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ABSTRACT

The problem of symbolic music generation presents unique challenges due to the
combination of limited data availability and the need for high precision in note
pitch. To address these issues, we introduce an efficient Fine-grained Sampling
Guidance (FTG) approach within diffusion models. FTG guides the diffusion
models to correct errors in the learned distributions, thereby improving the accu-
racy of music generation. This method empowers diffusion models to excel in
advanced applications such as progressive music generation, improvisation, and
interactive music creation. We derive theoretical characterizations for both the
challenges in symbolic music generation and the effect of the FTG approach. We
provide numerical experiments and a demo page 1 for interactive music generation
with user input to showcase the effectiveness of our approach.

1 INTRODUCTION

Symbolic music generation is a subfield of music generation that focuses on creating music in sym-
bolic form, typically represented as sequences of discrete events such as notes, pitches, rhythms,
and durations. These representations are analogous to traditional sheet music or MIDI files, where
the structure of the music is defined by explicit musical symbols rather than audio waveforms. Sym-
bolic music generation has a wide range of applications, including automatic composition, music
accompaniment, improvisation, and arrangement. It can also play a significant role in interactive
music systems, where a model can respond to user inputs or generate improvisational passages in
real-time. A lot of progress has been made in the field of deep symbolic music generation in recent
years; see Huang et al. (2018), Min et al. (2023), von Rütte et al. (2023), Wang et al. (2024) and
Huang et al. (2024).

Despite recent progress, some unique challenges of symbolic music generation remain unresolved.
A key obstacle is the scarcity of high-quality training data. While large audio datasets are readily
available, symbolic music data is more limited, often due to copyright constraints. Additionally,
unlike image generation, where the inaccuracy of a single pixel may not significantly affect overall
quality, symbolic music generation demands high precision, especially in terms of pitch. In many
tonal contexts, a single incorrect note can be glaringly obvious, even to less-trained ears.

As a partial motivation, we empirically observe the occurrence of “wrong notes” in existing state-
of-the-art symbolic music generation models. We provide theoretical explanations for why these
models may fail to avoid such errors. Apart from that, we find that many models encounter chal-
lenges in generating well-regularized accompaniment. While human-composed accompaniment of-
ten exhibits consistent patterns across bars and phrases, the generated symbolic accompaniment
tends to vary significantly. These observations and theoretical discoveries highlight the need to ap-
ply regularization through external guidance, rather than relying on the model to capture it entirely
autonomously.

We then address the precision challenge in symbolic music generation building upon a diffusion
model-based approach. Diffusion models can flexibly capture a wide variety of patterns in the data
distribution, and therefore generate highly structured and detailed images Ho et al. (2020). This flex-
ibility makes diffusion models well-suited for piano roll-based symbolic music generation, where
segmented piano rolls can be treated similarly to image data for processing. Further, guidance can

1https://huggingface.co/spaces/interactive-symbolic-music/InteractiveSymbolicMusicDemo
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be incorporated into the training process as background information and into the gradual denoising
process to direct the sampling Zhang et al. (2023b), enabling the design of specialized structures
within diffusion models that integrate harmonic and rhythmic regularization. Our results in this
work are summarized as follows:

• Motivation: We provide empirical observations and statistical theory evidence to reveal
and characterize the precision and regularization challenges in symbolic music generation,
underscoring the need for fine-grained guidance in training and generation.

• Methodology: We propose a controlled diffusion model for symbolic music generation
that incorporates fine-grained harmonic and rhythmic guidance and regularization, in both
the training and sampling processes. Even with limited training data, the model is capable
of generating music with high accuracy and consistent rhythmic patterns.

• Effectiveness: We provide both theoretical and empirical evidence supporting the effec-
tiveness of our approach, and further demonstrate the potential of the model to be applied
in interactive music systems, where the model responds to user inputs and generates im-
provisational passages in real-time.

