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ABSTRACT

In-context learning (ICL) is a central capability of Transformer models, but the
structures in data that enable its emergence and govern its robustness remain
poorly understood. In this work, we study how the structure of pretraining tasks
governs generalization in ICL. Using a solvable model for ICL of linear regres-
sion by linear attention, we derive an exact expression for ICL generalization error
in high dimensions under arbitrary pretraining–testing task covariance mismatch.
This leads to a new alignment measure that quantifies how much information
about the pretraining task distribution is useful for inference at test time. We
show that this measure directly predicts ICL performance not only in the solvable
model but also in nonlinear Transformers. Our analysis further reveals a tradeoff
between specialization and generalization in ICL: depending on task distribution
alignment, increasing pretraining task diversity can either improve or harm test
performance. Together, these results identify train-test task alignment as a key
determinant of generalization in ICL.

1 INTRODUCTION

Pre-training on simple next-token prediction enables Transformer models to acquire a remarkably
broad array of capabilities, from language translation to code generation and mathematical reasoning
(Achiam et al., 2023; Anthropic, 2024; DeepSeek-AI et al., 2025; Vaswani et al., 2017). Among the
emergent abilities that enable Transformers to flexibly execute a myriad of tasks, their capacity for
in-context learning (ICL) is particularly striking, as it allows for test-time task execution without
task-specific pretraining (Von Oswald et al., 2023; Wei et al., 2022). In other words, ICL reflects
the ability to emergently meta-learn a learning algorithm during pretraining, which is then applied
to learn from data within a context at test time (Akyürek et al., 2023; Raventós et al., 2023; Zhang
et al., 2024a).

For ICL to be effective, the tasks encountered at test time must not be totally unrelated to those
encountered during pretraining, as there is no free lunch. Though substantial theoretical attention
has been devoted to the question of why and how ICL emerges and how well the resulting algorithms
perform, this key issue of how pretraining tasks should be selected to enable ICL in the real, test-
time world remains underexplored (Lu et al., 2025; Zhang et al., 2024a;b). This motivates the central
question of our work:

Central Question

How does mismatch between the structure of tasks seen in pretraining and the structure of
tasks faced at test time affect the ability of in-context learners to generalize?

Here, we investigate how pretrain-test task alignment affects generalization in a simple model set-
ting, ICL of linear regression. Our main contributions are as follows:

• We give a precise mathematical analysis of the performance of a simplified linear Attention mod-
ule learning to do linear regression in-context. We model pretraining and test task distributions
with arbitrary covariance structure, generalizing previous works on this model that assumed iden-
tical task distributions (Lu et al., 2025; Zhang et al., 2024a). In this solvable model, ICL general-
ization is governed by a particular alignment metric between pretraining and test task distributions.
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• Though derived for a simplified linear model, we show that this alignment measure predicts the
generalization performance of nonlinear Transformers trained to do linear regression in-context.

• Finally we show in the solvable model that it is not always optimal from a generalization stand-
point to pretrain on the same distribution of tasks that the model will encounter at test time, as
echoed in kernel regression (Canatar et al., 2022).

In all, our work sheds light on how pretrain-test task alignment shapes the performance of in-context
algorithms. It reveals how the inductive biases of Transformers can result in optimal task misalign-
ment: rather than teaching to the test, a different curriculum of pretraining tasks may better enable a
Transformer to learn the algorithm that enables it to generalize well at test time.

1.1 RELATED WORK

Empirical studies of ICL. Empirical work has shown that LLMs can learn diverse tasks from ex-
amples alone, with performance improving predictably with scale (Achiam et al., 2023; Anthropic,
2024; DeepSeek-AI et al., 2025; Vaswani et al., 2017; Von Oswald et al., 2023; Wei et al., 2022).
Several studies document how architectural components, such as attention heads or MLP layers, are
recruited during training to implement ICL (Kratsios & Furuya, 2025; Reddy, 2024; Tong & Pehle-
van, 2025; Zhang et al., 2024b). Various works have also focused on understanding what algorithms
transformers can learn to perform, including gradient descent, Bayesian inference, and compression.
(Ahn et al., 2023; Cole et al., 2025; Elmoznino et al., 2025; Lee et al., 2025; Liu et al., 2024; Ma-
hankali et al., 2023; McCracken et al., 2025; Shen et al., 2025; Singh et al., 2023; Wurgaft et al.,
2025; Zhang et al., 2023). Others have explored the role of task diversity in shaping generalization,
showing that diverse pretraining induces transitions from memorization to generalization (Raventós
et al., 2023). The specific effect of data structure and its role in ICL emergence has also been
studied empirically, notably by Chan et al. (2022) highlighting the importance of anisotropic data
for the emergence of ICL abilities. Our work provides a theoretical counterpart to these empirical
investigations, as we model the generalization effects of structured task distributions.

Theoretical studies of ICL. Theoretical work has flourished in simplified Transformer models,
particularly with linear or kernelized attention. A number of studies show that these architectures
can implement classical learning algorithms, including kernel regression, ridge regression, or gra-
dient descent, purely from in-context tokens (Akyürek et al., 2023; Bai et al., 2023; Li et al., 2023;
Von Oswald et al., 2023; Zhang et al., 2024b). These insights have advanced our mechanistic un-
derstanding of ICL as algorithm emulation. However, most of these works make restrictive assump-
tions. Commonly, data is drawn from isotropic Gaussians, train and test distributions are matched,
and generalization is studied only in the infinite-sample or population limit. Even recent studies of
finite-sample ICL retain these simplifying assumptions i.e. without full generality of training and
testing task distribution (Fu et al., 2023; Li et al., 2024; Lu et al., 2025; Zhang et al., 2024b). A
notable exception is the work of Goddard et al. (2025) that studies tasks sampled from separate por-
tions of a spherical task manifold. Our work advances this “task generalization” frontier by deriving
an exact expression for the ICL generalization error in the presence of arbitrary task covariances and
finite-sample regimes. This allows us to explore how task-structure mismatch affects generalization,
a setting largely absent from prior theoretical models.

Train-Test task alignment in other settings. Outside of ICL, the idea of train-test task alignment
in linear regression has been studied in the context of out-of-distribution generalization under tar-
get vector and covariate shifts. In particular, past works have studied which measures of alignment
between train and test feature covariance matrices determine out-of-distribution generalization in
high-dimensional ridge regression (Atanasov et al., 2025; Canatar et al., 2021b; Patil et al., 2024;
Tripuraneni et al., 2021). These works build on a substantial body of results showing how the gen-
eralization performance of ridge regression is determined by the structure of the training feature
covariance—principal directions with larger population variance are learned first—and the align-
ment of the task vector with those high-variance directions (Advani et al., 2020; Atanasov et al.,
2024; Canatar et al., 2021a; Dobriban & Wager, 2015; Hastie et al., 2022). Our work brings this
perspective into the ICL setting by analyzing the effects of the pretraining covariance, and pretrain-
test misalignment on generalization. We show that even in simple linear regression settings, struc-
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ture mismatch induces rich, nontrivial behavior, reinforcing the broader principle that distributional
alignment between pretraining and test-time data is a key driver of generalization.

2 MODEL SETUP

We begin by setting up the solvable model used to derive the results of this work. This setup builds
on previous works that apply a reduced-parameter version of linear attention to linear regression
ICL (Lu et al., 2025; Wang et al., 2020; Wu et al., 2024; Zhang et al., 2024a).

ICL of linear regression. We consider an in-context regression task: the input to the model is
a sequence of the form {x1, y1,x2, y2, . . . ,xℓ, yℓ,xℓ+1}, and the required output is the matching
yℓ+1 corresponding to xℓ+1. This input is called a context, and ℓ the context length. We consider
the case that the relationship between x and y is approximately linear:

yi = ⟨xi,w⟩+ ϵi (1)
for noise ϵi and task vector w. Thus, the model needs to form an estimate of w using
{x1, y1,x2, y2, . . . ,xℓ, yℓ} and then apply it to xℓ+1 to estimate yℓ+1.

Pretraining data. The pretraining data batch will contain n sample sequences of the above form,
i.e., for µ = 1, ..., n, the µth sample sequence {x1, y1,x2, y2, . . . ,xℓ, yℓ,xℓ+1} related by the
approximate linear mapping from (1), yµi = ⟨xµ

i ,w
µ⟩ + ϵµi , where now wµ is the task vector

corresponding to the µ-th sample context.

We will sample the pretraining batch as follows: For i = 1, . . . , ℓ and µ = 1, . . . , n,
xµ
i ∼i.i.d. N (0, Id/d) , ϵµi ∼i.i.d. N (0, ρ) , (2)

wµ ∼unif {t1 , · · · , tk} where tj ∼i.i.d. N (0, Ctrain) for j = 1, . . . , k .

The parameter k here is called task diversity. Note that if k < n, the pretraining batch contains
some tasks repeated across the contexts. In this way, we control both the amount k of actually
unique tasks seen during pretraining, as well as the structure of the task distribution using Ctrain.
This distinguishes our setup from previous studies which typically focus on isotropic or matched
tasks (Fu et al., 2023; Li et al., 2024; Lu et al., 2025; Raventós et al., 2023).

Linear attention. We will study the performance of the linear self-attention block (Wang et al.,
2020) on this in-context regression task. The input to the linear self-attention model is an embedding
matrix Z made up of our context sequence. Here, following the convention of Wang et al. (2020);
Wu et al. (2024); Zhang et al. (2024a), we chose to embed {x1, y1,x2, y2, . . . ,xℓ, yℓ,xℓ+1} as

Z =

[
x1 x2 . . . xℓ xℓ+1

y1 y2 . . . yℓ 0

]
∈ R(d+1)×(ℓ+1), (3)

where 0 in the lower-right corner is a placeholder token for the yℓ+1 we wish to predict. The model’s
output (Katharopoulos et al., 2020; Shen et al., 2021; Wang et al., 2020) is given by

A = Z + V Z(KZ)⊤(QZ)/ℓ (4)

for value matrix V ∈ R(d+1)×(d+1) and key, query matrices K,Q such that K⊤Q ∈ R(d+1)×(d+1).
Following the positional encoding in (3), the linear attention model’s prediction for yℓ+1 is

ŷ = Ad+1,ℓ+1. (5)
Previous works from Zhang et al. (2024a) and Lu et al. (2025) have shown that the output ŷ =
Ad+1,ℓ+1 of the model can be reduced to give a simpler, analytically-tractable model. Writing the
attention and value matrices as

V =

[
V11 v12

v⊤
21 v22

]
, M =

[
M11 m12

m⊤
21 m22

]
≡ K⊤Q , (6)

the predictor expands as

ŷ =
1

ℓ
x⊤
ℓ+1

(
v22M

⊤
11

ℓ∑
i=1

yixi + v22m21

ℓ∑
i=1

y2i +M⊤
11

ℓ+1∑
i=1

xix
⊤
i v21 +m21

ℓ∑
i=1

yix
⊤
i v21

)
. (7)

Zhang et al. (2024a) and Lu et al. (2025) argued that that the final two terms depending on v21 can
be removed without affecting the performance of the estimator: the first, depending on xix

⊤
i v21,

does not contain any task information, and thus does not help us estimate w. The second, depending
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on yix
⊤
i v21 provides only a one-dimensional projection of x and w, and so for large-dimensional

tokens, does not effectively contribute to good estimate of w either. For this reason, we set v21 = 0.
Zhang et al. (2024a) showed that this choice of parameter initialization is stable under SGD, further
validating this assumption. With this simplification, we can rewrite the simplified model’s output as

ŷℓ+1 = tr(ΓH⊤
Z ) (8)

for a parameter matrix
Γ ≡ v22

[
M⊤

11/d m21

]
∈ Rd×(d+1) . (9)

and a data matrix
HZ ≡ xℓ+1

[
d
ℓ

∑
i≤ℓ yix

⊤
i

1
ℓ

∑
i≤ℓ y

2
i

]
∈ Rd×(d+1). (10)

Reduced model optimization. Given a batch {xµ
1 , y

µ
1 , . . . ,x

µ
ℓ+1, y

µ
ℓ+1}nµ=1 of pretraining data

(as explained above), we can find finite-sample optimal parameters by minimizing MSE loss on
next-output prediction with ridge regularization, giving

Γ∗ = arg min
Γ

n∑
µ=1

(
yµℓ+1 − tr(Γ(Hµ)⊤)

)2
+

n

d
λ tr(ΓΓ⊤) , (11)

where λ > 0 is a regularization parameter, and Hµ is defined by (10) for the µth context. We will
focus on the minimum-norm predictor, i.e., on the limit where λ → 0 (Hastie et al., 2022).

Test error. We finally wish to test the pretrained model on a general task to see if the model can
genuinely perform in-context regression. The test distribution Ptest is then

xtest
i ∼i.i.d. N (0, Id/d) , ϵtest

i ∼i.i.d. N (0, ρ) , wtest ∼i.i.d. N (0, Ctest) . (12)
We will measure ICL performance by the average MSE error of our optimal estimator ŷ∗ℓ+1 =

tr(Γ∗H⊤) over the test distribution,
EICL(Γ

∗) = EPtest
[(yℓ+1 − tr(Γ∗H⊤))2] . (13)

We highlight here the generality of the test task distribution through the new matrix Ctest, allowing
us to study the interaction of training and testing task structure.

