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Abstract

Image-text models excel at image-level tasks but struggle with detailed visual understanding.
While these models provide strong visual-language alignment, segmentation models like
SAM2 offer precise spatial boundaries for objects. To this end, we propose TextRegion,
a simple, effective, and training-free framework that combines the strengths of image-text
models and SAM2 to generate powerful text-aligned region tokens. These tokens enable
detailed visual understanding while preserving open-vocabulary capabilities. They can be
directly applied to various downstream tasks, including open-world semantic segmentation,
referring expression comprehension, and grounding. We conduct extensive evaluations
and consistently achieve superior or competitive performance compared to state-of-the-art
training-free methods. Additionally, our framework is compatible with many image-text
models, making it highly practical and easily extensible as stronger models emerge. Code is
available at: https://github.com/avaxiao/TextRegion.
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Figure 1: Using feature maps from frozen image-text models and segment masks from SAM2, we generate
text-aligned region tokens that can be directly applied to various downstream tasks.

1 Introduction

Contrastive image-text models, such as CLIP (Radford et al., 2021), enable open vocabulary retrieval and
classification for images. However, these models typically operate at the global image level. What if we are
interested in classifying, localizing, or retrieving specific regions given natural language text? The ability to
understand precisely at the region level remains critical for many practical vision-language tasks, including
open-vocabulary semantic segmentation, visual grounding, and fine-grained retrieval.

To achieve such detailed understanding, existing methods typically fall into two categories. One group of
approaches, represented by Grounding DINO (Liu et al., 2024b) and DenseCLIP (Rao et al., 2022), explicitly
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trains models using detailed annotations (e.g., bounding boxes or pixel-level masks). While effective, these
training-based approaches struggle to match the broad concept coverage provided by large-scale, contrastively
trained image-text models, making their lack of open-vocabulary object recognition a significant limitation
for real-world applications. In contrast, methods in the second category, such as MaskCLIP (Zhou et al.,
2022), explore how to use existing components of the network to directly empower image-level CLIP for
object-text alignment, without applying any training. Those works show that although image-text models
are trained primarily to understand images at a global level, they implicitly acquire some ability for fine-
grained visual–textual matching. However, patch-level embeddings are insufficient for retrieval or grounding
tasks (Shlapentokh-Rothman et al., 2024), as they often lack spatial coherence and clear boundary alignment.

Given that modern segmentation models such as SAM (Kirillov et al., 2023) provide precise spatial boundaries,
while image-text models like CLIP (Radford et al., 2021) capture what objects are present in images, an
important question arises: can we combine the strengths of these two families of foundation models to achieve
detailed region-level understanding? Moreover, as most prior work on detailed understanding has concentrated
on CLIP, it is still uncertain whether alternative image-text encoders — such as SigLIP (Zhai et al., 2023)
can effectively address this task.

In this work, we show that when supplied with accurate object masks to resolve spatial boundaries, image–text
models can achieve strong zero-shot performance on detailed understanding tasks. Our TextRegion approach
provides region-text alignment using the attention mechanism to aggregate patch features within each SAM
segmented region, similar to how the image-level CLS token is computed for image-text alignment. We
also investigate the use of multi-resolution features and propose a method to mitigate the effect of “global”
tokens that are prevalent in large models. Together, TextRegion enables CLIP (Radford et al., 2021),
SigLIP2 (Tschannen et al., 2025), and Perception Encoder (Bolya et al., 2025) models to generate region-level
tokens that are comparable to text embeddings, often outperforming more complex methods that require
additional models or retraining.

Our main contribution is a simple, general, effective, and training-free approach to create text-
compatible region tokens, enabling powerful zero-shot region-level understanding with existing image-text
models. Our approach has several benefits:

• Excellent zero-shot performance: Achieves impressive zero-shot results on tasks including open-world
semantic segmentation, referring expression comprehension, and grounding.

• Broad architectural compatibility: Generalizes across diverse image-text models, with practical
guidelines to ensure consistent region-text alignment.

• Plug-and-play implementation: Requires only a single attention layer modification and segmentation
masks, making TextRegion immediately usable without any training.

2 Related Work

Region-Level Representation. Although patch-based representations dominate current vision research
following the advent of vision transformers (Vaswani et al., 2017), region-level representations offer greater
semantic richness and sparsity, often leading to superior performance in tasks such as segmentation, retrieval,
and classification (Shlapentokh-Rothman et al., 2024). Recognizing their suitability for spatially detailed
tasks, recent efforts have used region tokens for vision tasks (Cheng et al., 2024; Shlapentokh-Rothman
et al., 2024; Pan et al., 2024; Lee et al., 2024; Sun et al., 2024). However, existing methods typically involve
task-specific training. Training-free region-based methods primarily targeted tasks that do not require
language understanding, such as image retrieval (Korfhage et al., 2024; Sidhu et al., 2024). To the best of our
knowledge, ours is the first study to explore generating text-aligned region tokens without training.