1.1 RELATED WORK

Symbolic music generation. Symbolic music generation literature can be classified based on the
choice of data representation, among which the MIDI token-based representation adopts a sequential
discrete data structure, and is often combined with sequential generative models such as Transform-
ers and LSTMs. Examples of works using MIDI token-based data representation include Huang
et al. (2018), Huang & Yang (2020), Ren et al. (2020), Choi et al. (2020), Hsiao et al. (2021), Lv
et al. (2023) and von Rütte et al. (2023). While the MIDI token-based representation enables gen-
erative flexibility, it also introduces the challenge of simultaneously learning multiple dimensions
that exhibit significant heterogeneity, such as the “pitch” dimension compared to the “duration” di-
mension. An alternative data representation used in music processing is the piano roll-based format.
Many recent works adopt this data representation; see Min et al. (2023), Zhang et al. (2023a), Wang
et al. (2024) and Huang et al. (2024) for example. Our work differs from their works in that we
apply the textural guidance jointly in both the training and sampling process, and with an emphasis
on enhancing real-time generation precision and speed. More detailed comparisons are provided in
Appendix E, after we present a comprehensive description of our methodology.

Controlled diffusion models. Multiple works in controlled diffusion models are related to our
work in terms of methodology. Specifically, we adopt the idea of classifier-free guidance in training
and generation, see Ho & Salimans (2022). To control the sampling process, Chung et al. (2022),
Song et al. (2023) and Novack et al. (2024) guide the intermediate sampling steps using the gradients
of a loss function. In contrast, Dhariwal & Nichol (2021), Saharia et al. (2022), Lou & Ermon
(2023) and Fishman et al. (2023) apply projection and reflection during the sampling process to
straightforwardly incorporate data constraints. Different from these works, we design guidance
for intermediate steps tailored to the unique characteristics of symbolic music data and generation.
While the meaning of a specific pixel in an image is undefined until the entire image is generated,
each position on a piano roll corresponds to a fixed time-pitch pair from the outset. This new context
enables us to develop novel implementations and theoretical perspectives on the guidance approach.

2 BACKGROUND: DIFFUSION MODELS FOR PIANO ROLL GENERATION

In this section, we introduce the data representation of piano roll. We then introduce the formulations
of diffusion model, combined with an application on modeling the piano roll data.

Let M ∈ {0, 1}L×H be a piano roll segment, where H is the pitch range and L is the number of
time units in a frame. For example, H can be set as 128, representing a pitch range of 0 − 127,
and L can be set as 64, representing a 4-bar segment with time signature 4/4 (4 beats per bar)
and 16th-note resolution. Each element Mlh of M (1 ≤ l ≤ L, 1 ≤ h ≤ H) takes value 0
or 1, where Mlh = 1/0 represents the presence/absence of a note at time index l and pitch h2.

2This is a slightly simplified representation model for the purpose of theoretical analysis, the specified
version with implementation details is provided in Section 5.2

2
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Since standard diffusion models are based on Gaussian noise, the output of the diffusion model is
a continuous random matrix X ∈ RL×H , which is then projected to the discrete piano roll M by
Mlh(X) = 1{Xlh ≥ 1/2}, where 1{·} stands for the indicator function.

To model and generate the distribution of M, denoted as PM, we use the the Denoising Diffusion
Probabilistic Modeling (DDPM) formulation (Ho et al., 2020). This formulation uses two Markov
processes: a forward process from t = 1 to T corrupting data with increasing levels of Gaussian
noise, and a backward process going from t = T to 1 removing noise from data. The objective of
DDPM training, with specific choices of parameters and reparameterizations, is given as

Et∼UJ1,T K,X0∼PM,ε∼N (0,I)[λ(t)∥ε− εθ(Xt, t)∥2], (1)

where Xt =
√
ᾱtX0+

√
1− ᾱtε with hyperparameters {βt}, ᾱt =

∏t
s=0(1−βs), and εθ is a deep

neural network with parameter θ. Moreover, according to the connection between diffusion models
and score matching (Song & Ermon (2019)), the deep neural network εθ can be used to derive an
estimator of the score function ∇Xt

log pt(Xt). Specifically, ∇Xt
log pt(Xt) can be approximated

by −εθ(Xt, t)/
√
1− ᾱt.

With the trained noise prediction network εθ, the reverse sampling process can be formulated as
(Song et al., 2020a):

Xt−1 =
√
ᾱt−1

(
Xt −

√
1− ᾱtεθ(Xt, t)√

ᾱt

)
+
√

1− ᾱt−1 − σ2
t εθ(Xt, t) + σtεt, (2)

where σt are hyperparameters chosen corresponding to equation 1, and εt is standard Gaussian
noise at each step. When σt =

√
βt−1/βt

√
1− ᾱt/ᾱt−1, the reverse process becomes the DDPM

sampling process. Going backward in time from XT ∼ N (0, I), the process yields the final output
X0, which can be converted into a piano roll M(X0).