Data parameters in the high-dimensional limit. We have introduced four data parameters: token
dimension d, context length ℓ, pretraining batch size n, and task diversity k. As is standard in the
theory of high-dimensional regression (Advani et al., 2020; Atanasov et al., 2024; Hastie et al.,
2022; Lu et al., 2025), we will consider a scaling limit where all four of these parameters are taken
to infinity in a way such that the following ratios remain constant:

ℓ

d
≡ α,

n

d2
≡ τ, and

k

d
≡ κ. (14)

Considering this limit makes the model analytically tractable, but preserves interesting phenomena
that are present at finite size. Going forward, we will refer to α, τ , and κ as the context length, batch
size, and task diversity parameters, respectively.

Pretraining task quantities. Before presenting our formula for this ICL test error, it will be help-
ful to first define some task-distribution quantities, which depend on the pretraining task covariance
Ctrain and task diversity parameter κ. These quantities effectively tell us how well we can recon-
struct Ctrain from the k-sample task covariance that the model sees during pretraining,

Rk =
1

k

∑
j∈[k]

tjt
⊤
j .

Because the pretraining tasks {t1, ..., tk} are random, Rk is a random matrix. However, in high
dimensions, the following deterministic quantities capture the relevant information about Rk: let the
deterministic matrix Fκ(z) and deterministic scalar Mκ(z) be defined through the implicit equations

Fκ(z) =

((
1− 1

κ
+

z

κ
Mκ(z)

)
Ctrain + zId

)−1

(15)

Mκ(z) = tr[Fκ(z)] . (16)
Then, we have the high-dimensional equivalence

(Rk + zId)
−1 ≃ Fκ(z). (17)
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As we define formally in Definition 1 of Appendix B, this equivalence holds in the sense that the
traces of (Rk+zId)

−1 and Fκ(z) against test matrices coincide in the high-dimensional limit. Here,
z ∈ R+ is a noise threshold parameter suppressing smaller eigenvalues of Rk.

Intuitively, Fκ(z) and Mκ(z) give us information about how much signal in Ctrain can be recovered
after a finite number k of pretraining samples, filtered by noise level z. As z → 0 and κ → ∞, Rk

approaches Ctrain, and we therefore fully recover the original distribution of tasks. We will use
F ′
κ(z) to refer to the derivative of Fκ(z) with respect to z; this gives a measure of the sensitivity

of this covariance recovery matrix to the noise level z. These quantities will play a key role in our
discussion of task alignment.

Given this setup, we compute a formula for the ICL generalization error EICL(Γ
∗) in terms of the

data parameters α, κ, τ , the pretraining task covariance Ctrain, and the testing task covariance Ctest.
We present this formula and discuss its implications in the following sections.

Notation. We write tr[A] ≡ tr(A)/d for the dimension-scaled trace of matrix A. We use a nor-
malized Frobenius inner product between two matrices, i.e. ⟨A,B⟩ ≡ tr[AB⊤] = tr(AB⊤)/d. We
abbreviate the normalized traces of the task covariances as ctrain = tr[Ctrain] and ctest = tr[Ctest].
We denote high-dimensional equivalence (as in Appendix Definition 1) by ≃.

3 ICL TEST ERROR DEPENDS ON TASK MISALIGNMENT

3.1 TASK ALIGNMENT DETERMINES GENERALIZATION IN THE SOLVABLE MODEL

We state the main result of our analysis of the simplified linear attention model, which is an analytical
formula for the ICL error (13) in high dimensions. Here we give only an informal statement of this
result and focus on its implications; the formal statement is given by (C.2) in Appendix C.

Result: High-dimensional formula for the ICL error E(Γ∗)

The ICL test error (13) of the simplified linear attention model set up above is given by
EICL(Γ

∗) ≃ escalar(λtrain, ctest) + emisalign(Ctrain, Ctest) ≡ eICL(Ctrain, Ctest) (18)
in the high-dimensional limit, where

emisalign(Ctrain, Ctest) = ⟨Ctest, K⟩ (19)
measures the alignment between Ctest and

K ≡ qFκ(σ) + (qλ̃− σ2)F ′
κ(σ). (20)

Appearing in this formula are an effective ridge variable λ̃ and effective noise variable σ
given by the solution of the joint equations

λ̃Mκ (σ) = 1− τ for τ < 1 , λ̃ = 0 for τ > 1 (21)

σ = (ρ+ ctrain)/α+ λ̃ . (22)
where Mκ(·) is determined self-consistently as in (16). Finally q is a pretraining-error
term given by (C.10) and escalar(λtrain, ctest) is given by (C.12); note that both q and escalar
only depend on Ctest through its trace ctest, and escalar only depends on Ctrain through its
spectrum λtrain.

We first support this result through Figure 1, which shows agreement between our theory curve
formula eICL(Ctrain, Ctest) and numerical simulations of MSE error EICL(Γ

∗) given by (11) and
the test distribution (12). By comparing the left (eICL) and right (emisalign) panels of Figure 1 we
see that the behavior of eICL is highly dependent on the emisalign term: for well-aligned training and
testing distributions, low and decreasing emisalign in κ immediately leads to a monotonic decrease
in eICL in κ; for worse-aligned training and testing distributions, eICL can be nonmonotonic or
even monotonically increasing in κ. This is intriguing, as one would naı̈vely expect additional task
samples to improve in-context performance, but this is not true in general: whether additional task
samples are helpful for ICL depends on the alignment of the pretraining and testing distributions.

To gain intuition for this misalignment error (19), a useful analogy is to consider the simplest matrix
“misalignment” measure ⟨CtestC

−1
train⟩. Firstly, this measure captures misalignment that can occur

5
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Figure 1: Theoretical eICL (left panel) and emisalign (right panel) curves plotted against numerical
simulations of E(Γ∗) computed directly from sampled data. We choose Ctrain with uniform
eigenvalue distribution: Ctrain ∝ diag([d, d− 1, · · · , 1]) such that tr(Ctrain) = d. We compare
Ctest = Ctrain (red curves) with testing on single task directions, i.e., the “idx i/d” labels
correspond to rank-1 test covariances Ci

test = deie
⊤
i spiked at index i. In this way, C1

test captures
the strongest task direction of Ctrain and Cd

test captures the weakest. Parameters: d = 120, α = 2,
τ = 4, ρ = 0.01. Shading represents ±std of numerical simulations. We calculate the simulation
values of emisalign in the right panel by subtracting escalar from the MSE simulation values E(Γ∗).

from misalignment of the eigenvectors of Ctest and Ctrain; see Corollary 4.1 and its proof for further
discussion. Going beyond eigenvectors, because the eigenvalues of C−1

train are ordered opposite to
the eigenvalues of Ctrain, this measure effectively captures the relative strength of signal directions
between Ctest and Ctrain: if Ctrain and Ctest share the same eigenvalues, alignment will be max-
imized when these eigenvalues appear in the same order, and minimized when these eigenvalues
appear in opposing orders. This is precisely why ⟨CtestC

−1
train⟩ can be interpreted as a misalignment

measure, as even this very simple Ansatz shows how misalignment arises from mismatches in the
relative weighting of signal directions between train and test tasks. This relative strength argument
holds for our alignment measure, where instead of ⟨CtestC

−1
train⟩ we use ⟨CtestK⟩. Here K obviously

depends on Ctrain—they share the same eigenvectors—and importantly, has the same property as
C−1

train that its eigenvalues are oppositely ordered to the eigenvalues of Ctrain (see Appendix D).

However, this eigenvalue-ordering argument is incomplete for the ICL setting. It assumes that Ctrain

can be fully learned, but with finite context length, finite task diversity, and label noise, this cannot
be the case. Thus, the model cannot access the full covariance structure, only a partial version,
whose resolution depends on both sampling and noise. This is precisely what the resolvent terms
Fκ(·) and F ′

κ(·) in K can capture, as explained in the setup. This is analogous to the alignment
measures that emerge in ordinary ridge regression under covariate shift, which capture how much of
the training feature covariance can be resolved from finitely many samples (Atanasov et al., 2025;
Canatar et al., 2021b; Patil et al., 2024; Tripuraneni et al., 2021). Furthermore, the effective noise σ
must play a key role in alignment, as the model does not know a priori that this is an “in-context”
learning problem, and must learn to decouple the tokens from the task for each context in order to
extract the task information implicit in that context. The ability of the model to do this depends on
both the label noise (ρ), the context length (α), and a sufficient number of contexts (λ̃). In fact, the
form of σ = (ρ + tr[Ctrain])/α + λ̃ is also familiar from ordinary ridge regression as an effective
noise-to-signal term: the optimal ridge regularization parameter balances the variance due to label
noise (ρ) with the estimation error from having finite data (Atanasov et al., 2024; Canatar et al.,
2021a; Hastie et al., 2022; Patil et al., 2024). At infinite sample size, the optimal ridge is simply
ρ, the label noise. However, at finite sample size, the effective regularization is increased due to
the finite-sample estimation error, and becomes (ρ + σ2

w)/α, where σ2
w characterizes variability or

complexity of the regression task. In the same way, our model has to resolve the statistics of the
tokens x over samples (ℓ, measured by α), and so we expect terms familiar from linear regression
to appear in our formula.
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In summary, our alignment measure is motivated both by arguments regarding spectral ordering and
relative strength, as well as having all components necessary to capture finite size effects. In Figure
2 we compare our alignment measure to three others: the population matrix measure ⟨CtrainC

−1
test⟩,

a simpler version of our alignment measure involving just the resolvent ⟨CtrainFκ(σ)⟩, and finally
the Centered Kernel Alignment (CKA) measure (Kornblith et al., 2019). This comparison illustrates
how different measures emphasize different aspects: ⟨CtrainFκ(σ)⟩ accounts for finite-sample res-
olution effects but not as specifically as ⟨CtrainK⟩ does, while ⟨CtrainC

−1
test⟩ and CKA both miss

finite-sample effects altogether, CKA instead being designed to detect nonlinear representational
similarity. We perform this comparison by first noting that, trivially, emisalign is monotonically re-
lated to eICL: larger emisalign implies larger eICL. Figure 2 shows eICL for fixed Ctrain and varying
Ctest plotted against the above matrix alignment measures between Ctrain and Ctest. We see that
⟨CtrainK⟩ and ⟨CtrainFκ(σ)⟩ are the strongest drivers of eICL (i.e. most monotonically related, with
⟨CtrainK⟩ obviously being perfectly correlated), while the performance of ⟨CtestC

−1
train⟩ and CKA

as predictors of eICL is lacking.
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Figure 2: eICL(Ctrain, Ctest) against alignment measures: emisalign(Ctrain, Ctest), tr[CtestF ],
tr[CtestC

−1
train], and 1/CKA(Ctrain, Ctest) from left to right. Ctrain is fixed to be a diagonal matrix

with powerlaw spectrum Ctrain ∝ diag([1−p, ..., d−p] with power p = 0.9 and tr[Ctrain] = 1.
Ctest is varied over a range of different covariance matrices that are simultaneously diagonalizable
with Ctrain, specifically power spectrum with different powers (circles connected by solid line),
and low-rank covariance matrices Cr = diag[(d/r)1r ,0d−r] (triangular markers connected by
dashed line). Changing the power of the powerlaw tests or the rank of the low-rank tests will make
them either more or less aligned with Ctrain. Parameters: d = 120, α = 2, τ = 4, ρ = 0.01.

3.2 TASK ALIGNMENT PREDICTS GENERALIZATION IN NONLINEAR TRANSFORMERS
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Figure 3: ICL test loss of a nonlinear transformer against different alignment measures. The setup
of the covariances is identical to Figure 2, the only difference is that here ICL error is computed as
the MSE on the test task as performed by a trained two-layer architecture with softmax attention
and MLP connections. Our measure emisalign achieves the best correlation with ICL error: the
Spearman coefficients (measuring monotonicity, over all test covariances and averaged over the
different κ values) are 0.99 (ours), 0.98, 0.96, and 0.39 from left to right. Parameters: d = 20,
α = 2, τ = 4, ρ = 0.01.

We further support the predictive power of our alignment measure defined by emisalign for ICL error
in a two-layer transformer architecture with softmax attention by Figure 3. See Appendix H for
details on the architecture setup. We see that even for an architecture far from the linear attention
considered by the theory, our theoretically-derived alignment measure is still the best predictor of
how changing the test distribution affects ICL error, compared to other alignment measures.
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4 MISMATCHED TASK DISTRIBUTIONS ARE OFTEN OPTIMAL

We have identified the relevant measure of alignment between the pretraining and testing task
distributions for linear transformers learning to perform ICL. It is then natural to ask whether
for a fixed test distribution Ctest, is it always optimal to pretrain on the test distribution, i.e., is
eICL(Ctest, Ctest) ≤ eICL(Ctrain, Ctest)? In this section, we show that the answer to this question
is in general no, it is not always optimal to pretrain on the test distribution.