Open-Vocabulary Segmentation. Recent advances in open-world segmentation like MaskCLIP (Zhou
et al., 2022), SCLIP (Wang et al., 2025), ClearCLIP (Wang et al., 2025) and CLIPtrase (Lan et al., 2024a) use
image-text models to achieve zero-shot segmentation by aligning patch embeddings with textual descriptions.
ProxyCLIP (Lan et al., 2024b) enhances this by incorporating semantic-rich features from models like
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DINO (Caron et al., 2021) and DINOv2 (Oquab et al., 2023). The current SoTA, Trident (Shi et al., 2024)
further integrates segmentation architectures like SAM (Kirillov et al., 2023) and SAM2 (Ravi et al., 2024).
However, combining all three large models makes their framework complex. Unlike these patch-level methods,
our approach aggregates patch embeddings into region-level features, effectively transforming the dense
segmentation task into a sparse region classification problem.

Referring Expression Comprehension. This task involves identifying image regions described by textual
queries. Recent zero-shot methods (Subramanian et al., 2022; Yao et al., 2024; Yang et al., 2023; Shtedritski
et al., 2023) combine proposal boxes from MAttNet (Yu et al., 2018) with image-text models for image-caption
matching. Evaluating spatial relation understanding is another important aspect of this task, leading some
studies to develop methods that enhance spatial reasoning in image-text models (Subramanian et al., 2022).
However, our primary goal is to assess the visual-language alignment capability of our region tokens; thus, we
focus exclusively on semantic retrieval without employing techniques to recover spatial relations.

Image-Text Models. Contrastive image-text embedding models, such as CLIP (Radford et al., 2021),
ALIGN (Jia et al., 2021), SigLIP (Zhai et al., 2023), SigLIP2 (Tschannen et al., 2025), and Perception
Encoder (Bolya et al., 2025), align visual and textual representations through dual encoders. These models
generate text-aligned image embeddings, facilitating effective zero-shot performance across classification,
text-to-image, and image-to-text retrieval. In this work, we investigate how their image-level embeddings can
be transformed into region-level tokens, thus extending their applicability from global image understanding
to precise region recognition.

3 Method

TextRegion extends image-text models to support region-level tasks like segmentation, localization, and
retrieval. We first revisit how CLIP’s class token aggregates spatial information (Sec. 3.1), noting its role
in summarizing patch features. To emulate this behavior for regions, we inject spatial constraints into the
transformer’s cross-attention, producing text-aligned region tokens (Sec. 3.2). Finally, we introduce two useful
tricks to refine region tokens (Sec. 3.3).

3.1 Background and Notation

Contrastive image-text models, such as CLIP (Radford et al., 2021), learn to produce an image-level token
[CLS] that is comparable to an embedding of text that captions the image.

The model divides the input image into N patches and uses a convolutional layer to map them to
patch embeddings, rx1; x2; . . . ; xN s P RNˆd, where d is the embedding dimension. After adding po-
sitional embeddings, a learnable class token xCLS P Rd is prepended to the sequence, resulting in
X “ rxCLS; x1; x2; . . . ; xN s P RpN`1qˆd. This sequence is processed through L transformer layers. At
each layer l P r1, Ls, the class token xCLS progressively aggregates global context via self-attention. The
attention projections are computed as, Q “ XWq, K “ XWk, V “ XWv where Wq, Wk, Wv P Rdˆd

denote the learned projection matrices for queries, keys, and values. The attention weights are represented by
α P RpN`1qˆpN`1q. The attention output of the class token, denoted yCLS, is computed as a weighted sum
over all value vectors v, where the weights αcls,i correspond to the attention scores between xCLS and each
patch token xi.

α “ Softmax
ˆ

QpKqJ
?

d

˙

, yCLS “ αcls,clsvcls `

N
ÿ

i“1
αcls,ivi “ αclsV, yCLS P Rd (1)

yCLS is passed through an MLP projection layer and added to its original feature to form the block output.
The final [CLS] is trained to match with the text embedding of that assigned to the image.

In summary, the final-layer attention output yCLS is a weighted sum over the value vectors of all patch tokens,
with attention weights αcls determining each patch’s contribution to the image [CLS] token.
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(c) Region Mask (d) Pooling(b) Patch Value Prediction(a) Input Image

Figure 2: Patch Value and Mask-based Attention Pooling: (b) shows the segment results based on the
patch value, indicating that the patch values are aligned with visual-language semantics, but could be noisy.
(c) is the resized mask for a specific region, which restricts the aggregation to patches within that region. (d)
demonstrates that by attending only to region-related patches, we can obtain a text-aligned region token,
effectively mitigating the influence of imprecise patch values.

3.2 TextRegion Approach

Key Insight. Echoing MaskCLIP (Zhou et al., 2022), Eq. 1 suggest that the projected values from the value
projection layer in the final block are quite rich in linguistic semantics, whereas the attention weights αcls is
trained to capture global information rather than local information. To enhance the region-text alignment,
one key is how to organize the values. To this end, we impose region-specific attention constraints, restricting
the [CLS] token to attend only to patches within a designated region of interest. We present the details of
region-specific attention constraints in Fig. 2. Basically, this involves ignoring patches that are unrelated to
the target region. Since most patch values within a region share the same segmentation prediction, simply
pooling these patch values to form a region token can enhance the robustness of the visual tokens.