According to Song et al. (2020b), the DDPM forward process Xt =
√
ᾱtX0 +

√
1− ᾱtε can be

regarded as a discretization of the following SDE:

dXt = −1

2
β(t)Xtdt+

√
β(t)dWt, (3)

and the corresponding denoising process takes the form of a solution to the following stochastic
differential equation (SDE):

dXt = −
[
1

2
β(t)Xt + β(t)∇Xt

log pt(Xt)

]
dt+

√
β(t)dW̄t, (4)

where β(t/T ) = Tβt as T goes to infinity, W̄t is the reverse time standard Wiener process,
and ᾱt term should be replaced by its continuous version e−

∫ t
0
β(s)ds (or e

−
∫ t
t0

β(s)ds when
early-stopping time t0 is adopted). The score function ∇Xt

log pt(Xt) can be approximated by
−εθ(Xt, t)/

√
1− e−

∫ t
0
β(s)ds.

Remark 1. Under the SDE formulation, the forward process terminates at a sufficiently large time
T . Also, since the score functions blow up at t ≈ 0, an early-stopping time t0 is commonly adopted
to avoid such issue (Song & Ermon (2020); Nichol & Dhariwal (2021)). When t0 is sufficiently
small, the distribution of Xt0 in the forward process is close enough to the real data distribution.

3 CHALLENGES IN SYMBOLIC MUSIC GENERATION

While generative models have achieved significant success in text, image, and audio generation, the
effective modeling and generation of symbolic music remains a relatively unexplored area. In this
section, we introduce two major challenges of symbolic music generation.

3.1 HARMONIC PRECISION

One challenge of symbolic music generation involves the high precision required for music gener-
ation. Unlike image generation, where a slightly misplaced pixel may not significantly affect the

3
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overall image quality, an “inaccurately” generated musical note can drastically affect the quality of
a piece. This phenomenon can be more explicitly characterized and explained in the framework of
harmonic analysis.

In music, harmony refers to the simultaneous sound of different notes that form a cohesive entity in
the mind of the listener (Müller, 2015). The main constituent components of harmony are chords,
which are musical constructs that typically consist of three or more notes. To create better harmonic
alignment of the generated music, many literature of symbolic music generation, e.g., Min et al.
(2023), von Rütte et al. (2023) and Wang et al. (2024), leverage chords as a pivoting element in data
pre-processing, training and generation. In such works, chord-recognition algorithms are applied
to training data to provide chords as conditions to the generative models. However, the complex-
ity of harmonic analysis and chord recognition lies in the existence of nonharmonic tones. The
nonharmonic tones are notes that are not part of the implied chord, but are often used in music as
a combining element to create smooth melodic lines or transitions. The ambiguity of chords thus
complicates automated chord recognition methods, often leading to errors.

Therefore, in addition to chord analysis, we also consider temporary tonic key signatures3, which
establish the tonal center of music. Unlike nonharmonic tones, out-of-key notes are less common, at
least in many genres4, and produce more noticeable dissonance. For instance, a G♮ note is considered
as out-of-key in a G♭ major context. While such notes might add an interesting tonal color when
intentionally used by composers, they are usually perceived merely as mistakes when appearing in
generative model outputs, see figure 1 for example.

(a) Example form Mozart: Piano Sonata No. 5 in
G major, K. 283, where C♮ (out of the temporary
D major key) and C♯ appear simultaneously.

(b) Example form the output of a diffusion model
trained on POP909, the “wrong notes” A♮ and G♮
are appear when G♭ should be the temporary key.

Figure 1: Classical composers may use out-of-key notes to create interesting tonal color, but when
such notes appear in the results of generative models, they almost always sound “strange”.