Covariance Alignment and Eigenspace Structure. We first show that it suffices to consider the
case in which Ctrain and Ctest are co-diagonalizable, as the ICL error is extremal in this case. Note
that we can focus on emisalign, as other terms in the ICL error (18) contained in escalar (C.12) are
independent of the eigenvectors of these two matrices.

Corollary 4.1: Eigenspace alignment extremizes misalignment error

The misalignment error emisalign(Ctrain, Ctest) = ⟨Ctest,K⟩ is extremized when Ctest and
Ctrain are co-diagonalizable. Concretely, letting λ1(Ctest) ≥ · · · ≥ λd(Ctest) and λ1(K) ≥
· · · ≥ λd(K) be the ordered eigenvalues of these two real symmetric matrices, we have

1

d

d∑
j=1

λj(Ctest)λd−j+1(K) ≤ emisalign ≤ 1

d

d∑
j=1

λj(Ctest)λj(K), (23)

with equality in either the upper or lower bound if and only if Ctrain and Ctest are co-
diagonalizable.

To show that this result holds, we observe that, as Ctest and K are real symmetric matrices, the
desired bound (23) is simply a restatement of Ruhe’s trace inequality normalized by 1/d, where
equality holds if and only if Ctest and K are co-diagonalizable. We give a self-contained proof of
this inequality in Appendix E (see also Marshall et al. (2010) or Li (2020)’s expository blog post).
By its definition (20), K and Ctrain have the same eigenvectors, so the claim follows.

Therefore, the misalignment error can be minimized or maximized if we assume that Ctrain and
Ctest are simultaneously diagonalizable. We therefore restrict our attention to the co-diagonalizable
setting, and write the ordered eigenvalues of Ctrain and Ctest as λ1(Ctrain) ≥ · · · ≥ λd(Ctrain) and
λ1(Ctest) ≥ · · · ≥ λd(Ctest), respectively.

Optimal Test Covariance for Fixed Pretraining Distribution. Before presenting results on op-
timal pretraining structure for fixed task structure, which is a more practical question to answer, we
begin first with a simpler question: For fixed training distribution Ctrain, is it always optimal to test
on the pretraining distribution, i.e., is eICL(Ctrain, Ctrain) ≤ eICL(Ctrain, Ctest)? The following
result answers this question in the negative:

Corollary 4.2: Trace-constrained optimal test covariance

For fixed Ctrain and fixed ctrain = ctest, we have that eICL(Ctrain, Ctest) is minimized by
the single-index spike covariance with eigenvalues

[λ1(Ctest) · · · λi(Ctest) · · · λd(Ctest)] = [dctrain · · · 0 · · · 0]

i.e., all test signal is aligned with the largest eigenvector of Ctrain.

To see that this holds, note that eICL(Ctrain, Ctest) is a linear function of the eigenvalues of Ctest

as emisalign(Ctrain, Ctest) is linear in Ctest and escalar(λtrain, ctest) does not depend on Ctest when
ctest = ctrain. Furthermore, the constraint ctest = ctrain is a simplex in the space of Ctest eigenval-
ues. The minimum will thus be attained along the simplex, at the vertex corresponding to the lowest
eigenvalue of K. As argued in Appendix D, this corresponds to the largest eigenvalue of Ctrain.

This result illustrates a bias towards exploiting low-dimensional structure seen in pretraining to opti-
mize performance at test time. In these cases, where we are optimizing test structure Ctest for a fixed
pretraining structure Ctrain, we observe that the best generalization is achieved by concentrating all
signal into a single shared direction, collapsing the task manifold into a single dimension. In other
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words, it is easier to learn to generalize over a degenerate low-rank test structure highly aligned to
the pretraining structure than to generalize over the entire pretraining structure learned from lim-
ited samples. This is familiar from spectral bias results of ordinary ridge regression (Canatar et al.,
2021a;b). Note that, had our training distribution been isotropic (Ctrain = Id) then all trace-fixed
test covariances will perform equally; utilizing anisotropy is crucial.

Non-Optimality of Pretraining on Test Structure We now investigate the original question of
the optimal pretraining task covariance Ctrain, given a particular test task covariance Ctest. We
will provide an example showing it is in fact not optimal in general to have Ctrain = Ctest. We
particularly emphasize that whether or not a particular task structure is better for pretraining depends
strongly on the task diversity κ.

Consider the case of power-law task distributions at both training and test time, i.e.,
Ctrain ∝ diag

[
1−ptrain · · · d−ptrain

]
, Ctest ∝ diag

[
1−ptest · · · d−ptest

]
, (24)

with the normalization constant chosen such that tr[Ctrain] = tr[Ctest]. We can study the effect of
changing Ctrain relative to Ctest on eICL by changing the exponent ptrain relative to fixed ptest.

Figure 4 shows that, for low κ, pretraining on Ctrain with higher spectral power relative to the
test power can improve ICL error. We see that focusing pretraining on a low-dimensional subspace,
effectively creating a strong inductive bias, can improve in-context learning performance when train-
ing data is scarce. The model generalizes better by overfitting to fewer directions, rather than learn-
ing more directions weakly. However, increasing the pretraining power too much relative to the test
power will worsen ICL performance, as the pretraining task set is now too low-dimensional to cover
enough variation at test time. We highlight that the potential advantage coming from increasing
training spectral power weakens as soon as κ is large enough for the model to be able to resolve
enough task directions during pretraining.
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Figure 4: Heatmap of theoretical ICL error given
by (18) for simultaneously diagonalizable
powerlaw task covariances Ctrain and Ctest with
spectral power ptrain (variable) and ptest (fixed).
The x-axis shows task diversity κ and the y-axis
shows the difference ptrain − ptest between task
spectral powers. The colourbar shows the %
improvement in error by training on Ctrain instead
of Ctest. This shows that increasing spectral power
in the pretraining tasks can markedly improve ICL
error on the same test distribution. Parameters:
d = 100, ptest = 0.9, α = 1, τ = 4, ρ = 0.01.

5 CONCLUSIONS

We have developed a framework of in-context task alignment, showing that our derived measure of
error from task misalignment is a robust predictor of ICL performance, even in nonlinear architec-
tures. This derivation builds on a model of in-context learning of linear regression, which we extend
to fully general task covariates. Previous works have shown that the performance of ICL models
can suffer under task shift, particularly in cases of low task diversity (Garg et al., 2022; Goddard
et al., 2025; Zhang et al., 2024a). We highlight that, while task misalignment is provably a driver of
ICL error, our fully-general covariance framework can be used to show that task misalignment can
indeed be utilized to improve ICL performance in cases of limited data.

Looking forward, our analysis provides a rich model of ICL with many further avenues of inves-
tigation. A more detailed analysis of the interaction between pretraining-specific error escalar and
misalignment error emisalign could be used to derive a general heuristic for optimal pretraining,
with potential implications for practical settings. Beyond task alignment, additional highly relevant
phenomena can be investigated: we highlight (1) a generalized learning transition in task diver-
sity (empirically studied by Raventós et al. (2023); see Appendix F) and (2) test-time scaling (see
Gozeten et al. (2025) and Appendix G). We leave exploration of these phenomena to future work.
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Toni J.b. Liu, Nicolas Boulle, Raphaël Sarfati, and Christopher Earls. Llms learn governing prin-
ciples of dynamical systems, revealing an in-context neural scaling law. In Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pp. 15097–15117. As-
sociation for Computational Linguistics, 2024. doi: 10.18653/v1/2024.emnlp-main.842. URL
http://dx.doi.org/10.18653/v1/2024.emnlp-main.842.

Yue M. Lu, Mary Letey, Jacob A. Zavatone-Veth, Anindita Maiti, and Cengiz Pehlevan. Asymp-
totic theory of in-context learning by linear attention. Proceedings of the National Academy
of Sciences, 122(28):e2502599122, 2025. doi: 10.1073/pnas.2502599122. URL https:
//www.pnas.org/doi/abs/10.1073/pnas.2502599122.

Arvind Mahankali, Tatsunori B. Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention, 2023. URL
https://arxiv.org/abs/2307.03576.

Albert W. Marshall, Ingram Olkin, and Barry C. Arnold. Inequalities: Theory of Majorization
and Its Applications. Springer New York, NY, 2 edition, 2010. doi: https://doi.org/10.1007/
978-0-387-68276-1.

Gavin McCracken, Gabriela Moisescu-Pareja, Vincent Letourneau, Doina Precup, and Jonathan
Love. Uncovering a universal abstract algorithm for modular addition in neural networks, 2025.
URL https://arxiv.org/abs/2505.18266.

Pratik Patil, Jin-Hong Du, and Ryan Tibshirani. Optimal ridge regularization for out-of-distribution
prediction. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pp. 39908–39954. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/
v235/patil24a.html.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diver-
sity and the emergence of non-bayesian in-context learning for regression. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 14228–14246. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/2e10b2c2e1aa4f8083c37dfe269873f8-Paper-Conference.pdf.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=aN4Jf6Cx69.

12

https://arxiv.org/abs/2502.03327
https://openreview.net/forum?id=oo5TNikeJl
https://openreview.net/forum?id=oo5TNikeJl
https://proceedings.neurips.cc/paper_files/paper/2024/file/f9dc462382fef56d58279e75de2438f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f9dc462382fef56d58279e75de2438f3-Paper-Conference.pdf
https://yingzhouli.com/posts/2020-07/von-neumann-trace-inequalities.html
https://yingzhouli.com/posts/2020-07/von-neumann-trace-inequalities.html
https://yingzhouli.com/posts/2020-07/von-neumann-trace-inequalities.html
http://dx.doi.org/10.18653/v1/2024.emnlp-main.842
https://www.pnas.org/doi/abs/10.1073/pnas.2502599122
https://www.pnas.org/doi/abs/10.1073/pnas.2502599122
https://arxiv.org/abs/2307.03576
https://arxiv.org/abs/2505.18266
https://proceedings.mlr.press/v235/patil24a.html
https://proceedings.mlr.press/v235/patil24a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/2e10b2c2e1aa4f8083c37dfe269873f8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/2e10b2c2e1aa4f8083c37dfe269873f8-Paper-Conference.pdf
https://openreview.net/forum?id=aN4Jf6Cx69


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhaiming Shen, Alexander Hsu, Rongjie Lai, and Wenjing Liao. Understanding in-context learning
on structured manifolds: Bridging attention to kernel methods, 2025. URL https://arxiv.
org/abs/2506.10959.

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
Attention with linear complexities. In Proceedings of the IEEE/CVF winter conference on appli-
cations of computer vision, pp. 3531–3539, 2021.

Aaditya K. Singh, Stephanie C. Y. Chan, Ted Moskovitz, Erin Grant, Andrew M. Saxe, and Felix
Hill. The transient nature of emergent in-context learning in transformers, 2023. URL https:
//arxiv.org/abs/2311.08360.

William L. Tong and Cengiz Pehlevan. MLPs learn in-context on regression and classification
tasks. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=MbX0t1rUlp.

Nilesh Tripuraneni, Ben Adlam, and Jeffrey Pennington. Covariate shift in high-dimensional random
feature regression. arXiv, 2021. URL https://arxiv.org/abs/2111.08234.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvint-
sev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient de-
scent. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning Research, pp. 35151–35174. PMLR, 23–29
Jul 2023. URL https://proceedings.mlr.press/v202/von-oswald23a.html.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
guage models. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL
https://openreview.net/forum?id=yzkSU5zdwD.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression? In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=vSh5ePa0ph.

Daniel Wurgaft, Ekdeep Singh Lubana, Core Francisco Park, Hidenori Tanaka, Gautam Reddy,
and Noah D. Goodman. In-context learning strategies emerge rationally, 2025. URL https:
//arxiv.org/abs/2506.17859.

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-
context. Journal of Machine Learning Research, 25(49):1–55, 2024a. URL http://jmlr.
org/papers/v25/23-1042.html.

Ruiqi Zhang, Jingfeng Wu, and Peter L. Bartlett. In-context learning of a linear transformer block:
Benefits of the mlp component and one-step gd initialization, 2024b.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context
learning learn? bayesian model averaging, parameterization, and generalization, 2023. URL
https://arxiv.org/abs/2305.19420.

13

https://arxiv.org/abs/2506.10959
https://arxiv.org/abs/2506.10959
https://arxiv.org/abs/2311.08360
https://arxiv.org/abs/2311.08360
https://openreview.net/forum?id=MbX0t1rUlp
https://arxiv.org/abs/2111.08234
https://proceedings.mlr.press/v202/von-oswald23a.html
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=vSh5ePa0ph
https://openreview.net/forum?id=vSh5ePa0ph
https://arxiv.org/abs/2506.17859
https://arxiv.org/abs/2506.17859
http://jmlr.org/papers/v25/23-1042.html
http://jmlr.org/papers/v25/23-1042.html
https://arxiv.org/abs/2305.19420


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY INFORMATION

In the following sections, we provide proofs of the results presented in the main document. We begin
in Section A with some preliminary simplifications of the ICL and IDG population risk for general
Γ. Then in Section B we will set up and complete the random matrix theory calculation necessary
to justify our main result, equation 18, which will be done in Section C. Section E will cover the
proof of the phenomena-based Corollary 4.1. Then, we provide additional analysis of transitions
in the behavior of the ICL error as a function of the task diversity κ in Section F, and of shifts in
the test-time context length in Section G. We conclude with details of our numerical experiments in
Section H.

