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Abstract

We introduce MLFMF, a collection of data sets for benchmarking recommendation
systems used to support formalization of mathematics with proof assistants. These
systems help humans identify which previous entries (theorems, constructions,
datatypes, and postulates) are relevant in proving a new theorem or carrying out a
new construction. Each data set is derived from a library of formalized mathematics
written in proof assistants Agda or Lean. The collection includes the largest Lean 4
library Mathlib, and some of the largest Agda libraries: the standard library, the
library of univalent mathematics Agda-unimath, and the TypeTopology library.
Each data set represents the corresponding library in two ways: as a heterogeneous
network, and as a list of s-expressions representing the syntax trees of all the entries
in the library. The network contains the (modular) structure of the library and the
references between entries, while the s-expressions give complete and easily parsed
information about every entry. We report baseline results using standard graph and
word embeddings, tree ensembles, and instance-based learning algorithms. The
MLFMF data sets provide solid benchmarking support for further investigation
of the numerous machine learning approaches to formalized mathematics. The
methodology used to extract the networks and the s-expressions readily applies to
other libraries, and is applicable to other proof assistants. With more than 250 000
entries in total, this is currently the largest collection of formalized mathematical
knowledge in machine learnable format.

1 Introduction

Applications of artificial intelligence to automation of mathematics have a long history, starting from
early approaches based on a collection of hand-crafted heuristics for formalizing new mathematical
concepts and conjectures related to them [Lenat, |1977]]. In the last decade, there has been a growing
interest in formalization of mathematics with proof assistants, which verify the formal correctness of
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mathematical proofs and constructions, and help automate the tedious parts. The trend is correlated
with the interest of machine learning community in aiding formalization efforts with its expertise.

Machine learning methods are often used to address premise selection, i.e., recommendation of
theorems that are useful for proving a given statement. DeepMath [Irving et al.; 2016]] proposes using
convolutional and recurrent neural networks to predict the relevance of a premise for proving the
given statement. While many other approaches [Polu and Sutskever, 2020, [Welleck et al.| [2022] use
transformers and general language models, [Paliwal et al.|[2020] have shown that taking into account
the higher-order structure of logical expressions used in formalizing mathematics can greatly improve
the performance of premise selection and automated proving. Indeed, many approaches use graph
neural networks to learn from the higher-order structures, e.g., [Wang et al., 2017]]. More recently,
graph neural networks have also been proven useful for explorative, unsupervised approaches to
automated theorem proving with reinforcement learning [Bansal et al., 2020, [Lample et al.| 2022]].
Some of these approaches address alternative tasks, such as recommending or automatically selecting
suitable proof tactics, i.e., routines for performing a series of proof steps, applying a decision
procedure, or for carrying out proof search.

Data sets of different origins have been used to evaluate the proposed approaches. Welleck et al.
[2022] evaluate their approach on a selection of three hundred proofs included in the ProofWiki
[proofwiki| library of mathematical proofs written in a combination of natural language and ISTgX.
Polu and Sutskever] [2020] use a standard library of the Metamath proof assistant. [Lample et al.
[2022]] combine proofs from the Metamath library with proofs from the Mathlib library [Mathlib]] of
the Lean proof assistant. The latter has also been used for evaluating the approaches in [Han et al.|
2022]]. Wang et al.|[2017], Paliwal et al.|[2020], Bansal et al.|[2020] evaluate their models within the
HOL Light proof assistant based on higher-order logic [Harrison, 2009]]. The formalized proofs in
standard HOL libraries have been transformed into a HOLStep data set for machine learning, where
examples correspond to more than 2 million steps from 11 400 proofs [Kaliszyk et al.,|2017]]. The
training set includes proof steps in context (local hypotheses and the current statement being proved)
and the library entry used in the step. Descriptions of the library entries are included in human-
readable and machine-readable, tokenized versions. The data set has been recently upgraded to the
interactive benchmark environment HoList for training automated proof systems with reinforcement
learning [Bansal et al.| 2019].

We present a collection of data sets, MLFMEF, based on libraries of formalized mathematics encoded
in two proof assistants, Agda and Lean. It supports evaluation and benchmarking of machine learning
approaches for recommendation systems in the context of formalized mathematics.

ID entry
N N:
zero: N
suc(n): N—- N
+ 0+n=mn,foralln € N

suc(m) + n = suc(m +n), forallm,n € N

Lemma I (L1) | m+0=m forallm € N.