Why generative models struggle with out-of-key notes In this section, we characterize why
an out-of-key note is unlikely to be generated in a way that sounds “right” in context by a symbolic
music generation model. We note that a summary of non-standard notations is provided in Appendix
A. Denote the probability of M = M as PM(M). Let PM(w) denote the probability that M has
at least one note-out-of-key. As displayed in the examples of figure 1, the inclusion of a note-
out-of-key requires a meticulously crafted surrounding context in order to function as a legitimate
accidental, rather than being perceived as a mere error. Let PM(w, c) denote the probability that
there is a surrounding context accommodating the existence of out-of-key notes (referred to in brief
as “accommodating context”). We now consider the probability of not having an “accommodating
context”, given that out-of-key notes are generated, i.e., PM(c̄|w). In this case, the out-of-key notes
are likely perceived as “wrong notes”, due to the lack of an accommodating context. Denote the
estimated distributions and probabilistic values with P̂M (·), we have

P̂M(c̄|w) =
P̂M(c̄,w)

P̂M(w)
=

P̂M(c̄,w)

P̂M(c,w) + P̂M(c̄,w)
.

3As a clarification, instead of assigning one single key to a piece or a big section, here we refer to each key
associated with the temporary tonic.

4We note that out-of-key notes are more common in genres such as jazz and contemporary music. However,
symbolic datasets rarely include music from these genres. Further, their inherent flexibility and the ambiguity
in the assessment of quality present additional challenges for generative models. As a result, these genres are
beyond the scope of this work.

4
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In practice, P̂M(c,w) is very small, as an accommodating context requires the careful design and
precise generation of each pixel on the L × H canvas. Therefore, when the modeling error in
P̂M(c̄,w) is large, P̂M(c̄|w) is close to 1, meaning almost every out-of-key note generated by the
model is likely perceived as a “wrong note”. To empirically justify out analysis, we provide exam-
ples of sequences with out-of-key notes generated by both methods can be found on our demo page,
where these errors result in significant dissonance. The following proposition 1 further provides the-
oretical characterization of the lower-bound of P̂M(c̄,w), where n−1/(LH+2) implies slow decrease
of estimation error (in general LH = 128× 128). The proof and details of Pδ are given in appendix
C.1
Proposition 1. Consider approximating PM with the distribution of a continuous random variable
X. Given n i.i.d. data {Xi}ni=1 ∼ pX, and {Mi}ni=1 be given by Mi

lh = 1{Xi
lh ≥ 1/2}. We have

∃ C > 0 such that ∀n,

inf
p̂X

sup
pX∈Pδ

E{Mi}n
i=1∼PM

P̂M(c̄,w) ≥ C · n− 1
LH+2 − PM(c̄,w), (5)

where P̂M is derived from p̂X via the connection M̂
i

lh = 1{X̂
i

lh ≥ 1/2}.

Apart from the theoretical results, we also empirically examine the frequency of out-of-key notes
produced by the generative models. Specifically, we compute the percentage of steps in the gen-
erated sequences containing at least one out-of-key note, where each step corresponds to a 16th
note. As will be shown in Section 5.2.5 (the last two rows of Table 2), out-of-key notes exist in the
generated samples even with high-quality training dataset and well-designed conditioning.

3.2 RHYTHMIC REGULARITY

A second observation regarding symbolic music generation models is their tendency to produce ir-
regular rhythmic patterns. While many composers typically maintain consistent rhythmic patterns
across consecutive measures within a 4-bar phrase, particularly in the accompaniment, such varia-
tions frequently appear in the generated accompaniment of symbolic music generative models.

Figure 2: Example of an accompaniment segment generated by a diffusion model depicting high
variation in rhythmic pattern. Examples of human-composed accompaniment are provided in the
appendix B for comparison.

Such phenomenons can be explained by the scarcity of data and the high dimensionality hindering
the model’s ability to capture correlations between different bars, even within a single generated
section. Additionally, the irregularity in generated patterns can stem from the presence of irregular
samples in many existing MIDI datasets. Without a sufficient quantity of data exhibiting clear
correlations and repetition across measures, it is unlikely that the model will self-generate more
human-like and consistent accompaniment patterns.

4 METHODOLOGY: FINE-GRAINED TEXTURAL GUIDANCE

In the previous section 3, we identified the unique challenges in symbolic music generation arising
from the distinctive characteristics and specific requirements of symbolic music data. Together with
the scarcity of available high-quality data for training, this underscores the need for fine-grained
external control and regularization in generating symbolic music. In this section, we present our
methodology of applying fine-grained regularization guidance to improve the quality and stability
of the generated symbolic music.