Notation Here vec(·) will mean the vectorization operation under the row-major convention: for
a d1×d2 matrix A, vec(A) is a vector in Rd1d2 , formed by stacking the rows of A together. We will
use this together with the matrix Kronecker product ⊗, where by standard results we have

vec(uv⊤) = u⊗ v (25)

(u⊗ v)(w ⊗ s)⊤ = (uw⊤)⊗ (vs⊤) . (26)
We will also use the notation [M ]\0 to mean the principal minor of a matrix M (i.e., first row and
column removed). We use the following normalized trace

tr[A] ≡ 1

d
tr(A) .

We use ≡ when defining new quantities. We use ≃ for deterministic equivalence, which describes
the large-dimensional limit of a random quantity (either a scalar or matrix) that concentrates to a
deterministic value as dimension approaches infinity.

A GENERAL ERROR FORMULAS

Here we will set up the definition of various test errors more generally than in the main document. As
this is an in-context learning setup, there are different types of “generalization” that can be studied:
generalization over the tokens and generalization over the tasks. We will define two test errors to
capture these separately.

In general, we wish to understand the performance and behavior of this estimator Γ∗, which is
pretrained on data from the pretraining distribution Ptrain, when tested on new data. Namely, we
will analyze the average performance of an estimator ŷ = tr(Γ, HZ) as a function of given fixed Γ
under the MSE loss, which is the natural loss for a regression test. The most general this expression
can be is

LMSE(Γ) = EPtest

[
(yℓ+1 − tr(Γ, HZ))

2
]

(A.1)

for a general test distribution Ptest detailing how to sample tokens x, tasks w, and noise ϵ at test
time.

We will consider two different testing regimes: the in-context learning (ICL) test, where the model
sees new tasks w, and the in-distribution generalization (IDG) (or in-weights) test, where the model
sees the exact same tasks used in pretraining {t1 , · · · , tk}, where each tj ∼i.i.d. N (0, Ctrain).
Explicitly, we define these test distributions and corresponding error functions as follows:

EIDG(Γ) = EPIDG

[
(yℓ+1 − tr(Γ, HZ))

2
]

(A.2)

PIDG := xµ
i ∼i.i.d. N (0, Id/d) , wµ ∼unif {t1 , · · · , tk} , ϵµi ∼i.i.d. N (0, ρ) ,

where i ∈ [ℓ] and µ ∈ [n], and

EICL(Γ) = EPICL

[
(yℓ+1 − tr(Γ, HZ))

2
]

(A.3)

PICL := xµ
i ∼i.i.d. N (0, Id/d) , wµ ∼i.i.d. N (0, Ctest) , ϵµi ∼i.i.d. N (0, ρ) ,

where i ∈ [ℓtest] and µ ∈ [n].

Notice here that we’ve introduced two different context lengths: ℓ for the IDG distribution, which
is the same context length as the pretraining setup Ptrain given by (2), and ℓtest which is the con-
text length at testing time. This allows us to later explore the effect of pretraining and testing on
sequences of different context lengths.
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We assume that both task covariance matrices Ctrain and Ctest are well-behaved in high dimensions,
specifically that tr[Ctrain], tr[Ctest] = Θ(1). This ensures the task signals are not over or under
amplified as d → ∞.

Lemma 1. Simplified test losses. Consider IDG and ICL test distribution and corresponding error
functions as given by (A.2) and (A.3). For fixed parameters Γ ∈ Rd×(d+1) and data sampled ac-
cording to test distribution PIDG or PICL, the corresponding errors eIDG and eICL can be expressed
as

EIDG(Γ) ≃ ρ+ tr[ΣRk]− 2 tr[ΓA⊤
IDG] + tr[ΣΓBIDGΓ

⊤] (A.4)

EICL(Γ) ≃ ρ+ tr[ΣCtest]− 2 tr[ΓA⊤
ICL] + tr[ΣΓBICLΓ

⊤] (A.5)
where

AIDG = [ΣRkΣ (tr[ΣRk] + ρ) Σbk] , (A.6)

AICL = [ΣCtestΣ 0] , (A.7)

BIDG =

[
ΣRkΣ+ d

ℓ (tr[ΣRk] + ρ) Σ (tr[ΣRk] + ρ) Σbk
(tr[ΣRk] + ρ) (Σbk)

⊤ (tr[ΣRk] + ρ)
2

]
(A.8)

BICL =

[
ΣCtestΣ+ d

ℓtest
(tr[ΣCtest] + ρ) Σ 0

0⊤ (tr[ΣCtest] + ρ)
2

]
(A.9)

for bk and Rk defined by the pretraining task sample {w1 , ... , wk} as

bk =
1

k

∑
j∈[k]

tj , Rk =
1

k

∑
j∈[k]

tjt
⊤
j . (A.10)

The “≃” in these formulas comes from ignoring terms of order 1/d and weaker, i.e. a high-
dimensional treatment.

Remark 1. Note that Result 1 is a more general result than the setting considered in the main
paper, as Result 1 allows for general token covariance Σ. The rest of this work will take Σ = Id for
computational tractability.

Lemma 2. Fix the task vector w that defines yi = w⊤xi+ ϵi for context Z. Denote the conditional
expectation over only xi, ϵi, holding w fixed, by Ex,ϵ. Then we have the following

Ex,ϵ[yℓ+1] = 0 (A.11)
Ex,ϵ[HZ ] = 0 (A.12)

Ex,ϵ[y
2
ℓ+1] = tr[Σww⊤] + ρ (A.13)

Ex,ϵ[yℓ+1HZ ] =
1

d

[
Σww⊤Σ

(
tr[Σww⊤] + ρ

)
Σw
]

(A.14)

Ex,ϵ[vec(HZ) vec(HZ)
⊤] ≃ 1

d
Σ⊗

[
Σww⊤Σ+ d

ℓ

(
tr[Σww⊤] + ρ

)
Σ

(
tr[Σww⊤] + ρ

)
Σw(

tr[Σww⊤] + ρ
)
(Σw)⊤

(
tr[Σww⊤] + ρ

)2 ]
(A.15)

where recall
HZ ≡ xℓ+1

[
d
ℓ

∑
i≤ℓ yix

⊤
i

1
ℓ

∑
i≤ℓ y

2
i

]
∈ Rd×(d+1) . (A.16)

Proof. Equation (A.11) follows immediately from the linearity of yℓ+1 in ϵ and xi, which are both
mean-0 random variables. Similarly for (A.12), as HZ is linear in xℓ+1.

For the conditional expectation of y2ℓ+1 in (A.13), simply expand

Ex,ϵ

[
y2ℓ+1

]
= Ex,ϵ

[
(w⊤xℓ+1 + ϵℓ+1)(x

⊤
ℓ+1w + ϵℓ+1)

]
(A.17)

= Ex,ϵ

[
w⊤xℓ+1x

⊤
ℓ+1w + ϵ2ℓ+1

]
(A.18)

=
1

d
w⊤Σw + ρ (A.19)

= tr[Σww⊤] + ρ . (A.20)
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For (A.14), have

Ex,ϵ

d
ℓ

∑
i≤ℓ

yℓ+1yixℓ+1x
⊤
i

 =
d

ℓ

∑
i≤ℓ

Ex,ϵ

[
xℓ+1(x

⊤
ℓ+1w + ϵℓ+1)(w

⊤xi + ϵi)x
⊤
i

]
(A.21)

=
d

ℓ

∑
i≤ℓ

Ex,ϵ

[
xℓ+1x

⊤
ℓ+1ww⊤xix

⊤
i

]
(A.22)

=
d

ℓ

∑
i≤ℓ

(Σ/d)ww⊤ (Σ/d) (A.23)

=
1

d
Σww⊤Σ (A.24)

and

Ex,ϵ

1
ℓ

∑
i≤ℓ

yℓ+1xℓ+1y
2
i

 =
1

ℓ

∑
i≤ℓ

Ex,ϵ

[
xℓ+1(x

⊤
ℓ+1w + ϵℓ+1)(w

⊤xi + ϵi)(x
⊤
i w + ϵi)

]
(A.25)

=
1

ℓ

∑
i≤ℓ

Ex,ϵ

[
xℓ+1x

⊤
ℓ+1w(w⊤xix

⊤
i w + ϵiϵi)

]
(A.26)

=
1

ℓ

∑
i≤ℓ

(Σ/d)w(w⊤(Σ/d)w + ρ) (A.27)

=
1

d
(tr[Σww⊤] + ρ)Σw (A.28)

as required for (A.14).

Finally, for (A.15,) first it will be helpful to note, by Isserlis’s theorem / Wick’s theorem, that

Ex,ϵ

[
x1x

⊤
1 ww⊤x1x

⊤
1

]
=

2

d2
Σww⊤Σ+

1

d
tr[Σww⊤]Σ . (A.29)

It will also be useful to rewrite

vec(HZ) vec(HZ)
⊤ = (xℓ+1x

⊤
ℓ+1)⊗

([
d
ℓ

∑
i≤ℓ yixi

1
ℓ

∑
i≤ℓ y

2
i

] [
d
ℓ

∑
i≤ℓ yix

⊤
i

1
ℓ

∑
i≤ℓ y

2
i

])
by converting between vec() and matrix Kronecker. The components of this Kronecker product are
independent and can therefore be averaged separately. Clearly

Ex,ϵ[xℓ+1x
⊤
ℓ+1] =

Σ

d
,

so we focus on the second matrix in the product. This matrix will have blocks that sum over two
ℓ sums, leading to both Θ(1) and Θ(1/ℓ) terms in the final expression. We will ignore terms of
order 1/ℓ as we eventually will only use this formula in a proportional limit of ℓ, d → ∞ such that
ℓ/d = Θ(1), and thus 1/ℓ is negligible in this limit.
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We proceed block-by-block. Firstly,

Ex,ϵ

d2
ℓ2

∑
i,j≤ℓ

yixiyjx
⊤
j

 =
d2

ℓ2

∑
i

Ex,ϵ

[
xi(x

⊤
i w + ϵi)(w

⊤xi + ϵi)x
⊤
i

]
+

d2

ℓ2

∑
i ̸=j

Ex,ϵ

[
xi(x

⊤
i w + ϵi)(w

⊤xj + ϵj)x
⊤
j

]
(A.30)

= ℓ
d2

ℓ2
Ex,ϵ[x1x

⊤
1 ww⊤x1x

⊤
1 + ϵ!ϵ1x1x

⊤
1 ]

+ (ℓ2 − ℓ)
d2

ℓ2
Ex,ϵ[x1x

⊤
1 ww⊤x2x

⊤
2 ] (A.31)

= ℓ
d2

ℓ2

(
1

d
tr[Σww⊤]Σ +

2

d2
Σww⊤Σ+

1

d
ρΣ

)
+ (ℓ2 − ℓ)

d2

ℓ2

(
1

d2
Σww⊤Σ

)
(A.32)

=

(
1 +

1

ℓ

)
Σww⊤Σ+

d

ℓ

(
tr[Σww⊤] + ρ

)
Σ (A.33)

≃ Σww⊤Σ+
d

ℓ

(
tr[Σww⊤] + ρ

)
Σ . (A.34)

Secondly,

Ex,ϵ

 d

ℓ2

∑
i,j≤ℓ

yixiy
2
j

 = ℓ
d

ℓ2
Ex,ϵ

[
x1y

3
1

]
+ (ℓ2 − ℓ)

d

ℓ2
Ex,ϵ [x1y1]Ex,ϵ

[
y22
]

(A.35)

=
1

ℓd

(
d tr[Σww⊤]Σ + 2Σww⊤Σ

)
w + 3

1

ℓ
ρΣw

+

(
1− 1

ℓ

)(
tr[Σww⊤] + ρ

)
Σw (A.36)

≃
(
tr[Σww⊤] + ρ

)
Σw . (A.37)

Finally,

Ex,ϵ

 1

ℓ2

∑
i,j≤ℓ

y2i y
2
j

 =
1

ℓ
Ex,ϵ[y

4
1 ] +

ℓ2 − ℓ

ℓ2
Ex,ϵ[y

2
1 ]Ex,ϵ[y

2
2 ] (A.38)

=
1

ℓ

(
Ex,ϵ[w

⊤xx⊤ww⊤xx⊤w] + 6ρEx[w
⊤xx⊤w] + 3ρ2

)
+

(
1− 1

ℓ

)(
tr[Σww⊤] + ρ

)2
(A.39)

≃
(
tr[Σww⊤] + ρ

)2
. (A.40)

Combining these pieces gives (A.15).