This is proved by induction on m.

Lemma 2 (L2) | m + suc(n) = suc(m + n), forallm,n € N.

This is proved by induction on m.

Theorem (T) m—+n=mn+m, forall m,n € N.

This is proved by induction on m. In the base case (m = 0), we need
L1. In the induction step (m = suc(¥)), we need L2.

Table 1: An example formalization of proof that the addition of natural numbers is commutative.

We transform each library into a directed multi-graph whose nodes represent library entries (theorems,
lemmas, axioms, and definitions), while edges represent the references between them. Consider
the example in Table[I] It starts with a definition of the set of natural numbers with two simple
constructors that define the first natural number 0 and constructs all the others inductively by asserting
that a successor suc (n) of a natural number n is also a natural number. The definition of the addition
of natural numbers follows their definition by asserting two simple rules for the left addition of 0 and
the left addition of a successor. Note that the definition of + references the definition of N. Next, the
first lemma establishes the rule for the right addition of zero as the first simple commutativity case.



The second lemma establishes the right addition of a successor as the second case. The theorem at
the end references the two lemmas to show (and prove) the commutativity of adding natural numbers.

The entries from Table[T]are transformed into a multi-graph depicted in Figure[Ta] It contains five
nodes, each corresponding to a table row. The multi-graph includes an edge from the node + to
the node N, indicating the reference to the set of natural numbers in the definition of addition. It
also contains the self-reference of +, since the second case of this definition is recursive. Similarly,
there are four edges from the theorem node to the two lemma nodes and the two nodes defining
natural numbers and addition thereof. The obtained data allows us to approach premise selection as a
standard edge prediction machine learning task.

Furthermore, we transform each formalized entry into a directed acyclic graph that retains complete
information about the entry, see Figure[Ib] By including the entire entry structures in the data sets,
we make them suitable for further exploration of the utility of the state-of-the-art approaches to
graph-based machine learning. A detailed description of the format is given in Sections [3.3|and[3.4]

. - (:entry
(:name N)
. S (:type (...))

S IRTUN (:data
@-‘ ...
REREREEE R @ (:name N.zero)
I '—‘ (:name N.suc)
) )
)
(a) The multi-graph representation of the example proof from (b) An s-expression from which we obtained
Table[T} the DAG for the entry N in Table

Figure 1: The two-part representation of a library. Library as a whole is represented as a network of
references (a). Additionally, every entry is represented as a DAG which is shown here in its textual
s-expression format (b). Note that some nodes of DAG were replaced by (. ..) for better readability.

Our approach is general and can be applied to other proof assistants based on type theory. Moreover,
even though Agda and Lean have quite different internal representations, the corresponding data sets
use a common format that requires little or no knowledge about the inner workings of proof assistants.
Thus our collection provides the machine learning community with easy access to a large amount of
formalized mathematics in familiar formats that allow immediate application of machine learning
algorithms. To our knowledge, MLFMF is the first and most extensive collection of data sets featuring
more than one proof assistant and providing access to the higher-order structured representation of
more than 250 000 mathematical formalization entries.

2 Formalized Mathematics

Formalized mathematics is mathematics written in a format that allows algorithmic checking of
correctness of mathematical proofs and constructions. The programs that perform such checking are
called proof assistants or proof checkers. An early proof checker was AUTOMATH [Bruijn, [1970],
while today the most prominent assistants are Isabelle/HOL [Isabelle, [HOL, Harrison|], Coq [Coq]],
Agda [|Agdal] and Lean [[de Moura et al.,2015]]. They are all inferactive: As the user develops a piece
of formalized mathematics the assistant keeps track of unfinished proof goals, displays information
about the current goal, checks the input on the fly, and provides search and automation facilities.

The level of automation varies between different proof assistants. In Agda, which supports little
automation, the user directly writes down proofs and constructions in abridged type-theoretic syntax
that Agda checks and algorithmically elaborates to fully formal constructions. On the other end of the
spectrum are Isabelle/HOL and Lean, where the user relies heavily on factics, which are routines that
automatically perform various tasks, such as running a domain-specific decision procedure, applying
a heuristic, or carrying out proof search.



