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Abstract
Deep reinforcement learning (RL) is effective
for decision-making and control tasks like au-
tonomous driving and embodied AI. However,
RL policies often suffer from the action fluctu-
ation problem in real-world applications, result-
ing in severe actuator wear, safety risk, and per-
formance degradation. This paper identifies the
two fundamental causes of action fluctuation: ob-
servation noise and policy non-smoothness. We
propose LipsNet++, a novel policy network with
Fourier filter layer and Lipschitz controller layer
to separately address both causes. The filter layer
incorporates a trainable filter matrix that automat-
ically extracts important frequencies while sup-
pressing noise frequencies in the observations.
The controller layer introduces a Jacobian regu-
larization technique to achieve a low Lipschitz
constant, ensuring smooth fitting of a policy func-
tion. These two layers function analogously to the
filter and controller in classical control theory, sug-
gesting that filtering and control capabilities can
be seamlessly integrated into a single policy net-
work. Both simulated and real-world experiments
demonstrate that LipsNet++ achieves the state-of-
the-art noise robustness and action smoothness.
The code and videos are publicly available at
https://xjsong99.github.io/LipsNet v2.

1. Introduction
Deep reinforcement learning (RL) has become a powerful
approach for addressing optimal control tasks in physical
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environments (Bertsekas, 2019; Guan et al., 2021; Li, 2023;
Wang et al., 2024b). Neural networks, capable of modeling
complex nonlinear functions (Hornik et al., 1989; Kidger &
Lyons, 2020), are commonly used as the container for the
control policy fitted by RL. However, RL-trained policy net-
works often encounter the action fluctuation problem, where
consecutive actions exhibit significant variations despite
minor differences in the adjacent observations. While this
problem is often overlooked during simulation and training
stages, it will result in serious issues in real-world applica-
tions like performance reduction, actuators’ wear, and safety
risk (Song et al., 2023; Mysore et al., 2021; Chen et al.,
2021; Wang et al., 2024a; 2025). This problem is preva-
lent in various scenarios, including drone control (Mysore
et al., 2021; Shi et al., 2019), robot locomotion (Zhang et al.,
2024), robot manipulation (Yu et al., 2021), and autonomous
driving (Cai et al., 2020; Chen et al., 2021; Wasala et al.,
2020; Lee et al., 2024), etc. These reported action fluctua-
tion problem indicates that it constitutes a considerable gap
in sim-to-real RL applications.

In order to make RL more applicable in real-world scenarios,
researchers are working hard to solve the problem. CAPS
(Mysore et al., 2021) and L2C2 (Kobayashi, 2022) mitigate
fluctuations by introducing penalty terms in the actor loss,
enforcing action similarity across successive time steps or
similar states. SR2L (Shen et al., 2020; Zhao et al., 2022)
employs adversarial noise and minimizes action differences
between actual and perturbed states. PIC (Chen et al., 2021)
and TAAC (Yu et al., 2021) design two-stage policies by us-
ing one network to output the current action, and the other to
output action inertia scalar or make choice between the cur-
rent and the last action. MLP-SN (Takase et al., 2020) and
LipsNet (Song et al., 2023) smooth control actions by con-
straining the Lipschitz constant of policy network. However,
both CAPS and L2C2 require sensitive hyperparameter tun-
ing and involve compulsory sampling of neighboring states.
SR2L, PIC, and TAAC need special policy evaluation or pol-
icy improvement mechanisms. MLP-SN suffers from severe
performance loss and difficulty in Lipschitz constant tuning.
LipsNet, the previous state-of-the-art (SOTA) method, has
network structure limitation and is unsuitable for high-real-
time tasks due to slow inference speed. Most importantly,
none of them explicitly address observation noise—a factor
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that our study identifies as a key cause of action fluctuation.
In summary, achieving smooth control actions in a manner
that is effective, simple, and broadly applicable across RL
algorithms remains an open challenge.
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Figure 1: LipsNet++ outputs smooth action.

In this paper, we proposed a novel policy network structure,
LipsNet++, achieving action smoothing in RL effectively,
simply and flexibly. We identified the fundamental rea-
sons for causing action fluctuation are the non-smoothness
of policy network and the existence of observation noise.
LipsNet++ adopts two corresponding network modules to
explicitly tackle them at the same time. Firstly, we pro-
pose a Fourier filter layer to filter observation noise. In
this layer, fast Fourier transform (FFT) is used to obtain
the frequency features of sequential observations, and a
trainable filter matrix automatically extracts important fre-
quencies and suppress noise frequencies in observations.
Secondly, a Lipschitz controller layer is introduced, whose
Lipschitz constant is constrained by a proposed Jacobian
regularization technique. The controller layer can be ar-
bitrary derivable network structures, breaking the network
structure limitation of LipsNet who only supports multilayer
perceptron (MLP) with piecewise linear activation functions.
This layer no longer requires the computation of the Jaco-
bian matrix during inference, thereby breaking the inference
speed limitation of LipsNet. The Fourier filter layer and Lip-
schitz controller layer function analogously to the filter and
controller in classical control theory, respectively, suggest-
ing that filtering and control capabilities can be seamlessly
integrated into a single policy network.

Experiment results. Simulated and physical experiments
verify that LipsNet++ has achieved the SOTA performance.
For the simulated tasks, we conduct experiments on the
double integrator environment and DeepMind control suite
benchmark (DMControl). For example, in DMControl’s
walker environment, LipsNet++ increases the total average

return (TAR) by 3.4% and reduces the action fluctuation
ratio (AFR) by 35.5% compared to LipsNet (Song et al.,
2023), which is the previous SOTA network. Additionally,
an experiment on physical mini-vehicles is implemented for
real-world testing, where the vehicle is going to track given
trajectories and avoid moving obstacle under various noise
levels. Results show that LipsNet++ increases the TAR by
5.8% and reduces the AFR by 90.0% compared to MLP.

Technical contributions. LipsNet++ is a novel network,
addressing the action fluctuation problem in the real-world
applications of RL. Our contributions are four-fold: (1)
We identify the two fundamental reasons that cause action
fluctuation, and propose a policy network LipsNet++ to
explicitly tackle the two reasons in a decoupled manner;
(2) We propose a Fourier filter layer in LipsNet++, capable
of automatically extracting valuable frequencies while sup-
pressing noise frequencies in observations; (3) We propose a
Lipschitz controller layer with Jacobian regularization tech-
nique to enhance the smoothness of policy fitting, which
breaks LipsNet’s structure limitation and inference speed
limitation; (4) LipsNet++ suggests that filtering and con-
trol capabilities can be seamlessly integrated into a single
policy network, providing valuable insights for future pol-
icy network design. The code is released to facilitate the
implementation and future research.

2. Preliminaries
2.1. Actor-Critic Reinforcement Learning

Actor-critic method, consisting of an actor network and a
critic network as shown in Figure 1, forms the backbone
of many RL algorithms. The actor network fits a policy
π : S → A that mapping from state space to action space.
Therefore, the actor network is also called as policy net-
work. The goal of RL is to train a policy π maximizing the
expected return:

Jπ = Eτ∼ρπ

[
T∑

t=0

γtrt

]
,

where ρπ is the distribution of state-action trajectory induced
by policy π, T is the termination time of an episode, 0 ≤
γ ≤ 1 is the discount factor, and rt represents the reward.
The critic network fits a value function V (s) or Q(s, a),
mapping from the state-action pairs to the expected returns,
to evaluate the actions taken by the actor.

In policy evaluation phase, the critic is updated by minimiz-
ing the temporal difference (TD) error. For example, the
Q-value network in DDPG (Lillicrap et al., 2015) parame-
terized by φ is updated by

min
φ

Es,a,r,s′∼D

[(
Qφ(s, a)− r − γQφtarg

(s′, a′)
)2]

,
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where D is the replay buffer, s′ is the next state, a′ is the
next action obtained by the target actor network, and Qφtarg

is the return estimated by the target critic network.

In policy improvement phase, the actor is updated by maxi-
mizing the expected return predicted by the critic. Taking
DDPG as an example again, the actor network is updated
by minimizing the actor loss function:

L = Es∼D [−Qφ(s, π(s))] .

2.2. Action Fluctuation Ratio

Action fluctuation ratio (AFR) is an index to quantitatively
measure the fluctuation level of control actions (Chen et al.,
2021; Song et al., 2023). It is defined as

ξ(π) = Eτ∼ρπ

[
1

T

T∑
t=1

||at − at−1||

]
,

where ρπ is the distribution of state-action trajectory induced
by policy π, T is the termination time of episodes, at and
at−1 are two adjacent actions, and ∥ · ∥ is the norm of action
difference vector 1.