An important characteristic of piano-roll data, crucial for designing fine-grained control, is that
each position corresponds to a fixed time-pitch pair, providing a clear interpretation even before the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

full sample is generated. This characteristic contrasts with other data types, such as image data,
where the meanings of pixel values remain unclear until the image is fully generated, and individual
pixels can only be interpreted together with surrounding pixels in a convoluted manner. Therefore,
we accordingly design fine-grained conditioning and sampling correction/regularization, altogether
referred to as Fine-grained Textural Guidance (FTG) that leverage this characteristic of the piano
roll data. We use “texture” to refer to harmony and rhythm together.

4.1 FINE-GRAINED CONDITIONING IN TRAINING

We train a conditional diffusion model with fine-grained harmonic ( C, required) and rhythmic (R,
optional) conditions, which are provided to the diffusion models in the form of a piano roll M cond.
We provide illustration of M cond(C,R) and M cond(C) via examples if Figure 3. The mathematical
descriptions are provided in Appendix D.

(a) M cond(C,R) with both conditions. (b) M cond(C) with harmonic conditions only.

Figure 3: An illustrative example of M cond(C,R) and M cond(C).

Moreover, to enable the model to generate under varying levels of conditioning, including uncondi-
tional generation, we implement the idea of classifier-free guidance, and randomly apply conditions
with or without rhythmic pattern in the process of training. Namely, the training loss is modified
from equation 1 and given as

Et,ε,X0 [λ1(t)∥ε− εθ(Xt,M
cond(C), t)∥2 + λ2(t)∥ε− εθ(Xt,M

cond(C,R), t)∥2], (6)

where λ1(t) and λ2(t) are hyper-parameters. Note that both Mcond(C) and Mcond(C,R) are derived
from X0 via pre-designed chord recognition and rhythmic identification algorithms.

The guided noise prediction at timestep t is then computed as

εθ(Xt, t|C,R) =εθ(Xt,M
cond(C), t)

+ w ·
[
εθ(Xt,M

cond(C,R), t)− εθ(Xt,M
cond(C), t)

]
,

(7)

where w is the weight parameter. Note that the general formulation εθ(Xt, t|C,R) includes the case
where rhythmic guidance is not provided (R = ∅), and w in equation 7 is set as 0.

4.2 FINE-GRAINED CONTROL IN SAMPLING PROCESS

As indicated by discussions in section 3.1 and empirical observations, providing chord conditions to
model cannot prevent them from generating “wrong notes” that do not belong to the indicated key
signature and context. Likewise, the rhythmic conditions also do not guarantee precise alignment
with the provided rhythm. Therefore, in this section we design a fine-grained sampling control to
enhance the precision of generation.

6
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We aim to incorporate control at intermediate sampling steps to ensure the elimination of out-of-
key notes, preventing noticeable inharmonious effects. Given key signature sequence K derived
from chord condition C, let ωK(l) := {l, ωK(l)}Ll=1 denote all out-of-key positions implied by K,
the generated piano-roll M̂ is expected to satisfy M̂ ∈ {0, 1}L×H\WK, i.e., M̂lh = 0, for all
(l, h) ∈ ωK(l). In other words, the desired constrained distribution for generated X̂0 satisfies

P
(
X̂0 ∈ W′

K :=
{
X
∣∣∃(l, h) ∈ ωK(l), s.t. Xlh > 1/2

} ∣∣∣K) = 0. (8)

Note that in the backward sampling equation 2 that derives Xt−1 from Xt, we have for the first
term (Song et al., 2020a; Chung et al., 2022)(

Xt −
√
1− ᾱtε̂θ(Xt, t)√

ᾱt

)
= “predicted X0” = Ê[X0|Xt], t = T, T − 1, . . . , 1. (9)

The major reason leading to generated wrong notes lies in the incorrect estimation of probability
density p̂X , which in turn affects the corresponding score function ∇Xt

log p̂t(Xt). The equiv-
alence ∇Xt

log p̂t(Xt) = −ε̂θ(Xt, t)/
√
1− ᾱt therefore inspires us to project Ê[X0|Xt] to the

K-constrained domain RL×H\W′
K by adjusting the value of ε̂θ(Xt, t) at every sampling step t.