The mathematical formalism most commonly used as the underpinning of a proof assistant is type
theory, of which there are many variants [|Churchl 1940, Martin-Lof} [1975] |Coquand and Huet, |1988§]].
The proof assistant processes the user input by disambiguating mathematical notations, applying
tactics and other meta-level processing commands, and internally stores the resulting proofs, theorems,
constructions, definitions, and types as expressions, or syntax trees, of the chosen type theory. These
are typically quite verbose, so that checking their correctness is straightforward, but contain many
more details than a user may wish to look at.

Libraries of formalized mathematics comprise units, organized hierarchically with a module system
or namespaces, each of which contains a number of entries: definitions of types, constructions of
elements of types, statements and proofs of theorems, unproved postulates (axioms), as well as
meta-level content, such as embedded documentation, definitions of tactics, hints for heuristics, and
other automation mechanisms.

In the last decade the libraries of formalized mathematics have grown considerably, most recently
with the rise of the popularity of the Lean proof assistant and the Mathlib library [Mathlibl community,
2019]}, around which a mathematical community of several thousand mathematicians has formed.
Such growth presents its own challenges, many of which are of the software engineering kind and can
be so addressed. In our work we addressed the specific problem of recommendation: given a large
body of formalized mathematical knowledge, how can the proof assistant competently recommend
theorems or constructions that are likely useful in solving the current goal? There are two typical
scenarios: the user knows which theorem they would like to use but have a hard time finding it in
the library, or the user is not aware of the existence of a potentially useful theorem that is already
available. Both are obvious targets for machine-learning methods.

3 MLFMF Data Sets

In this section we describe our data sets in detail. We first explain the semantic content of the data
extracted from libraries of formalized mathematics, describe the format and information content of
the data sets, continue by reviewing the machine learning tasks for which the data sets were built, and
finish with an overview of the technical aspects of the library-to-data-set transformation process.

3.1 The Extracted Data

Formalized mathematics is written by the user in a domain-specific language, often called the
vernacular or the meta-language. The proof assistant evaluates the source code, which involves
executing tactics, decision procedures, etc., verifies that the proofs and constructions so generated
are mathematically valid, and stores the results using an internal type-theoretic format. One may
apply machine learning techniques directly on the vernacular, as written by the user, or on the formal
representation of mathematics. The former approach roughly corresponds to learning how to do
formalized mathematics, and the latter what formalized mathematics is.

We took the latter approach, namely learning on the formalized mathematics itself, for two reasons.
First, because we aimed at a uniform approach that is applicable to most popular proof assistants, it
made sense to use the internal type-theoretic representations, which are much more uniform across
proof assistants than the vernaculars. Second, the vernacular contains meta-level information, such as
what tactics to use, from which one cannot discern directly which theorems are actually used in a
given proof. Without this information, one can hardly expect a recommendation system to work well.

Every data set that we prepared is generated from a library of formalized mathematics. Most libraries,
and all that we incorporated, are organized hierarchically into modules and sub-modules, each of
which is a unit of vernacular code that, once evaluated by the proof assistant, results in a list of entries:
definitions of types, constructions of elements of types, theorems and their proofs, and unproved
postulates. The entries refer to each other and across modules, possibly cyclically in case of mutually
recursive definitions.

The internal representations of entries vary across assistants, but all have certain common features:
1. Each entry has a qualified name M;.Ms ... My.N by which it is referred to, where

M;.My ... My is a reference to a module in the module hierarchy and NV is the local
name of the entry, for example Algebra.Group.FirstIsomorphismTheorem.
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Figure 2: The two stages of the data transformation. First, a language-dependent (i.e., Agda or
Lean) command line tool is used to transform the library entries into s-expressions. In the second
stage, Python scripts are used to explicitly construct the directed multi-graph, which contains library
modules, entries, and references among them.

2. Each entry has an associated type T', which specifies the information content of the body of
the entry. For example, the type List(N) specifies that the entry is a list of natural numbers.
Importantly, logical statements are just a special sort of types, so that the type of a proof is
the logical statement that it proves. (This is to be contrasted with first-order logic, where
logical statements are strictly separated from types.)

3. An entry has a body, which is an expression of the given entry type. In some cases the body
may be missing, for instance if the user declares an axiom.

4. Depending on the proof assistant, various meta-level information is included, such as which
arguments to functions are implicit (need not be provided by the user).

3.2 Data Description

In this section, we describe the data set. We start with a brief description of data transformation
process, continue with the detailed description of the resulting pair of computational graphs for the
entries in the library, and the directed, multi graph of references in the library (see[3.3) and [3.4).