Beside the total average return (TAR), AFR is also an impor-
tant indicator to evaluate policies’ performance in the real
world. The smaller AFR is, the smoother action sequence
policy π has.

3. Method
3.1. Reasons Identification of Action Fluctuation

To ensure that RL agents produce smooth actions, it is nec-
essary to first identify the root cause of action fluctuation. In
decison-making and control tasks, the actions are calculated
by the policy network π according to the current observa-
tion ot, i.e. at = π(ot). And the current observation ot is
composed by the current state st and observation noise σt,
i.e. ot = st + σt. The rate of action change over time is
dat

dt = dπ(ot)
dot

· dotdt , then we can derive that

∥∥∥∥datdt

∥∥∥∥ ≤ ∥∥∥dπ(ot)
dot

∥∥∥ ·(∥∥∥∥dstdt

∥∥∥∥+
∥∥∥dσt

dt

∥∥∥ ) . (1)

To mitigate action fluctuation, ∥dat

dt ∥ must be controlled
within a reasonable range. From Equation (1), we know∥∥dat

dt

∥∥ is affected by three parts: a red term of policy
derivative, reflecting the level of policy smoothness; a
blue term of noise change rate, reflecting the level of ob-

servation noise; and an inherent derivative term
∥∥dst

dt

∥∥ of
the target dynamics system which cannot be modified.

1Throughout the paper, ∥ · ∥ denotes the 2-norm of a vector or
a matrix.

Based on the above analysis, the two fundamental causes of
action fluctuation can be identified: (1) the non-smoothness
of policy network, and (2) the existence of observation noise,
corresponding to the red and blue terms, respectively.

Non-smoothness of policy network. A non-smooth policy
network means that RL fits a non-smooth policy function
mapping from the states to control actions. The mapping
function has significant output differences even if the inputs
are closely adjacent. Consequently, when the state changes
with time, a non-smooth action sequence is generated. Ap-
pendix B visualizes the effect of a non-smooth policy.

Existence of observation noise. The noise results in the
discontinuous changes in observations, making the actions
produced by the policy network at the adjacent time stamps
erratically differ. Even if the policy function fitted by the
policy network is smooth enough, actions can still be fluctu-
ated because of the erratic observation noise.

Therefore, achieving sufficiently smooth control actions re-
quires addressing both fundamental reasons simultaneously.
However, previous works have neither clearly identified
these two causes nor considered them together. While some
studies acknowledge the impact of observation noise, they
attempt to enhance robustness by reducing the Lipschitz
constant of the policy network (Takase et al., 2020; Song
et al., 2023), i.e. improving the smoothness of policy net-
work, rather than directly filtering the observation noise.
Such a non-decoupled approach results in actions being
insufficiently smooth, and performance degradation when
higher action smoothness is required. In this paper, we intro-
duce the Fourier filter layer and Lipschitz controller layer to
explicitly and decoupledly address these two fundamental
causes, providing a more effective and principled solution.

3.2. Fourier Filter Layer

Fourier Transform is a widely used frequency analysis tool,
which can also be employed in neural networks for feature
extraction (Lee-Thorp et al., 2022; Rao et al., 2021; Tan
et al., 2024). To mitigate the action fluctuation caused by
observation noise, we propose the Fourier filtering layer
based on fast Fourier Transform. The workflow of Fourier
filter layer is shown in Figure 2.

Given N historical observations ot, ot−1, · · · , ot−N+1 ∈
RD where D denotes the dimension of features, the Fourier
filter layer concatenates them as a matrix x ∈ RN×D, and
calculates the frequency feature matrix X ∈ CN×D using
2D discrete Fourier transformation:

Xu,v =

N−1∑
n=0

D−1∑
d=0

xn,d · e−j2π(un
N + vd

D ), (2)

where xn,d denotes the d-th feature of the n-th observation
signal, Xu,v denotes the element located at the u-th row
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Figure 2: Workflow of Fourier filter layer. Firstly, FFT converts historical observations to frequency feature matrix X .
Then, half of X is multiplied by a trainable filter matrix H , and a complete matrix X̃ is generated by conjugate symmetrizing.
Finally, IFFT converts X̃ to filtered time-domain signals.

and v-th column of the frequency feature matrix X , and j
represents the imaginary unit. When the length of historical
observations is less than N , the missing parts are padded
with 0. In FFT, Zero-padding does not alter the primary
frequency components of the signal, and it merely increases
the spectral resolution (Jung et al., 2019). The magnitude of
Xu,v denotes the signal intensity at the frequency combina-
tion (u, v), where u and v are frequency indices rather than
the actual frequency values. Since the observations only
consist of real values, the resulting matrix X exhibits conju-
gate symmetry, i.e. Xu,v = XN−u,D−v. It means that half
of X could represent the complete information contained in
the signal.

Then, half of X , denoted as Xhalf ∈ CN×⌊D
2 ⌋+1, is sub-

jected to a Hadamard product with a trainable filter ma-
trix H ∈ CN×⌊D

2 ⌋+1. After that, a complete matrix
X̃ ∈ CN×D is restored by conjugate symmetrizing the
product matrix:

X̃ = symmetrize(Xhalf ⊙H). (3)

By choosing H as a complex matrix instead of real matrix,
the Fourier filtering layer can not only alter frequency ampli-
tudes but also perform feature extraction. The magnitudes of
the elements in H determine which frequency is suppressed
or strengthened. To enable the noise filtering capability of
policy network, we encourage the magnitudes of elements in
H to be as small as possible. In this way, policy network can
automatically extract valuable frequencies and filter out less
relevant frequencies where noise may exist. The tailored
actor loss becomes

L′ = L+ λh ∥H∥F , (4)

where ∥H∥F is the Frobenius norm of H , and λh is a hy-
perparameter coefficient.

Finally, the resulted frequency feature matrix X̃ is recovered
to the time-domain signals by 2D inverse discrete Fourier
transformation:

x̃n,d =
1

ND

N−1∑
u=0

D−1∑
v=0

X̃u,v · ej2π(
un
N + vd

D ). (5)

Because X̃ is a conjugate symmetric matrix, the matrix
x̃ ∈ RN×D becomes a real matrix. By slicing rows from the
matrix x̃, the filtered features õt, õt−1, · · · , õt−N+1 ∈ RD

are obtained. The signal õt, representing the filtered feature
corresponding to the current timestamp, is selected as the
input for the subsequent Lipschitz controller layer.

3.3. Lipschitz Controller Layer

Definition 3.1 (Local Lipschitz Constant). Suppose f :
Rn → Rm is a continuous neural network. The K(x) is
defined as the local Lipschitz constant of f on the neighbor-
hood of x:

K(x) = max
x1,x2∈B(x,ρ)

∥f(x1)− f(x2)∥
∥x1 − x2∥

, (6)

where B(x, ρ) denotes the open ball area with radius ρ > 0
centered at the point x in the Euclidean space, i.e. B(x, ρ) =
{x′ : ∥x′ − x∥ < ρ}.

Lipschitz constant characterizes the landscape smoothness
of a function. By viewing the policy network as a map-
ping function from states to actions, Lipschitz constant can
reflect the smoothness of the policy function. A lower Lip-
schitz constant means a smoother policy function, leading
to smoother actions (Ames et al., 2016; Kobayashi, 2022;
Song et al., 2023; Takase et al., 2020). MLP-SN (Takase
et al., 2020) constrains the Lipschitz constant by applying
spectral normalization (SN) (Miyato et al., 2018) on each
layer of policy network. However, it leads to tuning dif-
ficulty and severe performance loss, because the desired
network-wise Lipschitz continuity is realized by layer-wise
Lipschitz constraints (Bhaskara et al., 2022; Wu et al., 2021).
Instead, LipsNet (Song et al., 2023) proposes a network-
wise method, Multi-dimensional Gradient Normalization
(MGN). However, LipsNet is not applicable in high-real-
time tasks due to the Jacobian matrix calculation during
forward inference, and its network structure is limited to
MLP with piecewise linear activation functions.

To overcome the above challenges, we propose the Jacobian
regularization method to conveniently reduce the Lipschitz
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Figure 3: Overall structure of LipsNet++. Historical observations are processed by Fourier filter layer, where a trainable
filter matrix is used for frequency selection. The filtered feature õt is inputted into Lipschitz controller layer whose Lipschitz
constant is constrained by a Jacobian regularization. The parameters in LipsNet++ are updated by tailored actor loss L′′.

constant of our controller layer. The Jacobian norm is a com-
monly used index of function smoothness and robustness
(Hoffman et al., 2019; Lee et al., 2023).

