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ABSTRACT

In an era where symbolic mathematical equations are indispensable for modeling
complex natural phenomena, scientific inquiry often involves collecting observa-
tions and translating them into mathematical expressions. Recently, deep learning
has emerged as a powerful tool for extracting insights from data. However, ex-
isting models typically specialize in either numeric or symbolic domains, and are
usually trained in a supervised manner tailored to specific tasks. This approach
neglects the substantial benefits that could arise from a task-agnostic multi-modal
understanding between symbolic equations and their numeric counterparts. To
bridge the gap, we introduce SNIP, a Symbolic-Numeric Integrated Pre-training
model, which employs contrastive learning between symbolic and numeric do-
mains, enhancing their mutual similarities in the embeddings. By performing
latent space analysis, we observe that SNIP provides cross-domain insights into
the representations, revealing that symbolic supervision enhances the embeddings
of numeric data and vice versa. We evaluate SNIP across diverse tasks, including
symbolic-to-numeric mathematical property prediction and numeric-to-symbolic
equation discovery, commonly known as symbolic regression. Results show that
SNIP effectively transfers to various tasks, consistently outperforming fully su-
pervised baselines and competing strongly with established task-specific methods,
especially in the low data regime scenarios where available data is limited [H

1 INTRODUCTION

Throughout the history of science, symbolic mathematics has been unreasonably effective in rep-
resenting natural phenomena (Wigner, [1960). Complex patterns of natural systems, represented as
numeric data observations, can be elegantly abstracted using mathematical formulas. Mathematical
symbolism has given us the language to describe, understand, and predict the natural world. The
challenge of bridging the gap between the numeric observations and their mathematical symbolic
representations has been a consistent focus in many scientific and engineering domains. Recogniz-
ing and exploring this connection is crucial, as it promises to drive advancements in various fields.

In recent years, deep learning has demonstrated promising capabilities in learning from symbolic
mathematics language as well as extracting insights from numeric data observations. Transformer
models (Vaswani et al., 2017)), in particular, have emerged as frontrunners in this field, effectively
capturing patterns within mathematical expressions and solving complex tasks such as differential
equations and function integration (Lample & Chartonl 2020; Welleck et al., 2022). However, these
models, while powerful, are not inherently designed to handle numeric data inputs. While some pre-
trained symbolic regression models have been introduced to map numeric datasets to their governing
mathematical expressions in a supervised manner (Biggio et al., 2021; Kamienny et al.| 2022), a
gap still remains in developing a task-agnostic pre-training model capable of mutual understanding
between the modalities of symbolic mathematical equations and their corresponding numeric data.

Multi-modal pre-training models, exemplified by groundbreaking models like Contrastive
Language-Image Pre-training (CLIP) (Radford et al.l |2021)), have found a significant place in the
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deep learning landscape. CLIP has particularly set new standards in vision-language tasks, bridg-
ing the understanding between visual content and natural language descriptions. Expanding beyond
traditional vision-language domains, recent studies have broadened multi-modal pre-training to in-
clude other modalities, such as audio and tabular data (Liu et al., 2021} |Zhang et al.| [2023; |Hager
et al., 2023). Additionally, previously untouched scientific domains, like molecular representation,
are also benefiting from these advancements in multi-modal representations (Su et al., 2022} Cao
et al.| 2023)). Nevertheless, the symbolic-numeric domain remains relatively unexplored. Consider-
ing the foundational role of symbolic mathematics in science and the ubiquity of numeric data, an
in-depth exploration of their mutual learning is not only timely but essential.

In this work, we present Symbolic-Numeric Integrated Pre-training (SNIP) to connect the two often
distinct worlds of symbolic mathematical expressions and their corresponding numeric manifesta-
tions. The architecture of SNIP, depicted in Fig. |1} incorporates dual Transformer encoders, with
each encoder dedicated to learning the symbolic or numeric representations of mathematical func-
tions. Subsequently, a task-agnostic contrastive objective is employed to enhance the similarity be-
tween (symbolic, numeric) pairs of data. The multi-modal pre-training of SNIP provides capabilities
to understand and generate cross-modal content. Our experiments show that SNIP achieves remark-
able performance in cross-modal mathematical understanding and prediction tasks. Additionally, by
combining SNIP with an equation generation decoder and exploiting its interpolatable latent space,
we can effectively harness SNIP’s mutual knowledge for the task of numeric-to-symbolic equation
discovery (known as symbolic regression), achieving competitive results with state-of-the-art base-
lines. The major contributions of this work can be summarized as follows:

* Proposing SNIP, a pioneering pre-training method that integrates mathematical symbolic and nu-
meric domains through joint representation learning. This approach captures mutual relationships,
delivering embeddings that are informed and enhanced by both domains.