This adjustment is interpreted as a correction of the estimated score.

Specifically, using the notations in 4.1, at each sampling step t, we replace the guided noise predic-
tion ε̂θ(Xt, t|C,R) with ε̃θ(Xt, t|C,R) such that

ε̃θ(Xt, t|C,R) = argmin
ε

∥ε− ε̂θ(Xt, t|C,R)∥

s.t.
(
Xt −

√
1− ᾱtε√
ᾱt

)
∈ RL×H\W′

K.
(10)

The element-wise formulation of ε̃θ(Xt, t|C,R) is given as follows, with calculation details pro-
vided in Appendix C.2.
ε̃θ,lh(Xt, t|C,R) = 1{(l, h) ̸∈ ωK(l)} · ε̂θ,lh(Xt, t|C,R)

+ 1{(l, h) ∈ ωK(l)} ·max

{
ε̂θ,lh(Xt, t|C,R),

1√
1− ᾱt

(
Xt,lh −

√
ᾱt

2

)}
.

(11)
Plugging the corrected noise prediction ε̃θ(Xt, t|C,R) into equation 2, we derive the corrected
X̃t−1. The sampling process is therefore summarized as the following Algorithm 1.

Algorithm 1: DDPM sampling with fine-grained harmonic control

Input: Input parameters: forward process variances βt, ᾱt =
∏t

s=1 βt, backward noise scale
σt, chord condition C, rhythmic condition R (can be null), key signature guidance K

Output: generated piano roll M̃ ∈ {0, 1}L×H

1 XT ∼ N (0, I);
2 for t = T, T − 1, . . . , 1 do
3 Compute guided noise prediction ε̂θ(Xt, t|C,R);
4 Perform noise correction: derive ε̃θ(Xt, t|C,R) using equation 11;
5 Compute X̃t−1 by plugging the corrected noise ε̃θ(Xt, t|C,R) into equation 2
6 end
7 Convert X̃0 into piano roll M̃
8 return output;

Note that at the final step t = 0, the noise correction directly projects X̂0 to RL×H\W′
K, ensuring

the probabilistic constraint 8. A natural concern is that enforcing precise fine-grained control over
generated samples may disrupt the learned local patterns. The following proposition 2, proved in
C.3, provides an upper bound that quantifies this potential effect.
Proposition 2. Under the SDE formulation in equation 3 and equation 4, given an early-stopping
time t0

5, if
EXt∼pt

[∥ε∗(Xt, t)− εθ(Xt, t)∥2] ≤ δ (12)
5As stated in Remark 1, we adopt the early-stopping time to avoid the blow-up of score function. When t0

is sufficiently small, the distributions at t = t0 are close enough to the distributions at t = 0.

7
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for all t, where ε∗(Xt, t) is the optimal solution of the DDPM training objective (1), then we have

KL(p̃t0 |pt0) ≤
δ

2

∫ T

t0

β(t)√
1− e

−
∫ t
t0

β(s)ds

dt, KL(p̃t0 |p̂t0) ≤
δ

2

∫ T

t0

β(t)√
1− e

−
∫ t
t0

β(s)ds

dt,

where pt0 is the distribution of Xt0 in the forward process, p̂t0 is the distribution of X̂t0 generated by
the diffusion sampling process without noise correction, and p̃t0 is the distribution of X̃t0 generated
by the fine-grained noise correction.

Proposition 2 provides upper bounds for the distance between the controlled distribution and the
uncontrolled distribution, as well as between the controlled distribution and the ground truth.

5 EXPERIMENTS

In this section, we present experiments, including empirical observations of generated examples and
numerical comparisons with baseline models, to demonstrate the effectiveness of our fine-grained
guidance approach. We additionally create a demopage6 for demonstration, which allows for fast
and stable interactive music creation with user-specified input guidance.

5.1 EMPIRICAL OBSERVATIONS

In this section, we provide empirical examples of how model output is reshaped by fine-grained
correction in figure 4. Notably, harmonic control not only helps the model eliminate incorrect notes,
but also guides it to replace them with correct ones.

(a) An example of replacing a wrong note B♭♭
with the in-key note B♭.

(b) An example of replacing a wrong note D♮ with
the in-key note D♭.