Theorem 3.2 (Lipschitz’s Jacobian Approximation). Let
f : Rn → Rm be a continuously differentiable neural
network. The Jacobian norm ∥∇xf∥ is an approximation
of f ’s local Lipschitz constant within neighborhood B(x, ρ),
centered at x with radius ρ. The approximation error is

max
δ∈B(0,ρ)

[
(∇x ∥∇xf(x)∥)⊤ δ + o(δ)

]
,

where o(δ) is a higher-order infinitesimal term with respect
to δ. Moreover, as ρ→ 0, the Jacobian norm converges to
the exact local Lipschitz constant, i.e.

lim
ρ→0
∥∇xf∥ = K(x).

Proof. See Appendix A in the supplementary material.

We know that Lipschitz constant reflects policy’s landscape
smoothness (Takase et al., 2020; Song et al., 2023) and The-
orem 3.2 proves that Jacobian norm is an approximation of
the local Lipschitz constant, therefore we can conveniently
enhance the policy smoothness by reducing Jacobian norm.
The actor loss is tailored from L′ in Equation (4) into

L′′ = L′ + λk ∥∇f∥ , (7)

where f means the Lipschitz controller layer and λk is a
constant coefficient. The proposed Jacobian regularization

is superior to the Lipschitz constraint methods used in MLP-
SN and LipsNet because: (1) It is a network-wise rather than
layer-wise constraint method, avoiding severe performance
loss; (2) It does not require a predefined initial/target Lips-
chitz constant, avoiding the tuning difficulty; (3) It does not
need to calculate Jacobian matrix during forward inference,
making it applicable in high-real-time tasks; (4) It is suitable
for arbitrary derivable network structures.

The overall structure of LipsNet++ is shown in Figure 3.
The pseudocode of LipsNet++ is illustrated in Appendix C.

3.4. User-friendly Packaging

We have packaged LipsNet++ as an user-friendly PyTorch
(Paszke et al., 2019) module and released the code. When
network’s backward propagation is called, a backward hook
function will awake to automatically replace the gradient
∇L by ∇L′′. In this way, LipsNet++ can be easily inte-
grated into almost all actor-critic RL algorithms like DDPG
(Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018), PPO
(Schulman et al., 2017), TRPO (Schulman et al., 2015),
SAC (Haarnoja et al., 2018) and DSAC (Duan et al., 2025).
As shown below, practitioners can use it as simple as MLP.

net = LipsNet++()
out = net(input)
...

loss.backward()
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4. Experiments
In this section, we comprehensively evaluate LipsNet++
with model-based, model-free, deterministic, and stochastic
RL algorithms in both simulated and real-world tasks.

4.1. Double Integrator

Double integrator is a classic linear quadratic control task,
which is commonly used to test the performance of con-
trollers. In the environment, a particle is moving along an
axis without resistance (Song et al., 2023). The observations
include position x and velocity v of the particle. The control
action is particle acceleration a that parallel to the axis. A
schematic diagram of the environment is shown in Figure 4.

0
𝑥

𝑣

Figure 4: Double integrator task. A particle is moving
along an axis without resistance.

The reward function is r = −2x2 − v2 − a2, which in-
centives the particle to remain stable at the origin, i.e.
x = 0, v = 0, a = 0. The Infinite-time Approximate Dy-
namic Programming (INFADP) (Li, 2023), a model-based
RL algorithm, is used for train without noise. When testing
policy networks, the particle has nonzero initial position and
velocity, and the noise for each observation dimension is dis-
tributed in U(−0.2, 0.2). More details and hyperparameters
are shown in Appendix D.

The results are presented in Figure 6 and 7. In Figure 6(a),
30 episodes are simulated starting from the same initial
state. The solid line and shadow area respectively denote
the mean and standard deviation of actions. The shadow
areas imply the action fluctuation amplitude of LipsNet++ is
much smaller than that of MLP, and is on par with LipsNet.
Figure 6(b) depicts action trajectories for a single episode,
which reveals that LipsNet++ has better action continuity
than LipsNet under the same level of action fluctuation
amplitude. This conclusion is confirmed again by Figure
6(c), where action trajectories are decomposed by FFT and
the action frequency induced by LipsNet++ is shown to be
more distributed in the low-frequency range.

To further evaluate LipsNet++, we set different observation
noise amplitudes and compare with previous works. As Fig-
ure 7(a) shows, when noise increases, LipsNet++ maintains
the highest TAR and its TAR declines at the slowest rate. As
Figure 7(b) shows, when noise increases, LipsNet++ main-
tains the lowest AFR and its AFR grows at the slowest rate.
We then compare the performance in high-noise environ-
ment, i.e. noise amplitude is 0.3. Compared to LipsNet-L,
the previous SOTA network, LipsNet++ achieves an 8.2%

increase in TAR and a 75.0% reduction in AFR. Therefore,
LipsNet++ achieves a new SOTA performance with a sig-
nificant advantage in action smoothness.

Furthermore, an ablation study for the two techniques in
LipsNet++ is implemented in Appendix E, the sensitivity
analysis for hyperparameters λk and λk is provided in Ap-
pendix F, and the sensitivity analysis for hyperparameter
N is provided in Appendix G. Additionally, policy net-
works’ computational efficiency are evaluated in Appendix
H, including the time usages of forward and backward prop-
agations. Based on all the results, a performance radar chart
is depicted in Figure 7(c), which implies the overall perfor-
mance of LipsNet++ is much better than previous works.

4.2. DeepMind Control Suite

The DeepMind Control Suite (DMControl) (Tassa et al.,
2018) consist of several well-designed continuous control
tasks. Currently, it stands as one of the most recognized
benchmarks in the fields of RL and continuous control (Mu
et al., 2022). In this paper, we focus on four of its envi-
ronments: Cartpole, Reacher, Cheetah, and Walker. The
visualization of these environments are shown in Figure 5,
and more information are described in Appendix I.

(a) Cartpole (b) Reacher (c) Cheetah (d) Walker

Figure 5: DeepMind control suite benchmark. Four envi-
ronments in DeepMind control suite are selected for testing.

We employ the Twin Delayed Deep Deterministic Policy
Gradient (TD3) (Fujimoto et al., 2018), a model-free RL al-
gorithm, for training. The hyperparameters for TD3 remain
consistent across all environments, except for the coeffi-
cients λk, λh, and the length of historical observations N .
All hyperparameters are listed in Appendix J. To evaluate
comprehensively, networks are tested on both noise-free and
noisy environments. Figure 9 visualizes the results in noisy
environments. The learned filter matrix H is visualized in
Figure 24 to show the noise filtering ability of LipsNet++.
All results are summarized in Table 11 and 12, from which
we can find that LipsNet++ has the highest TAR and the
lowest AFR in all cases. For example, LipsNet++ increases
the TAR by 3.4% and reduces the AFR by 35.5% in Walker
environment compared to LipsNet, which is the previous
SOTA network. Appendix K shows a comparison in Cart-
pole environment between LipsNet++ and reward penalty
method. All these results imply that LipsNet++ has perfect
action smoothness and noise robustness.
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Figure 6: Action visualization in double integrator environment. (a) The action fluctuation amplitude of LipsNet++ is
smaller than that of MLP, and is on par with LipsNet. (b) LipsNet++ has better action continuity than MLP and LipsNet. (c)
LipsNet++’s action frequency is more distributed in the low-frequency range.
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rate when noise increases. (b) The AFR of LipsNet++ grows at the slowest rate when noise increases. (c) LipsNet++ has the
best overall performance in the evaluation metrics of control performance, action smoothness, and forward speed, etc.
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(b) Vehicle trajectory (MLP)
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(c) Vehicle trajectory (LipsNet++)
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Figure 8: Result of scenario 3. The noise amplitude is 10. (a) The RL robot aims to turn left. (b,c) The vehicle states and
trajectories produced by MLP and LipsNet++. (d,e) The control actions produced by MLP and LipsNet++. LipsNet++
produces much smoother control actions than MLP.
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Figure 9: Performance comparison in DMControl. It
shows the TAR and AFR in noisy environments. LipsNet++
has the highest TAR and the lowest AFR in all cases.