 Evaluating SNIP in cross-modal comprehension across different mathematical property prediction
tasks. Our results indicate that SNIP outperforms the fully supervised baselines, particularly in
low data regime scenarios. Visualizing the latent embeddings also confirms that SNIP’s pre-
trained representations reveal patterns linked to these cross-modal mathematical properties.

* Leveraging SNIP for numeric-to-symbolic equation generation task, commonly known as sym-
bolic regression. In this task, after training an expression generation decoder on top of SNIP’s
numeric encoder, we exploit the high-quality semantic within SNIP’s continuous and low-
dimensional latent representations to perform latent space optimization with the objective of find-
ing equations with balanced accuracy-complexity. Results show that SNIP achieves state-of-the-
art performance on the well-known SRBench (La Cava et al.,[2021)) benchmark.

2 RELATED WORK

Large-scale Pre-training. Our work is built upon an extensive body of research advocating the
advantages of pre-training large models on large datasets (Zhou et al.| [2023; [Zong et al.| [2023).
Initially, pre-training was single-modal, with self-supervised learning (SSL) as a key paradigm that
used data as its own supervision, especially useful where labeled data was limited (Balestriero et al.,
2023). This paved the way for the emergence of multi-modal pre-training, where models are trained
to understand relationships across different modalities (Wang et al.,2023)). Vision and language have
traditionally played the two main characters of pre-training models. For instance, CLIP (Radford
et al., 2021), ALIGN (Jia et al.| |2021), and FLAVA (Singh et al., |2022) utilize image-caption pairs
to construct jointly learned embedding spaces. These models are trained to align the embeddings
of corresponding image-caption pairs while distancing unrelated pairs. The success of multi-modal
pre-training in vision and language spurred its adoption in other domains. For example, recent
works have extended this approach to videos, audio, and even tabular data (Liu et al.,|2021; |Dong
et al., [2022; |Hager et al.| 2023)). Specialized scientific domains have also embraced this paradigm.
For instance, different models have emerged to learn joint representations of molecules (Su et al.,
2022;|Cao et al.,|2023). Our work introduces a fresh perspective, intertwining symbolic mathematics
with numeric observations. To this end, we use multi-modal pre-training’s potential to deepen the
symbolic-numeric mutual understanding.

Deep Symbolic Mathematics. Recently, deep learning models have made significant performance
in the field of mathematical reasoning (Saxton et al., 2019; [Lu et al.,[2023)). The Transformer mod-
els, originally designed for NLP tasks (Vaswani et al., 2017)), have been repurposed with remarkable
success in the domain of symbolic mathematics. It has powered models that can integrate func-
tions (Lample & Charton, [2020; (Welleck et al., 2022), prove mathematical theorems (Lample et al.,
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Figure 1: The SNIP Framework: A schematic representation of the dual-encoder pre-training scheme for mutual
learning between symbolic equations and their numerical observations. Both symbolic and numeric encoders
work in tandem, capturing the paired similarities and essence of their respective modalities.

2022)), and perform numerical calculations, such as arithmetic operations (Charton} [2022; Jelassi
et al.| [2023). These achievements underscore the flexibility and potential of deep learning models in
abstract reasoning. Beyond pure symbolic reasoning, there is also a growing interest in supplement-
ing these models with numerical knowledge for improved mathematical understanding. For exam-
ple, recent works have studied to enhance language models with numeric representations, aiming to
improve their skills in mathematical word problem-solving (Peng et al., 2021} [Liang et al., 2022}
Thawani et al., 2021; (Geva et al., 2020). Some recent studies have also explored different strate-
gies for tokenizing and encoding numeric data, such as using multi-hot or continuous representation
of numbers (Biggio et al., [2021; Becker et al.l 2023} |Golkar et al.l 2023). Our work contributes
a new angle to this growing field by integrating symbolic and numeric understanding in a unified
multi-moal pre-training framework. By doing so, we not only capture the abstract representations
of mathematical symbolic concepts but also their tangible numeric behaviors.