We explain how to get region tokens in the following paragraphs, with an overview shown in Fig. 3.
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Figure 3: TextRegion Framework. Mask Generation: We generate R soft masks using SAM2, with values
ranging from 0 to 1, where each mask corresponds to a distinct region in the input image. Patch Encoding:
The image is encoded to obtain a multi-resolution feature map, which is fed into the final attention block of
the frozen image-text models. See Sec. 3.3 for details. Mask-based Attention Pooling: As illustrated in Fig. 2,
we perform pooling based on the R bilinearly downsampled masks. Prediction: Using the pooled text-aligned
region tokens, we support both zero-shot region-sparse classification and dense prediction.
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Mask Generation. For an input image of size H ˆ W , we apply SAM2 (Ravi et al., 2024) to segment it
into R regions. This yields a set of soft masks M “ rM1; M2; . . . ; MRs P RRˆHˆW , where each mask Mr

contains per-pixel logits Mh,w P r0, 1s. A higher value of Mh,w indicates that pixel ph, wq is more likely to
belong to region r. We downsample the high-resolution soft mask Mr to the feature map resolution of the
vision encoder using bilinear interpolation, obtaining mr P RN . N means the number of patch tokens. Each
element mr,i P r0, 1s represents the relevance of patch i to region r.

Mask-based Attention Pooling. As shown in Fig. 2, we impose locality by modulating attention scores
with segmentation masks. At the final attention layer L, the region-specific token yr selectively aggregates
features by replacing the attention scores with mr,i. We downsample the SAM2 masks to compute region
tokens rather than upsample the patch feature map because 1) computing region tokens at the pixel level
is resource-heavy and less robust; 2) upsampling can introduce extra noise which is problematic in the
training-free setting. Additionally, we adopt soft masks instead of hard masks to better align with the
attention mechanism, allowing high-confidence patches to contribute more to the aggregated tokens. The
formulation for computing region tokens is:

yr “

N
ÿ

i“1
mr,i vi “ mrV, yr P Rd (2)

Here, vi is the attention value feature of patch i at the final layer L. This formulation suppresses irrelevant
patches (mr,i ““ 0) and aggregates features only from region-relevant ones (mr,i ą 0). The resulting region
token yr acts as a region-aware analogue of the global [CLS] token, while maintaining compatibility with the
original text embedding space.

Some models, such as SigLIP (Zhai et al., 2023), compute a delegate [CLS] token using a final attention
pooling block. Our approach also applies to these models with slight implementation differences, which we
detail in Appendix Sec A.3.

Prediction. With the global image zero-shot classification ability maintained, TextRegion supports both
zero-shot region classification and pixel-level prediction. For region classification, we encode candidate text
labels into embeddings etext using the pretrained text encoder. Region classification logits are computed by
cosine similarity between the region token yr and each text embedding, weighted by temperature γ (“ 100 in
CLIP):

etext P RCˆd, logitsr “ γ ¨ cospyr, etextq, logitsr P RC , (3)

where C is the number of candidate labels. For pixel-level prediction of the target region, we restore spatial
details by broadcasting the region logits back to the original image resolution. In detail, we broadcast
logitsr P RC to RCˆHˆW and then perform element-wise multiplication with the high-resolution soft SAM2
mask Mr P RHˆW :

preddense
r “ Broadcast plogitsrq d Mr, preddense

r P RCˆHˆW (4)

This operation propagates sparse region-level logits onto their corresponding masks, yielding dense pixel-level
logits for each region. To obtain the final dense prediction for the entire image, we simply sum the dense
logits across all regions to produce a unified dense logit map. Note that we retain the use of soft masks
Mr P r0, 1s during prediction, as higher mask values indicate a higher likelihood that a pixel belongs to the
region. Accordingly, the logits of these pixels should more closely match the computed region logits.

3.3 Region Token Refinement

Reducing global token interference. As illustrated in Fig. 4, we find that the large model often successfully
segments more challenging images but fails on simpler cases. We attribute this to the presence of global
patches. Shao et al. (2024); Darcet et al. (2023) and Yang et al. (2025a) observe that certain tokens in vision
transformers capture global image semantics rather than localized patch-level details. When aggregated via
mask-based attention, such patches bias region tokens toward global text semantics, degrading localization
performance. We introduce region consistency validation to filter out global patches. For each patch i within

5



Published in Transactions on Machine Learning Research (11/2025)

(d) Region Masks (e) Local Similarity(a) Image (b) Before (c) After

Figure 4: Global Patches. The first row shows segmentation examples for complex images. Despite the
difficulty, the model produces correct results. In contrast, the second row presents an easier case where the
model fails to segment properly. (b) and (c) show the segmentation results before and after removing global
patches, respectively. (d) presents the region masks generated by SAM2, which are used to compute the local
similarity defined in Eq. 5. (e) visualizes the local similarity of patches, where lower similarity indicates a
higher likelihood of being a global patch. In this case, the model incorrectly classifies the bed as a cat due to
the presence of many global patches in the bed area.

region r (as defined by the mask Mr), we compute both intra-region and inter-region similarity scores:

sin,i “
1

|Pr|

ÿ

jPPr

cos pxi, xjq , sout ,i “
1

|P␣r|

ÿ

kPP␣r

cos pxi, xkq , Slocal “ sin,i ´ sout ,i (5)

Here, Pr and P␣r represent the sets of patches inside and outside region r, respectively. A patch is identified
as global if its local similarity Slocal “ sin,i ´ sout,i ă τ , where τ is a predefined threshold. Such patches are
excluded from region token aggregation, ensuring that region-specific attention remains focused on locally
relevant patch tokens. We apply a fixed threshold τ “ 0.07 across all images.