4.3. Mini-Vehicle Driving

Vehicle trajectory tracking is an important task in au-
tonomous driving (Guan et al., 2022; Mu et al., 2020). To
validate LipsNet++ in the real world, we conduct an ex-
periment on physical vehicles. As Figure 26 shows, the
vehicle moves by two differential wheels, aiming to track
reference trajectory and velocity while avoiding obstacle.
The observations and actions are listed in Table 15. We
set up four diverse scenarios, as described in Table 1 and
visualized in Figure 28. Detailed introduction of the vehicle,
control mode, and scenarios are described in Appendix L.
The Distributional Soft Actor-critic (DSAC) (Duan et al.,
2025), a model-free RL algorithm, is used for training. The
tests in all scenarios are accomplished by the same networks.
For real-world highway vehicles, RL observations rely on
perception results where sensor noise is amplified by per-
ception algorithms. To precisely simulate such scenario, we
assigned various noise amplitudes.

Table 1: Scenario descriptions.

Scenario No. RL robot Obstacle robot

1 go straight stationary
2 go straight moving
3 turn left moving
4 go straight aggressive

In scenario 3 with 10 times noise, the results are shown
in Figure 8, its video snapshots are recorded in Figure 11.
The RL robot successfully tracks the reference trajectory
and avoids obstacle by slightly shifting to yield. As shown
in Figure 8(d)(e), it is evident that LipsNet++ produces
much smoother control actions than MLP. The smoother

actions result in smoother vehicle states, i.e. speed and
yaw rate, which are shown in Figure 8(b)(c). These results
consistently hold true across all scenarios, as illustrated in
Appendx M. Furthermore, in scenario 4 with 10 times noise,
the MLP-driven robot crashed while LipsNet++ successfully
completed the task, as shown in Figure 48 and 49.

The learned filter matrix H is visualized in Figure 12 to
show the noise filtering ability of LipsNet++. Figure 12(a)
and 30(b) show the frequency distributions of observation
in noise-free and noisy environments, respectively. Figure
12(b) implies that the learned filter matrix mainly focus
on the frequencies containing observation information, and
rarely focus on the frequencies containing noises.

The average TAR and AFR for the first three scenarios are
depicted in Figure 13. As Figure 13(a) shows, when noise
increases, LipsNet++ maintains the highest TAR and its
TAR declines much slower than MLP’s. As Figure 13(b)
shows, when noise increases, LipsNet++ maintains the low-
est AFR and its AFR grows much slower than MLP’s. In the
high-noise environment (noise amplitude is 20), LipsNet++
achieves 5.9% increase in TAR and 90.0% reduction in AFR.
More results are listed in Appendix M, implying LipsNet++
has much better action smoothness and noise robustness.
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Figure 12: Observation frequency and filter matrix. The
color in (a) and (b) means the frequency intensity of noise-
free observations and the element magnitude in filter matrix.
The matched color distribution implies LipsNet++ can ex-
tract important frequencies and filter out noise frequencies.
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Figure 10: Snapshots of scenario 1. The RL robot first shifts left to navigate around the stationary obstacle robot, then
shifts right to resume tracking the reference trajectory. All test videos are available at https://xjsong99.github.io/LipsNet v2.
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Figure 11: Snapshots of scenario 3. Video snapshots of Figure 8(c). The RL robot first shifts left to yield to the moving
obstacle robot, then resumes tracking the left-turn reference trajectory. All videos: https://xjsong99.github.io/LipsNet v2.
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Figure 13: Performance trend with increasing noise. They
show the average TAR and AFR of scenarios 1-3. (a) The
TAR of LipsNet++ declines much slower than MLP’s. (b)
The AFR of LipsNet++ grows much slower than MLP’s.

5. Conclusion
In this paper, we identify the two fundamental causes of
action fluctuation and propose a novel policy network Lip-
sNet++, where a Fourier filter layer and a Lipschitz con-
troller layer are introduced to explicitly tackle the two
causes. Fourier filter layer has observation noise filtering
capability based on a learnable filter matrix. Lipschitz con-
troller layer uses a Jacobian regularization for smoothly
fitting policy functions, breaking LipsNet’s structure lim-
itation and inference speed limitation. LipsNet++ can be
easily integrated into most actor-critic RL algorithms. Sim-
ulated and real-world experiments show that LipsNet++ has
excellent action smoothness and noise robustness, achieving
a new SOTA performance. The unifying of filtering and
control capabilities providing valuable insights for future
policy network design. We hope the research could make a
contribution to the real-world applications of RL.
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Impact Statement
LipsNet++ has positive impacts on the AI community by
effectively addressing the action fluctuation problem in RL.
LipsNet++ breaks through the bottleneck of action fluctu-
ation and poor robustness faced by RL, which accelerates
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the process of RL’s real-world applications. It mitigates the
wear of actuators, safety risks, and performance reduction
caused by fluctuated actions. The unifying of filtering and
control capabilities providing valuable insights for future
policy network design. LipsNet++ benefits many industrial
fields, including drone control, decision-making and control
of autonomous vehicles, and embodied AI.
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A. Theoretical Results
Lemma A.1 (Equivalent Form of Lipschitz Constant). Suppose f : Rn → Rm is a continuously differential neural network.
Then its local Lipschitz constant K(x) has an equivalent form besides equation (6):

K(x) = max
x′∈B(x,ρ)

∥∇f(x′)∥ . (8)

Proof. We assume the local Lipschitz constant of f over B(x, ρ) is Kx, which means Kx = maxx1,x2∈B(x,ρ)
∥f(x1)−f(x2)∥

∥x1−x2∥ .

(a) Firstly, we prove that ∥∇f(x′)∥ ≤ Kx,∀x′ ∈ B(x, ρ). Because the local Lipschitz constant is Kx, we know that

∥f(x1)− f(x2)∥ ≤ Kx∥x1 − x2∥, ∀x1, x2 ∈ B(x, ρ). (9)

Let h(t) = f(x′ + t · v) where x′ ∈ B(x, ρ), t ∈ R, and v ∈ Rn, then its first-order derivative function is h′(t) =
∇f(x′ + t · v) · v. From the Newton-Leibniz formula, we know

h(α)− h(0) =

∫ α

0

h′(t) dt,

which means

f(x′ + α · v)− f(x′) =

∫ α

0

∇f(x′ + t · v) · v dt.

By taking the 2-norm on both sides and considering the condition (9), we get∥∥∥∥∫ α

0

∇f(x′ + t · v) dt · v
∥∥∥∥ = ∥f(x′ + α · v)− f(x′)∥

≤ αKx∥v∥.

Divide α on both sides then let α→ 0+, get

∥∇f(x′) · v∥ ≤ Kx ∥v∥ , ∀v.

From the definition of matrix norm, we know

∥∇f(x′)∥ = max
v ̸=0

∥∇f(x′) · v∥
∥v∥

≤ Kx,∀x′ ∈ B(x, ρ).

(b) Secondly, we prove that maxx′∈B(x,ρ) ∥∇f(x′)∥ ≥ Kx. Let h(t) = f(x1 + t(x2 − x1)) where t ∈ (0, 1) and
x1, x2 ∈ B(x, ρ), then its first-order derivative function is h′(t) = ∇f(x1 + t(x2 − x1)) · (x2 − x1). From the Newton-
Leibniz formula, we know

h(1)− h(0) =

∫ 1

0

h′(t) dt,

which means

f(x2)− f(x1) =

∫ 1

0

∇f(x1 + t(x2 − x1)) · (x2 − x1) dt

=

(∫ 1

0

∇f(x1 + t(x2 − x1)) dt

)
(x2 − x1).

Take the 2-norm on both sides, get

∥f(x2)− f(x1)∥ =
∥∥∥∥(∫ 1

0

∇f(x1 + t(x2 − x1)) dt

)
(x2 − x1)

∥∥∥∥
≤
∥∥∥∥∫ 1

0

∇f(x1 + t(x2 − x1)) dt

∥∥∥∥ ∥x2 − x1∥

≤
(∫ 1

0

∥∇f(x1 + t(x2 − x1))∥ dt

)
∥x2 − x1∥

≤ max
x′∈B(x,ρ)

∥∇f(x′)∥ · ∥x2 − x1∥ .
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Therefore,

max
x′∈B(x,ρ)

∥∇f(x′)∥ ≥ ∥f(x1)− f(x2)∥
∥x1 − x2∥

, ∀x1, x2 ∈ B(x, ρ),

which means

max
x′∈B(x,ρ)

∥∇f(x′)∥ ≥ max
x1,x2∈B(x,ρ)

∥f(x1)− f(x2)∥
∥x1 − x2∥

= Kx.

Considering both (a) and (b), we know that ∥∇f(x′)∥ ≤ Kx,∀x′ ∈ B(x, ρ) and maxx′∈B(x,ρ) ∥∇f(x′)∥ ≥ Kx. Therefore,
we can conclude that maxx′∈B(x,ρ) ∥∇f(x′)∥ = Kx.