Proof. [of Lemma 1] We begin by noting that for both IDG and ICL test errors, we can expand

e(Γ) = Ex,w,ϵ

[(
yℓ+1 − tr(ΓH⊤

Z )
)2]

= Ew

[
Ex,ϵ

[(
yℓ+1 − tr(ΓH⊤

Z )
)2]]

= Ew

[
Ex,ϵ

[(
yℓ+1 − vec(Γ)⊤ vec(HZ)

)2]]
= Ew

[
Ex,ϵ

[
y2ℓ+1

]]
− 2 vec(Γ)⊤Ew [Ex,ϵ [yℓ+1 vec(HZ)]]

+ vec(Γ)⊤Ew

[
Ex,ϵ

[
vec(HZ) vec(HZ)

⊤]] vec(Γ) (A.41)
where the difference between IDG and ICL error comes from the different task distribution over
which we take Ew. Note this Ew is shorthand for “expectation over task distribution,” which will
be different distributions depending on if we are using PIDG or PICL.
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Now we can use the above Lemma to simplify these terms drastically. For the IDG distribution, we
have

Ew[w] = bk , Ew[ww⊤] = Rk .

Therefore,
Ew[Ex,ϵ[y

2
ℓ+1]] = tr[ΣRk] + ρ (A.42)

Ew[Ex,ϵ[yℓ+1HZ ]] =
1

d
[ΣRkΣ (tr[ΣRk] + ρ) Σbk] =

1

d
AIDG (A.43)

Ex,ϵ[vec(HZ) vec(HZ)
⊤] ≃ 1

d
Σ⊗

[
ΣRkΣ+ d

ℓ (tr[ΣRk] + ρ) Σ (tr[ΣRk] + ρ) Σbk
(tr[ΣRk] + ρ) (Σbk)

⊤ (tr[ΣRk] + ρ)
2

]
=

1

d
Σ⊗BIDG . (A.44)

For the ICL distribution, we have
Ew[w] = 0 , Ew[ww⊤] = Ctest ,

and so
Ew

[
Ex,ϵ[y

2
ℓ+1]

]
= Ew

[
tr[Σww⊤] + ρ

]
= tr[ΣCtest] + ρ (A.45)

Ew [Ex,ϵ[yℓ+1HZ ]] =
1

d
[ΣCtestΣ 0] =

1

d
AICL (A.46)

Ew

[
Ex,ϵ[vec(HZ) vec(HZ)

⊤]
]
≃ 1

d
Σ⊗

[
ΣCtestΣ+ d

ℓ (tr[ΣCtest] + ρ) Σ 0

0⊤ (tr[ΣCtest] + ρ)
2

]
=

1

d
Σ⊗BICL . (A.47)

Upon noting that

vec(Γ)⊤(Σ⊗B) vec(Γ) = tr
(
ΣΓBΓ⊤) ,

substituting these components into (A.41) gives the required results.

B RANDOM MATRIX THEORY CALCULATION

Note that while Result 1 is offered for general token covariance Σ, all steps and results in this section
and the following section assume Σ = Id.

The setup and structure of this formalism and corresponding results will follow Section SI.3 and
SI.4 of Lu et al. (2025). There will be key differences caused by the different task statistics
N (0, Ctrain),N (0, Ctest) that we use in this work compared to the isotropic tasks used in Lu et al.
(2025). Since the token structure is the same between the work of Lu et al. (2025) and our work
here, we will not prove various error bounding claims or approximations rigorously here, as such
bounds would be identical to what can be found in Lu et al. (2025). However, care will be taken to
highlight the distinction and differences required for handling the additional complexity introduced
by our consideration of non-isotropic tasks.

We will use ≈ to denote two scalar quantities which converge in probability in the high-dimensional
limit, or for two matrices to represent deterministic equivalence.

Definition 1. For two d × d (possibly random) matrices Ad and Bd, we write Ad ≃ Bd if
tr[Md(Ad − Bd)] → 0 in probability as d → ∞ for any sequence of bounded spectral norm
test matrices Md (Atanasov et al., 2024; Lu et al., 2025).

As noted above, we will not attempt to control rates of convergence.

We begin by considering the closed-form optimized parameters given by (11). This optimization
problem can be solved explicitly as

vec(Γ∗) =

(
n

d
λI +

n∑
µ=1

vec(HZµ)vec(HZµ)⊤

)−1 n∑
µ=1

yµℓ+1vec(HZµ) . (B.1)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Ultimately we wish to characterize the ICL and IDG error of these parameters, which are given by
Result 1 as

EICL(Γ
∗) = ρ+ tr[Ctest]− 2 tr[Γ∗A⊤

ICL] + tr[Γ∗BICL(Γ
∗)⊤] (B.2)

EIDG(Γ
∗) = ρ+ tr[Rk]− 2 tr[Γ∗A⊤

IDG] + tr[Γ∗BIDG(Γ
∗)⊤] (B.3)

for

AICL = [Ctest 0] (B.4)

BICL =

[
Ctest +

1
αtest

(tr[Ctest] + ρ) 0

0⊤ (tr[Ctest] + ρ)
2

]
(B.5)

AIDG = [Rk (tr[Rk] + ρ) bk] (B.6)

BIDG =

[
Rk + 1

αtrain
(tr[Rk] + ρ) (tr[Rk] + ρ) bk

(tr[Rk] + ρ) b⊤k (tr[Rk] + ρ)
2

]
. (B.7)

Again, as we are distinguishing between pretraining and testing context lengths, we use
αtrain = ℓtrain/d , αtest = ℓtest/d .

These expressions for Γ∗ and its corresponding errors depend explicitly on the randomness found
in the particular sample of the data x,w, ϵ; we wish to be able to characterize the typical perfor-
mance, and thus we need to average over this disorder. We will do so by following a random-matrix
style computation that computes a deterministic equivalent for the parameter matrix Γ∗ and its cor-
responding ICL and IDG errors, valid in high dimensions in the proportional limit

ℓtrain
d

≡ αtrain = Θ(1),
ℓtest
d

≡ αtest = Θ(1),
k

d
≡ κ = Θ(1),

n

d2
≡ τ = Θ(1). (B.8)

To do this, we will express necessary quantities in terms of resolvents.

RESOLVENT AND EXTENDED RESOLVENT SETUP

Γ∗ above can be rewritten as
vec(Γ∗) = G

(∑
µ∈[n] yµ vec(Hµ)

)
/d, (B.9)

where G is the resolvent matrix

G =
(∑

µ∈[n] vec(Hµ) vec(Hµ)
⊤/d+ τλI

)−1

. (B.10)

We will find it helpful to explicitly include an additional matrix Bplaceholder ∈ R(d2+d)×(d2+d) (that
is positive-semidefinite)

G(π) =
(∑

µ∈[n] vec(Hµ) vec(Hµ)
⊤/d+ πBplaceholder + τλI

)−1

, (B.11)

for a non-negative scalar π. Notice that G(0) = G. Eventually Bplaceholder will be explicitly related
to BICL or BIDG in a way that will allow us to more easily compute the ΓBICLΓ

⊤ or ΓBIDGΓ
⊤ term

in the error formulas.

We can write G in a cleaner and more useful way by concatenating yµ and vec(Hµ) into an extended
vector

zµ =

[
yµ/d

vec(Hµ)/
√
d

]
∈ Rd2+d+1 . (B.12)

We also extend Bplaceholder as

Bext =

[
0

Bplaceholder

]
, (B.13)

We then define an extended resolvent (with very similar structure as G) to be

Gext(π) =
1∑

µ∈[n] zµz
⊤
µ + πBext + τλI

. (B.14)

We see that zµz⊤
µ and Bext have block structure, and so expanding the block inverse we see

Gext(π) =

[
c(π) −c(π)q⊤(π)

−c(π)q(π) G(π) + c(π)q(π)q⊤(π)

]
, (B.15)
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for
q(π) ≡ 1

d3/2
G(π)

(∑
µ∈[n] yµ vec(Hµ)

)
∈ Rd(d+1) (B.16)

and c(π) defined self-consistently by
1

c(π)
=

1

d2

∑
µ∈[n]

y2µ + τλ− 1

d3

∑
µ,ν∈[n]

yµyν vec(Hµ)
⊤G(π) vec(Hν). (B.17)

At π = 0 we can now see that Gext explicitly contains information about the optimal parameters Γ∗

we’re considering, as

q(0) =
1√
d
vec(Γ∗) . (B.18)

We will thus proceed by computing a deterministic equivalent for this extended resolvent.

DETERMINISTIC EQUIVALENT FOR THE EXTENDED RESOLVENT

We will closely follow Reference Lu et al. (2025), omitting details that remain unchanged between
the formalism in their work and ours here. Intuition-based headings will be given in green.

The computation proceeds by defining a “leave-one-out” version of Gext,

G
[µ]
ext =

1∑
ν ̸=µ zνz

⊤
ν + πBext + τλI

. (B.19)

By construction,
Gext

(∑
µ∈[n] zµz

⊤
µ + πBext + τλI

)
= I. (B.20)∑

µ∈[n]

1

1 + z⊤
µ G

[µ]
extzµ

G
[µ]
extzµz

⊤
µ +Gext(πBext + τλI) = I. (B.21)

Average over disorder in x, ϵ, which concentrates. The term z⊤
µ G

[µ]
extzµ is well-behaved, specifically

as argued by Lu et al. (2025), it concentrates around its conditional expectation when the task wµ

and G
[µ]
ext is fixed. We thus have

z⊤
µ G

[µ]
extzµ ≃ χµ(wµ) (B.22)

where
χµ(wµ) ≡

1

d2
tr
(
[Gµ

ext]\0 · [I ⊗ E(wµ)]
)
, (B.23)

and

E(w) ≡
[
ww⊤ + 1

α

(
ρ+ tr[ww⊤]

)
Id

(
ρ+ tr[ww⊤]

)
w(

ρ+ tr[ww⊤]
)
w⊤ (

ρ+ tr[ww⊤]
)2 ] . (B.24)

Replacing z⊤
µ G

[µ]
extzµ in (B.21) with χµ(wµ) gives∑

µ∈[n]

1

1 + χµ(wµ)
G

[µ]
extzµz

⊤
µ +Gext(πBext + τλI) ≃ I . (B.25)

Next, we will also average the term zµz
⊤
µ on on the left-hand side of (B.25) over the remaining

disorder in x, ϵ, holding w fixed, and replace zµz
⊤
µ with this conditional expectation. Doing so

introduces some small error which is bounded in Lu et al. (2025). From this we have∑
µ∈[n]

1

1 + χµ(wµ)
G

[µ]
extEx,ϵ[zµz

⊤
µ ] +Gext(πBext + τλI) ≃ I . (B.26)

We already have enough to compute Ex,ϵ[zµz
⊤
µ ] using Lemma 2 as

Ex,ϵ[zµz
⊤
µ ] ≃ 1

d2
Υ, (B.27)

where because it will appear in subsequent equations we define the matrix

Υ ≡

[
ρ+ tr[ww⊤] 1√

d
vec
([
ww⊤ (ρ+ tr[ww⊤])w

])⊤
1√
d
vec
([
ww⊤ (ρ+ tr[ww⊤])w

])
Id ⊗ E(w)

]
. (B.28)
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Now substitute this expression into (B.26) for the conditional expectation Ex,ϵ

[
zµz

⊤
µ

]
, giving

τ

n

∑
µ∈[n]

1

1 + χµ(wµ)
G

[µ]
extΥ+Gext(πBext + τλI) ≃ I (B.29)

where we recall τ = n/d2.

“Leave-one-out” terms behave like their full-sum equivalents. In high dimensions and for large n,
there is negligible difference between

∑
ν ̸=µ and

∑
µ. Thus, we replace Gµ

ext by Gext, and χµ(wµ)
by

χ(wµ) ≡
1

d2
tr
(
[Gext]\0 · [I ⊗ E(wµ)]

)
. (B.30)

So finally we have the expression for Gext

Gext

 τ

n

∑
µ∈[n]

1

1 + χ(wµ)
Υ + πBext + τλI

 ≃ I . (B.31)

Exploit finiteness of training task set. So far we are summing over n task vectors, but really only
n/k of these are unique. Thus, we can simplify (B.31) as

Gext

τ

k

∑
j∈[k]

1

1 + χ(tj)
Υ + πBext + τλI

 ≃ I . (B.32)

Indeed χ(tj) is also self-averaging in tj , and as argued by Lu et al. (2025), concentrates to its mean

χ̂ave ≡
1

k

∑
j∈[k]

χ(tj). (B.33)

We can thus simplify our expressions by substituting (B.30) into (B.33) and performing the sum
over w1, ..., wk. Here we will use the that

1

k

∑
j∈[k]

(
ρ+ tr[tjt

⊤
j ]
)
= ρ+ tr[Rk] (B.34)

1

k

∑
j∈[k]

(
ρ+ tr[tjt

⊤
j ]
)
tj ≃ (ρ+ tr[Rk]) bk (B.35)

1

k

∑
j∈[k]

(
ρ+ tr[tjt

⊤
j ]
)2 ≃ (ρ+ tr[Rk])

2 (B.36)

where for (B.35) and (B.36) we have used that tr[tjt⊤j ] ≃ tr[Rk] as tr[Rk] − tr[tjt
⊤
j ] has mean 0

and variance Θ(1/d). We thus have that
1

k

∑
j∈[k]

E(tj) ≃ BIDG (B.37)

and so

χ̂ave =
1

d2
tr
(
[Gext]\0 · [I ⊗BIDG]

)
. (B.38)

Final formula for extended resolvent in terms of training task sample. The extended resolvent
Gext(π) is asymptotically equivalent to

Ĝe(π) ≡

(
τ

1 + χ̂ave

[
ρtrain

1√
d
vec ([Rk ρtrainbk])

⊤

1√
d
vec ([Rk ρtrainbk]) Id ⊗BIDG

]
+ πBext + τλI

)−1

(B.39)
with χ̂ave defined self-consistently by

χ̂ave ≡
1

k

∑
j∈[k]

χ(tj) =
1

d2
E
[
tr
(
[Gext]\0 · [Id ⊗BIDG]

)]
(B.40)
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with

bk ≡ 1

k

∑
j∈[k]

tj , Rk ≡ 1

k

∑
j∈[k]

tjt
⊤
j , ρtrain ≡ ρ+ tr[Rk] , (B.41)

BIDG ≡
[
Rk + ρtrain

α Id ρtrainbk
ρtrainb

⊤
k ρ2train

]
. (B.42)

Simplifying self-consistency variable χ. χ is defined in terms of the dominant component [Gext]\0
of Gext. To simplify this, choose ansatz for Bext as

Bext =

[
0 0
0 Id ⊗Btest

]
where Btest will later be BICL or BIDG depending on which error we compute. Then [Gext]\0 can
be expanded as (

τ

1 + χπ
Id ⊗BIDG + πId ⊗Btest + τλId ⊗ Id+1

)−1

= Id ⊗
(

τ

1 + χπ
BIDG + πBtest + τλId+1

)−1

(B.43)

= Id ⊗ FE(π) (B.44)
where

FE(π) ≡
(

τ

1 + χπ
BIDG + πBtest + τλId+1

)−1

.

