AySARS). (E.26)

For brevity, define a; = (A4);; and b; = (/~\ B)si- Then, expanding in components,

H= Z (aibi — a;b;)SijSji (E.27)
3,7=1
_ Z a; (b s2, (E.28)
4,j=1
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as by skew-symmetry S;; = —9S;;. Using the fact that the ¢ = j terms clearly vanish, we have
H==> ai(bi—b;)S} =Y ai(b; —b,)S},. (E.29)
i<j i>j
By re-labling indices i ++ j and using the fact that S7; = S7,,
Z az(bz - bj)Sfj = — Z a]‘(bi - b])SZZJ (E30)
i>j i<j
$0 upon re-combining terms
H = —Z(al - G,j)(bi - bj)Sfj (E31)
i<j

This now depends on the ordering of the eigenvalues, and thus on the permutation of indices. If the
eigenvalues of both A and B are in non-increasing order such that a; > a; and b; > b; whenever
i < j, we have H < 0, and the identity is a local maximum of f(O). In contrast, if they are
oppositely ordered, then I > 0 and the identity is a local minimum. Otherwise, the stationary point
is a saddle. These results are consistent with Ruhe’s inequality as proved above.

F PHASE TRANSITION WITH INCREASING PRETRAINING TASK DIVERSITY

As we have seen throughout, the task diversity parameter is crucial because it quantifies the quality
of the pretraining data: higher « implies a richer span of task variations, enabling the in-context
learner to infer the structure shared between pretrain and test sets more accurately. Understanding
k thus sheds light on the implicit algorithm performed by the model. Previous work from Lu et al.
(2025); Raventos et al. (2023) in particular have investigated the performance of ICL as « increases.
In particular, Lu et al. (2025) showed, in the isotropic task case, that there is a phase transition at
k = 1: for k < 1, the model has insufficient task diversity to be able to generalize within tasks,
and is forced to memorize the training tasks, while for « > 1, the model has seen sufficient tasks to
generalize in-context efficiently.

] —— Max-aligned spike —— Max-aligned spike
—— Test on pretrain 12 —— Test on pretrain
0.8 —— Test on aligned powerlaw Test on aligned powerlaw
—— Test on isotropic 1.0 —— Test on isotropic
s Test on unaligned powerlaw Q —— Test on unaligned powerlaw
. .
S 508
5 5 W
Q o Q 0.6
0.4
02
02
0.0 0.0
025 050 075 100 125 150 175 200 225
K = k/d
(a) Full-rank phase transition (b) Half-rank phase transition

Figure 6: Theory curves with corresponding numerical simulations showing phase transition of
ICL error in « for a range of test structures. For (a) Ciyaiy, is the same as in Figure 1 and is
full-rank; for (b) Cirain = diag[21,/2, 04/2], thus half-rank. Parameters:

d =80,a = 80,7 = 80, p = 0.01. Tests for each are done on Cj.in, 14, powerlaw (spectral power
0.5, aligned and unaligned with C},.i,), as well as the rank-1 Cleg optimal from Result 4.2.

The settings considered in both Lu et al. (2025); Raventds et al. (2023) focus on isotropic tasks where
the pretraining and testing task distributions are the same. Here, we verify that not only does this
phase transition in task-diversity remain in the presence of structured pretraining task distributions,
but further is independent of the test distribution (see Figure 6).
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Corollary F.1: Phase transition in task diversity

In the proportional limit of o, 7 — oo such that 7 = /7 for v = O(1) fixed, there is a
phase transition in ejcy, at k£ = rank(Ciain )/d. Specifically, for r = rank(Cirain)/d then

_ p+ (14 72—7) tr | Crest (@1Ckrain + 1) '| K <T
lim eICL<Ctrain7 Ctest) = _1
a0 14 + 1 + P‘*‘Cﬁ’y tr Ctest (mQCtrain 4 Id) K>T
(E.1)
where z; and x5 are defined self-consistently as solutions of
r [(xlcuain + Id)‘l} —1-& (F2)
tr [ (22Ciwain + 1)} = 1= 7. (F3)

\ J

To prove this result, we first suppose that Ci,iy is invertible. We start by writing the self-consistency

equati(m
M ( ) = —tr 1 - —-M ) Ctra'n Id (F )
L(0 — o + - K(O. int+o . 4

for M, (o) equivalently as a self-consistency equation for the renormalized ridge &, defined by
G tr[(Cirain + 7)1 = oM, (o)
or equivalently
o

i 1—1lyog [(Ctrain + &)‘1} ' )