Theorem A.2 (Lipschitz’s Jacobian Approximation). Let f : Rn → Rm be a continuously differentiable neural network.
The Jacobian norm ∥∇xf∥ is an approximation of f ’s local Lipschitz constant within neighborhood B(x, ρ), centered at x
with radius ρ. The approximation error is

max
δ∈B(0,ρ)

[
(∇x ∥∇xf(x)∥)⊤ δ + o(δ)

]
,

where o(δ) is a higher-order infinitesimal term with respect to δ. Moreover, as ρ→ 0, the Jacobian norm converges to the
exact local Lipschitz constant, i.e.

lim
ρ→0
∥∇xf∥ = K(x).

Proof. By Definition 3.1 and Lemma A.1, we know that

K(x) = max
x1,x2∈B(x,ρ)

∥f(x1)− f(x2)∥
∥x1 − x2∥

= max
x′∈B(x,ρ)

∥∇f(x′)∥

= max
δ∈B(0,ρ)

∥∇f(x+ δ)∥ .

By conducting the first-order Taylor expansion for ∥∇f(x+ δ)∥, we get that

K(x) = max
δ∈B(0,ρ)

[
∥∇xf(x)∥+ (∇x ∥∇xf(x)∥)⊤ δ + o(δ)

]
= ∥∇xf(x)∥+ max

δ∈B(0,ρ)

[
(∇x ∥∇xf(x)∥)⊤ δ + o(δ)

]
.

Therefore, the Jacobian norm ∥∇xf∥ is an approximation of the local Lipschitz constant K(x), with the approximation
error max δ∈B(0,ρ)

[
(∇x ∥∇xf(x)∥)⊤ δ + o(δ)

]
. Furthermore, when ρ → 0, the approximation error also approaches 0.

This means that ∥∇xf∥ → K(x) when ρ→ 0.

B. Fundamental Reasons of Action Fluctuation
Non-smoothness of policy network. A non-smooth policy network means that RL fits a non-smooth policy function
mapping from the state to control action. The mapping function has significant output differences even if the inputs are
closely adjacent. Consequently, when the state changes with time, a non-smooth action sequence is generated. Figure 14
visualizes the effect of policy non-smoothness.

Existence of observation noise. The noise results in the discontinuous changes in observations, making the actions produced
by the policy network at the adjacent time stamps erratically differ. Even if the policy function fitted by the policy network
is smooth enough, actions can still be fluctuated because of the erratic observation noise.
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(a) Smooth policy function (b) Smooth action trajectory

(c) Non-smooth policy function (d) Non-smooth action trajectory

Figure 14: Effect of policy non-smoothness.

C. Pseudocode of LipsNet++

Algorithm 1 Forward and backward propagations of LipsNet++

1: Input: last N -step observations ot, ot−1, · · · , ot−N+1, original actor loss L, original network parameter θ.

/* Forward propagation */
2: x← [ot ot−1 · · · ot−N+1]

⊤

3: X ← FFT(x)
4: X̃ ← symmetrize(Xhalf ⊙H)

5: x̃← IFFT
(
X̃
)

6: õt ← the first row in x̃
7: at ← f(õt)

/* Backward propagation */
8: L′′ ← L+ λk ∥∇õtf∥+ λh ∥H∥F
9: θnew ← θ − η∇θL′′

10: Output: control action at, updated network parameter θnew.
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D. Double Integrator: Detailed Implementation and Results
The double integrator is a classic control task with linear dynamics and quadratic cost function, namely linear quadratic
(LQ) control task. The environment used in this paper is a particle-moving environment. We train in noise-free environment
and test in noisy environment with various noise level to comprehensively evaluate policy networks. We use a model-based
RL algorithm, INFADP (Li, 2023), to train different policy networks including MLP (Rumelhart et al., 1986), MLP-SN
(Takase et al., 2020), LipsNet-G (Song et al., 2023), LipsNet-L (Song et al., 2023), and LipsNet++. The hyperparameters for
INFADP are listed in Table 2.

We set 5 different observation noise amplitudes and compare the performances of MLP, MLP-SN, LipsNet-G, LipsNet-L,
and LipsNet++. Table 3 and Table 4 summarize the TAR and AFR, respectively. Figure 7 shows the variation trends of TAR
and AFR as the noise increases. As shown in Figure 7(a), the TAR of LipsNet++ decreases much slower than that of the
other networks. As shown in Figure 7(b), the AFR of LipsNet++ increases much slower than that of the other networks.
These results indicate that LipsNet++ has superior action smoothness and noise robustness compared to previous works.

Table 2: Hyperparameters for INFADP.

Hyperparameter Value

Replay buffer capacity 100000
Buffer warm-up size 1000
Batch size 64
Discount γ 0.99
Target network soft-update rate τ 0.2
Initial random interaction steps 0
Interaction steps per iteration 8
Network update times per iteration 1
Prediction step 1
Action bound [−5, 5]
Exploration noise std. deviation 0
Hidden layers in subnetwork f [64, 64]
Activations in subnetwork f ReLU
Hidden layers in critic network [64, 64]
Activations in critic network ReLU
Optimizer Adam
Actor learning rate 3 · 10−4

Critic learning rate 8 · 10−4

length of historical obsv. N 8
coefficient λk 0.01
coefficient λh 1

Table 3: Comparison of TAR on double integrator environment. The observation noise in each dimension is distributed
in U(−σ, σ). The data in this table is visualized in Figure 7(a).

Noise Methods
σ MLP CAPS L2C2 MLP-SN LipsNet-G LipsNet-L LipsNet++

0.01 -51.0 ± 0.1 -52.1 ± 0.1 -55.0 ± 0.1 -62.0 ± 0.1 -53.2 ± 0.1 -55.3 ± 0.1 -56.5 ± 0.1

0.05 -53.5 ± 0.2 -53.0 ± 0.2 -55.4 ± 0.4 -62.3 ± 0.4 -54.3 ± 0.3 -55.6 ± 0.4 -56.8 ± 0.2

0.1 -59.5 ± 0.6 -56.9 ± 0.6 -57.5 ± 0.5 -62.8 ± 0.7 -54.2 ± 0.7 -56.0 ± 0.6 -57.1 ± 0.6

0.2 -78.4 ± 1.8 -67.9 ± 1.0 -63.4 ± 1.5 -65.9 ± 1.7 -59.8 ± 1.1 -58.7 ± 1.4 -57.9 ± 0.6

0.3 -103.2 ± 3.7 -85.9 ± 3.0 -82.3 ± 4.4 -71.8 ± 2.3 -74.3 ± 2.1 -65.3 ± 1.6 -59.9 ± 1.9
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Table 4: Comparison of AFR on double integrator environment. The observation noise in each dimension is distributed
in U(−σ, σ). The data in this table is visualized in Figure 7(b).

Noise Methods
σ MLP CAPS L2C2 MLP-SN LipsNet-G LipsNet-L LipsNet++

0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.01

0.05 0.11 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.01 ± 0.01

0.1 0.19 ± 0.01 0.15 ± 0.01 0.10 ± 0.01 0.06 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.02 ± 0.01

0.2 0.34 ± 0.02 0.26 ± 0.01 0.20 ± 0.01 0.13 ± 0.01 0.17 ± 0.01 0.12 ± 0.01 0.03 ± 0.01

0.3 0.48 ± 0.02 0.37 ± 0.02 0.33 ± 0.02 0.20 ± 0.01 0.28 ± 0.01 0.20 ± 0.01 0.05 ± 0.01

E. Ablation Study for Two Techniques
In this appendix, we implement ablation study for the two techniques proposed in our paper, i.e. Jacobian regularization and
Fourier filter layer. The two techniques respectively tackle the two fundamental reasons of action fluctuation, as described in
Section 3.1. The Jacobian regularization enhances the smoothness of policy network by introducing the Jacobian norm in
actor loss function. Similarly, the Fourier filter layer enhance the noise robustness of policy network by introducing the
Frobenius norm of the filter matrix in actor loss function. The resulted actor loss is illustrated in Equation 4:

L′′ = L+ λk ∥∇f∥+ λh ∥H∥F .

In order to validate the effectiveness of each technique, the two coefficients λk and λh are set to zero in turn. The performance
result on double integrator environment is shown in Figure 15. The performance result on DMControl’s Cheetah and Walker
environments is shown in Table 5. These results shows that setting either coefficient to zero will lead to a rapid decrease in
TAR and a rapid increase in AFR when the noise increases. It indicates that both the Jacobian regularization and Fourier
filter layer are effective techniques and they are both indispensable.
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Figure 15: Ablation study for Jacobian regularization and Fourier filter layer on double integrator environment.