We can use this to replace χ̂ave with χπ defined self-consistently by

χπ ≃ 1

d
tr

[( τ

1 + χπ
BIDG + πBtest + λτId+1

)−1

BIDG

]
(B.45)

Relating Ĝe(π) to a deterministic equivalent for Γ∗. Lu et al. (2025) shows that two key quantities
tr[Γ∗A⊤] and tr[Γ∗B(Γ∗)⊤] in E(Γ∗) can also be computed from the extended resolvent Gext(π).
As this is purely a matrix algebra claim, and independent of the particular task structure hidden
within Γ∗, it generalizes immediately to our case. We thus include this result here without proof and
refer to reader to Lu et al. (2025) for a derivation.

Lemma 3. [From Lu et al. (2025)] For any matrix A ∈ Rd×(d+1),

tr[Γ∗A⊤] =
−1

c(0)
√
d

[
0 vec(A)T

]
Gext(0)e1, (B.46)

where e1 denotes the first natural basis vector in Rd2+d+1. For any symmetric and positive semidef-
inite matrix B ∈ R(d+1)×(d+1), if we set

Bplaceholder = Id ⊗B (B.47)
in (B.13), then

tr[Γ∗B(Γ∗)⊤] =
d

dπ

(
1

c(π)

)∣∣∣∣
π=0

. (B.48)

Using Lemma 3, we can find the deterministic equivalent for Γ∗ from

tr[Γ∗A⊤] ≃ −1

c(0)
√
d

[
0 vec(A)T

]
Ge(0)e1 (B.49)

=
c∗(0)

c(0)
· 1
d
tr
(
[Rk ρtrainbk] (BIDG + λ(1 + χ0)I)

−1A⊤) (B.50)

≃ 1

d
tr
(
[Rk ρtrainbk] (BIDG + λ(1 + χ0)I)

−1A⊤) . (B.51)

and thus
Γ∗
eq ≃ [Rk ρtrainbk] (BIDG + λ(1 + χ0)I)

−1 (B.52)
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SELF-CONSISTENCY EQUATIONS AND FINITE TASK SAMPLE AVERAGES

So far, everything is left in terms of the quantities bk, Rk, BIDG that depend on a typical sample
of k task vectors w1 , · · · , wk. What remains to be analyzed is the behavior of this sample and its
sample statistics, i.e., how does the finiteness of k affect Γ∗. The following steps will deal with this.

Characterization of χ0 We see that we almost have a characterization for the deterministic equivalent
of Γ∗ but we need to understand what λ(1 + χ0) term is doing. From (B.45) we know χ0 is defined
self-consistently from

χ0 ≃ 1

d
tr

[( τ

1 + χ0
BIDG + λτId+1

)−1

BIDG

]
(B.53)

τχ0

1 + χ0
≃ 1

d
tr

[(
BIDG + λ(1 + χ0)Id+1

)−1

BIDG

]
(B.54)

=
d+ 1

d
− λ(1 + χ0)

1

d
tr

[(
BIDG + λ(1 + χ0)Id+1

)−1
]

(B.55)

Remember BIDG is a (d+1)× (d+1) block matrix with upper d×d block given by Rk +ρtrain/α.
We wish to express the above resolvent just in terms of Rk.

Working heuristically and block-inverting the BIDG + λ(1 + χ) resolvent we have
1

d
tr

[(
BIDG + λ(1 + χ0)Id+1

)−1
]
≃ 1

d
tr(FR(σ)) (B.56)

where
σ ≡ ρtrain

α
+ λ(1 + χ0) (B.57)

FR(σ) ≡ (Rk + σId)
−1 (B.58)

Sample covariance Rk and the Stieltjes transform. We thus have
τχ0

1 + χ0
≃ d+ 1

d
− λ(1 + χ0)

1

d
tr[FR(σ0)] ≃ 1− λ(1 + χ0)Mκ

(ρtrain
α

+ λ(1 + χ0)
)

where Mκ(σ) is the asymptotic equivalent of the Stieltjies transform of the Wishart resolvent
FR(σ) = (Rk + σId)

−1.

Following Atanasov et al. (2024) for correlated feature wisharts, we have

Mκ(σ) =
1

d
s tr((Ctrain + sσI)−1) (B.59)

where s is defined by the self consistency equation
1

s
= 1− 1

κ

1

d
tr(Ctrain(Ctrain + sσI)−1) = 1− 1

κ
+

σ

κ
Mκ(σ) (B.60)

and also only depends on σ, κ, and Ctrain. In other words, we have a self-consistency equation for
Mκ(σ) as

Mκ(σ) = tr

[((
1− 1

κ
+

σ

κ
Mκ(σ)

)
Ctrain + σId

)−1
]
. (B.61)

Similarly, we can express FR in deterministic form as

(Rk + σId)
−1 ≃ Fκ(σ) ≡

((
1− 1

κ
+

σ

κ
Mκ(σ)

)
Ctrain + σId

)−1

. (B.62)

Note that

(Rk + σId)
−2 ≃ − d

dσ
Fκ(σ) = −Fκ(σ)

((
1

κ
Mκ(σ) +

σ

κ

d
dσ

Mκ(σ)

)
Ctrain + Id

)
Fκ(σ) .

(B.63)
Given a particular problem with a particular Ctrain, each of these can be computed.
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Self-Consistency equation for χ0 Recall to characterize Γ∗
eq we need to understand λ(1 + χ0) ≡ λ̃.

We now know this variable is defined by

λ̃Mκ

(ρtrain
α

+ λ̃
)
− λτ

λ̃
= 1− τ (B.64)

In the ridgeless λ → 0 limit this equation becomes

λ̃Mκ

(ρtrain
α

+ λ̃
)
= 1− τ . (B.65)

While this equation has nontrivial solutions for τ < 1, it’s only solution is λ̃ = 0 when τ > 1.

Final deterministic equivalence for Γ∗ in terms of Wishart resolvent. Recall from above that
Γ∗
eq = (BIDG + λ̂ Id+1)

−1[Rk ρtrainbk]

We can use the trick that
[Rk ρtrainbk] = S

(
BIDG + λ̃CId+1 −

(ρtrain
α

+ λ̃C

)
Id+1

)
(B.66)

where S is an almost-identity matrix that selects top d× (d+ 1) of a (d+ 1)× (d+ 1) matrix. We
can then simplify

Γ∗
eq = S

(
I −

(ρtrain
α

+ λ̃
)
(BIDG + λ̃I)−1

)
(B.67)

≃ [I − σFR(σ) 0] . (B.68)
We stress that this is an approximation that comes from the full block inversion of the resolvent of
BIDG, but is robustly handled in Lu et al. (2025).

CHARACTERIZATION OF QUADRATIC TERM IN ERROR.

The only remaining error term left to approximate is those with the form ΓBΓ⊤. This is what we
introduced π and Bext for.

1

d
tr
(
IdΓBtestΓ

⊤) = 1

d
vec(Γ)⊤Πvec(Γ) =

d
dπ

1

c(π)
(π = 0) (B.69)

for Bplaceholder = Id ⊗ Btest. The definition of c(π) comes from the scalar term in the block
inversion of Gext(π),

Ge(π) =

[
c∗(π) −c∗(π) (q∗(π))⊤

−c∗(π) q∗(π) I ⊗ FE(χπ) + c∗(π)q∗(π)(q∗(π))⊤

]
, (B.70)

with
1

c∗(π)
=

τρtrain
1 + χπ

+ λτ − τ2

(1 + χπ)2
1

d
tr
(
[Rk ρtrainbk]FE(χπ) [Rk ρtrainbk]

⊤
)
. (B.71)

with

χπ ≃ 1

d
tr

[( τ

1 + χπ
BIDG + πB + λτId+1

)−1

BIDG

]
(B.72)

FE(χπ) =

(
τ

1 + χπ
BIDG + πBtest + τλId+1

)−1

(B.73)

Now following through the calculus, we get
d

dπ
FE(χπ) = −FE(χπ)

(
Btest −

τ

(1 + χπ)2

(
d

dπ
χπ

)
BIDG

)
FE(χπ) (B.74)

d
dπ

χπ =
1

d
tr

[(
d

dπ
FE(χπ)

)
BIDG

]
(B.75)

Plugging (B.74) into (B.75) and simplifying for χ′
0 gives

τχ′
0

(1 + χ0)2
=

1
d tr (BtestF0BIDGF0)

1
d tr(F0BIDGF0BIDG)− τ

=
1
d tr(BtestF0)− λ̃ 1

d tr(BtestF
2
0 )

1− 2λ̃ 1
d tr(F0) + λ̃2 1

d tr(F
2
0 )− τ

(B.76)

for

F0 ≡
(
BIDG + λ̃Id+1

)−1

, λ̃ ≡ λ(1 + χ0) .
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We can finally simplify the quadratic term as(
d

dπ
1

c(π)

)
(π = 0) =

1

d
tr(Γ∗

eqBtestΓ
∗
eq)

− τ
χ′
0

(1 + χ0)2

(
ρtrain − 1

d
tr(Γ∗

eqA
⊤
IDG)− λ̃

1

d
tr(Γ∗

eq(Γ
∗
eq)

⊤)

)
(B.77)

DICTIONARY OF VARIOUS DETERMINISTIC EQUIVALENTS

Lemma 4. The following is a summary of formulas. Their derivations follow simply from the above
discussions and characterizations. Let

F0 ≡
(
BIDG + λ̃Id+1

)−1

, λ̃ ≡ λ(1 + χ0)

and Γ∗
eq as given by (B.68). Then

tr[F0(λ̃)] ≃ Mκ(σ) (B.78)

tr[F 2
0 (λ̃)] ≃ −M′

κ(σ) (B.79)

tr[Γ∗
eqA

T
IDG] ≃ tr[Ctrain]− σ + σ2Mκ(σ) (B.80)

λ̃ tr[Γ∗
eq(Γ

∗
eq)

⊤] ≃ λ̃
(
1− 2σMκ(σ)− σ2M′

κ(σ)
)

(B.81)

tr[Γ∗
eqA

⊤
ICL] ≃ tr[Ctest]− σ tr[Fκ(σ)Ctest] (B.82)

tr[BIDGF0] = 1− λ̃Mκ(σ) (B.83)

tr[BIDGF
2
0 ] = Mκ(σ) + λ̃M′

κ(σ) (B.84)

tr[BICLF0] ≃ tr

[(
Ctest +

ρtest
αtest

Id

)
Fκ(σ)

]
(B.85)

tr[BICLF
2
0 ] ≃ − tr

[(
Ctest +

ρtest
αtest

Id

)
F ′
κ(σ)

]
(B.86)

tr[Γ∗
eqBIDG(Γ

∗
eq)

⊤] ≃ tr[Γ∗
eqA

⊤
IDG]− λ̃ tr[Γ∗

eq(Γ
∗
eq)

⊤] (B.87)

tr[Γ∗
eqBICL(Γ

∗
eq)

⊤] ≃ tr

[(
Ctest +

ρtest
αtest

Id

)(
Id − 2σFκ(σ)− σ2F ′

κ(σ)
)]

(B.88)

C PROOFS OF ASYMPOTIC IDG AND ICL ERROR CHARACTERIZATION

We finally have all the necessary components to write down the deterministic equivalents of the
IDG and ICL errors given by Lemma 1 (or (B.3) and (B.2)). This will comprise our main theoretical
result.

