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ABSTRACT

Graphical User Interface (GUI) agents are designed to automate complex tasks
on digital devices, such as smartphones and desktops. Most existing GUI agents
interact with the environment through extracted structured data, which can be
notably lengthy (e.g., HTML) and occasionally inaccessible (e.g., on desktops).
To alleviate this issue, we propose a visual GUI agent – SeeClick, which only
relies on screenshots for task automation. In our preliminary study, we have
discovered a key challenge in developing visual GUI agents: GUI grounding –
the capacity to accurately locate screen elements based on instructions. To tackle
this challenge, we propose to enhance SeeClick with GUI grounding pre-training
and devise a method to automate the curation of GUI grounding data. Along
with the efforts above, we have also created ScreenSpot, the first realistic GUI
grounding benchmark that encompasses mobile, desktop, and web environments.
After pre-training, SeeClick demonstrates significant improvement in ScreenSpot
over various baselines. Moreover, comprehensive evaluations on three widely used
benchmarks consistently support our finding that advancements in GUI grounding
directly correlate with enhanced performance in downstream GUI agent tasks. The
model, data and code are available at https://github.com/njucckevin/
SeeClick.

1 INTRODUCTION

A perennial topic in machine intelligence is the development of Graphical User Interface (GUI)
agent systems, like Siri and Copilot, to automate complex tasks on computing devices, thereby
reducing human workload (Shi et al., 2017; Li et al., 2020a). Recent advances in Large Language
Models (LLMs) such as GPT-4 (OpenAI, 2023) and LLaMA (Touvron et al., 2023) have significantly
propelled the evolution of GUI agents (Gur et al., 2023; Zhou et al., 2023). These agents interact
with the environment by interpreting structured texts, e.g., HTML from webpages, then elicit LLM
for planning, reasoning, and execution (Kim et al., 2023; Zheng et al., 2023).

However, GUI agents depend on structured text face three inherent limitations: (1) Structured
text is not always accessible, especially for iOS or desktop applications where acquiring such
information is challenging (Shaw et al., 2023); (2) The verbose nature of structured text serves as an
inefficient context for LLMs, while also omitting crucial information such as layout, images, and
icons (Deng et al., 2023); (3) The variety of structured text - including HTML, DOM, and Android
VH - necessitates the curation of task-specific observation and action spaces (Kim et al., 2023; Zhou
et al., 2023). These entrenched deficiencies in text-based approaches call for an alternative solution.

In this paper, we introduce SeeClick, a visual GUI agent built on Large Vision-Language Models
(LVLMs). Inspired by human interaction with GUIs, as illustrated in Figure 1, SeeClick is designed to
perform low-level actions like clicking or typing directly by observing interface screenshots. This in-
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novative approach bypasses the interaction with cumbersome structured text, empowering SeeClick to
universally adapt to various GUI platforms. Building such visual agents involves a foundational chal-
lenge: GUI grounding - the capacity to accurately locate screen elements based on instructions, which
is absent in current LVLMs. To tackle this challenge, SeeClick enhances LVLM with a GUI grounding
pre-training strategy. We devise a method to automate the curation of web grounding data and adapt

<form element_id="200">
    ...
 <label element _id="205">Last Name:</label>
    <input type="text" name="lastname" element 
_id="206">
    ...
    <input type="submit" value="Get Receipt" element 
_id="210">
...

Instruction: Download the e-receipt with the last name Smith and 
confirmation number X123456989.
Text-based:

Simplified HTML Code

Vision-based:

{“action”: “click”, “loc”: [0.46, 0.62]}

Element: <element_id=206>
Action: CLICK

SeeClick’s next action

Text-based agent’s next action

GUI Screenshot

# Selenium Code
element = driver.find_element(By.XPATH, 
'//*[@element_id="206"]’)
element.click()

Figure 1: Text-based agents select target elements
from structured texts, occasionally augmented with
screenshots. SeeClick employs a vision-based
methodology to predict action locations solely re-
lying on screenshots.

public mobile UI datasets to obtain mobile
grounding data. SeeClick employs the above-
curated dataset for continual pre-training of the
LVLM, enabling it to accurately locate elements
such as text, widgets, and icons in various GUI
environments.

Given GUI grounding is a fundamental yet un-
derexplored capacity for GUI agents, we created
ScreenSpot, the first realistic GUI grounding
evaluation benchmark across various GUI plat-
forms. ScreenSpot contains over 600 screen-
shots and 1200 instructions from iOS, Android,
macOS, Windows, and webpages, and specifi-
cally includes both text-based elements and a
variety of widgets and icons. Evaluation re-
sults confirm SeeClick’s superiority over cur-
rent LVLMs, validating the effectiveness of GUI
grounding pre-training.

Finally, we adapt SeeClick to mobile and web
agent tasks, including MiniWob (Shi et al.,
2017), AITW (Rawles et al., 2023), and Mind2Web (Deng et al., 2023). As a purely vision-based
agent, SeeClick achieves impressive performance. It is noteworthy that SeeClick surpasses the strong
visual baseline Pix2Act , utilizing merely 0.3% training data. Moreover, experimental results on three
tasks consistently support our finding that improvement in GUI grounding directly correlates with
enhanced agent task performance.

This paper makes the following contributions:

• We develop a unified visual GUI agent SeeClick, which performs clicking and typing actions rely
solely on interface screenshots across diverse GUI platforms.

• We prospectively explore GUI grounding for visual GUI agents, and enhanced SeeClick with
proposed GUI grounding pre-training strategy.

• We create a realistic GUI grounding benchmark ScreenSpot, encompassing more than 1200 instruc-
tions from various GUI platforms.

• Experimental results on ScreenSpot and three agent tasks demonstrate that enhancing agents’
grounding capacity is key to improving performance in downstream agent tasks.

2 RELATED WORK

Autonomous GUI Navigation Early research explored GUI task automation in simplified web (Shi
et al., 2017; Liu et al., 2018; Gur et al., 2018) and mobile UI (Li et al., 2020a; Burns et al., 2022; Li
& Li, 2022). With the recent advances in LLMs (OpenAI, 2023; Touvron et al., 2023; Xu et al., 2023;
Sun et al., 2023; Kim et al., 2023), LLM-centric agents have become the dominant paradigm. A line
of works focused on prompting ChatGPT and GPT-4 for web tasks, via in-context learning (Zheng
et al., 2023) and self-refine (Kim et al., 2023). Other research explored training LLMs as specialized
GUI agents. Deng et al. (2023) devised a two-stage method for identifying target elements within
intricate HTML. Gur et al. (2023) proposed to interact with websites via synthesizing programs.