Symbolic Regression. Symbolic regression (SR) concentrates on discovering mathematical expres-
sions for complex systems and representing data patterns in interpretable symbolic form. It has
broad implications in both science and engineering, facilitating the modeling of diverse physical
phenomena (Cranmer et al., |2020; Rudy et al.l [2017; [Meidani & Barati Farimani}, 2023)). Genetic
Programming (GP) algorithms laid the foundation for SR, offering methods to search the vast space
of mathematical expressions (Schmidt & Lipson, 2009; Cranmer;, 2023)). The ascent of deep learning
subsequently gave rise to neural network-centric methods to reinforce SR’s representational capabil-
ities (Petersen et al., 2021). Some pioneering works also combined the evolutionary strengths of GP
with the adaptability of neural networks, aiming for a better SR search (Udrescu & Tegmarkl, 2020;
Mundhenk et al.| |2021). However, these methods often struggle with challenges such as computa-
tional intensity, limited semantic depth, and the necessity to reinitiate search for different datasets.
Inspired by the success of pre-trained Transformers in NLP, recent works introduced pre-trained
models for SR (Biggio et al.,[2021;|Kamienny et al., 2022} |Shojaee et al.,[2023)), using synthetic data
and pre-trained priors for equation generation. Our multi-modal pre-trained model, SNIP, advances
this research towards a more insightful SR direction, leveraging rich encodings that harmoniously
bridge symbolic equations with their numeric counterparts.

3 PRE-TRAINING

As depicted in Fig.[I] the SNIP architecture comprises two Transformer encoders, each tailored for
learning the symbolic or numeric representations of mathematical functions. These symbolic and
numeric encoders are jointly trained with a task-agnostic contrastive learning objective to predict
correct pairings within a batch of (symbolic, numeric) examples. During pre-training, SNIP receives
synthetically created symbolic equations and their associated numeric data as inputs to the symbolic
and numeric heads, respectively. In total, SNIP is pre-trained on approximately 60 million synthetic
paired examples.

3.1 NUMERIC ENCODER

The numeric encoder’s foundation is rooted in the recent advancements of Transformer models for
encoding numeric observations into latent spaces (Kamienny et al., 2022} |D’Ascoli et al.| 2022;
Biggio et al.,, [2021). In this framework, the numeric encoder—represented as 59V —integrates an
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embedder, a multi-layer Transformer, and an attention pooling approach, to map numeric observa-
tions (z, y) into a condensed latent vector Zy .

Tokenization. Following (Charton, [2022; [Kamienny et al., [2022)), numeric inputs are tokenized
using base-10 floating-point notation. They are rounded to four significant digits and subsequently
represented as sequences of three tokens: sign, mantissa (0-9999 range), and exponent (£-100 to
E100). For instance, the number 5.432 is tokenized as [+, 5432, E-3].

Encoding. Given a batch of N numeric input points (x,y) € RP*1, each is represented by 3(D +
1) tokens. With increasing D and N, the input sequence length grows, challenging the quadratic
complexity of Transformers. To address this, we employ an embedder, as suggested by (Kamienny
et al., [2022)), before the Transformer encoder. This embedder maps each input point to a unique
embedding space. The resulting embeddings, with dimension d.n,, are then fed into the encoder.
For the numeric encoder, we utilize a multi-layer Transformer architecture (Vaswani et al., [2017).
Notably, due to the permutation invariance of the N input points for each batch sample, we exclude
positional embeddings, aligning with the approach in (Biggio et al.| 2021). This encoder variant is
denoted as Enc”’. The representation at its [-th layer is given by V; = Enc) (Vi_1), where [ ranges
from 1 to Ly, and Ly signifies number of layers within the numeric encoder.

Attention-based Distillation. To distill the information from the Transformer’s output into a com-
pact representation for the whole sequence of observations, we employ an attention-based pooling
mechanism, following (Santos et al., [2016). Let Ay denote the attention weights, which are com-
puted as: Ay = softmax (W, - VL'l;/), where W, € R%m is a learnable weight matrix, and we take
the transpose of V7, € RV*dm to apply softmax along the sequence dimension N. The compact
sequence-level representation, Zy, is then obtained by: Zy = Ay - V7,,,. This attention mechanism
allows the model to focus on the most informative parts of the data points, effectively compressing
the information into a fixed-size embedding.