Every data set consists of two parts. The first part is a set 7 of abstract syntax trees (AST) that
correspond to the entries in the library, while the second is a directed multi-graph G(V, E), where
V is a set of library entries, and F includes the references among them. ASTs are actually trees
in the case of Agda libraries. However, in Lean, they are directed acyclic graphs (DAGs) due to
memory optimization and node-sharing: all the parents that would potentially reference their own
copy of a node (or a subtree), rather reference the same node. For this reason, we refer to them as
computational graphs. They provide the full information about every entry in the library and are given
in the s-expression format that is much easier to parse, as compared to the typically very flexible
syntax of proof assistants that allows for implicit arguments, mix-fix notation, etc. For example, the
function if_then_else x y zin Agda can be called as if x then y else z. Learning from
the source code would put an additional burden on the machine learning algorithm. Learning directly
from computational graphs, on the other hand, is much easier.

Figure 3: The DAG representing an entry has a single root node with three children: a node containing
the entry name, a DAG containing the entry declaration, and a DAG representing the entry body.

3.3 The Computational Graphs

During compile time, the full type of every entry in the library is computed and the source code of
the entry is converted to a (directed acyclic) computational graph. We intercept this procedure and
export every entry as a Lisp s-expression, which is defined recursively as:



1. A literal is an s-expression, and

2. A list of s-expressions is an s-expression.

For example, the literals 12 and "foo" are s-expressions, and the list ("foo" ("bar" 12) "baz")
is also an s-expression with three elements: "foo", ("bar" 12) (which contains two s-expressions)
and "baz". Every s-expression that is obtained from the entries in a library is three-part, as shown in
Fig.[3] In consists of the name of the entry, the s-expression that describes the declaration, and the
s-expression that describes the body of the entry.

Even though the entries were manually encoded and mostly take at most a few kilobytes of space, their
computational graphs can be much larger (more than a gigabyte), mostly due to the type checking
and the expansion of the declared type of the entry.

3.4 The Multi-Graph

For simplicity reasons, we will refer to the directed multi-graph G(V, E) simply as a graph. Its
meta-structure is shown in Fig.[4a] In the description below, we follow this structure (in the bottom-up
manner) and the concrete example of a subgraph for Agda’s standard library in Fig. 4b]

Entry nodes. Every module in a library defines at least one entry (shown as green circles), e.g.,
Bijection DEFINES id, Bijection DEFINES Bijection (these are two different nodes), and
Injection DEFINES injective. We further differentiate between different kinds of entries, as
shown in Tab. [2] Most of the nodes in the graph are entries (and most of them are functions), and
most of the edges are of type REFERENCE FROM DECLARATION/BODY).

Library and module nodes. The only nodes with no incoming edges (root nodes) are the library
nodes (shown as blue squares). Every graph contains at least one library node—the one that
corresponds to the library itself. In Fig.|4b| this is the node std1lib. However, the graph might contain

REFERENCE
FROM DEC-
CONTAINS ‘LARATION :
Library CONTAINS P Module P=ssmssmus =DEFINES= = ssmss . @
. .
. '
REFERENCE

FROM BODY

(a) The meta-structure of the graph.

Bijection

stlib

(b) An excerpt from Agda’s standard library. The entry id (indentity function) is defined in the module
Bijection, which is a submodule of the module Function, which is one of the top modules of the library. In
the declaration of id, the entry Bijection is referenced. In the body of id, the entry injective is referenced.
The two referenced entries are defined in the submodules Bijection and Injection, respectively.

Figure 4: A meta-graph of libraries (a) and a subgraph of the graph that was created from Agda’s
standard library (b) that follows the prescribed meta-structure.



Table 2: Tags of the nodes in s-expressions.

kind description

:data inductive data type (natural numbers, lists and trees)

:constructor | data-type constructor (successor, cons)

:function function (including constants as nullary functions)

:record record type (a structure with named fields or attributes)

raxiom postulated type or statement (no inhabitant or proof given)
:primitive built-in (primitive) function

:sort the sort of a type (proposition, universe at a given level)

:recursor the induction/recursion principle associated with an inductive data-type
:abstract entry whose body is hidden

an additional node outer library if any of the library entries reference some external entries that
are not part of the library (for example, built-in types). The library nodes are directly connected
to the nodes representing modules (shown as blue diamonds) via the edges of the type CONTAINS,
e.g., stdlib CONTAINS Function. Every module can contain zero or more (sub)modules, e.g.,
Function CONTAINS Bijection.