Given the constraints of LLM to only process text, recent efforts have attempted vision-based GUI
navigation (Shaw et al., 2023; Zhan & Zhang, 2023; Hong et al., 2023). These methods primarily
utilize GPT-4V (Yan et al., 2023; Gao et al., 2023) and also require GUI metadata as input (Yang
et al., 2023a; Zheng et al., 2024). In this paper, we construct a universal visual GUI agent SeeClick
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Vision
Encoder

(ViT)
Large-scale Vision-Language Model (LVLM)

Vision-Language 
Adapter

Instruction:
“View the new album of Jony J”

Next action: click (0.49, 0.40)Mobile UI Related

Web UI Related

General VL Data

VQA Visual Reasoning

Widget Captioning UI Summarization

Mobile UI Grounding

Web OCR Web UI Grounding

Instruction: open the
low power mode
Source: Mobile (iOS)
Type: Icon/Widget

Instruction: See more 
options for Dark Mode
Source: Mobile (Android)
Type: Text

Instruction: Change font 
size to 20
Source: PC (macOS)
Type: Text

Instruction: Likes on this
issue
Source: Web (Development)
Type: Icon/Widget

Instruction: Create a new
merge request
Source: Web (Development)
Type: Text

Instruction: Switch to 
OneDrive path
Source: PC (Windows)
Type: Text

GUI Grounding Benchmark: ScreenSpot

(a) Overview of SeeClick‘s framework and GUI grounding pre-training.

(b) Examples of the proposed GUI grounding benchmark ScreenSpot.

(c) SeeClick as a visual GUI agent in downstream task.

Instruction: Find a list of shorthaired dogs available for adoption with 100 miles of zip code 
94587 that are good with kids and cats, and have been on Petfinder for over 30 days.

Figure 2: Overview of our universal visual GUI agent SeeClick. (a) depicts the framework of SeeClick
and GUI grounding pre-training. (b) provides examples of ScreenSpot across various GUIs and types
of instructions. (c) displays the real-world application of SeeClick on downstream web agent task.

by customizing open-sourced LVLM, capable of operating across various GUI platforms without
needing any GUI metadata.

Large Vision-Language Models Recently, researchers have invested tremendous effort in construct-
ing LVLMs capable of jointly processing image and text (Liu et al., 2023a; Zhu et al., 2023; Ye et al.,
2023; Li et al., 2023). LVLMs integrate vision encoders like ViT (Dosovitskiy et al., 2020), with
LLMs such as LLaMA (Touvron et al., 2023), inheriting LLMs’ language and reasoning abilities to
perform diverse vision-language tasks.

A series of studies focused on the grounding capabilities of LVLMs (Wang et al., 2023; Bai et al.,
2023; Chen et al., 2023a), such as providing bounding boxes for objects while generating responses
(Chen et al., 2023b; Peng et al., 2023). Nonetheless, these efforts primarily addressed natural images
and did not explore GUI contexts. This paper focuses on grounding in GUIs and explores the potential
of LVLMs as GUI Agents.
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3 APPROACH

In our preliminary study, we have discovered a key challenge in developing visual GUI agents: GUI
grounding, the capacity to locate screen elements based on instructions. Although recent LVLMs
have claimed visual grounding capability on natural images, GUI screenshots differ significantly with
dense text and numerous icons and widgets. These differences impair existing LVLMs’ grounding
performance in GUI contexts and limit their potential as visual GUI agents.

This paper seeks to harness LVLMs with GUI grounding skills, paving the way for a visual GUI
agent that executes instructions only relying on screenshots. As presented in Figure 2, SeeClick is
a foundational model for GUIs, and we adapt it for specific agent tasks in Section 5.2. Next, we
introduce the birth of SeeClick, including the formalization of GUI grounding task, the construction
of continual pre-training data, and training details.

3.1 GUI GROUNDING FOR LVLMS

As GUI grounding is the core capability of SeeClick, we first elucidate how to train LVLM for
language generation to perform grounding tasks. Given an interface screenshot s and a collection
of elements {(xi, yi)|i} on it, where xi denotes the textual description of the i-th element and yi
indicates the element’s location (represented as a bounding box or point). As depicted in Figure 2(a),
LVLM predicts the location of the element y based on the interface screenshot s and its textual
description x, i.e. calculating p(y|s, x).
A potential challenge is how LVLMs predict numerical coordinates in a language generation format.
Traditional methods (Chen et al., 2021; Wang et al., 2023; Shaw et al., 2023) divided the image into
1000 bins, and creating a new 1,000-token vocabulary {< p0 >,< p1 >, ..., < p999 >} to represent
the x and y coordinates. In this work, we adopt a more intuitive manner used in LVLMs (Chen
et al., 2023b; Bai et al., 2023), treating numerical values as natural language without any additional
tokenization or pre-/post-processing. For instance, in Figure 2(a), for a smartphone screenshot and
the instruction “View the new album of Jony J”, we craft a query prompt: “In the UI, where should
I click if I want to <instruction>?”. Subsequently, we normally compute the cross-entropy loss
between the model output and the groundtruth “click (0.49, 0.40)” to optimize the LVLM.

3.2 DATA CONSTRUCTION

We train SeeClick using three collections of data: web UI data crawled from the internet, mobile UI
data reorganized from public datasets and general vision-language instruction-following data.

<div class="header">
    <ul class="menu">

<li>...</li>
</ul>

</div>
<div class="container">
    <div class=“product-thumbnails”><a href=“#” title=“Previous image"></a></div>
    <div class="product-detail">

<div>...</div>
        <button>ENQUIRE NOW</button>
        <div class=“product-share”>…</div>
    </div>
</div>

Figure 3: Example of two types of elements auto-
matically collected from the webpage.

Web Data. Web UIs, featuring a variety of lay-
outs and design styles across websites, are ideal
for training LVLMs’ universal recognition and
grounding capabilities across different GUI con-
texts. We collected approximately 300k web
pages from the latest Common Crawl repository
to serve as our training data for web UI. For
each webpage s, we collect two types of ele-
ments from the HTML code as exemplified in
Figure 3: (1) elements that display visible text
content; and (2) elements with a special “title”
attribute that display descriptive text when hov-
ering. This method ensures that we gather a
series of interactable elements y and their cor-
responding instructions x, while encompassing
a wide range of text and icon elements. In ad-
dition to the grounding task p(y|s, x), we also
include web OCR task p(x|s, y), predicting text
description based on coordinates.

Mobile Data. For mobile UI, we include three types of data: widget captioning, mobile UI grounding,
and mobile UI summarization. The widget captioning dataset provides language descriptions for
mobile UI elements; for example, the description “play music” for the play button on a music player
interface. We utilize the training split of the dataset provided in (Li et al., 2020b), containing nearly
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20k screenshots, 40k widgets and 100k descriptions. We derive mobile UI grounding data by reversing
the process of widget captioning, treating language descriptions as instructions and corresponding
widgets as target elements. To improve diversity, we also incorporate the automatically collected
elements and instructions from RICO (Li et al., 2020a). The mobile data involves diverse elements
and instructions, facilitating the generalization of SeeClick’s grounding proficiency to diverse GUI
contexts. We finally include mobile UI summarization data (Wang et al., 2021) to enhance overall
interface comprehension.