F. Sensitivity Analysis for λk and λh

In this appendix, we provide the sensitivity analysis for the hyperparameters λk and λh. We design experiments to
demonstrate that the two hyperparameters have low sensitivity, making LipsNet++ convenient for tuning and easy to use.

Similar to the approach in Appendix E, we fix one hyperparameter and then vary the other to observe the changes in TAR
and AFR on double integrator environment. As shown in Figure 16, when λh is fixed at 1 and λk varies between 0.001,

16



LipsNet++: Unifying Filter and Controller into a Policy Network

Table 5: Ablation study on Cheetah and Walker. The result shows that setting either coefficient to zero will lead to an
increase in AFR, which indicates the two techniques are all effective and indispensable.

Environment λk λh Total average return Action fluctuation ratio

Cheetah
10−3 10−3 822 ± 11 0.94 ± 0.01

0 10−3 822 ± 15 1.08 ± 0.02

10−3 0 821 ± 17 1.21 ± 0.02

Walker
10−2 10−3 961 ± 12 0.78 ± 0.01

0 10−3 958 ± 15 0.98 ± 0.02

10−2 0 940 ± 14 1.89 ± 0.01

0.01, and 0.1, the performance differences are significant. However, when λh is fixed at 1 and λk varies between 0.01 and
0.02, the performances are essentially consistent. A similar phenomenon can also be found for hyperparameter λh, as shown
in Figure 17. When λk is fixed at 0.01 and λh varies between 0.1, 1 and 10, the performance differences are significant.
However, when λh is fixed at 1 and λk varies between 1 and 2, the performances are essentially consistent.
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Figure 16: Sensitivity analysis for λk.

The above results imply that the hyperparameter λk and λh have low sensitivity. Only the magnitude of hyperparameters
have a significant impact on performance, while changing the hyperparameters within an appropriate magnitude has a
minimal effect on performance. Therefore, when tuning parameters, the user only need to set an appropriate magnitude. It
makes LipsNet++ convenient for tuning and easy to use.

G. Sensitivity Analysis for N

In this appendix, we provide the sensitivity analysis for hyperparameter N , which represents the length of historical
observations. We design experiments to demonstrate that N exhibits low sensitivity when the length of historical observations
is sufficiently long, making LipsNet++ convenient for tuning and easy to use.

The values of N are set to range from 1 to 32 in the double integrator environment. The Figure 18(a) and (b) show the
trend of TAR and AFR when N changes. The result shows that the performance no longer improves once N exceeds a
threshold, suggesting a low sensitivity. Therefore, users only need to set a relatively large value of N , making LipsNet++
very convenient for tuning.
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Figure 17: Sensitivity analysis for λh.
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Figure 18: Sensitivity analysis for N .
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H. Computational Efficiency Analysis
To evaluate the computational efficiency, we provide the detailed forward and backward processing time of policy networks.
All policy networks are from the network trained in double integrator environment. This analysis is implemented on AMD
Ryzen Threadripper 3960X 24-Core Processor. For MLP-SN, the number of power iterations is set to 1, whose time usage is
included in the backward stage. Similarly, the computation times for Jacobian norm and Frobenius norm in LipsNet++ are
included in the backward stage. The length of historical observations used in LipsNet++ is 8.

The results are summarized in Table 6. Compared to the previous SOTA network LipsNet, LipsNet++ has significantly faster
speed for forward propagation. This allows LipsNet++ to be applied in high-real-time tasks. We acknowledge that backward
propagation speed of LipsNet++ is relatively slow, but we have devised a solution to accelerate this in future work by using
multiple forward propagation and zero-order gradient estimation to compute the Jacobian matrix.

Table 6: Forward and backward propagation time comparison.

Settings Policy network
Propagation Batch size MLP MLP-SN LipsNet-L LipsNet++

forward 1 0.10 ms 0.11 ms 0.75 ms 0.16 ms
100 0.11 ms 0.12 ms 1.41 ms 0.25 ms

backward 1 0.17 ms 0.76 ms 0.45 ms 1.98 ms
100 0.28 ms 0.89 ms 0.73 ms 2.48 ms

Since network propagation times constitute only a part of the overall RL training process, we next compare the total training
wall-clock times. Table 7 presents the wall-clock times for 1M iterations of TD3 on the DMControl environments. The
results show that, on average, the training time of LipsNet++ is 1.6 times that of MLP. The difference in wall-clock time is
not as significant as the difference in backward time shown in Table 6, as RL algorithms involve additional time-consuming
steps beyond backward, such as sampling and evaluation.

Table 7: Training wall-clock time comparison. The data show the wall-clock times used for 1M iterations in TD3. On
average, the training time of LipsNet++ is 1.6 times that of MLP.

Network Env Total
Cartpole Reacher Cheetah Walker

MLP 120 min 118 min 128 min 125 min 491 min
LipsNet++ 194 min 195 min 206 min 204 min 799 min

In conclusion, LipsNet++’s forward time is under 0.2 ms, making it suitable for real-time applications. While the training
wall-clock time shows a slight increase, it remains acceptable and has clear pathways for future optimization.

I. DeepMind Control Suite Benchmark
The DeepMind Control Suite (DMControl) (Tassa et al., 2018) encompasses a collection of meticulously crafted continuous
control tasks. These environments feature consistent structures, rewards that are both interpretable and normalized,
facilitating a more straightforward comparison of performance across different algorithms. Developed in Python and
leveraging the MuJoCo physics engine (Todorov et al., 2012), DMControl currently stands as one of the most esteemed
benchmarks for evaluating RL and continuous control tasks.

In DMControl, the term ”domain” denotes a specific physical model, whereas a ”task” corresponds to an instantiation of that
model with a defined Markov Decision Process (MDP) structure. For instance, within the cartpole domain, the distinction
between the swingup and balance tasks lies in the initial orientation of the pole: it is initialized pointing downward in
the swingup task and upward in the balance task, respectively. In the following figures, we provide detailed descriptions
of the domains used in this paper, with each domain’s name followed by a tuple of three integers that denote the dimensions
of the state, action, and observation spaces, respectively, formatted as

(
dim (S) ,dim (A) ,dim (O)

)
.
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Figure 19: Cartpole(4, 1, 5): This domain features a cart connected to a pole via an unactuated
joint. It encompasses a set of four distinct tasks. In the context of our experimental setup, we focus
on the swingup task. Here, the pole is initially positioned downward, and the objective is to apply
appropriate forces to the cart to swing the pole upward and maintain its upright position.

Figure 20: Reacher(4, 2, 7): This domain comprises two interconnected poles with a sphere whose
initial position is randomly determined. One end of the linked poles is anchored at the origin of the
coordinate space, while the other remains free to move. The domain offers two distinct tasks, and
we focus on the easy task. The task requires the application of forces to the pendulum to ensure
that its endpoint remains within the red area at all times.

Figure 21: Cheetah(18, 6, 17): This domain features a planar bipedal and it is able to crawl forward
by its two legs. It involves a single task, namely the run task. In the initial state of the environment,
the agent’s pose is random, typically in a non-standing position. In this task, the challenge is to
control the planar biped to achieve an upright standing position and subsequently propel it forward
into a running motion with a targeted forward velocity.

Figure 22: Walker(18, 6, 24): This domain includes a planar walker. This environment simulates a
simple locomotion task of humans, with the agent possessing two legs and advancing in an upright
posture. It comprises three distinct tasks, and our experiment focus the walk task. In this task, the
objective is to control the walker to maintain an upright torso posture, achieve the specified torso
height, and maintain a consistent forward velocity.

J. DMControl: Detailed Implementation and Results
We employ the Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018), a model-free RL algorithm,
to train on DMControl. The hyperparameters for TD3 remain consistent across all environments, except for the coefficients
λk, λh, and the length of historical observations N . The hyperparameters for TD3 are listed in Table 8. The environment-
related hyperparameters are listed in Table 9.

To evaluate comprehensively, networks are tested on both noise-free and noisy environments. For noisy environments, the
noise amplitudes are listed in Table 10. We compare LipsNet++ with MLP, LipsNet-G, LipsNet-L using 10 seeds. All results
are summarized in Table 11 and 12, from which we can find that LipsNet++ has the highest TAR and the lowest AFR in all
cases. These results imply LipsNet++ has good action smoothness and noise robustness.