In the case of Agda libraries, the module nodes correspond to the modules that are actually present
in the library and resemble the file system of the library. Lean, however, supports the use of
namespaces. If the file a/b/c.lean defines an entry foo.bar .F, and the file d/e.lean defines an
entry foo.bar .G, those two entries are part of the same namespace foo.bar and the exact location
in the file system where these two entries were defined, is irrelevant. Therefore, module nodes for
Lean’s library Mathlib4 correspond to namespaces in the library. Following the previous example,
we create module nodes foo and bar, together with the edge foo CONTAINS bar.

3.5 Machine Learning Tasks

The main motivation for the creation of the data set was the development of machine learning
algorithms that would enhance current proof assistants and help mathematicians using them. This
translates to the following two machine learning tasks.

Link prediction. Given the current state of the multi-graph of references among the entries, learn a
model that predicts the future, novel links (references) among the library entries. Formally, we learn
amodel M : (u,v) — M(u,v) € [0,1] that given two nodes u and v outputs the model confidence
in the presence of the edge (u,v). The (current) computational graphs of the entries can be used as
additional information for learning such a model. If learning from the multi-graph only, one can use
standard node- or edge-embedding approaches as well as graph neural networks.

Recommendation. The problem of predicting the future references among the entries could be
understood as a recommendation task as well. Given a specific unfinished entry (possibly with some
additional context, such as the list of lemmas/ claims that were used last), the task is to recommend
the candidates that could be referenced in the current computational graph of the entry to complete it.

Note that the two tasks are equivalent, i.e., solving one solves the other. A link prediction model M
(see above) can be converted into a recommendation system by fixing the entry « and recommending
the entries v € V' with the highest confidence levels M (u, v). Vice versa, given a recommendation
model M’ : u — M’'(u) C V, we can define a corresponding link-prediction model M as M (u,v) =
lifv € M'(u), and M (u,v) = 0 otherwise.

Since the essential part of the MLFMF data set is a directed multi-graph (which represents a
heterogeneous network), other standard learning tasks for graphs/ networks might also be interesting.
Here, we mention two example instances of the common node classification task.

Entry class detection. A straight-forward instance of node classification task would be classifying
the entries into their types from Table[2] e.g., function or axiom. This does not require additional
manual labeling and should not be too hard, especially when computational graphs are taken into
account, since the structure of a function is quite different from the structure of, e.g., record.



Claim detection. A more challenging instance of node classification is predicting whether a
function entry is a claim (e.g., a lemma, corollary, theorem, etc.) or not, since some of the entries
are simply definitions of, for example, the addition of natural numbers. Approaching this task,
however, would require additional (manual) labeling of the entries.

3.6 License

We make MLFMF publicly available under the Creative Commons Attribution 4.0 Internationa (cC
BY 4.0) license at https://github.com/ul-fmf/mlfmf-data.

4 Experiments and Results

In this section, we first introduce the experimental setup for the baseline experiments (how to prepare
the train and test part of the data set, and which standard metrics can be used), and then, after briefly
introducing the baseline methods, we report the experimental results.

4.1 Train-test split

When splitting the graph into train and test data sets, we should split the multi-graph G(V, E') and
the set of computational graphs of the entries. In the case of the link prediction and recommendation
tasks, we should focus on function nodes, since these are the only nodes that correspond to a
computational graph whose body contains a proof of a claim formalized in the declaration part of the
computational graph.

In our baseline experiments from Sec.[4.4] we follow a generic approach to creating a train-test split.
The approach takes two parameters: pest € (0, 1), Proay € [0, 1). First, we randomly choose the
proportion peg of function nodes. We assume that those correspond to partially written entries
whose computational graphs have completely specified type, i.e., the user knew how to formalize
a claim, and partially known body, i.e., the proof of the claim is not finished yet. Note that, often,
proofs are not written linearly and might contain so-called holes at problematic parts where the right
lemmas are yet to be applied (possibly with already known arguments). Thus, we need to modify the
computational graphs of the test nodes to reflect the changes in the multi-graph.

We simulate the applications of the missing lemmas by keeping only the proportion of ppqy of the
references in the body. Since our graph contains a weighted edge u REFERENCE FROM BODY v,
which we either remove or keep intact, we remove all references to v from the body of u or none of
them. Then, the unfinished proofs are simulated by keeping the proportion of pyoqy Of the body of
u, which is done by iterative pruning of the leaves of the body. At each iteration, a leaf is chosen
uniformly at random. If the chosen leaf is a reference that we have to keep, the leaf is not pruned and
we continue with the next iteration.