General Data. To maintain LVLM’s general capacities on natural images, we incorporate the general
vision-language instruction-following data collected with GPT-4 from LLaVA (Liu et al., 2023a),
covering conversation, detailed description, and complex reasoning.

Finally, we mix the data above and craft 30 task-specific prompts for each added GUI task, resulting
in a 1M dataset to train SeeClick.

3.3 TRAINING DETAILS

We built SeeClick through continual pre-training on a recent advanced LVLM, Qwen-VL (Bai et al.,
2023), which possesses grounding capabilities and a higher resolution of 448*448. We train Qwen-VL
on the constructed dataset (Section 3.2) for about 10k steps (around 1 epoch) to obtain our GUI base
model SeeClick. During training, we employ LoRA (Hu et al., 2021) to fine-tune both the visual
encoder and LLM. Further details and task examples are provided in Appendix B.

4 GUI GROUNDING BENCHMARK: ScreenSpot

We recognize GUI grounding proficiency as essential for constructing a universal visual GUI agent.
However, the constrained capabilities of earlier vision-language models resulted in limited attention
on GUI grounding, with few existing studies (Li et al., 2021; Li & Li, 2022; Zhang et al., 2023)
largely confined to an Android dataset (Deka et al., 2017) collected in 2017.

21%

21%

13%

15%

8%

6%

6%

10%

iOS Android Windows macOS

Development Shopping Forum Tools

ScreenSpot

278
198 210

232

140 151

Different types of elements 
in ScreenSpot

Text Icon/Widget

Mobile Desktop Web

20%

19%

13%
14%

7%

9%

7%

11%

iOS Android Windows macOS
Development Shopping Forum Tools

ScreenSpot

273
194 230

229

140

206

Different types of elements 
in ScreenSpot

Text Icon/Widget

Mobile Desktop Web

Figure 4: Statistic of our proposed GUI grounding
benchmark ScreenSpot. The left illustrates the
diverse GUI platforms included. The right displays
the types of elements within each GUI category.

To address this research gap, we introduce
ScreenSpot, an up-to-date, realistic grounding
evaluation benchmark encompassing various
GUI platforms. It is designed to assess vision-
language models’ ability to locate screen ele-
ments based on human instructions (Figure 2(b)
provides some examples). ScreenSpot has two
distinctive features: (1) Various GUI platforms.
It includes over 600 interface screenshots from
mobile (iOS, Android), desktop (macOS, Win-
dows), and web platforms, along with 1200+
instructions and corresponding actionable ele-
ments; (2) Icons/Widgets. ScreenSpot includes a
substantial number of icon/widget type elements
in each GUI, which is more challenging to lo-
cate than texts (statistics are in Figure 4). See
Appendix C.1 for more examples.

To evaluate vision-language models’ effectiveness in real-world scenarios, ScreenSpot is carefully
curated to ensure the samples are novel and not included in existing training resources. We recruited
experienced annotators to collect new GUI interfaces and label instructions along with the bounding
boxes for actionable elements. For mobile and desktop, annotators were asked to select commonly
used apps and operations; for web, we chose several types of websites (development, shopping,
forum, and tools) from the recent web environment WebArena (Zhou et al., 2023).

5 EXPERIMENTS

In this section, we first evaluate the GUI grounding capabilities of representative LVLMs and our
proposed SeeClick. Subsequently, we adapt SeeClick to mobile and web agent tasks, analyzing
the correlation between the advanced grounding capacity and downstream task performance, while
exploring the potential of purely vision-based GUI agents.
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LVLMs Model
Size

GUI
Specific

Mobile Desktop Web Average
Text Icon/Widget Text Icon/Widget Text Icon/Widget

MiniGPT-v2 7B ✗ 8.4% 6.6% 6.2% 2.9% 6.5% 3.4% 5.7%
Qwen-VL 9.6B ✗ 9.5% 4.8% 5.7% 5.0% 3.5% 2.4% 5.2%
GPT-4V - ✗ 22.6% 24.5% 20.2% 11.8% 9.2% 8.8% 16.2%

Fuyu 8B ✓ 41.0% 1.3% 33.0% 3.6% 33.9% 4.4% 19.5%
CogAgent 18B ✓ 67.0% 24.0% 74.2% 20.0% 70.4% 28.6% 47.4%
SeeClick 9.6B ✓ 78.0% 52.0% 72.2% 30.0% 55.7% 32.5% 53.4%

Table 1: Results of different LVLMs on ScreenSpot. The best results in each column are bold. Benefit
from efficient GUI grounding pre-training, SeeClick significantly enhanced LVLMs’ ability to locate
GUI elements following instructions, and surpassed CogAgent with a smaller model size.
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Figure 5: Comparison of SeeClick and LVLM baseline Qwen-VL on MiniWob. Tasks with yellow
shadows indicate those with dynamic webpage layouts and element positions (closer to the real-world
application of GUI agents, see more details in appendix Figure 11). SeeClick outperformed Qwen-VL
in most tasks, especially in those with dynamic elements, highlighting the effectiveness of our GUI
grounding pre-training.

5.1 GUI GROUNDING ON ScreenSpot

As the foundation of visual GUI agents, GUI grounding has not received adequate attention in current
LVLMs evaluations (Liu et al., 2023b; Yu et al., 2023). Therefore, we compare various LVLMs on
our specially constructed GUI grounding benchmark ScreenSpot.

Compared LVLMs & Evaluation. We primarily evaluated two types of LVLMs: (1) Generalist
LVLMs capable of tasks such as dialogue, recognition and grounding, including MiniGPT-v2 (Chen
et al., 2023a), Qwen-VL (Bai et al., 2023) and GPT-4V; (2) Recently introduced LVLMs specifically
designed for GUI tasks, including Fuyu (Bavishi et al., 2023) and CogAgent (Hong et al., 2023).

Considering that GUI agents require clicking on the correct position, we calculate the click accuracy
as the metric, defined as the proportion of test samples where the model’ predicted location falls in
the groundtruth element bounding box (Li et al., 2022; Zhang et al., 2023).

Results. As shown in Table 1, while generalist LVLMs have excelled in natural image grounding,
their GUI grounding performance on ScreenSpot is poor due to the significant differences between
GUIs and natural images. Even GPT-4V struggles with accurately locating screen elements.

In comparison, LVLMs trained specifically on GUI data have significant improvements. SeeClick
achieved the best average performances across three GUI platforms and two types of elements, even
with fewer model parameters than CogAgent. This demonstrates the efficiency of our GUI grounding
pre-training; with the rich UI elements and diverse instructions collected from the web and mobile,
SeeClick quickly learns to understand human instructions for element localization, even in completely
unseen scenarios like iOS and desktop. SeeClick exhibits slightly inferior performance in locating
text within desktop and web compared to CogAgent, possibly due to lower resolution and much
smaller training data. Notably, all models struggle with locating icons/widgets, highlighting the
difficulty of identifying and grounding non-text elements on GUIs, which is the unique challenge
posed by ScreenSpot. More details about evaluation on ScreenSpot is in Appendix C.
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5.2 VISUAL GUI AGENT TASKS

This section explores the capabilities of SeeClick when applied to three downstream GUI agent tasks:
MiniWob, AITW, and Mind2Web. Across these tasks, with provided instructions and memory of
previous actions, SeeClick determines the next action solely by observing interface screenshots. The
detailed task settings, action formats and interaction examples for SeeClick are in Appendix D.