Multi-resolution patch encoding. Standard image-text models process fixed-resolution inputs, producing
low-dimensional value feature maps that poorly capture small regions, often resulting in ineffective region
masks (near-zero activations). Inspired by LLaVA’s AnyResolution (Liu et al., 2024a) strategy, we propose:
(1) split the original image into non-overlapping crops, resize and encode each to obtain localized features,
and then concatenate them into a high-resolution feature map Vhigh; (2) concurrently, encode the full image
to retain global context but low-resolution feature Vlow. The final feature Vfinal “ Vhigh ` upsample pVlowq,
which integrates local details with global semantics context, improving representation of both small and large
regions.

4 Experiments

We show the strong region classification capabilities of TextRegion in Sec. 4.1, where our text-aligned region
tokens outperform more complex methods that rely on additional models or retraining. In Sec. 4.2, we show
that TextRegion also effectively handles instance queries, i.e., referring expression comprehension. Moreover,
our framework seamlessly integrates with other image-text models, such as SigLIP2 and Perception Encoder,
to produce meaningful text-aligned region tokens. Going beyond standard referring expression comprehension,
which retrieves only a single region, we further demonstrate in Sec. 4.3 that our pipeline supports multiple
object grounding. For all experiments, we use SAM2 (Ravi et al., 2024) with the Hiera-Large backbone to
generate region masks. Additional hyperparameters are detailed in Appendix Sec A.2.
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Method
Additional Model With background Without background

AvgDINO SAM VOC21 Context60 Object VOC20 Context59 Stuff City ADE
Train CLIP ViT-B/16
TTD (Jo et al., 2024) 61.1 37.4 37.4 - - 23.7 27.0 17.0 -
CLIP-DINOiser (Wysoczańska et al., 2024) ✓ 62.1 32.4 34.8 80.9 35.9 24.6 31.7 20.0 40.3
SAM-CLIP (Wang et al., 2024b) ✓ 60.6 29.2 - - - 31.5 - 17.1 -
Training-Free, CLIP ViT-B/16
MaskCLIP (Dong et al., 2023) 43.4 23.3 20.6 74.9 26.4 16.7 24.9 11.9 30.3
SCLIP (Wang et al., 2024a) 59.1 30.4 30.5 80.4 34.2 22.4 32.2 16.1 38.2
ResCLIP (Yang et al., 2025b) - - - 86.0 36.8 24.7 35.9 18.0 -
ProxyCLIP (Lan et al., 2024b) ✓ 61.3 35.3 37.5 80.3 39.1 26.5 38.1 20.2 42.3
LaVG (Kang & Cho, 2024) ✓ 62.1 31.6 34.2 82.5 34.7 23.2 25.0 15.8 38.6
LPOSS+ (Stojnić et al., 2025) ✓ 62.4 35.4 34.3 79.3 38.6 26.5 37.9 22.3 42.1
Trident (Shi et al., 2024) ✓ ✓ 67.1 38.6 41.1 84.5 42.2 28.3 42.9 21.9 45.8
CLIPtrase (Shao et al., 2024) ✓ 57.1 32.0 44.2 82.2 36.4 24.8 - - -
TextRegion ✓ 70.9 39.1 41.1 84.4 43.2 28.7 42.8 22.8 46.6
Training-Free, OpenCLIP ViT-H/14
SCLIP (Wang et al., 2024a) 43.8 23.5 24.6 67.5 25.6 16.8 19.5 11.3 29.1
ProxyCLIP (Lan et al., 2024b) ✓ 65.0 35.4 38.6 83.3 39.6 26.8 42.0 24.2 44.4
Trident (Shi et al., 2024) ✓ ✓ 70.8 40.1 42.2 88.7 44.3 28.6 47.6 26.7 48.6
TextRegion ✓ 73.1 41.2 40.6 89.5 46.1 31.2 47.0 27.3 49.5

Table 1: Open-world Semantic Segmentation. Evaluation results (mIoU) on semantic segmentation
benchmarks. TextRegion consistently achieves superior or competitive performance across various benchmarks
and backbone architectures. The best results in each setting are bolded.

4.1 Open-world Semantic Segmentation

Dataset. We evaluate on six widely used semantic segmentation benchmarks: PASCAL VOC 2012 (Ever-
ingham et al., 2015), PASCAL Context (Mottaghi et al., 2014), COCO-Stuff (Caesar et al., 2018), COCO-
Object (Lin et al., 2014), Cityscapes (Cordts et al., 2016), ADE20K (Zhou et al., 2019). For VOC and
Context, we test the settings without (VOC20, Context59) and with (Voc21, Context60) background labels.
Since the image resolutions vary across datasets, we follow the design of previous works by setting different
resizing scales for each dataset. Specifically, the shorter side is resized to 672 pixels for VOC20, VOC21,
COCO-Object, Context59, ADE, and Context60; 896 pixels for COCO-Stuff; and 1344 pixels for Cityscapes.