The removed edges represent positive test examples, and the negative test examples for learning
predictive models need to be sampled. In the baseline experiments, the negative test examples were
sampled uniformly at random.

4.2 Evaluation metrics

For link prediction, one can use standard classification metrics, such as accuracy, precision, recall,
and Fi-score. If the model returns its confidence M (u,v) € [0,1] instead of the class value
(M (u,v) € {0,1}), one could additionally consider area under the receiver-operating-characteristic
curve. Similarly goes for the recommendation models: one can use precision and recall.

If the recommendation model returns the relevance score of a candidate entry to the current context,
we can rank candidates according to the score values, with the top recommendation having a rank of
one (1). We can then compute the minimal (and the mean) rank of the actual references and average
them over the testing examples. This is an important metric, since it counts the number of false
recommendations with better ranks than any of the actual references. Ideally, the minimal rank is
close to one, i.e, the top-ranked recommendation mostly matches the missing entry to be referenced.

"https://creativecommons.org/licenses/by/4.0/
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4.3 Baseline Methods

Dummy recommender. This recommender ignores the current context and always recommends
the k£ nodes of the multi-graph with the highest in-degree.

Bag of Words/TFIDF recommenders. Bag of Words (BoW) recommender converts every compu-
tational graph g(u) of an entry w in a library into a bag of words BoW (). We compute the relevance
M (u, v) of the candidate entry v for the current context v using the Jaccard similarity between the
corresponding bag-of-words:

_ | BoW (u) N BoW (v)]
| BoW (u) U BoW (v)|

J(BoW (u), BoW (v))

Similarly, TFIDF-recommender embeds g(u) into a term-frequency-inverse-document-frequency
vectors (obtained from the corresponding bags-of-words) as implemented in Scikit-Learn 1.2.2
[Pedregosa et al.| 2011]]. The relevance of the candidate entry v is computed as a Manhattan or a
cosine distance between the TFIDF-vectors of « and v.

FastText embedding recommender. It embeds every computational graph ¢(u) into a vector
P(9(u)) = X yoraeg(u) w(word, g(u)) - @ec(word), where e (word) is the vector of word obtained

from the fastText model trained of Common Crawl [Mikolov et al., 2018]], and w(word, g(u)) is the
TFIDF weight of the word in the entry w.

Recommendations via analogies. We design a recommender that is based on fastText analogies
property, i.e., the fact that z = queen is one of the approximate solutions of @ (king) — pe.(x) =
©ce(man) — . (woman). We design the analogy recommender that for a given entry u recommends
the nodes v, for which a good analogy u’ — v’ of the edge u — v can be found. The relevance of the
candidate entry v in a given context u is defined in terms of the Manhattan distance as

r(u,v) =1 /u,%f)r}ie%(c;) [[[pee (1) = pee(v)] = [pee (1) = ec(v)]]l1-

Node2vec-based link prediction. We train a node2vec [Grover and Leskovec, 2016[ model (as
implemented in Gensim 4.3.1 [Rehurek and Sojka, [2011]] on the multi-graph to obtain node embed-
dings. We obtain the embedding of the edge (u, v) by concatenation of the node embeddings for u
and v. A tree-bagging classifier M : o(u — v) — M (¢(u — v)) € [0, 1] is trained on the tabular
data obtained with using the edge embeddings as inputs and the edge presence as the target to be
predicted. We selected bag of trees ensemble since it is a robust classifier, working well on tabular
data, when using the recommended settings of 100 fully grown (not pruned) classification trees.

We selected baseline methods that are not computationally expensive and are robust to hyper-
parameter settings: if not mentioned otherwise, the methods use the default parameter settings. We
can combine multiple embeddings (e.g., those from node2vec together with those from fastText)
as the input to the similarity measure of the recommender or classifier for the link prediction task.
However, as noted in the next section, this did not improve the best results. In all the experiments,
we generated the train-test split with the parameters pese = 0.2 and pyogy = 0.1. The results here are
reported for £ = 5 recommended items and the threshold ¢ = 0.5 for classification.