3.2 SYMBOLIC ENCODER

The symbolic encoder in our framework also draws inspiration from recent advancements in Trans-
former models for encoding symbolic mathematical functions, as demonstrated in works such as
(Welleck et al., [2022; [Lample & Charton, 2020). Here, the symbolic encoder—denoted as Sf—is
a composite entity parameterized by 1, encapsulating the embedder, a multi-layer Transformer, and
attention-based pooling mechanisms. Given an input symbolic expression f, this encoder outputs a
condensed representation Zg.

Tokenization. Mathematical expressions are tokenized by prefix order of their trees, following the
principles outlined in (Lample & Charton, 2020). This process employs self-contained tokens to
represent operators, variables, and integers, while constants are encoded using the same method-
ology as discussed in Sec. representing each with three tokens. In alignment with (Lample &
Charton, 2020), we use special tokens [(BOS)] and [(EOS)] to mark sequence start and end.

Encoding. Given a batch of symbolic expressions with M tokens, each symbolic input is repre-
sented as Sy = [E[<Bos>]§Et1§ . -;EtM;E[(E0s>]] + 8§7°% where Sy € R(M+2)xdemo - Here, E
refers to the embedding matrix, ¢; denotes the ¢-th token, M signifies the number of tokens in the
symbolic expression, denp, is the embedding dimension, and SP°° represents the positional embed-
ding matrix. In the symbolic encoder, we use a Transformers model with the same architecture as in
Sec. This variant of the encoder, denoted as Enc®, processes the symbolic inputs. The [-th layer
representation is described as S; = Encls (Si—1), where [ varies from 1 to Lg, and Lg indicates
number of layers within the symbolic encoder.

Attention-based Distillation. The symbolic encoder also employs attention-based pooling, as in
Sec.[3.1] This mechanism computes weighted sums to distill information from the symbolic expres-
sion into a compact representation Zg = Ag - Sy, using attention weights Ag through softmax
along the symbolic sequence.

3.3 UNIFIED PRE-TRAINING OBJECTIVE

Our work introduces a multi-modal symbolic-numeric pre-training approach, SNIP, which aims to
facilitate a mutual understanding of both domains, enabling advanced cross-modal reasoning.

Training Objective. SNIP’s pre-training objective is inspired by the joint training used in CLIP
(Radford et al} [2021). Incorporating both a numeric and symbolic encoder, the model optimizes a
symmetric cross-entropy loss over similarity scores. It employs a contrastive loss (InfoNCE (Oord
et al.,|2018) objective) to learn the correspondence between numeric and symbolic data pairs. Specif-
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ically, this approach learns to align embeddings of corresponding symbolic-numeric pairs while
distancing unrelated pairs. The objective function can be defined as:

L=~ > (logNCE(Zs, Zv)+logNCE(Zy, Zs)), (1)
(v,8)€EB
where B represents the batch of (symbolic, numeric) data pairs, NCE(Zg, Zy ) and NCE(Zy, Zs)
denote the contrastive losses on symbolic-to-numeric and numeric-to-symbolic similarities, respec-
tively. The symbolic-to-numeric contrastive loss, NCE(Zg, Zy ), is calculated as:
exp (ZS . Z‘"; )
z:7)" 2)

Zze{z‘t,z‘j} exp (f

where 7 is temperature, Zé/' represents positive SNIP numeric embeddings that overlap with SNIP
symbolic embedding Zg, and Z;, are negative numeric embeddings implicitly formed by other nu-
meric embeddings in the batch. A symmetric equivalent, NCE(Zy, Zg), also defines the numeric-
to-symbolic contrastive loss. More implementation details are provided in App.

3.4 PRE-TRAINING DATA

In our SNIP approach, pre-training relies on a vast synthetic dataset comprising paired numeric
and symbolic data. We follow the data generation mechanism in (Kamienny et al., [2022)), where
each example consists of N data points (z,y) € RP*! and a corresponding mathematical function
f, where y = f(x). Data generation proceeds in several steps, ensuring diverse and informative
training examples. More details about each of the following steps are provided in App.