5.2.1 MINIWOB

MiniWob Shi et al. (2017) comprises about 100 types of web automation tasks, where the agent is
asked to interact with a simplified web environment to accomplish human instructions. Existing open-
source training data often lacks corresponding interface screenshots (Furuta et al., 2023). Therefore,
we rollout 50 successful episodes using an LLM strategy for each task in (Zheng et al., 2023) ,
resulting in a 2.8K episodes dataset to train SeeClick.

Compared Methods & Evaluation. We compared SeeClick with a range of offline training methods.
Among these, the state-of-the-art method WebGUM (Furuta et al., 2023) uses screenshots as auxiliary
information but still selects HTML elements as actions. Pix2Act (Shaw et al., 2023) is the only prior
vision-based approach, trained with extensive demonstration data to perform actions. To verify the
effectiveness of SeeClick, we also report the results of the LVLM baseline Qwen-VL when trained
with the same 2.8K dataset.

Due to the variance in evaluation task sets among different methods (Liu et al., 2018; Furuta et al.,
2023; Shaw et al., 2023), for fairness, we report performance in two groups based on the overlapping
MiniWob tasks. We compute the success rate over 50 random seeds for each task and then compute
the mean over all tasks as the final score. We provided task-wise scores in Appendix D.2.

Methods Modality Dataset Score
Compared with text-based models over 45 tasks
CC-Net (SL) DOM+Image 2.4M 35.6%

WebN-T5 HTML 12K 55.2%
MM-WebN-T5 HTML+Image 347K 63.4%

WebGUM HTML+Image 2.8K 65.5%
WebGUM HTML+Image 347K 86.1%
SeeClick Image 2.8K 73.6%

Compared with vision-based models over 35 tasks
CC-Net (SL) Image 2.4M 23.4%

Pix2Act Image 1.3M 64.6%
Qwen-VL Image 2.8K 48.4%
SeeClick Image 2.8K 67.0%

Table 2: Average scores of different methods on
MiniWob. The best results in each setting are bold.
Methods achieving the highest performance with
limited data are underlined. SeeClick outperforms
a range of offline training methods as a purely
vision-based model.

Results. As depicted in Table 2, purely vision-
based SeeClick surpassed strong baselines with
substantially less training data. Notably, with
an equivalent amount of 2.8K training data, it
outperformed the offline sota WebGUM, which
uses both HTML and screenshots as input.
Moreover, thanks to LVLM’s powerful reason-
ing and planning abilities and our GUI ground-
ing pre-training, SeeClick exceeded the sota vi-
sual method Pix2Act, using less than 0.3% train-
ing data.

Furthermore, SeeClick significantly surpassed
the LVLM baseline Qwen-VL by nearly 20 per-
centage points, underscoring the importance
of GUI grounding in boosting LVLM’s perfor-
mance. To analyze in detail, we provide task-
level comparisons between SeeClick and Qwen-
VL on 35 MiniWob tasks in Figure 5. SeeClick
notably excelled in tasks with dynamic interface
layouts and element positions, confirming our
hypothesis that general LVLMs struggle with
accurately clicking, and SeeClick markedly im-
proves this aspect.

5.2.2 AITW

We evaluate SeeClick in smartphone environments with a recently proposed Android automation
dataset Android In The Wild (AITW), which encompasses 30k distinct instructions and correspond-
ing 715k human-annotated operation trajectories. Previous approaches (Rawles et al., 2023) split
train/val/test in episode-wise. However, this setting poses a clear risk of overfitting due to: (1)
instructions in the test set have appeared during training, and (2) an average of 20 similar trajec-
tories per instruction. In this work, we propose to split the dataset instruction-wise, which avoids
overfitting and reflects the performance of agents on unseen instructions. Specifically, we selected
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Methods Modality General Install GoogleApps Single WebShopping Overall ClickAcc
ChatGPT-CoT Text 5.9 4.4 10.5 9.4 8.4 7.7 -
PaLM2-CoT Text - - - - - 39.6 -

GPT-4V Image 41.7 42.6 49.8 72.8 45.7 50.5 -
Qwen-VL Image 49.5 59.9 46.9 64.7 50.7 54.3 57.4
SeeClick Image 54.0 66.4 54.9 63.5 57.6 59.3 66.4

Table 3: Average scores on AITW. ClickAcc calculates the accuracy of click operation. The best
results in each column are bold. SeeClick exhibits the best performance among competing baselines.

Methods w/o HTML
Cross-Task Cross-Website Cross-Domain

Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR
MindAct (gen) ✗ 20.2 52.0 17.5 13.9 44.7 11.0 14.2 44.7 11.9

MindAct ✗ 55.1 75.7 52.0 42.0 65.2 38.9 42.1 66.5 39.6
GPT-3.5 ✗ 20.3 56.6 17.4 19.3 48.8 16.2 21.6 52.8 18.6
GPT-4 ✗ 41.6 60.6 36.2 35.8 51.1 30.1 37.1 46.5 26.4

Qwen-VL ✓ 15.9 86.7 13.3 13.2 83.5 9.2 14.1 84.3 12.0
SeeClick ✓ 28.3 87.0 25.5 21.4 80.6 16.4 23.2 84.8 20.8

Table 4: Comparsion of different methods on Mind2Web. The best results in each column are bold.
Improvements of SeeClick over the LVLM baseline are underline. The GUI grounding pre-training
nearly doubled the step success rate of SeeClick on real websites.

545/688/306/700/700 instructions from General/Install/GoogleApps/Single/WebShopping respec-
tively, and retained only one annotated trajectory for each instruction. We selected 80% for training
and the remaining for testing in each subset. The result of original split and more details are in
Appendix D.3.

Compared Methods & Evaluation. We compare SeeClick with two types of baselines: (1) api-based
LLMs such as ChatGPT-CoT (Zhan & Zhang, 2023), PaLM2-CoT (Rawles et al., 2023) and the latest
GPT-4V (Yan et al., 2023); (2) our trained LVLM baseline Qwen-VL.

We follow Rawles et al. (2023) to adopt the screen-wise action matching score as the main metric
and additionally compute the click accuracy (ClickAcc), which calculates the accuracy when both
reference and prediction are click operations.

Results. As illustrated in Table 3, SeeClick achieved the best average performance among both API-
based LLMs and trained LVLMs. Specifically, SeeClick exhibited a 9% increase in click accuracy
over Qwen-VL, supporting the idea that GUI grounding enhances agent task performance through
precise clicking.