Results. Tab. 1 shows our open-world semantic segmentation performance. The primary distinction between
our method and baselines lies in the adoption of a region-level classification strategy prior to segmentation.
Specifically, we first classify those region tokens, and then propagate the region logits back to the pixel-level
segmentation predictions, leveraging the fact that our region tokens are inherently associated with high-
resolution segmentation masks. In contrast, other methods typically conduct predictions at the patch level
and subsequently rely on upscaling or additional post-processing to produce high-resolution segmentation
results. Benefiting from the open-vocabulary classification capacity preserved in our region tokens and the
strong segmentation capabilities of SAM2, TextRegion effectively simplifies the dense prediction task into
an instance-level sparse prediction problem, which is both easier to solve and more robust. Despite being
entirely training-free and simple, our approach consistently achieves superior or competitive performance.

4.2 Zero-shot Referring Expression Comprehension

Dataset. We evaluate on RefCOCO (Yu et al., 2016), RefCOCO+ (Yu et al., 2016) and RefCOCOg (Mao
et al., 2016) datasets. All of these benchmarks come from the MS-COCO (Lin et al., 2014) dataset, paired
with expressions that refer to a unique object in each image, accompanied with a bounding box. The main
difference is that RefCOCO+ excludes relation-based expressions (e.g. “left of”, “closer”, or “bigger”) and
RefCOCOg has longer descriptions. The test sets of RefCOCO and RefCOCO+ are divided into “testA” and
“testB,” which contain only people and non-people instances, respectively.

Setting. Referring Expression Comprehension (ReC) focuses on identifying the most relevant object
(bounding box) in an image based on a given natural language expression. A common zero-shot ReC setting
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Method Backbone
RefCOCO RefCOCO+ RefCOCOg

Val TestA TestB Val TestA TestB Val Test
CPT (Yao et al., 2024) VinVL (Zhang et al., 2021) 32.3 36.1 30.3 31.9 35.2 28.8 36.7 36.5
TextRegion SigLIP2-L/16 (Tschannen et al., 2025) 45.0 49.8 36.0 51.3 57.1 40.5 53.8 52.6
TextRegion PE-Core-L/14 (Bolya et al., 2025) 47.3 53.7 37.9 52.6 59.7 42.2 52.7 50.7
Red Circle (Shtedritski et al., 2023) CLIP ViT-L/14@336 38.0 45.3 32.9 43.9 51.0 37.1 47.2 47.3
FGVP (Yang et al., 2023) CLIP ViT-L/14@336 46.1 53.0 40.4 50.4 57.5 42.6 54.5 54.1
TextRegion CLIP ViT-L/14@336 48.7 56.4 40.8 53.6 60.8 44.3 55.8 54.6

Table 2: Zero-shot Referring Expression Comprehension. TextRegion is compatible with different
image-text models and consistently achieves strong zero-shot results across all benchmarks.

leverages a pretrained object detector to generate object proposals and then selects the most likely proposal
corresponding to the query. The accuracy is evaluated by the percentage of instances where the selected
proposal has an Intersection-over-Union (IoU) of at least 0.5 with the ground-truth bounding box. For this
experiment, we do not incorporate any spatial relationship refinement or post-processing methods commonly
used in ReC. Retrieval accuracy is computed using object proposals produced by MAttNet (Yu et al., 2018).
All baseline results are taken from FGVP (Yang et al., 2023). For a fair comparison, we evaluate TextRegion
with the same set of object proposals as those used by FGVP.

For our implementation, we first generate region tokens for the input image and then compute the cosine
similarity between the text-aligned region tokens and the query text embedding. The region with the highest
similarity is selected as the retrieved object, and its corresponding bounding box is determined. To select
the most likely candidate from the detected proposals, we calculate the IoU between our predicted region
bounding box and all proposal bounding boxes, selecting the proposal with the highest IoU. In cases where
none of the proposals overlap with the selected region, we directly return the region’s bounding box as the
retrieval result.

Results. Tab. 2 shows the results for zero-shot ReC. Complex baselines depend on carefully designed pipelines
and prompting strategies (Yao et al., 2024; Shtedritski et al., 2023), and using bounding box candidates
as prompts for SAM to obtain better object masks (Yang et al., 2023). In contrast, our method directly
generates region tokens without relying on candidate bounding boxes and still achieves superior performance.

4.3 Multiple Object Grounding

Setting. In Sec. 4.2 we test the referring expression comprehension performance of our method. But since
that task involves referring to a single target object, we are interested in testing our method’s multi-object
grounding capabilities. For this test, we use the Reasoning Segmentation dataset (Lai et al., 2024) which
is commonly used to assess the visual segmentation capabilities of VLMs. As some samples in the dataset
contain multiple objects related to a given query, simply returning the region with the highest similarity is
not effective and can overlook relevant objects.

To assess the relevance of a region to a given query, we create a negative label to get a score for the query.
Specifically, for each input query, we generate a pseudo-contrastive query to compute region similarities
relative to both the original and contrastive queries. Regions whose similarity to the original query exceeds
their similarity to the pseudo-contrastive query are retrieved as the selected objects. The pseudo-contrastive
query we use for the original reasoning segmentation query is “Background, any other thing”.