Result: High-dimensional formula for the IDG error

For Mκ(σ),M′
κ(σ), λ̃, and σ defined above, we have the deterministic equivalent of (A.2)

as

EIDG(Γ
∗) ≃ τ

ρ+ σ − σ2Mκ(σ)− λ̃(1− 2σMκ(σ)− σ2M′
κ(σ))

τ − (1− 2λ̃Mκ(σ)− λ̃2M′
κ(σ))

(C.1)

≡ eIDG(Ctrain)
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Result: High-dimensional formula for the ICL error

Take Mκ(σ),M′
κ(σ), F, F

′, σ, and λ̃ as defined as above, and q ≡ EIDG(Γ
∗)/τ . The

deterministic equivalent of (A.3) is then

EICL(Γ
∗) ≃ ρ+

ρ+ ctest
αtest

(
1 + (q − 2σ)Mκ(σ) + (qλ̃− σ2)M′

κ(σ)
)

+ q tr [CtestFκ(σ)] + (qλ̃− σ2) tr [CtestF
′
κ(σ)] (C.2)

≡ eICL(Ctrain, Ctest) .

Proof. Using Lemma 4 and (B.77) in (B.3) gives deterministic equivalent for EIDG(Γ
∗) as

EIDG(Γ
∗) ≃ ρ+ ctrain − 2(ctrain + σ + σ2Mκ(σ)) + ctrain + σ

+ σ2Mκ(σ)− λ̃(1− 2σMκ(σ)− σ2M′
κ(σ))

− 1− 2λ̃Mκ(σ)− λ̃2M′
κ(σ)

−τ + 1− 2λ̃Mκ(σ)− λ̃2M′
κ(σ)

×
(
ρtrain − (ctrain + σ + σ2Mκ(σ))− λ̃(1− 2σMκ(σ)− σ2M′

κ(σ))
)

(C.3)

=
(
ρ− σ − σ2Mκ(σ)− λ̃(1− 2σMκ(σ)− σ2M′

κ(σ))
)

×

(
1− 1− 2λ̃Mκ(σ)− λ̃2M′

κ(σ)

−τ + 1− 2λ̃Mκ(σ)− λ̃2M′
κ(σ)

)
(C.4)

= τ
ρ− σ − σ2Mκ(σ)− λ̃(1− 2σMκ(σ)− σ2M′

κ(σ))

τ − (1− 2λ̃Mκ(σ)− λ̃2M′
κ(σ))

(C.5)

as required.

Using Lemma 4 and (B.77) in (B.2) gives
EICL(Γ

∗) ≃ ρ+ ctest (C.6)
− 2 (ctest − σ tr [CtestFκ(σ)]) (C.7)

+ tr

[(
Ctest +

ρ+ ctest

αtest
Id

)(
Id − 2σFκ(σ)− σ2F ′

κ(σ)
)]

(C.8)

+ tr

[(
Ctest +

ρ+ ctest

αtest
Id

)(
Fκ(σ) + λ̃F ′

κ(σ)
)]

× ρ+ σ − σ2Mκ(σ)− λ̃(1− 2σMκ(σ)− σ2M′
κ(σ))

τ − (1− 2λ̃Mκ(σ)− λ̃2M′
κ(σ))

. (C.9)

Replacing

q ≡ ρ+ σ − σ2Mκ(σ)− λ̃(1− 2σMκ(σ)− σ2M′
κ(σ))

τ − (1− 2λ̃Mκ(σ)− λ̃2M′
κ(σ))

(C.10)

and gathering Ctest terms we get

eICL(Ctrain, Ctest) ≃ ρ+
ρ+ ctest
αtest

(
1 + (q − 2σ)Mκ(σ) + (qλ̃− σ2)M′

κ(σ)
)

+ ⟨Ctest, qFκ(σ) + (qλ̃− σ2)F ′
κ(σ)⟩ (C.11)

as required. The remaining terms only depending on the test distribution through ctest, and thus not
containing any structural information about the testing tasks, we call

escalar(λtrain, ctest) ≡ ρ+
ρ+ ctest
αtest

(
1 + (q − 2σ)Mκ(σ) + (qλ̃− σ2)M′

κ(σ)
)

(C.12)

and the remaining Ctest-dependent terms form the emisalign(Ctrain, Ctest) contribution.
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D ORDERING OF EIGENVALUES

Here we analyze the spectrum of the Ctrain-dependent component of the misalignment error term
(19),

K ≡ qFκ(σ) + (qλ̃− σ2)F ′
κ(σ) .

Given the self-consistent definitions of Fκ(σ) and F ′
κ(σ) in (15) and (B.63), we can write the eigen-

values of K as

λi(K) =
1

Aκλi(Ctrain) + σ

(
q + (σ2 − qλ̃)

Bκλi(Ctrain) + 1

Aκλi(Ctrain) + σ

)
,

for

Aκ ≡ 1− 1

κ
+

σ

κ
Mκ(σ) (D.1)

Bκ ≡ 1

κ
Mκ(σ) +

σ

κ
M′

κ(σ) . (D.2)

Claim: Eigenvalue Ordering

We wish to show that
λ1(K) < λ2(K) < · · · < λd(K)

for
λ1(Ctrain) > λ2(Ctrain) > · · · > λd(Ctrain) ,

i.e. the ordering of eigenvalues of K is opposite that of Ctrain.

We will separate this into two cases. For τ > 1 we provide a rigorous proof. For τ < 1, due to the
unclear sign of ν2 − qλ̃ we cannot currently provide a rigorous proof with the same methodology.
Instead, we provide numerical plots supporting our claim, with the goal of proving this formally for
the τ < 1 case in subsequent iterations of this work.

Lemma. We have that 1− κ ≤ σMκ(σ) ≤ 1 and σ2M′
κ(σ) ≤ κ− 1.

Proof. Rk is a positive semi-definite matrix and so σ(Rk + σId)
−1 is an increasing function of σ.

Therefore σ tr[(Rk + σId)
−1] is increasing in σ and so

lim
d→∞

σ tr[(Rk + σId)
−1] = σMκ(σ)

is an increasing function of σ. Thus we have
lim
σ→0

σMκ(σ) ≤ σMκ(σ).

Also as Rk is positive definite it is obvious that
σMκ(σ) = lim

d→∞
σ tr[(Rk + σId)

−1] ≤ 1.

By an equivalent argument,
σ2M′

κ(σ) ≤ lim
σ→0

σ2M′
κ(σ) .

It’s helpful to first write the self-consistency equation

Mκ(σ) = tr

[((
1− 1

κ
+

σ

κ
Mκ(σ)

)
Ctrain + σId

)−1
]

(D.3)

for Mκ(σ) equivalently as a self-consistency equation for the “renormalized ridge” σ̃ of this Wishart
resolvent, defined by

σ̃ tr[(Ctrain + σ̃)−1] = σMκ(σ)

or equivalently
σ̃ =

σ

1− 1
κ + σ̃

κ tr
[
(Ctrain + σ̃)

−1
] . (D.4)

In the σ → 0 limit, σ̃ limits to 0 when κ > 1, and limits to the unique solution of

1− 1

κ
+

σ̃

κ
tr
[
(Ctrain + σ̃)

−1
]
= 0 (D.5)
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for κ < 1. For our purposes, this means that

lim
σ→0

σMκ(σ) =

{
1− κ , κ < 1

0 , κ > 1
. (D.6)

Differentiating with respect to σ gives

lim
σ→0

σ2M′
κ(σ) =

{
κ− 1 , κ < 1

0 , κ > 1
(D.7)

≤ κ− 1

and so 1− κ ≤ σMκ(σ) and σ2M′
κ(σ) ≤ κ− 1.

For τ > 1, have λ̃ = 0 and so σ = (ρ+ ctrain)/α and

λi(K) =
1

Aκλi(Ctrain) + σ

(
q + σ2 Bκλi(Ctrain) + 1

Aκλi(Ctrain) + σ

)
.

Without loss of generality, let’s compare λ1(K) and λ2(K). First we have that
1

Aκλ1(Ctrain) + σ
<

1

Aκλ2(Ctrain) + σ
as Aκ > 0 (follows from the Lemma above).

Furthermore, have

Aκ − σBκ =
1

κ
((κ− 1)− σ2M′

κ(σ)).

We reason about this quantity as follows. We have that Aκ − σBκ > 0 as a result of this lemma,
and so (Aκ − σBκ)λ2 ≤ (Aκ − σBκ)λ1. Rearranging gives

Bκλ1(Ctrain) + 1

Aκλ1(Ctrain) + σ
≤ Bκλ2(Ctrain) + 1

Aκλ2(Ctrain) + σ

and so we are done as we’ve shown λ1(K) < λ2(K) for λ1(Ctrain) > λ2(Ctrain).

For τ < 1, λ̃ ̸= 0 and so the negative-definite contribution of qλ̃F ′
κ(σ) complicates the above

argument. We provide preliminary numerical evidence for this case as follows. We compute λ̃
numerically from its self-consistency equation (21) to compute K, of which we plot its eigenvalues
against the eigenvalues of Ctrain. As demonstrated schematically in Figure 5, for τ values less than
1, it is consistently the case that the eigenvalues of K are negatively correlated with the eigenvalues
of Ctrain. We emphasise that this is a heuristic check, and we plan to prove this rigorously in future
iterations of this work.

E TRACE INEQUALITIES FOR MISALIGNMENT

In this appendix, we give a self-contained expository proof of Ruhe’s trace inequality in the form
we require for Corollary 4.1. We actually present two lines of analysis: first a direct proof of the
inequality, and then an alternative analysis based on Riemannian optimization.

We begin by recalling the general setup: let A and B be d×d real symmetric matrices. By the spec-
tral theorem, they are orthogonally diagonalizable, with non-increasingly ordered real eigenvalues
λ1(A) ≥ λ2(A) ≥ · · · ≥ λd(A) and λ1(B) ≥ λ2(B) ≥ · · · ≥ λd(B), respectively. We want to
show that

d∑
j=1

λj(A)λd−j+1(A) ≤ tr(AB) ≤
d∑

j=1

λj(A)λj(B), (E.1)

with equality attained in either bound if and only if A and B are co-diagonalizable.

Writing the eigendecompositions of A and B as
A = OAΛAO

⊤
A and B = OBΛBO

⊤
B , (E.2)

respectively, where OAO
⊤
A = Id, OBO

⊤
B = Id, [ΛA]ij = λi(A)δij , and [ΛB ]ij = λi(B)δij , we

see immediately that it suffices to consider the case in which A is diagonal, with non-decreasing
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Figure 5: Demonstration of opposing eigenvalues for τ < 1 values, at a range of κ and α values.
Ctrain here is the same as in Figure 2, i.e. powerlaw spectrum.

elements, as
tr(AB) = tr(ΛAOΛBO

⊤) where O ≡ O⊤
AOB , (E.3)

and the matrix OΛBO
⊤ has the same eigenvalues as B. We can see that A and B are co-

diagonalizable if and only if OΛBO
⊤ is diagonal. Moreover, we can see that the claimed bounds

can be attained only if OΛBO
⊤ is in fact equal to ΛB up to pertmuation of its diagonal elements.

What remains is to show that they are in fact bounds.

E.1 DIRECT PROOF OF RUHE’S INEQUALITY

We now give a direct proof of the claimed inequality. We remark that the version of Ruhe’s inequality
proved in Marshall et al. (2010) is not sufficient for our purposes, as it assumes that both A and B
are positive semi-definite, i.e., that λd(A) ≥ 0 and λd(B) ≥ 0. We instead follow the proof for
general Hermitian matrices outlined in Li (2020)’s blog post.

The strategy of this proof is to proceed by induction on the matrix dimension d. The claim clearly
holds for d = 1, as then A and B are scalars equal to their only eigenvalue, and both bounds collapse.
Now consider d > 1. Assuming—as noted before—that A is diagonal with elements given by its
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ordered eigenvalues, we have

tr(AB) =

d∑
j=1

λj(A)Bjj (E.4)

=

d∑
j=1

[λj(A)− λd(A) + λd(A)]Bjj (E.5)

=

d−1∑
j=1

[λj(A)− λd(A)]Bjj +

d∑
j=1

λd(A)Bjj . (E.6)

We now observe that
d−1∑
j=1

[λj(A)− λd(A)]Bjj = tr(∆B̃), (E.7)

where ∆ is a (d− 1)× (d− 1) diagonal matrix with ∆jj = λj(A)− λd(A) and B̃ is the (d− 1)×
(d − 1) principal submatrix of B given by discarding its last row and column. The ordering of the
eigenvalues of A implies the ordering

λ1(A)− λd(A) ≥ · · · ≥ λd−1(A)− λd(A) ≥ 0 (E.8)
of the eigenvalues of ∆.

Thus, tr(∆B̃) is the trace of a product of (d− 1)× (d− 1) real symmetric matrices with ∆ having
its eigenvalues in non-decreasing order along the diagonal, so on the induction hypothesis we have
the bound

d−1∑
j=1

[λj(A)− λd(A)]λd−j(B̃) ≤ tr(∆B̃) ≤
d−1∑
j=1

[λj(A)− λd(A)]λj(B̃). (E.9)

By the Poincaré separation theorem (also known as the Cauchy interlacing theorem), as B̃ is a
principal submatrix of the real symmetric matrix B, we have the inequality

λj+1(B) ≤ λj(B̃) ≤ λj(B) (E.10)
for all j ∈ [d− 1].