5.2.3 MIND2WEB

To assess SeeClick’s capabilities in websites, we utilize the recently introduced Mini2Web dataset
(Deng et al., 2023). Mind2Web comprises over 2000 open-ended tasks collected from 137 real
websites, each with a high-level instruction and a corresponding human action trajectory. Mind2Web
was originally designed to evaluate text-based web agents, which select actionable elements from
simplified HTML in each step. This work explores visual web agents that predict click positions
directly from screenshots. For this purpose, we parsed screenshots and target element bounding boxes
from the raw dump of Mind2Web for training and testing. To the best of our knowledge, this is the
first attempt of web agents relying solely on screenshots as inputs for navigating real websites.

Compared Methods & Evaluation. We compare with html-based web agents Mind2Act (Deng
et al., 2023) and our visual baseline Qwen-VL. Mind2Act employs a two-stage method, where a
small LM first generates candidate elements from raw HTML, then a large LM selects the target via
multi-choice QA; Mind2Act (gen) directly generates the target element instead. GPT-3.5 and GPT-4
adopt the same formulation of Mind2Act and include three demonstrations for in-context learning.

We calculate element accuracy (Ele.Acc), Operation F1 (Op.F1) and step success rate (Step SR). For
vision-based methods, a prediction is considered correct if the predicted coordinate falls in the target
element’s bounding box. All other settings are following (Deng et al., 2023).
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Results. As displayed in Table 4, SeeClick nearly doubled the Ele.Acc and Step SR compared to
Qwen-VL. This indicates that SeeClick’s improvement in GUI grounding directly correlates with
enhanced performance in web agent tasks. HTML-based methods yield lower Op.F1 as around
20% of groundturth elements are filtered out during candidate generation. Although SeeClick can
operate without extra HTML information, its performance lags behind sota HTML-based methods,
as predicting click coordinates on web pages is much more difficult than choosing from HTML
candidates. This highlights the difficulty of grounding in intricate interfaces, suggesting the substantial
room for improvement needed for visual agents that can apply to the real world.

5.2.4 GROUNDING AND AGENT PERFORMANCE

To investigate the correlation between grounding and agent performance, we examined average scores
of several SeeClick’s checkpoints on ScreenSpot and three downstream tasks, as depicted in Figure 6.
Enhanced GUI grounding capacity boosts downstream task performance, highlighting its crucial role
in developing advanced visual GUI agents.

Figure 6: The correlation between agent tasks per-
formance improvement and enhanced grounding
ability.

MiniWob AITW Mind2web
Qwen-VLseparate 48.4 54.3 11.5
SeeClickseparate 67.0 59.3 20.9
SeeClickunified 64.1 57.1 19.5

Table 5: Separate vs unified training performance.

5.2.5 SEECLICK AS UNIFIED GUI AGENT

To explore SeeClick’s potential for unified operation across GUIs, such as mobile and desktop, we
experimented with joint training on three downstream tasks. As shown in Table 5, the unified model
exhibited a slight performance decline, possibly due to the distinct interface of different tasks.

6 CONCLUSION

In this paper, we introduce a visual GUI agent - SeeClick, which only relies on screenshots for GUI
task automation. We found a key challenge in developing such visual GUI agents: GUI grounding
- the capacity to accurately locate screen elements based on human instructions. To address this
challenge, we propose to enhance SeeClick via GUI grounding pre-training, and devise methods
to automate the curation of GUI grounding data from web and mobile. For benchmarking the
progress in GUI grounding, we created ScreenSpot, the first realistic evaluation dataset encompassing
mobile, desktop, and web platforms. Results on ScreenSpot demonstrate a significant improvement of
SeeClick over LVLM baselines. Moreover, comprehensive evaluations across three GUI automation
tasks consistently support our finding that advancements in GUI grounding directly correlated with
improved performance in downstream agent tasks.

LIMITATIONS

SeeClick currently simplifies the GUI action space to mainly focus on clicking and typing, excluding
complex actions like dragging and double-clicking. Additionally, limited by the performance of
open-source LVLMs, training on agent-specific data is necessary for SeeClick to execute multi-step
tasks on interfaces like mobile and computer.
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A APPENDIX

B DETAILS OF SEECLICK PRE-TRAINING

B.1 PRE-TRAINING TASKS

Domain Task Sample Num

Web

text 2 point 271K
text 2 bbox 54K
point 2 text 54K
bbox 2 text 54K

Mobile

text 2 point 274K
text 2 bbox 56K

UI summarization 48K
widget captioning 42K

General LLaVA 145K
Total 1M

Table 6: All training data used by SeeClick.

SeeClick employs pre-training tasks as outlined
in Table 6. For the grounding task, we incor-
porate two forms: predicting center point co-
ordinates (text 2 point) and predicting bound-
ing box (text 2 bbox). For the task of generat-
ing text for elements (similar to OCR), we also
include two categories: predicting text based
on center point (point 2 text, widget caption-
ing) coordinates and based on bounding boxes
(bbox 2 text). Our preliminary experiments in-
dicated that predicting points was slightly bet-
ter than bounding boxes, likely due to the vari-
able sizes of UI elements. Consequently, we
increased the proportion of data with point lo-
calization. Finally, about 1 million samples are
used for the continual pre-training of SeeClick.

For tasks involving coordinates, positions are represented as either the point (x,y) or the bounding
box of (left, top, right, down), where each value is a decimal number in the range [0,1] indicating
the ratio of the corresponding position to the width or height of the image. Figure 7 provides some
examples of the pre-training data.

B.2 TRAINING CONFIGURATIONS

We employed the aforementioned data for continual pre-training of Qwen-VL-Chat to develop
SeeClick. To enhance LVLM’s understanding of GUI images, we unlocked the gradients of its visual
encoder and applied LoRA for fine-tuning. We adopt AdamW as the optimizer and use a cosine
annealing scheduler with an init learning rate of 3e-5 and a global batch size of 64. All training takes
around 24 hours on 8 NVIDIA A100 GPUs.

C ScreenSpot EVALUATION

C.1 SAMPLE SHOWCASE

Figure 10 provides more examples of ScreenSpot, which contains a variety of common GUI scenarios
for mobile, desktop, and web platforms.

C.2 EVALUATION DETAIL

For comparing baselines, we tested the models’ grounding capabilities using their officially recom-
mended approach. For instance, with CogAgent, we randomly selected prompts from the official
set provided, such as ”What steps do I need to take to <instruction>? (with grounding)”, then the
output coordinates (or the centers of bounding boxes) were taken as predicted points. For GPT-4V,
we follow Yang et al. (2023b) to enable it to locate screen elements based on instructions. SeeClick’s
predictions with points were marginally better than bounding boxes, thus we selected point prediction
for final evaluation.