For comparing LipsNet++ and MLP-SN, we train them on DMControl Reacher environment. We use a 3-layer MLP-SN
network and manually tuning its spectral norm of each layer by grid search. The global Lipschitz constant of MLP-SN is
the product of the spectral norms of all layers. The results are listed in Table 13, from which we can find that LipsNet++
outperforms MLP-SN under all hyperparameter settings. As shown in Figure 23, the trends of TAR and AFR imply that even
with fine adjustments to the spectral norm, the overall performance of MLP-SN remains inferior to that of LipsNet++. We
refrain from comparing LipsNet++ to MLP-SN across all environments used in this paper, because this would necessitate the
manual tuning of spectral norm hyperparameters for each layer, which have an unwieldy number of potential hyperparameter
combinations.

Additionally, the learned filter matrix H in LipsNet++ is visualized in Figure 24 to show the noise filtering ability.
Figure 24(a) and 24(b) show the frequency distributions of observation in noise-free environment and noisy environment,
respectively. Their shades of color represent the intensity of frequency. The color in Figure 24(c) denotes the magnitude
of elements in matrix H , which determines which frequencies are suppressed or strengthened. The result implies that
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Table 8: Hyperparameters for TD3.

Hyperparameter Value

Replay buffer capacity 1000000
Buffer warm-up size 1000
Batch size 100
Discount γ 0.99
Target network soft-update rate τ 0.005
Target noise 0.2
Target noise limit 0.5
Exploration noise std. deviation 0.1
Policy delay times 2
Initial random interaction steps 25000
Interaction steps per iteration 50
Network update times per iteration 50
Hidden layers in subnetwork f [64, 64]
Activations in subnetwork f ReLU
Hidden layers in critic network [64, 64]
Activations in critic network ReLU
Optimizer Adam
Actor learning rate 1 · 10−3

Critic learning rate 1 · 10−3

Table 9: Environment-related hyperparameters in DMControl.

Env λk λh Length of his. obsv. N

Cartpole 10−2 10−2 5
Reacher 10−2 10−3 5
Cheetah 10−3 10−3 5
Walker 10−2 10−3 10

Table 10: Observation noise in DMControl. The observation noise in each dimension is distributed in U(−σ, σ).

Env Noise amplitude σ

Cartpole [0.1, 0.1, 0.1, 0.2, 0.2]

Reacher [0.001 repeats 7 times]

Cheetah [0.01, 0.01, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.5, 0.05, 0.1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

Walker [0.25 repeats 24 times]
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Table 11: Total average return in DMControl.

Environment MLP LipsNet-G LipsNet-L LipsNet++

noise-free
env

Cartpole 805 ± 0.8 691 ± 1.0 831 ± 0.9 841 ± 0.2

Reacher 981 ± 10 979 ± 11 983 ± 10 988 ± 10

Cheetah 816 ± 30 702 ± 10 822 ± 4 829 ± 15

Walker 926 ± 12 956 ± 20 945 ± 13 962 ± 10

noisy
env

Cartpole 763 ± 9 517 ± 41 823 ± 6 825 ± 3

Reacher 972 ± 25 973 ± 18 978 ± 17 982 ± 10

Cheetah 813 ± 29 680 ± 7 818 ± 11 822 ± 11

Walker 911 ± 26 942 ± 15 929 ± 11 961 ± 12

Table 12: Action fluctuation ratio in DMControl.

Environment MLP LipsNet-G LipsNet-L LipsNet++

noise-free
env

Cartpole 0.04 ± 0.00 0.08 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

Reacher 2.07 ± 0.60 0.13 ± 0.24 0.01 ± 0.00 0.01 ± 0.00

Cheetah 1.08 ± 0.02 0.92 ± 0.01 0.94 ± 0.01 0.90 ± 0.01

Walker 1.89 ± 0.02 1.25 ± 0.02 0.93 ± 0.01 0.74 ± 0.01

noisy
env

Cartpole 0.58 ± 0.03 0.75 ± 0.09 0.17 ± 0.01 0.13 ± 0.00

Reacher 2.41 ± 0.28 0.04 ± 0.00 0.04 ± 0.03 0.01 ± 0.00

Cheetah 1.13 ± 0.02 1.00 ± 0.01 1.08 ± 0.01 0.94 ± 0.01

Walker 2.02 ± 0.03 1.68 ± 0.01 1.21 ± 0.01 0.78 ± 0.01

Table 13: Performance of LipsNet++ and MLP-SN on DMControl Reacher.

Network Total average return Action fluctuation ratio
Name

Spectral norm
for each layer

MLP-SN

5.0 760 ± 381 0.01 ± 0.00

5.5 831 ± 102 0.01 ± 0.00

5.8 954 ± 10 0.08 ± 0.05

6.0 967 ± 28 0.13 ± 0.08

LipsNet++ 988 ± 10 0.01 ± 0.00
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Figure 23: Performance comparison of LipsNet++ and MLP-SN on DMControl Reacher. The numbers in parentheses
are the spectral norm of each layer in MLP-SN. Points that closer to the top-left corner indicate better performance. It shows
that even with fine adjustments to spectral norm, MLP-SN’s overall performance remains inferior to that of LipsNet++.

the learned filter matrix mainly focus on the frequencies that containing observation information, and rarely focus on the
frequencies that containing noises. In other words, LipsNet++ can automatically extract the important frequencies and filter
out the noise frequencies.
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Figure 24: Filter matrix and observation frequency in walker environment. The color in (a) and (b) represents the
intensity of frequency. The color in (c) represents the magnitude of elements in matrix H . The color distribution in (c)
implies LipsNet++ can automatically extract the important frequencies and filter out the noise frequencies.

K. Comparison to Reward Penalty
Punishing the difference between consecutive actions in the reward is an effective way to smooth the actions in some
environments. However, such an approach breaks the Markov property, which affects the performance, albeit to a minor
extent in certain environments. Moreover, we found that adding reward penalty in a sparse reward environment increases
action fluctuation rather than smoothing it, which is consistent with the finding by Chen et al. (2021) and Song et al. (2023).

Cartpole in DMControl is a sparse reward environment. The reward is 1 when the pole is within 30◦ of the vertical and 0
otherwise. We implement TD3 in this environment, punishing the difference between consecutive actions in the reward.
Specifically, the new reward is r = rorigin + α ∥at+1 − at∥, where rorigin is the original sparse reward, α is the penalty
coefficient and at+1 is the output of actor network under st+1. The experiment results are summarized in Table 14. The
results imply that simply adding reward penalty in the sparse reward environment increases the action fluctuation ratio.
Superiorly, LipsNet++ can smooth actions even in the sparse reward environment.

23



LipsNet++: Unifying Filter and Controller into a Policy Network

Table 14: Comparison to reward penalty.

Method Penalty coefficient α Total average return Action fluctuation ratio

TD3 (MLP, reward penalty) 0.01 825 ± 0.5 0.27 ± 0.01

TD3 (MLP, reward penalty) 0.1 819 ± 0.8 0.21 ± 0.01

TD3 (MLP, reward penalty) 1 13 ± 0.5 0.02 ± 0.00

TD3 (MLP) 805 ± 0.8 0.04 ± 0.00

TD3 (LipsNet-G) 691 ± 1.0 0.08 ± 0.00

TD3 (LipsNet-L) 831 ± 0.9 0.01 ± 0.00

TD3 (LipsNet++) 841 ± 0.2 0.01 ± 0.00

L. Mini-Vehicle Driving: Introduction of Vehicle and Task
The vehicle robot is driven by two differential wheels, which is shown in Figure 26. The task for the robot is to track a
given reference trajectory and reference velocity while avoiding obstacle. The setting of observations and actions in this
environment is described in Table 15.

Figure 25: Physical vehicle robots.

For the perception, the vehicle is equipped with LiDAR, obtaining its position by matching with a pre-scanned point cloud
map generated by SLAM. In this way, vehicle can detect its horizontal coordinate x, vertical coordinate y, and heading
angle ϕ. The vehicle is also equipped with a speed sensor that measures the linear velocity v and angular velocity ω. To
increase the complexity of the task, another vehicle is used as a obstacle vehicle. Both vehicles can exchange real-time state
information with each other via WiFi communication.

For the decision-making and control, a policy network trained by RL is deployed on the vehicle. After inputting the perceived
observation into the network, control actions are computed, namely linear acceleration v̇ and angular acceleration ω̇. Then,
control actions are sent to the motor to execute the command. The overall control mode is shown in Figure 27.