NCE(Zs, Zy) =

Sampling of functions. We create random mathematical expressions using a process detailed in
(Kamienny et al.| 2022} [Lample & Charton, 2020). This process involves selecting an input dimen-
sion D, determining the number of binary operators, constructing binary trees, assigning variables
to leaf nodes, inserting unary operators, and applying random affine transformations. This method
ensures a diverse set of functions for training.

Sampling of datapoints. After generating a function, we sample N input points and find their corre-
sponding target values. To maintain data quality, we follow guidelines from (Kamienny et al.||2022),
discarding samples with inputs outside the function’s domain or exceptionally large output values.
Our approach includes drawing inputs for each expression from various distributions, enhancing
training diversity. The generation process of datapoints also involves selecting cluster weights and
parameters, sampling input points for each cluster, and normalization along each dimension. To
emphasize on the function’s numeric behavior rather than the range of values, we also normalize the
target values y between (0, 1).

4 USING SNIP FOR CROSS-MODAL PROPERTY PREDICTION

To evaluate SNIP’s capability for cross-modal comprehension between symbolic and numeric do-
mains, we conducted targeted experiments. These tests aimed to assess the model’s aptitude for
predicting specific numeric mathematical properties based on the symbolic inputs—a non-trivial
task requiring mutual understanding of both domains. For this purpose, we identified a set of math-
ematical properties; details can be found in App.[C] In this section, we focus on two numeric prop-
erties for one-dimensional datasets: Non-Convexity Ratio (NCR), and Function Upwardness. The
NCR approximates function convexity with values between NCR=0 (fully convex) and NCR=1 (fully
concave). Upwardness quantifies the function’s directionality by assessing the segments where data
increases within the training domain, ranging from UP=-1 for strictly decreasing functions to UP=1
for increasing ones. Due to space limitations, only results for NCR and Upwardness are discussed
here. A complete list of properties with their detailed prediction results and corresponding chance
levels, as well as their SNIP’s pre-trained representations, are provided in App.[C]

4.1 MODELS AND TRAINING

To assess property prediction on top of SNIP’s embeddings, we employ a predictor head that passes
these embeddings through a single-hidden-layer MLP to yield the predicted values. We adopt a
Mean Squared Error (MSE) loss function for training on continuous properties. We consider three
key training configurations to probe the efficacy of SNIP’s learned representations:

* Supervised Model: Utilizes the same encoder architecture as SNIP but initializes randomly.

* SNIP (frozen): Keeps the encoder weights fixed, training only the predictor head.

* SNIP (finetuned): Initializes encoder from pretrained SNIP, allowing full updates during training.
For a fair comparison, all model variants are trained on identical datasets comprising 10K equations
and subsequently tested on a distinct 1K-equation evaluation dataset. These datasets are generated
using the technique described in Sec.
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4.2 RESULTS

Quantitative Results. Table [T] presents
the Normalized Mean Squared Error o e
(NMSE) and accuracy metric Accg.; for ~ Model TNMSE T}ACCOJ J,NMFS)E TAEcU_l
all three models across the tasks of pre-  —gyperised 05299 0365 03356 0563
dicting NCR and Upwardness. Here,  SNIP (frozen) 0.0731 0.861 0.0540  0.847
Accy 1 reflects the percentage of predic- SNIP (finetuned)  0.0683 0.921 0.0400 0.901
tions within absolute tolerance 7 = 0.1 of
the true normalized values: Acc, = ﬁ > L{|pi — pi| < 7} where p; and p; are the true and pre-
dicted property values for the i-th example. Results reveal a significant gap in performance between
the purely supervised model and those benefiting from SNIP’s prior knowledge. This performance
gap can be attributed to SNIP’s pre-trained, semantically rich representations, enabling enhanced
generalization to unseen functions. Additionally, fine-tuning the SNIP encoder results in marginal
performance gains, indicating the model’s capability to adapt to different downstream tasks.

Qualitative Findings. To delve deeper into the power of SNIP’s representations, we compared
its pre-finetuning and post-finetuning latent spaces against that of a supervised model lacking pre-
training, using t-distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten & Hinton,
2008)). The visualizations are color-coded by the corresponding properties (Fig.[2). Consistent with
the quantitative outcomes, the supervised model’s latent space, shown in Fig.%a), exhibits lim-
ited structural coherence. In contrast, SNIP’s latent space in Fig.[2[b) shows pronounced clustering
and distinct property trends. Notably, further fine-tuning of the encoder for these prediction tasks,
depicted in Fig. JJc), results in a more structured latent space, marked by clearer linear trends in
properties. This finding underscores SNIP’s quantitative advantages and its flexibility in adapting to
downstream tasks.