Since the original queries in the reasoning segmentation dataset are long and complex, we construct a
simplified scenario. Specifically, we use the original LLaVA1.5-7B (Liu et al., 2024a) to generate text answers
for the original queries, and then treat these answers as interpreted queries to retrieve relevant objects. This
scenario is designed to evaluate the impact of language understanding ability. Further details are provided in
Appendix Sec A.4. We implement baseline results for Trident (Shi et al., 2024), while the results for all other
baselines are sourced from LISA (Lai et al., 2024). We use CLIP ViT-L/14@336px as the backbone for this
experiment.
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Method
Short query Long query Overall
gIoU cIoU gIoU cIoU gIoU cIoU

Train LLaVA1.5-7B
LISA (Lai et al., 2024) 47.1 48.5 49.2 48.9 48.7 48.8
Training-based (No VLM used)

OVSeg (Liang et al., 2023) 18.0 15.5 28.7 22.5 26.1 20.8
X-Decoder (Zou et al., 2023a) 20.4 11.6 22.2 17.5 21.7 16.3
SEEM (Zou et al., 2023b) 20.1 11.5 25.6 20.8 24.3 18.7
Grounded-SAM (Liu et al., 2024b) 17.8 10.8 22.4 18.6 21.3 16.4
Training-free (No VLM used)

Trident (Shi et al., 2024) 19.9 12.9 24.5 23.1 23.3 20.0
TextRegion 21.6 15.6 26.4 24.1 25.2 21.6
With interpreted queries from the original LLaVA1.5-7B

OVSeg (Liang et al., 2023) 24.2 18.7 44.6 37.1 39.7 31.8
Trident (Shi et al., 2024) 23.0 24.2 43.3 42.5 38.4 39.2
TextRegion 28.5 30.6 47.2 45.3 42.7 42.4

Table 3: Multiple Object Grounding. The last three rows show results
using interpreted queries. TextRegion demonstrates significant performance
gains when given LLaVA-interpreted queries, outperforming baselines by a
large margin.

Original: In case of a fire, it is 
important to have access to fire safety 
equipment. What object in the picture 
is specifically designed to store and 
release fire extinguishing substances?

Interpreted: fire extinguisher

Figure 5: Top: Query im-
age; Bottom: Grounding re-
sults. The title shows the
original / interpreted query.

Metrics. There are two metrics for this task: gIoU and cIoU. gIoU is defined as the average of per-image
Intersection-over-Unions (IoUs), while cIoU is computed as the cumulative intersection divided by the
cumulative union. Since cIoU is heavily biased toward large-area objects and exhibits high variability, gIoU is
usually preferred (Lai et al., 2024).

Results. As shown in Tab. 3, TextRegion achieves performance comparable to training-based methods.
The performance improves significantly when interpreted queries are used, especially for long queries. This
suggests that the main bottleneck for TextRegion in reasoning segmentation stems from the limited language
understanding of the image-text models’ text encoder, rather than from its object retrieval capability.

5 Ablation and Discussion

Global Patch, Multi-resolution and CLIP variants. We validate the effectiveness of the proposed
global patch removal and multi-resolution patch feature strategies in Tab. 4. Overall, these strategies benefit
a range of image-text models, from small to large backbones. When using both techniques, the performance
is generally the best compared to using alone. An interesting observation is that the performance of SigLIP2-

Global Multi
COCO Stuff AED20K

Perception SigLIP2 CLIP Perception SigLIP2 CLIP
B/16 L/14 B/16 SO/16 B/16 H/14 B/16 L/14 B/16 SO/16 B/16 H/14
24.0 23.8 23.6 22.4 26.9 28.7 20.5 23.3 23.3 23.7 20.6 24.1

✓ 25.1 24.2 24.7 23.7 27.0 28.6 21.1 23.6 23.9 24.6 20.7 23.8
✓ 27.7 25.4 26.6 21.4 28.8 30.6 24.1 24.3 25.3 21.5 22.7 26.5

✓ ✓ 27.9 26.1 26.8 23.2 28.7 31.2 24.3 24.6 26.0 22.1 22.8 27.3

Table 4: Ablation on Global Patch Removal and Multi-Resolution Feature for CLIP Variants.
Combining global patch removal with multi-resolution features achieves the best performance in most cases.
Our default setting is marked in green.
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Feature Stuff ADE
Input 0.9 1.1
Output 5.7 3.0
Value 28.7 22.8

Table 5: Attn Feature.

Layer Stuff ADE
-5 0.2 0.4
-2 18.2 11.6
-1 28.7 22.8

Table 6: Value Layer.

Interp mIoU s/img
Up 10.2 0.33
Down 28.7 0.20

Table 7: Interpolate.

Mask Stuff ADE
Hard 28.5 22.7
Soft 28.7 22.8

Table 8: Mask Value.

SO400M/16 drops when using the multi-resolution patch feature, whereas all other models benefit from it. A
possible explanation is that large backbones, while powerful, tend to generate more global patches (Xiao
et al., 2023; Darcet et al., 2023; Shao et al., 2024). When applying the multi-resolution feature alone, this
effect may amplified — simpler images contain less detailed information, causing more patches to capture
global features. Our global patch removal strategy helps mitigate the negative effects, so when combined
with multi-resolution patch features, it consistently delivers better or comparable performance than using
multi-resolution alone.