K

In the 0 — 0 limit, & limits to 0 when « > 1, and limits to the unique solution of
1 & _
1=+ Zr [(Corain +5) 7] =0 (F6)
K K

for k < 1. For our purposes, this means that

. 1-k, k<1
Jin, o My (o) = {0, k> 1 (E7)
as well as
1 1 . -1
lim UFR(O') = lim ( <1 - =+ OM(J)) Otrain + Id) (FS)
o—0 o—0 g K KR
(xctrain + Id)il , K< 1
_ F.9
{O, K>1 (E9)
and finally
-1
. 2 1/ _ - (zctrain + Id) , R <1
Jim 0" Fy(0) = {0, k> 1 (10)

for z defined by tr [(xlctram + Id)*l} —1-x

Using these characterizations of the ¢ — 0 limit, and noticing for our problem that if 7 — oo (so
= 0), then we must take the o — 0 limit of ejcr,, being careful to use

- P + Ctrain l

R

to enforce the proportional «/7 limit. Doing so gives the required answer.

T (F11)

The above proof requires explicitly that Cy,,;y, is invertible. If it is not, we have to be more careful
with handling the ¢ — 0 limit of (D.4). One potential branch of this solution is

11
L=~ ;6tr[(Ctrain +6)71 =0 (F.12)
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or equivalently

I 7 1 G I & r
L Y Y P A L A F13
D e (Gl e it I S D B v S R

where 7 is the rank of Cipain. This is what causes the split in behavior of the solution at £ = r/d
(which was previously 1). For k < r/d, this is solvable at nonzero & and we end up with the familiar
solution branch of

oM, (0) = & tr[(Corain + 7)1 = 1 — k. (F.14)
For k > r/d, there is no longer a sensible solution at nonzero & (since & cannot be negative) and so
we’re forced to take ¢ — 0. This gives

oM (0) = 5 8](Connin +0) ] = 5 D
=1

g
Ai+0

1 o r
Sd-r—2- 51T, El
tad-rgs g (E15)

This concludes the proof of the claimed result, and recovers the previous result for invertible Cl; iy -

G CONTEXT LENGTH SHIFTS

Training a
% : —— Cirain isotropic
—— Ctrain powerlaw, power = 1

Ctrain powerlaw, power = 1.5

ICL error

1071 10° 102 10°

10!
Test-time a = //d
Figure 7: Theory curves with corresponding numerical simulations showing monotonicity of error
in test-time context length for a variety of task structures. The dashed line corresponds to training
«. Parameters: d = 150, o« = 2, 7 =4, kK = 1, p = 0.01. Testing is done on the same distribution
as pretraining.

We have thus far assumed that the pretraining- and test-time context lengths are the same. Our gen-
eral result in (C.2) allows for an ot that differs from the training context length «, but shows that
this shift only affects a single scaling factor in egca1ar, Where a factor of 1/« is replaced by 1/cvest-
Despite ejcr, not being monotonic in training context length, as demonstrated by Lu et al. (2025),
it is monotonically decreasing in test context length: testing on larger-context prompts can only de-
crease error, and testing on shorter-context prompts can only increase error. This is demonstrated
in Figure 7 for a variety of different task structures. Recall that oy only appears in ejcy, through
escalar, S part of an effective noise term: having longer test-time contexts will give the model a bet-
ter estimate of the token distribution, leading to a better predictor for the task corresponding to that
context.

H EXPERIMENTAL DETAILS

All code will be provided upon acceptance.

H.1 LINEAR SIMULATIONS

Linear simulations are done by sampling pretraining and testing distributions as described by (2) and
(12), and computing numerical I'* by (B.1). We simulate the ridgeless A — 0 limit of this theory by
taking A = 0.00001.
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H.2 NONLINEAR ARCHITECTURE

The architecture used for Figure 3 is a transformer formed of two transformer-blocks, constructed
as follows. The input to the architecture is the Z matrix (3). We apply a causal mask to ensure that
each token attends to itself and prior tokens in the sequence. Each transformer-block is made of
first applying single-head softmax attention to this masked input, with residual connection, and then
normalised; this is then passed to a single hidden layer MLP with GELU activation, followed by a
final residual connection and layer norm application. The final logit is computed by a dense layer
projecting the output of the two transformer-blocks into a scalar.

The model is pretrained with data sampled by (2). We form n Z-matrices from these samples, which
are again the inputs to the architecture, and the model is pretrained to predict the corresponding vy, 1
value by minimising MSE loss between the final logit and ¥, ;. Training is done using AdamW for
1000 epochs with batch size 16 and learning rate 0.0001.

Testing is done by sampling a batch of n contexts from (12), and tracking MSE between the true
ye+1 and the model output. This test sampling is repeated 500 times to average out noise.
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