C.3 SEECLICK CASE STUDY & ERROR ANALYSIS

Figure 8 presents some examples of SeeClick on ScreenSpot. SeeClick can comprehend human
instructions and accurately locate screen elements. To conduct a detailed analysis of localization
performance, we quantified the distances between predicted points and groundtrurh (the center
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User: In the provided screenshot, 
I‘ll describe webpage elements for 
you to locate (with point).
User: Additional information
Assistant: (0.66,0.86)
User: USB Flash Drive
Assistant: (0.37,0.17)
User: Qty
Assistant: (0.63,0.41)
User: GAMING ACCESSORIES 
(AUSTRALIA)
Assistant: (0.30,0.13)
……
User: Add to Wishlist
Assistant: (0.52,0.57)

User: In this digital interface, 
to initiate "click to start a 
search", where is my point of 
interest (with point)?
Assistant: (0.88,0.87)

Task: Web text_2_point
User: In this screenshot, I'll give 
coordinates and ask you to describe 
the text of the elements there (with 
bbox).
User: (0.61,0.84,0.71,0.88)
Assistant: Additional information 
User: (0.34,0.16,0.40,0.18)
Assistant: USB Flash Drive
User: (0.61,0.40,0.64,0.43)
Assistant: Qty
User: (0.26,0.16,0.33,0.18)
Assistant: GAMING ACCESSORIES 
(AUSTRALIA)
……
User: (0.48,0.56,0.55,0.58) 
Assistant: Add to Wishlist

Task: Web bbox_2_text

Task: Mobile text_2_point

User: Can you provide a detailed 
description of the interface 
screenshot shown?
Assistant: An app home that 
displays a daily learning goal 
punch list

Task: Mobile UI summarization

Figure 7: Examples of SeeClick pre-training tasks.

of target elements) in Figure 9. It’s noteworthy that even incorrect predictions mostly occur near
the target bounding box, suggesting the model recognizes the target but needs improvement in
fine-grained localization.

D DOWNSTREAM AGENT TASKS

In this section, we first detail the formulation of SeeClick as a visual GUI agent, then separately
introduce the settings for three downstream tasks, and finally show SeeClick’s interaction cases with
the GUI across these tasks.

D.1 FORMULATION OF SEECLICK AS VISUAL GUI AGENT

Action Space SeeClick involves common human-UI interaction operations. Following AITW, we
assigned an action type id for each action type.

• click(x,y): 4. A click action at (x,y), where each value is a [0,1] number indicating the ratio
of the corresponding position to the width or height of the image.
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Instruction:
open settings

Instruction:
add a new slide

Instruction:
display 
calendar in 
week view

Instruction:
choose the 
red pen

Instruction:
enable 
notifications

Instruction:
close

Figure 8: SeeClick on ScreenSpot. Blue dashed boxes represent the ground truth bounding boxes,
while green and red pointers indicate correct and incorrect predictions.

Figure 9: Distance distribution of prediction point to groundtruth. Most incorrect predictions are also
close to the answer, suggesting the model recognizes the target but needs improvement in fine-grained
localization.

• type("typed text"): 3. An action of typing a piece of text.
• select("value"): 2. An action for selecting an option from a dropdown menu on a webpage.
• swipe(direction): Swipe actions for the screen, swipe up/down/left/right are assigned the

ids 1, 0, 8, and 9 respectively.
• PRESS BACK: 5. The action for returning to the previous step.
• PRESS HOME: 6. The action for returning to the homepage.
• PRESS ENTER: 7. The action of pressing the ENTER key to submit input content.

The first two actions, clicking and typing, are universally applicable across various GUIs. The third
action, select, is defined according to the specifications in Mind2Web. The latter four actions, along
with two additional states, TASK COMPLETE and TASK IMPOSSIBLE, are defined following the
AITW framework for Android environments.

User: In the provided screenshot, 
I‘ll describe webpage elements for 
you to locate (with point).
User: Additional information
Assistant: (0.66,0.86)
User: USB Flash Drive
Assistant: (0.37,0.17)
User: Qty
Assistant: (0.63,0.41)
User: GAMING ACCESSORIES 
(AUSTRALIA)
Assistant: (0.30,0.13)
……
User: Add to Wishlist
Assistant: (0.52,0.57)

User: In this digital interface, 
to initiate "click to start a 
search", where is my point of 
interest (with point)?
Assistant: (0.88,0.87)

Task: Web text_2_point
User: In this screenshot, I'll give 
coordinates and ask you to describe 
the text of the elements there (with 
bbox).
User: (0.61,0.84,0.71,0.88)
Assistant: Additional information 
User: (0.34,0.16,0.40,0.18)
Assistant: USB Flash Drive
User: (0.61,0.40,0.64,0.43)
Assistant: Qty
User: (0.26,0.16,0.33,0.18)
Assistant: GAMING ACCESSORIES 
(AUSTRALIA)
……
User: (0.48,0.56,0.55,0.58) 
Assistant: Add to Wishlist

Task: Web bbox_2_text

Task: Mobile text_2_point

User: Can you provide a detailed 
description of the interface 
screenshot shown?
Assistant: An app home that 
displays a daily learning goal 
punch list

Task: Mobile UI summarization

<img>Image</img>
User: Please generate the next move according to the 
UI screenshot, instruction and previous actions.
Instruction:
<instruction>
Previous actions:
Step1: <step1>
Step2: <step2>
Step3: <step3>
Step4: <step4>
SeeClick: <next action>

Agent Formulation SeeClick is an autonomous
agent capable of executing human instructions
on GUIs. It takes as input the instruction, a
screenshot of the current interface and a series
of (k=4 in our setting) previous actions, to pre-
dict the next action to be taken. Specifically,
SeeClick uses the following prompt to execute
each step of the agent: During training and test-
ing, we organize the data by step into the format
described right.
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Gen. Inst. GApps. Sing. WShop. Ovr.
Auto-UI 68.2 76.9 71.4 84.6 70.3 74.3

CogAgent 65.4 78.9 75.0 93.5 71.1 76.9
SeeClick 67.6 79.6 75.9 84.6 73.1 76.2

Table 7: Comparison on the origin split of AITW.

D.2 MINIWOB

MiniWob is a classic simplified web agent environment, built on Chrome, allowing low-level oper-
ations such as clicking and typing. It comprises around 100 tasks, where each task can templatize
random variants and corresponding instructions controlled by a random seed, creating up to billions
of possible task instances. We use 50 successful trajectories for each task provided in (Zheng et al.,
2023) for training and test each task with 50 random seeds, following standard practices.

We report the average success rate across random seeds and tasks, automatically provided by the
MiniWob environment. A task is considered successfully completed if executed correctly, while
incorrect executions or exceeding the maximum number of actions (set as 30 here) are counted as
failures. For the baselines in Table 2, we use the task-wise scores provided in their papers to calculate
the average for tasks overlapping with SeeClick. We also provided a task-wise comparison in Table 8.