Table 1: Results of using SNIP for property prediction.

Low Data Regime Analysis. We evaluated how training sample size influences the test
R?=1— NMSE scores for predicting NCR, assessing three model variants on a fixed 1K-sample
test set (Fig. 3). In low data regime scenarios with as low as just 100 training samples, the su-
pervised model’s score fell sharply to 0.292, while both SNIP variants maintained scores above
0.745. Upon increasing the training sample size to 1M, all models showed improvement; however,
SNIP variants continued to lead. We observe that the supervised baseline model might approach
SNIP’s performance with more training data, which is reasonable, since this model is specialized
only for the prediction of this property. However, SNIP’s value lies in its flexibility - the pre-trained
representations can be efficiently adapted to new tasks. These results emphasize SNIP’s superior
generalization from limited data, underscoring the SNIP’s rich semantic encodings.

5 USING SNIP FOR SYMBOLIC REGRESSION

SNIP aims to synergize symbolic and numeric reasoning through mutual learning, offering en-
hanced capabilities for tasks that require both numeric-symbolic understanding and generation. A
paramount task in this context is Symbolic Regression (SR), which identifies interpretable symbolic
equations to represent observed data. Essentially, SR transforms numeric observations into un-
derlying mathematical expressions, thereby making it a numeric-to-symbolic generation task. The
significance of SR extends to revealing functional relations between variables and offers an ideal
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polatable latent space.

benchmark for evaluating SNIP’s pre-trained numeric representations. Recent advancements in SR
leverage encoder-decoder Transformer frameworks (Biggio et al., 2021} [Kamienny et al., [2022).
Therefore, to effectively undertake SNIP for SR, we perform the following two steps: First, training
an expression generation decoder on top of the SNIP’s numeric encoder for generating the symbolic
functions. Second, conducting latent space optimization (LSO) within SNIP’s interpolatable latent
space, enriched by pre-training, to further enhance the equation generation.

5.1 SR MODEL ARCHITECTURE AND TRAINING

We build the SR model upon SNIP’s numeric encoder E(y which transforms numeric data into se-
mantically rich embeddings. On top of this encoder, we implement an expression generation module
G., that integrates an expression decoder Dy and a mapping network g, to generate symbolic ex-
pressions: G, = Dy o g (Zv; 7).

Expression Decoder. To use SNIP for SR, we overlay an expression generation decoder Dy, after
SNIP’s numeric encoder (shown in Fig.[{a)). This decoder, which utilizes a multi-layer Transformer
(Biggio et al., [2021; Kamienny et al., [2022), is trained to map numeric encodings into symbolic
expressions, aiming to minimize the divergence between the predicted f and actual functions f.

Mapping Network. Inspired by the ClipCap approach (Mokady et al.,|2021) in the field of image
captioning, which integrates CLIP’s pre-trained image embeddings with GPT-2 pre-trained text gen-
eration model through a learnable mapping network, we adopt a similar strategy for SR. As shown
in Fig. E[a), to facilitate integration with the E2E’s (Kamienny et al., [2022) pre-trained SR decoder
(DfQE ), we introduce a learnable Mapping Network g,. This module translates SNIP’s numeric

embeddings Zy into a compatible input for DfZE . Specifically, g : Rdemt — RM*dems reshapes
SNIP embeddings into a sequence with maximum length M. This approach lets us leverage the
existing pre-trained SR decoder without the need for training from scratch.

Training.  The training objective is to minimize the token-matching cross-entropy loss
L between the predicted f and ground-truth f symbolic expressions: L(f,f) =
—ﬁ > log P(t;|t1, ..., tj—1;G.), where P(t;]t1,...,t;_1;G.,) is the conditional probability of

the j-th token in f , given the preceding true tokens. Here, the decoder is initialized from pre-trained
weights (Kamienny et al.,2022) and trained jointly with the mapping network to learn numeric-to-
symbolic expression generation. More details on the model designand training implementation can
be found in App.