Another interesting finding is that the global patch phenomenon is less severe in CLIP compared to the
perception encoder and SigLIP2. As a result, using global patch removal alone for CLIP has a limited impact.
However, when combined with multi-resolution features, it significantly boosts performance, particularly for
CLIP ViT-H/14.

Design choice for mask-based attention pooling. We evaluate different design choices for mask-based
attention pooling using CLIP ViT-B/16. Tab. 5 compares the effect of different feature used for pooling.
“Input” refers to the feature map fed into the final attention block, “Output” denotes the output of that
block, and “Value” means the attention values from the last attention block. Interestingly, even with a single
projection, transitioning from the input to the value features significantly improves performance—from almost
zero to decent results.

Tab. 6 shows the effect of pooling attention value from different layers. Results show that the value features
from the second-to-last layer yields substantially better performance than directly pooling the input feature
map (Tab. 5) for the last attention block.

Tab. 7 shows the results of either upscaling the feature maps or downscaling the SAM2 masks when pooling
region tokens. Experiments are conducted on COCO-Stuff. The reported “Up” result use a 5× upscaling of
the value feature maps instead of directly matching the shape of the SAM2 masks, as the latter approach
can induce much larger GPU consumption, particularly when combined with the multi-resolution strategy.
“s/img” means seconds required to predict a single image, measured on one A100 GPU. The results show that
downsampling offers both effectiveness and efficiency advantages. Tab. 8 shows the impact of using hard
masks versus soft masks for aggregating region tokens and computing region logits.

Sensitivity to Mask Quality. Tab. 9 reports the impact of different mask generators. “Ground Truth
Masks” means using the annotated ground-truth masks to compute region tokens, serving as the upper
bound of TextRegion. In contrast, SLIC (Achanta et al., 2012) partitions images into superpixels based on

Mask Generator COCO Stuff AED20K
Perception SigLIP2 CLIP Perception SigLIP2 CLIP

Ground Truth masks 34.7 33.7 36.5 32.7 35.4 31.0
SLIC (Achanta et al., 2012) 21.7 19.9 21.3 18.4 18.2 16.1
SAM (Kirillov et al., 2023) 27.0 26.1 27.9 24.3 25.8 22.1
SAM2 (Ravi et al., 2024) 27.9 26.8 28.7 24.3 26.0 22.8

Table 9: Ablation on the effect of mask generators. “Ground Truth masks” refer to using the annotated
masks to extract region tokens, which are subsequently used for prediction. All experiments are conducted
with image-text model based on the ViT-B/16 backbone. The default configuration is highlighted in green.
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Figure 6: Visualization comparison of different mask generators across datasets. “GT masks” refer
to using the annotated masks to extract region tokens.

color and spatial cues, resulting in lower performance than SAM and SAM2. These results demonstrate that
TextRegion is compatible with various segmentation methods, enabling object-level predictions for flexible,
user-specified mask inputs. We also provide visual comparisons of those mask generators in Fig. 6.

6 Conclusion

TextRegion is a simple, effective, and training-free approach for obtaining text-aligned region tokens by com-
bining image-text models with SAM2. The image-text model provides visual-language alignment capabilities,
while SAM2 supplies detailed object spatial boundaries. Our region tokens show strong zero-shot performance
on open-world semantic segmentation, referring expression comprehension, and grounding. Our method is
also highly flexible, supporting easy integration with various image-text models, all of which perform well in
zero-shot settings. Moreover, TextRegion imposes no constraints on the masks, users can manually define
custom masks to generate region tokens for any objects of interest, beyond those provided by SAM2.

Limitations: The quality of the region tokens depends on the accuracy of the region masks. Poor masks
will produce low-quality region tokens. Additionally, the effectiveness of region tokens is limited by the
original visual feature of the image-text model. If these feature lack spatial awareness or advanced language
understanding, the region tokens will also be unable to capture such information.
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A Appendix

A.1 Summary of contents

Sec. A.2 details the hyperparameters used in our experiments. In Sec. A.3, we describe how to generate
text-aligned region tokens using the frozen SigLIP2 (Tschannen et al., 2025) and Perception Encoder (Bolya
et al., 2025). Sec. A.4 explains the process of generating interpreted queries for Reasoning Segmentation.
Finally, Sec. A.5 includes further visual examples for open-world segmentation and referring expressions, as
well as illustrative failure cases.

A.2 Hyperparameter

For all experiments, we filter global patches using a threshold of τ “ 0.07. The crop size is uniformly
set to 336 for all CLIP models (ViT-B/16 through ViT-H/14), while SigLIP2 and Perception Encoder
use their respective default input resolutions. Region masks are generated with SAM2 (Ravi et al., 2024)
Hiera-Large, using the following configuration: pred-iou-thresh set to 0.6, stability-score-thresh to
0.6, box-nms-thresh to 0.9, and points-per-side to 16. In the semantic segmentation experiments on the
Cityscapes dataset, we increase points-per-side to 36 to due to its high resolution and the abundance of
small objects. To mitigate the impact of duplicated or overlapping masks, we also merge masks with an
overlap IoU greater than 0.8.