D.3 AITW

AITW is a recently collected dataset for Android smartphone automation, where each sample
comprises an instruction and an action trajectory with screenshots. AITW is divided into five subsets:
General, Install, GoogleApps, Single, and WebShopping, totally including over 30K instructions and
700K episodes.

Despite AITW’s large scale, as stated in Section 5.2.2, the current train-test split poses a significant risk
of overfitting, leading to experimental results that do not accurately reflect an agent’s generalization
ability in the real world. We also conducted experiments on SeeClick using the origin split, as
shown in Table 7, SeeClick is comparable to CogAgent’s performance. We believe that due to the
severe overfitting, designing new agent frameworks or enlarging model size is unlikely to yield much
improvements on this split.

To address the aforementioned issue, we propose to divide the train/val/test in an instruction-
wise manner. Specifically, we selected 545/688/306/700/700 instructions from the Gen-
eral/Install/GoogleApps/Single/WebShopping subsets (to avoid imbalance in joint training, we
randomly chose 700 instructions from Single and WebShopping, which contain a large number
of similar instructions), and retained only one annotated episode for each instruction. Next, we
allocate 80% for training and the remaining 20% for testing, and select 5*100 episodes to form
the validation set from the origin data. The data used for training, validation, and testing will be
open-sourced to serve as an effective evaluation.

The other settings are consistent with previous work, calculating a screen-wise matching score that
considers both the correctness of the action type and its value (e.g., the click point or typed text), and
correlates with the task completion score judged by humans (Rawles et al., 2023).

D.4 MIND2WEB

Mind2Web is a recently proposed dataset for developing generalist web agents for real-world websites,
originally designed for text-based agents. Therefore, the origin observation in each step only includes
the HTML code of the current webpage. To train and evaluate visual-based agents, we extracted web
screenshots and the bounding boxes of target operational elements for each step from Mind2Web’s
raw dump. One issue with Mind2Web’s original HTML observation is that it captures the entire
page, including scrolling, with its screenshots being long captures (e.g., 1920*12000). Predicting
operational positions from such high-resolution long screenshots is impractical for current LVLMs
and does not align with human operations. To address this, for target elements not at the top, we
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randomly crop around their location, maintaining a consistent screenshot resolution of 1920*1080 for
all observed interfaces.

Mind2Web first calculates Element Accuracy (Ele.Acc) which compares the predicted element with
groundtruth, and Operation F1 (Op.F1) which calculates the token-level F1 score for the predicted
operation. Operation F1 is equivalent to the accuracy of click operations but takes into account the
correctness of input values for type and select operations. For our vision-based approach, Element
Accuracy is computed as the accuracy of predicted click points falling in the groundtruth elements’
bounding box. Then, a step is considered successful (Step SR) if both the predicted element and
operation are correct.

D.5 CASE STUDY

MiniWob Figure 11(a) illustrates the difference between static and dynamic layout tasks. Static
layout tasks have fixed element positions during training and testing, while dynamic layout tasks
display varying interfaces and element positions with instructions, further challenging the agent’s
ability to accurately locate the target. Figure 11(b) provides examples of SeeClick’s interaction with
MiniWob. SeeClick relies solely on the interface screenshot for arithmetic, reasoning, etc.

AITW Figure 12 provides SeeClick’s operations on AITW. Predictions marked in red below indicate
that they were computed as incorrect in AITW. However, some errors occur because the current step’s
answer is not unique. For example in step 5, the model’s predicted input ”DuckDuckGo Privacy
Browser” is also a potentially correct action.

Mind2Web Figure 13 shows several examples of SeeClick on the real-world website benchmark
Mind2Web. SeeClick can comprehend instructions and click on the correct elements within complex
interfaces.
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CC-Net (SL) WebN-T5 WebGUM Pix2Act Qwen-VL SeeClick
Choose-date 0.12 0.00 0.13 0.06 0.0 0.02
Click-button 0.78 1.0 1.0 0.32 0.42 0.96
Click-button-sequence 0.47 1.0 1.0 1.0 0.08 0.86
Click-checkboxes 0.32 0.96 1.0 0.99 0.44 0.78
Click-checkboxes-large 0.0 0.22 0.99 1.0 0.0 0.02
Click-checkboxes-soft 0.04 0.54 0.98 0.91 0.06 0.22
Click-checkboxes-transfer 0.36 0.63 0.99 0.76 0.60 0.70
Click-collapsible-2 0.17 0.00 0.95 0.31 0.0 0.48
Click-collapsible 0.81 0.00 0.98 0.80 1.0 1.0
Click-color 0.82 0.27 0.34 0.88 0.96 1.0
Click-dialog 0.95 1.0 1.0 0.12 0.96 1.0
Click-dialog-2 0.88 0.24 0.43 0.73 0.84 1.0
Click-link 0.59 1.0 1.0 0.86 0.0 0.90
Click-option 0.21 0.37 1.0 0.0 0.70 1.0
Click-pie 0.15 0.51 0.99 0.81 0.16 0.80
Click-shades 0.04 0.0 0.0 0.76 0.0 0.02
Click-shape 0.11 0.53 0.72 0.19 0.04 0.52
Click-tab 0.95 0.74 1.0 0.54 1.0 1.0
Click-tab-2 0.27 0.18 0.95 0.52 0.0 0.60
Click-tab-2-hard 0.19 0.12 0.95 0.0 0.16 0.42
Click-test 1.0 1.0 1.0 1.0 1.0 1.0
Click-test-2 0.95 1.0 1.0 1.0 0.72 0.94
Click-widget 0.56 1.0 1.0 0.87 0.38 0.58
Count-shape 0.21 0.41 0.68 0.0 0.20 0.28
Copy-paste 0.04 - - - 0.96 0.80
Copy-paste-2 0.01 - - - 0.96 0.80
Email-inbox 0.09 0.38 0.99 - 0.08 0.80
Email-inbox-forward-nl 0.0 0.6 1.0 - 0.24 0.74
Email-inbox-forward-nl-turk 0.0 0.33 1.0 - 0.16 0.56
Email-inbox-nl-turk 0.05 0.23 0.98 - 0.40 0.68
Enter-date 0.02 0.0 1.0 0.59 1.0 1.0
Enter-password 0.02 0.97 1.0 - 1.0 1.0
Enter-text 0.35 0.89 1.0 - 1.0 1.0
Enter-text-dynamic 0.39 0.98 1.0 - 0.96 1.0
Focus-text 0.99 1.0 1.0 - 1.0 1.0
Focus-text-2 0.96 1.0 1.0 - 0.84 0.96
Find-word 0.05 - - - 1.0 0.10
Grid-coordinate 0.66 0.49 1.0 0.97 0.96 0.52
Guess-number 0.21 0.0 0.11 - 1.0 1.0
Login-user 0.0 0.82 1.0 - 1.0 1.0
Login-user-popup 0.02 0.72 0.99 - 0.86 0.98
Multi-layouts 0.00 0.83 1.0 - 0.44 0.72
Multi-orderings 0.0 0.88 1.0 - 0.42 0.86
Identify-shape 0.68 - - 0.94 1.0 0.68
Navigate-tree 0.32 0.91 1.0 0.07 0.60 0.82
Search-engine 0.15 0.34 0.96 - 0.56 0.84
Simple-algebra 0.03 - - 0.99 0.48 0.38
Simple-arithmetic 0.38 - - 0.67 0.92 0.78
Text-transform 0.19 - - 0.91 0.36 0.46
Tic-tac-toe 0.32 0.48 0.56 0.76 0.30 0.58
Unicode-test 0.86 0.64 0.54 0.98
Use-autocomplete 0.07 0.22 0.98 0.95 0.72 0.82
Use-slider 0.18 - - 0.69 0.38 0.32
Use-spinner 0.47 0.07 0.11 - 0.24 0.16
Read-table 0.01 - - - 0.90 0.72
Average 0.336 (55) 0.552 (45) 0.861 (45) 0.646 (35) 0.564 (55) 0.712 (55)