5.2 SEMANTIC LATENT INSIGHTS FOR SR

Traditional SR methods rely on searching within the vast equation landscape, dealing with the dual
challenges of combinatorial complexity and limited prior knowledge (Burlacu et al., |2020; |Schmidt
& Lipson,[2009). Recent approaches incorporate deep learning to better navigate this space, integrat-
ing learned numeric-to-symbolic priors into the search process (Udrescu & Tegmark, 2020; Petersen
et al., 2021} |Biggio et al.l [2021} [Kamienny et al., [2022). Yet, these are also often constrained by
their reliance on the function search techniques at the decoding stage (Mundhenk et al., [2021} [Holt
et al., [2023; [Landajuela et al., 2022)), perpetuating the limitations. For example, in the Genetic
Programming (GP) function search techniques, mutation and breeding steps across ‘winning’ sub-
expressions are prone to significant deviations in a function’s numeric behavior. This emphasizes the
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necessity for a better search strategy attuned to the semantics of the function. Recently, alternative
strategies, like latent space learning of symbolic functions through Variational Autoencoders (VAEs)
(Popov et al.,|2023; Meznar et al.,|2023)), trained exclusively for symbolic function reconstruction,
do show promise but fall short by neglecting numeric behaviors essential for SR tasks.

In contrast, SNIP offers a novel solution through a task-agnostic
joint learning paradigm. This joint learning approach imprints
the latent space with a wealth of integrated symbolic and nu-
meric semantics that serve as a high-dimensional ‘semantic fin-
gerprint’ for various function behaviors and their inherent simi-
larities. Therefore, unlike the latent space in (Popov et al., 2023}
Meznar et al.l 2023), SNIP’s task-agnostic latent space embod-
ies a robust numeric-symbolic prior, providing an ideal landscape
for SR search. By augmenting SNIP’s numeric encoder with an
expression generation decoder (as shown in Fig [), we can cre-
ate a generative latent space—a crucial asset for the numeric-to-
symbolic generation task of SR. Our empirical investigations on
the generative latent space further enrich this narrative. The in- Figure 5: Interpolatability of SNIP
nate interpolatability of SNIP’s latent space, as demonstrated pumeric latent space.

in Fig[5] suggests a meaningful correlation between latent space

representations and their corresponding numeric behaviors. In this figure, for a source function
Z3 (blue curve) and a destination function Z¢ (orange curves), we linearly interpolate within the
numeric encoded vectors to obtain Z"*. This interpolated embedding is decoded into a symbolic

function f = G, (Z{™"). Upon computing f over dataset «, we find that the interpolated function
exhibits a behavior that is semantically in between the source and destination functions. This is a
significant advantage for nuanced search and explorations during the symbolic discovery process.
Moreover, the fixed dimension d.y, Of this space, which is substantially lower than the combinato-
rial optimization space of equations, streamlines the search process. Given these attributes, SNIP’s
generative latent space stands as a compelling candidate for a more effective approach to SR.

5.3 SNIP LATENT SPACE OPTIMIZATION

As shown in Fig. 5] SNIP latent space interpolation shows a meaningful correlation with the func-
tions’ numeric pattern. This observation compels us to undertake a more comprehensive explo-
ration of the latent space. Specifically, to fully harness the expressive capabilities of pre-trained
SNIP embeddings in the context of SR, we employ Latent Space Optimization (LSO) as outlined
in Fig. d{b). This optimization process involves a stochastic search over latent space Zy, with the
objective of maximizing numerical fitness accuracy. To benefit from both prior knowledge of pre-
trained model and capabilities of search method, we initialize the search population by augmenting
the given dataset into a partitioned population P = {P;, P2, P3}. Specifically, P; contains encod-
ings from random sub-samples, with size n < N of the original data; Ps includes encodings from
sampled inputs with their target values y perturbed by random Gaussian noise (perturb and then
encode); and Ps includes perturbed encodings from a fixed sampled data (encode and then perturb).
Each agent p with representation Z?, is evaluated using a fitness function based on the R? fitting
metric. Candidate symbolic functions are generated for each agent by feeding encodings to the ex-
pression generation module fp = G.,(Z3,). The functions’ constants are then refined using BFGS
(Fletcher, |1987)), with a goal of optimizing the R? score against training data (Kamienny et al.,
2022). Then, updates to the latent population are carried out using a gradient-free optimizer, which
accommodates the non-differentiable characteristics of the function generation evaluation metrics.
This latent optimization process runs for 7" iterations or until achieving a predefined Rfmp criterion.
The optimal symbolic function f * is then evaluated on a holdout test set. Overall, LSO leverages
SNIP’s rich latent space to efficiently transform symbolic regression’s combinatorial search into
continuous optimization of fitting performance. Details on the LSO algorithm and implementation
are in App.[E] An ablation study analyzing the impact of LSO and choice of optimization algorithm

is also provided in App.