4.4 Results

The experiments on Lean were run on a computer with 4 Intel Core 17-6700K CPU cores and 64
GB of RAM. The experiments on Agda were run on a smaller machine (2 Intel Core i7-5600U CPU
cores, 12 GB of RAM). Experiments that would last more than a week were not carried out (analogies
on the Type Topology and Mathlib4 libraries, and fastText on the Mathlib4 library).

Tab. [3]reports the results of the experiments: for extended report including other evaluation metrics
(accuracy @k, area under the ROC curve, etc.), and ablation study of node2vec on Agda stldib,
check the supplementary material. For the algorithms that were run with more than one parameter
setting, the best results are reported (for example, TFIDF was run with cosine- and Manhattan-based
similarity measures). The best-performing baseline method is node2vec. It is the only one that ranks
on average at least one actual reference among the ten most relevant candidate references for the three



Agda libraries. However, it fails to do so for Lean Mathlib4 and this can be only partially explained
by the size of the Mathlib4. Note that node2vec is also the only one that explicitly learns from the
multi-graph and, apparently, humans writing proofs in Agda, structured the references better than the
computers in Lean, where built-in search heuristics (tactics) are used. The multi-graph is partially
used by the analogies recommender as well, since the candidate recommendations are evaluated by
considering the existing references v’ — v’ in the library. This might be the reason for its good
performance on the Agda stdlib data set.

Table 3: The accuracy (acc) and minimal rank of the true reference for the MLFMF data sets. The
best results (bold) are obtained with a combination of a node2vec and a tree-bagging classifier.

Agda stdlib Agdaunimath | Agda TypeTopology | Lean Mathlib4

method acc minRank | acc minRank | acc minRank | acc minRank
Dummy | 0.51 218 | 0.53 2134 | 0.50 4556 | 0.51 26065
BoW 0.50 1608 | 0.50 1571 | 0.50 4496 | 0.50 15458
TFIDF 0.51 144 | 0.52 112 | 0.51 552 | 0.51 443
fastText 0.51 132 | 0.52 394 | 0.50 1292 | NA NA
analogies | 0.52 37 | 0.51 158 | NA NA | NA NA
node2vec | 0.96 4.37 | 0.96 3.24 | 0.98 5.81 | 0.95 195

Surprisingly, TFIDF embeddings perform no worse (or even better) than FastText embeddings.
The reason for this might be that many words, such as group, ring, etc. have different meanings
in mathematics than in general texts. Note that we tried to run additional experiments with the
combination of node2vec and TFIDF/fastText embeddings, but accuracy and minRank were both
worse, as compared to the node2vec results.

In sum, the baseline results show that the information on the structure of the multi-graph is crucial
for obtaining classifiers with performance beyond the default performance of the dummy baseline.
The recommendation performance, measured as mean minimal rank, is valuable enough (less than
five recommendations to be checked to find the right one) for two Agda libraries. Developing sound
recommendation systems for the other two libraries remains a challenge to be addressed by machine
learning methods beyond the baselines considered here.

5 Conclusion

We introduced MLFMEF, a suite of four data sets corresponding to three libraries in Agda and one
library in Lean proof assistants. It includes almost 250 000 entries, i.e., definitions, axioms, and
theorems with accompanying proofs. References between entries are included in a multi-graph,
where nodes are entries, edges represent references among the entries, and each entry is represented
with a direct acyclic graph reflecting the structure of the entry source code encoding. Such a structure
provides machine learning researchers with an opportunity to address the task of recommending
relevant entries for the goal at hand as a standard edge prediction task. Such a representation
of the entries allows for use of graph-based methods that can exploit the structural and semantic
information stored in the multi-graphs. The report on the results of the baseline methods establishes a
benchmark for comparative evaluation of future developments of machine learning for mathematical
formalization that goes beyond a single proof assistant.

A notable limitation of our data sets is the lack of information on the developmental evaluation of the
libraries. If the latter could be followed, the more realistic test nodes Ve could be defined as the latest
|Viest| nodes encoded in the library. However, even with version control information (available since
the libraries are stored in GitHub repositories but currently not included), determining the entries’
chronological order might be computationally expensive. An approximation of the chronological
order might be obtained by computing a topological ordering on the function nodes and selecting
nodes from the tail of the ordered list. However, existing definitions in a library might be rewritten,
so the accuracy of such an approximation is questionable.

Finally, we plan to include other, more recent libraries in our data set collection. The newly incorpo-
rated libraries might include references to earlier, standard libraries, providing further opportunities
for real-world testing scenarios.
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