As illustrated in Section 4.3, there are four diverse scenarios in this environment. The scenario descriptions are listed in
Table 1. To describe the scenario settings more clearly, Figure 28 shows the map and vehicle routes for each scenario. Figure
29 shows the corresponding snapshot for each scenario. In scenarios 1-3, the obstacle vehicle goes straight with constant
speed. In scenario 4, the obstacle vehicle is manipulated by human.

24



LipsNet++: Unifying Filter and Controller into a Policy Network

Reference trajectory

Tangent line
𝛿𝜙

𝛿𝑦

𝑋

𝑌

𝑣

𝜔

Heading direction

Figure 26: Vehicle kinematics model. The vehicle
moves by two differential wheels, tracking the reference
trajectory.

Table 15: Variables in mini-vehicle driving env.

Variable Description

Obsv.

v longitudinal speed
ω yaw rate
δy trajectory offset
δϕ heading angle error
δv speed error
∆x obstacle’s relative x position
∆y obstacle’s relative y position
∆ϕ obstacle’s relative angle
∆v obstacle’s relative speed
∆ω obstacle’s relative yaw rate

Action v̇ longitudinal acceleration
ω̇ yaw acceleration

Sensors

LiDAR

WiFi

vehicle speed

𝑣,𝜔

𝑥, 𝑦, 𝜙

𝑥′, 𝑦′, 𝜙′, 𝑣′, 𝜔′

Policy network

LipsNet++

ሶ𝑣, ሶ𝜔

vehicle pose

obstacle state

Surrounding car

(obstacle)

Reference trajectory

Action

Ego car

(RL robot)
Motor

Figure 27: Flowchart of vehicle control mode.
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Figure 28: Scenario illustration of mini-vehicle driving environment.
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Figure 29: Scenario snapshots of mini-vehicle driving environment.
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Figure 30: Filter matrix and observation frequency in mini-vehicle driving environment. The color in (a) and (b)
represents the intensity of frequency. The color in (c) represents the magnitude of elements in matrix H . The color
distribution in (c) implies LipsNet++ can automatically extract the important frequencies and filter out the noise frequencies.
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M. Mini-Vehicle Driving: Detailed Implementation and Results
In the training stage, observation noise is set to zero. In the vehicle testing stage, multiple different magnitudes of observation
noise are added to thoroughly test the performance of policy networks. The noise magnitude is adjusted using the coefficient
σcoef ∈ R+ ∪ {0}, such that noise is distributed in U(σcoef · σbase). And the baseline noise σbase is set to:

σbase =
[
0.01 π

180 0.03 π
180 0.01 0.03 0.03 π

180 0.01 π
180

]⊤
.

The reward function is defined as a constant minus the penalties related to tracking error, vehicle instability, and collision
violation:

r = 1− 0.4(δy)2 − 0.1(δϕ)2 − 1.3|δv| − 0.01ω2 − 0.01v̇2 − 0.01ω̇2 − 2 · I(ρ < 0.94),

where ρ represents the distance between the centers of the two vehicles, calculated as ρ =
√

∆x2 +∆y2. The reference
speed is set to 0.3m/s, meaning δv = v − 0.3.

The Distributional Soft Actor-critic (DSAC) (Duan et al., 2025), a model-free RL algorithm, is used to train the vehicle robot.
The hyperparameters for DSAC are listed in Table 16. The tests in all scenarios are accomplished by the same networks.

All results are shown in Figure 31∼49. Table 17 lists the figure index for each scenario.

Table 16: Hyperparameters for DSAC.

Hyperparameter Value

Replay buffer capacity 1000000
Buffer warm-up size 10000
Batch size 256
Discount γ 0.99
Target network soft-update rate τ 0.005
Policy delay times 2
Temperature parameter α 0.2
Hidden layers in critic network [256, 256]
Activations in critic network ReLU
Hidden layers in subnetwork f [256, 256]
Activations in subnetwork f ReLU
Optimizer Adam
Critic learning rate 1 · 10−4

Actor learning rate 1 · 10−4

Coefficient λk 0.1
Coefficient λh 0.04
Length of historical obsv. N 20
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Table 17: Figure indices for the results of mini-vehicle driving environment.

Scenario and network
Noise amplitude

Snapshots
0 10

Scenario 1
MLP Figure 31 Figure 33

Figure 35
LipsNet++ Figure 32 Figure 34

Scenario 2
MLP Figure 36 Figure 38

Figure 40
LipsNet++ Figure 37 Figure 39

Scenario 3
MLP Figure 41 Figure 43

Figure 45
LipsNet++ Figure 42 Figure 44

Scenario 4
MLP Figure 46 Figure 48

URL 2

LipsNet++ Figure 47 Figure 49

Table 18: Performance summary in mini-vehicle driving environment.

Task setting Scenario 1 Scenario 2 Scenario 3
Policy

network
Noise

amplitude TAR AFR TAR AFR TAR AFR

LipsNet++

0 234.7 0.02 252.6 0.04 287.5 0.03
1 235.2 0.02 252.0 0.04 288.5 0.03
5 232.8 0.08 254.1 0.08 289.6 0.08
10 233.6 0.14 249.6 0.16 290.3 0.14
20 224.5 0.27 252.7 0.28 281.3 0.23

MLP

0 238.4 0.04 254.6 0.17 293.5 0.15
1 237.8 0.58 250.4 0.58 293.0 0.55
5 232.7 1.68 250.0 1.62 289.6 1.58
10 225.0 2.03 247.2 2.24 283.3 2.17
20 209.8 2.53 238.9 2.65 267.9 2.65

2 https://xjsong99.github.io/LipsNet v2
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Figure 31: MLP performance in scenario 1. The noise amplitude is 0.
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Figure 32: LipsNet++ performance in scenario 1. The noise amplitude is 0.
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Figure 33: MLP performance in scenario 1. The noise amplitude is 10.
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Figure 34: LipsNet++ performance in scenario 1. The noise amplitude is 10.

t = 0s

RL robot

Obstacle

Reference trajectory

(a) t=0s

t = 3s

RL robot

Obstacle

(b) t=3s

t = 10s

RL robot

Obstacle

(c) t=10s

t = 17s RL robot

Obstacle

(d) t=17s

Figure 35: Snapshots of scenario 1.
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Figure 36: MLP performance in scenario 2. The noise amplitude is 0.
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Figure 37: LipsNet++ performance in scenario 2. The noise amplitude is 0.
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Figure 38: MLP performance in scenario 2. The noise amplitude is 10.
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Figure 39: LipsNet++ performance in scenario 2. The noise amplitude is 10.
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Figure 40: Snapshots of scenario 2.
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Figure 41: MLP performance in scenario 3. The noise amplitude is 0.
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Figure 42: LipsNet++ performance in scenario 3. The noise amplitude is 0.
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Figure 43: MLP performance in scenario 3. The noise amplitude is 10.
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Figure 44: LipsNet++ performance in scenario 3. The noise amplitude is 10.
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Figure 45: Snapshots of scenario 3.
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Figure 46: MLP performance in scenario 4. The noise amplitude is 0.
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Figure 47: LipsNet++ performance in scenario 4. The noise amplitude is 0.
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Figure 48: MLP performance in scenario 4. The noise amplitude is 10.
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Figure 49: LipsNet++ performance in scenario 4. The noise amplitude is 10.

The results of TAR and AFR for scenario 1-3 are listed in Table 18. The result for scenario 4 is not listed because the
obstacle vehicle is manipulated by human, which means each trial has great randomness. The data in Table 18 is visualized
in Figure 50. As shown in Figure 50(a)(c)(e), when noise increases, LipsNet++ maintains the highest TAR and its TAR
declines much slower than MLP’s. As shown in Figure 50(b)(d)(f), when noise increases, LipsNet++ maintains the lowest
AFR and its AFR grows much slower than MLP’s. These results imply LipsNet++ has excellent action smoothness and
noise robustness.

N. Limitation and Future Work
LipsNet++ achieves smoother and more robust control with a slight increase in training time, as illustrated in Appendix H.
The increase in training wall time caused by this limitation becomes acceptable due to the significant reduction in action
fluctuation rate.

In the future, the backward time of LipsNet++ can be optimized to overcome the above limitation. It can be accelerated by
using multiple forward propagation and zero-order gradient estimation to compute the Jacobian matrix.

Furthermore, an attention mechanism for the filter matrix H can be introduced in future works. In this way, H can vary
according to different observation inputs. Additionally, employing LipsNet++ on more real-world tasks, such as highway
vehicles and embodied AI, is also a promising direction.
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Figure 50: Performance trend with increasing noise in mini-vehicle driving environment.
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