5.4 EVALUATION ON SRBENCH

Datasets. SNIP was assessed on PMLB datasets (Olson et al.,[2017) outlined in SRBench (La Cava
et al.,[2021), including: 119 Feynman equations (Udrescu & Tegmark| 2020), 14 ODE-Strogatz chal-
lenges (La Cava et al., [2016)), and 57 Black-box regression tasks without known underlying func-
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Figure 6: Pareto plots comparing R? and equation complexity of all methods across SRBench datasets:
(a) Strogatz, (b) Black-box, and (c) Feynman. Using SNIP for SR yields strong fitting-complexity trade-
off, evidenced by its first Pareto-front locating in all datasets. Here, each point depicts a method’s median
ranking within the data group, with lines/colors signifying Pareto dominance. The “*”” marks SR methods in
the Black-box datasets.

tions. For specifics on each dataset, refer to App. [E| Leveraging the E2E’s SR decoder (Kamienny
et al., [2022) for our decoder initialization, which is trained for D < 10, we similarly constrained
SNIP’s pre-training and evaluation to datasets with continuous features and dimensionality D < 10.
Also, since the range of target values y is important, especially for predicting the constants, we do
not normalize y for this task. More details on the experiment settings are provided in App.[E]

Results. Fig. [0]illustrates SNIP’s performance against the recent end-to-end (E2E) transformer SR
model (Kamienny et al.l [2022) and all the SRBench baselines. The Pareto plots exhibit rankings
for Fitting Accuracy against Model Complexity. The model’s accuracy is evaluated using R? and
its complexity is evaluated as the number of nodes in the expression tree of the generated equa-
tion (La Cava et al, [2021). Here, SNIP shows a strong accuracy-complexity balance, placing on
the first Pareto-front across all datasets. On Strogatz datasets, SNIP demonstrates top-tier accuracy
of 0.928, outperforming all the leading baselines. For Black-box datasets, SNIP again shows com-
petitive accuracy while achieving lower complexity (47.52) than the competitive Operon baseline
(64.95). On Feynman datasets, SNIP locates the Pareto frontier, offering better complexity than
Operon (31.63 vs. 69.87) and better accuracy than AlFeynman (0.882 vs. 0.798) baselines. More
detailed results on the SRBench datasets can be found in App. [E]

6 DISCUSSION AND CONCLUSION

We introduced SNIP, a multi-modal symbolic-numeric pre-training model that learns how to as-
sociate the symbolic and numeric aspects of mathematical functions. We showed that SNIP ex-
hibits remarkable capabilities in estimating cross-modal mathematical properties, particularly in
low data regime scenarios, outperforming fully-supervised models. Also, by leveraging the latent
space that SNIP constructs—capturing both functional behaviors and symbolic forms—the model
demonstrates competitive performance in symbolic regression, even when compared to leading GP
baselines. While SNIP showcases robustness and versatility in integrating symbolic and numeric
learning, it has notable limitations. It struggles with data patterns that cannot be clearly expressed as
closed-form mathematical functions. Also, its performance is tied to the pre-defined data generation
protocol, adopted from (Lample & Charton, [2020; Kamienny et al.,2022)), which sets constraints on
factors such as input dimensionality, and the vocabulary of mathematical operators. For example,
the current protocol limits input dimensions to D < 10 due to the exponential increase in expression
complexity at higher dimensions. Exploring higher-dimensional settings is an interesting avenue for
future research that would likely require significant updates to the data generation protocol. Despite
these limitations, SNIP has a wide range of capabilities, presenting a powerful tool in the intersec-
tion of symbolic and numeric mathematics. Future research can focus on potential applications of
SNIP, from using numeric guidance in symbolic-to-symbolic tasks such as function integration to
using symbolic guidance for numeric-to-numeric tasks such as zero-shot extrapolation and super-
resolution. Also, the SNIP’s learned representations could serve as a foundation for innovative
evaluation metrics of symbolic-numeric proximity, as well as efficient data and feature valuation.
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