Combining these results and using the fact that λj(A)−λd(A) ≥ 0 by our ordering assumption, we
thus have the upper bound

tr(AB) ≤
d−1∑
j=1

[λj(A)− λd(A)]λj(B̃) +

d∑
j=1

λd(A)Bjj (E.11)

≤
d−1∑
j=1

[λj(A)− λd(A)]λj(B) +

d∑
j=1

λd(A)Bjj (E.12)

=

d−1∑
j=1

λj(A)λj(B)− λd(A)

d−1∑
j=1

λj(B) + λd(A)

d∑
j=1

Bjj (E.13)

=

d−1∑
j=1

λj(A)λj(B)− λd(A)

d−1∑
j=1

λj(B) + λd(A)

d∑
j=1

λj(B) (E.14)

=

d∑
j=1

λj(A)λj(B), (E.15)

as tr(B) =
∑d

j=1 Bjj =
∑d

j=1 λj(B). Here, the first line uses the induction hypothesis in the form
re-stated above, the second line uses the upper bound from the Poincaré separation theorem, and the
remaining three lines are just algebraic simplification.
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Similarly, we have the lower bound

tr(AB) ≥
d−1∑
j=1

[λj(A)− λd(A)]λd−j(B̃) +

d∑
j=1

λd(A)Bjj (E.16)

≥
d−1∑
j=1

[λj(A)− λd(A)]λd−j+1(B) +

d∑
j=1

λd(A)Bjj (E.17)

=

d−1∑
j=1

λj(A)λd−j+1(B)− λd(A)

d−1∑
j=1

λd−j+1(B) + λd(A)

d∑
j=1

λj(B) (E.18)

=

d−1∑
j=1

λj(A)λd−j+1(B)− λd(A)

d∑
j=2

λj(B) + λd(A)

d∑
j=1

λj(B) (E.19)

=

d∑
j=1

λj(A)λd−j+1(B). (E.20)

By induction, we therefore conclude that
d∑

j=1

λj(A)λd−j+1(B) ≤ tr(AB) ≤
d∑

j=1

λj(A)λj(B), (E.21)

as desired.

E.2 RIEMANNIAN OPTIMIZATION

We now give an alternative perspective on this result based on the properties of orthogonal matrices.
Consider

f(O) = tr(ΛAOΛ̃BO
⊤) (E.22)

as a function on the space of orthogonal matrices, where Λ̃B is a diagonal matrix with non-zero
elements given by any permutation of the eigenvalues of B. Near the identity, we can write any
orthogonal matrix as

O = I + tS +
1

2
t2S2 +O(t3), (E.23)

where S is a skew-symmetric matrix (S⊤ = −S) and t is a small parameter. Substituting this
expansion into f(O), we have

f(O) = tr(ΛAΛ̃B)− t tr([ΛA, Λ̃B ]S) +
1

2
t2 tr(ΛAΛ̃BS

2 − 2ΛASΛ̃BS + ΛAS
2Λ̃B) +O(t3),

(E.24)
where [X,Y ] = XY − Y X is the matrix commutator. Irrespective of the permutation we have
chosen to define Λ̃B , [ΛA, Λ̃B ] = 0, so f(O) is stationary at the identity.

We therefore consider the quadratic term

H =
1

2
tr(ΛAΛ̃BS

2 − 2ΛASΛ̃BS + ΛAS
2Λ̃B), (E.25)

as it will determine whether this stationary point is a local minimum, local maximum, or saddle. As
[ΛA, Λ̃B ] = 0, we can immediately simplify this to

H = tr(ΛAΛ̃BS
2 − ΛASΛ̃BS). (E.26)

For brevity, define ai = (ΛA)ii and bi = (Λ̃B)ii. Then, expanding in components,

H =

d∑
i,j=1

(aibi − aibj)SijSji (E.27)

= −
d∑

i,j=1

ai(bi − bj)S
2
ij , (E.28)
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as by skew-symmetry Sji = −Sij . Using the fact that the i = j terms clearly vanish, we have

H = −
∑
i<j

ai(bi − bj)S
2
ij −

∑
i>j

ai(bi − bj)S
2
ij . (E.29)

By re-labling indices i ↔ j and using the fact that S2
ji = S2

ij ,∑
i>j

ai(bi − bj)S
2
ij = −

∑
i<j

aj(bi − bj)S
2
ij (E.30)

so upon re-combining terms

H = −
∑
i<j

(ai − aj)(bi − bj)S
2
ij . (E.31)

This now depends on the ordering of the eigenvalues, and thus on the permutation of indices. If the
eigenvalues of both A and B are in non-increasing order such that ai ≥ aj and bi ≥ bj whenever
i < j, we have H < 0, and the identity is a local maximum of f(O). In contrast, if they are
oppositely ordered, then H > 0 and the identity is a local minimum. Otherwise, the stationary point
is a saddle. These results are consistent with Ruhe’s inequality as proved above.

F PHASE TRANSITION WITH INCREASING PRETRAINING TASK DIVERSITY

As we have seen throughout, the task diversity parameter is crucial because it quantifies the quality
of the pretraining data: higher κ implies a richer span of task variations, enabling the in-context
learner to infer the structure shared between pretrain and test sets more accurately. Understanding
κ thus sheds light on the implicit algorithm performed by the model. Previous work from Lu et al.
(2025); Raventós et al. (2023) in particular have investigated the performance of ICL as κ increases.
In particular, Lu et al. (2025) showed, in the isotropic task case, that there is a phase transition at
κ = 1: for κ < 1, the model has insufficient task diversity to be able to generalize within tasks,
and is forced to memorize the training tasks, while for κ > 1, the model has seen sufficient tasks to
generalize in-context efficiently.
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(a) Full-rank phase transition
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(b) Half-rank phase transition

Figure 6: Theory curves with corresponding numerical simulations showing phase transition of
ICL error in κ for a range of test structures. For (a) Ctrain is the same as in Figure 1 and is
full-rank; for (b) Ctrain = diag[2Id/2, 0d/2], thus half-rank. Parameters:
d = 80, α = 80, τ = 80, ρ = 0.01. Tests for each are done on Ctrain, Id, powerlaw (spectral power
0.5, aligned and unaligned with Ctrain), as well as the rank-1 Ctest optimal from Result 4.2.

The settings considered in both Lu et al. (2025); Raventós et al. (2023) focus on isotropic tasks where
the pretraining and testing task distributions are the same. Here, we verify that not only does this
phase transition in task-diversity remain in the presence of structured pretraining task distributions,
but further is independent of the test distribution (see Figure 6).
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Corollary F.1: Phase transition in task diversity

In the proportional limit of α, τ → ∞ such that τ = α/γ for γ = Θ(1) fixed, there is a
phase transition in eICL at κ = rank(Ctrain)/d. Specifically, for r ≡ rank(Ctrain)/d then

lim
τ,α→∞

eICL(Ctrain, Ctest) =

ρ+
(
1 + ρ

ρ+ctrain
γ
)
tr
[
Ctest (x1Ctrain + Id)

−1
]

κ < r

ρ+
(
1 + ρ

ρ+ctrain
γ
)
tr
[
Ctest (x2Ctrain + Id)

−1
]

κ > r

(F.1)
where x1 and x2 are defined self-consistently as solutions of

tr
[
(x1Ctrain + Id)

−1
]
= 1− κ (F.2)

tr
[
(x2Ctrain + Id)

−1
]
= 1− r. (F.3)

To prove this result, we first suppose that Ctrain is invertible. We start by writing the self-consistency
equation

Mκ(σ) =
1

d
tr

(((
1− 1

κ
+

σ

κ
Mκ(σ)

)
Ctrain + σId

)−1
)

. (F.4)

for Mκ(σ) equivalently as a self-consistency equation for the renormalized ridge σ̃, defined by
σ̃ tr[(Ctrain + σ̃)−1] = σMκ(σ)

or equivalently

σ̃ =
σ

1− 1
κ + σ̃

κ tr
[
(Ctrain + σ̃)

−1
] . (F.5)

In the σ → 0 limit, σ̃ limits to 0 when κ > 1, and limits to the unique solution of

1− 1

κ
+

σ̃

κ
tr
[
(Ctrain + σ̃)

−1
]
= 0 (F.6)

for κ < 1. For our purposes, this means that

lim
σ→0

σMκ(σ) =

{
1− κ , κ < 1

0 , κ > 1
(F.7)

as well as

lim
σ→0

σFκ(σ) = lim
σ→0

(
1

σ

(
1− 1

κ
+

σMκ(σ)

κ

)
Ctrain + Id

)−1

(F.8)

=

{
(xCtrain + Id)

−1
, κ < 1

0 , κ > 1
(F.9)

and finally

lim
σ→0

σ2F ′
κ(σ) =

{
− (xCtrain + Id)

−1
, κ < 1

0 , κ > 1
(F.10)

for x defined by tr
[
(x1Ctrain + Id)

−1
]
= 1− κ.

Using these characterizations of the σ → 0 limit, and noticing for our problem that if τ → ∞ (so
λ̃ = 0), then we must take the σ → 0 limit of eICL, being careful to use

τ =
ρ+ ctrain

γ

1

σ
(F.11)

to enforce the proportional α/τ limit. Doing so gives the required answer.

The above proof requires explicitly that Ctrain is invertible. If it is not, we have to be more careful
with handling the σ → 0 limit of (D.4). One potential branch of this solution is

1− 1

κ
+

1

κ
σ̃ tr[(Ctrain + σ̃)−1] → 0 (F.12)
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or equivalently
1

d

r∑
i=1

σ̃

λi + σ̃
+

1

d
(d− r)

σ̃

0 + σ̃
→ 1− κ =⇒ 1

d

r∑
i=1

σ̃

λi + σ̃
→ r

d
− κ (F.13)

where r is the rank of Ctrain. This is what causes the split in behavior of the solution at κ = r/d
(which was previously 1). For κ < r/d, this is solvable at nonzero σ̃ and we end up with the familiar
solution branch of

σMκ(σ) = σ̃ tr[(Ctrain + σ̃)−1] → 1− κ. (F.14)
For κ > r/d, there is no longer a sensible solution at nonzero σ̃ (since σ̃ cannot be negative) and so
we’re forced to take σ̃ → 0. This gives

σMκ(σ) = σ̃ tr[(Ctrain + σ̃)−1] =
1

d

r∑
i=1

σ̃

λi + σ̃
+

1

d
(d− r)

σ̃

0 + σ̃
→ 1− r

d
. (F.15)

This concludes the proof of the claimed result, and recovers the previous result for invertible Ctrain.

G CONTEXT LENGTH SHIFTS
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Figure 7: Theory curves with corresponding numerical simulations showing monotonicity of error
in test-time context length for a variety of task structures. The dashed line corresponds to training
α. Parameters: d = 150, α = 2, τ = 4, κ = 1, ρ = 0.01. Testing is done on the same distribution
as pretraining.

We have thus far assumed that the pretraining- and test-time context lengths are the same. Our gen-
eral result in (C.2) allows for an αtest that differs from the training context length α, but shows that
this shift only affects a single scaling factor in escalar, where a factor of 1/α is replaced by 1/αtest.
Despite eICL not being monotonic in training context length, as demonstrated by Lu et al. (2025),
it is monotonically decreasing in test context length: testing on larger-context prompts can only de-
crease error, and testing on shorter-context prompts can only increase error. This is demonstrated
in Figure 7 for a variety of different task structures. Recall that αtest only appears in eICL through
escalar, as part of an effective noise term: having longer test-time contexts will give the model a bet-
ter estimate of the token distribution, leading to a better predictor for the task corresponding to that
context.

H EXPERIMENTAL DETAILS

All code will be provided upon acceptance.

H.1 LINEAR SIMULATIONS

Linear simulations are done by sampling pretraining and testing distributions as described by (2) and
(12), and computing numerical Γ∗ by (B.1). We simulate the ridgeless λ → 0 limit of this theory by
taking λ = 0.00001.
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H.2 NONLINEAR ARCHITECTURE

The architecture used for Figure 3 is a transformer formed of two transformer-blocks, constructed
as follows. The input to the architecture is the Z matrix (3). We apply a causal mask to ensure that
each token attends to itself and prior tokens in the sequence. Each transformer-block is made of
first applying single-head softmax attention to this masked input, with residual connection, and then
normalised; this is then passed to a single hidden layer MLP with GELU activation, followed by a
final residual connection and layer norm application. The final logit is computed by a dense layer
projecting the output of the two transformer-blocks into a scalar.

The model is pretrained with data sampled by (2). We form n Z-matrices from these samples, which
are again the inputs to the architecture, and the model is pretrained to predict the corresponding yℓ+1

value by minimising MSE loss between the final logit and yℓ+1. Training is done using AdamW for
1000 epochs with batch size 16 and learning rate 0.0001.

Testing is done by sampling a batch of n contexts from (12), and tracking MSE between the true
yℓ+1 and the model output. This test sampling is repeated 500 times to average out noise.
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