Table 8: Mean scores across 55 MiniWob tasks.
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Instruction: My 
account
Source: Mobile
(iOS)
Type: 
Icon/Widget

Instruction: 
Remove maps 
from the 
Desktop
Source: Mobile
(iOS)
Type: 
Icon/Widget
 

Instruction: 
Disallow 
automatic app 
updates
Source: Mobile
(iOS)
Type: 
Icon/Widget
 

Instruction: 
Search event
Source: Mobile
(iOS)
Type: Text

Instruction: 
Scan QR code
Source: 
Mobile
(Android)
Type: 
Icon/Widget
 

Instruction: 
Continue
Source: Mobile
(Android)
Type: Text 

Instruction: 
Display 15-day 
weather 
forecast
Source: Mobile
(Android)
Type: Text 

Instruction: 
Fold input 
method
Source: Mobile
(Android)
Type: 
Icon/Widget

Instruction: 
Create a new
document
Source: PC
(macOS)
Type: Text 

Instruction: 
Enlarge font 
size
Source: PC
(macOS)
Type:
Icon/Widget

Instruction: 
Add subtitle
Source: PC
(Windows)
Type: Text 

Instruction: Go 
to Beauty & 
Personal Care
Source: Web
(Shop)
Type: Text 

Instruction: Set 
Reminder
Source: Web
(Development)
Type: 
Icon/Widget

Instruction: Reply
to the first post 
Source: Web
(Forum)
Type: Text 

Instruction: Pause the
debugger
Source: PC (macOS)
Type: Icon/Widget

Instruction:
Zoom in on 
the map 
Source: Web
(Tools)
Type: 
Icon/Widget 

Instruction: 
Open Fax
Source: PC
(Windows)
Type: Text

Figure 10: More examples of GUI grounding benchmark ScreenSpot.
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{“action_type”: 4, “click_point”:
(0.58, 0.3)}

{“action_type”: 4, “click_point”:
(0.25, 0.4)}

{“action_type”: 4, “click_point”:
(0.25, 0.4)}

{“action_type”: 4, “click_point”:
(0.46, 0.55)}

{“action_type”: 4, “click_point”:
(0.47, 0.47)}

{“action_type”: 4, “click_point”:
(0.5, 0.62)}

{“action_type”: 4, “click_point”:
(0.71, 0.78)}

{“action_type”: 4, “click_point”:
(0.81, 0.38)}

{“action_type”: 3, “typed_text”:
“36”}

{“action_type”: 4, “click_point”:
(0.50, 0.64)}

{“action_type”: 4, “click_point”:
(0.69, 0.8)}

{“action_type”: 4, “click_point”:
(0.31, 0.8)}

{“action_type”: 4, “click_point”:
(0.31, 0.49)}

{“action_type”: 4, “click_point”:
(0.14, 0.3)}

{“action_type”: 4, “click_point”:
(0.13, 0.81)}

{“action_type”: 4, “click_point”:
(0.19, 0.76)}

(a) Comparison between static layout (left, click-color) and dynamic layout (right, unicode-test).

Task: simple-arithmetic Task: click-pie

Task: choose-date

···

(b) Example episodes of SeeClick on MiniWob tasks.
Figure 11: Example episodes of SeeClick on MiniWob. The model’s prediction output is below the
screenshot, with action type 4 indicating a click and action type 3 indicating typing.
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{“action_type”: 6)} {“action_type”: 4, “click_point”:
(0.12, 0.79)}

{“action_type”: 4, “click_point”:
(0.81, 0.07)}

{“action_type”: 4, “click_point”:
(0.93, 0.06)}

{“action_type”: 3, “typed_text”:
“DuckDuckGo Privacy Browser”}

{“action_type”: 4, “click_point”:
(0.29, 0.12)}

{“action_type”: 4, “click_point”:
(0.87, 0.15)}

{“action_type”: 4, “click_point”:
(0.87, 0.15)}

Reference: {“action_type”: 3,
“typed_text”: “duckduckgo”}

{“action_type”: 4, “click_point”:
(0.45, 0.18)}

Instruction: open app "DuckDuckGo Privacy Browser" (install if not already installed) 
and enter user name: "cleaving@outlook.com" and password: "freighters"

Figure 12: Example episodes of SeeClick on AITW. The model’s prediction output is below the
screenshot, with action type 4 indicating a click, action type 3 indicating typing and action type 6
indicating PRESS HOME. Steps with the red prediction and green reference indicate a failed step.
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{“action_type”: 4, “click_point”: (0.68, 0.10)} {“action_type”: 4, “click_point”: (0.38, 0.35)} {“action_type”: 3, “click_point”: (0.43, 0.48), “value”: 
“87654321”}

{“action_type”: 3, “click_point”: (0.26, 0.57), “value”: 
“9753”}

{“action_type”: 4, “click_point”: (0.50, 0.79)}

Instruction: Check my AMC gift card balance with gift card number 87654321 and pin number 9753.

Instruction: Find the list of all neighborhood maps for Brooklyn.

{“action_type”: 4, “click_point”: (0.03, 0.05)} {“action_type”: 4, “click_point”: (0.56, 0.68)} {“action_type”: 4, “click_point”: (0.50, 0.41)}

Instruction: Download the e-receipt with the last name Smith and confirmation number X123456989.

{“action_type”: 4, “click_point”: (0.67, 0.08)} {“action_type”: 4, “click_point”: (0.47, 0.36)} {“action_type”: 3, “click_point”: (0.46, 0.62), “value”: 
“Smith”}

{“action_type”: 3, “click_point”: (0.70, 0.65), “value”: 
“X123456989”}

{“action_type”: 4, “click_point”: (0.50, 0.77)}

Figure 13: Example episodes of SeeClick on Mind2Web. The model’s prediction output is below the
screenshot, with action type 4 indicating a click and action type 3 indicating typing. Steps with the
red prediction and green reference bounding box indicate a failed step.
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