A.3 CLIP Variants

Unlike CLIP (Radford et al., 2021), which retains the [CLS] token across multiple layers, SigLIP2 (Tschannen
et al., 2025) and Perception Encoder (Bolya et al., 2025) introduce a learnable query token, denoted as [q],
to aggregate global image information within the final attention pooling block. Let X denote the input to
this last attention pooling block:

CLS “ Attn

¨

˝ q
loomoon

query

, XWk
loomoon

key

, XWv
loomoon

value

˛

‚ (6)

Note that the core idea of TextRegion is to restrict the query’s attention to region-relevant patches. To
simplify the implementation, instead of explicitly computing the value and then do pooling, we reformulate
region-aware pooling by directly masking out irrelevant patches during the attention computation. Given the
SAM2 down-sampled region mask mr P RN , the text-aligned region token CLSr is computed as:

CLSr “ Attn
`

q, X̄Wk, XWv

˘

, attention mask “ p´ inf ˚ pmr ““ 0qq (7)

X̄ denotes the average of all patch features, to reduce dependence on the original attention scores and better
approximate our mask-based attention pooling in CLIP, where mask values within a region are typically close
to one. Experiments show that using the original XWk as the key also works well. Although we have not
conducted a comprehensive comparison between the two approaches, visualizations suggest the averaging
method performs slightly better. Given its alignment with our CLIP implementation—which avoids relying
on original attention scores—we adopt it as the default for both SigLIP2 and the Perception Encoder.

Recall that mr is obtained by bi-linearly downsampling Mr, where the original Mr P r´32, 32s but are
clamped to r0, 1s before use. As a result, each downsampled value mr,i P r0, 1s represents the likelihood that
patch i belongs to the region r. When mr,i ““ 0, patch i is considered irrelevant to the region r and should
not be attended to by the region query. To enforce this constraint, we apply an attention mask that excludes
patches with mr,i ““ 0 from participating in the attention computation.

Another modification for SigLIP2 (Tschannen et al., 2025) and the Perception Encoder (Bolya et al., 2025)
is that we change the final value feature to Vfinal “ Vhigh ` 0.5 ˚ upsample pVlowq for the multi-resolution
strategy, as they are more sensitive to the influence of global patches.
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A.4 Interpreted Queries for Multi-Object Grounding / Reasoning Segment

To convert the original long and complex queries in the reasoning segmentation dataset into interpretable
queries compatible with the CLIP text encoder, we use LLaVA1.5-7B (Liu et al., 2024a) for query preprocessing.
Specifically, we input the paired image and query into LLaVA1.5-7B and obtain a concise answer using the
prompt: “Please summarize the answer in five words or fewer to define the object.” The answer is then used
as the interpreted query to obtain our multi-object grounding results. See Fig. 7 and Fig. 8 for more examples
of interpreted queries.

This interpreted setup allows us to evaluate visual grounding performance independently of advanced language
understanding capabilities. Since the reasoning grounding performance depends on both the interpreted
queries and the object grounding capability of TextRegion, we also present a case in Fig. 8 (example f) where
LLaVA produces an incorrect interpreted query.

The template used to construct the contrastive query for the interpreted new query is: “Background, anything
but {interpreted query}”. In the main paper, we also evaluate the grounding performance on the original
complex queries. We do not apply this template (“Background, anything but {original query}”) to get the
contrastive queries because the original query are too long, and adding them to the contrastive query would
further burden the text encoder. Instead, we simply use ‘Background, any other thing” as the contrastive
query for these cases.

(a) Original: Generally speaking, dogs do not have horns on their heads, only a pair 
of ears. What part of the dog's head in this picture looks strange?

(b) Original: Driving at night can be very dangerous due to poor visibility, which can 
lead to accidents. What part of the car needs to be turned on when driving at night?

Figure 7: Examples for Interpreted Queries (Part 1): The title means the original query from the
reasoning segmentation dataset, while the legend presents the interpreted query generated by LLaVA 1.5. The
left column displays the query image. The middle column shows the ground truth, with green highlighting the
target grounding area, and red indicates areas that can be ignored. The right column presents the grounding
result.
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(c) Original: In a rural landscape, what objects in the picture could provide shade 
and shelter for animals or humans?

(d) Original: a car with a color that is closer to lipstick color

(e) Original: To keep bread fresh and protected, it is often placed in a protective 
covering. What item in the picture is commonly used for this purpose?

(f) Original: the shadow of the red car

Figure 8: Examples for Interpreted Queries (Part 2): The middle column shows the ground truth: red
highlights areas that can be ignored, and green indicates the target grounding area. Example (f) shows a
failure case where LLaVA1.5 provides an incorrect answer to the original query.
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Figure 9: Visualization for open-world segmentation. “GT” means the ground truth, while “TextRegion”
shows our predicted results.
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Figure 10: Visualization for referring expressions. The sentences above are the query expressions. The
red bounding box in the “GT” row indicates the referred object.

A.5 Visualization

Fig. 9 and Fig. 10 presents additional visualizations for open-world segmentation and referring expression
tasks. From the visual results, we observe that while SAM2 can segment objects with relatively accurate
boundaries, it struggles with objects exhibiting complex contours. For instance, in the train example of Fig. 9,
TextRegion produces slight pixel-level inaccuracies along the intricate edges.

For referring expressions, the example of “person holding umbrella” shows that the text encoder may sometimes
misinterpret the expression, leading the model to predict a related object rather than the specific target
described.
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