Figure 4: Examples resulting from symbolic music generation with FTG. The first track is generated
without key-signature control in sampling, the second track is generated with key-signature sampling
control. The third track presents the chord condition. In each subfigure, the tracks are generated with
the same conditions and the same set of noise.

5.2 NUMERICAL EXPERIMENTS

We focus our numerical experiments on accompaniment generation given melody and chord condi-
tions. We briefly introduce the data representation and our model architecture in Section 5.2.1. We
compare with two state-of-art baselines: 1) WholeSongGen (Wang et al. (2024)) and 2) GETMusic
(Lv et al. (2023)). We additionally remark that our proposed method can also be integrated into
any existing diffusion-based frameworks for symbolic music generation, which is not limited to a
specific music generation or accompaniment generation task.

6See https://huggingface.co/spaces/interactive-symbolic-music/InteractiveSymbolicMusicDemo. We note
that slow performance may result from Huggingface resource limitations and network latency.
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5.2.1 DATA REPRESENTATION AND MODEL ARCHITECTURE

the generation target X is represented by a piano-roll matrix of shape 2×L×128 under the resolution
of a 16th note, where L represents the total length of the music piece, and the two channels represent
note onset and sustain, respectively. In our experiments, we set L = 64, corresponding to a 4-
measure piece under time signature 4/4. Longer pieces can be generated autoregressively using the
inpainting method. The backbone of our model is a 2D UNet with spatial attention.

The condition matrix M cond is also represented by a piano roll matrix of shape 2×L×128, with the
same resolution and length as that of the generation target X . For the accompaniment generation
experiments, we provide melody as an additional condition. Detailed construction of the condition
matrices are provided in Appendix F.1.

5.2.2 DATASET

We use the POP909 dataset (Wang et al. (2020a)) for training and evaluation. This dataset consists
of 909 MIDI pieces of pop songs, each containing lead melodies, chord progression, and piano
accompaniment tracks. We exclude 29 pieces that are in triple meter. 90% of the data are used
to train our model, and the remaining 10% are used for evaluation. In the training process, we
split all the midi pieces into 4-measure non-overlapping segments (corresponding to L = 64 under
the resolution of a 16th note), which in total generates 15761 segments in the entire training set.
Training and sampling details are provided in Appendix F.2.

5.2.3 TASK AND BASELINE MODELS

We consider accompaniment generation task based on melody and chord progression. We compare
the performance of our model with two baseline models: 1) WholeSongGen (Wang et al. (2024))
and 2) GETMusic (Lv et al. (2023)). WholeSongGen is a hierarchical music generation framework
that leverages cascaded diffusion models to generate full-length pop songs. It introduces a four-
level computational music language, with the last level being accompaniment. The model for the
last level can be directly used to generate accompaniment given music phrases, lead melody, and
chord progression information. GETMusic is a versatile music generation framework that leverages
a discrete diffusion model to generate tracks based on flexible source-target combinations. The
model can also be directly applied to generate piano accompaniment conditioning on melody and
chord. Since these baseline models do not support rhythm control, to ensure comparability, we will
use the M cond(C) without rhythm condition in our model.

5.2.4 EVALUATION

We generate accompaniments for the 88 MIDI pieces in our evaluation dataset.7 We introduce the
following objective metrics to evaluate the generation quality of different methods:

(1) Chord Progression Similarity We use a rule-based chord recognition method from Dai et al.
(2020) to recognize the chord progressions of the generated accompaniments and the ground truth
accompaniments. Then we split all chord progressions into non-overlapping 2-measure segments,
and encode each segment into a 256-d latent space use a pre-trained disentangled VAE (Wang et al.
(2020b)). We then calculate the pairwise cosine similarities of the generated segments and the
ground truth segments in the latent space. The average similarities with their 95% confidence in-
tervals are shown in the first column of Table 1. The results indicate that our method significantly
outperforms the other two baselines in chord accuracy.

(2) Feature Distribution Overlapping Area We assess the Overlapping Area (OA) of the distributions
of some musical features in the generated and ground truth segments, including note pitch, duration,
and note density8. Similarly, we split both the generated accompaniments and the ground truth
into non-overlapping 2-measure segments. Following von Rütte et al. (2023), for each feature f , we
calculate the macro overlapping area (MOA) in segment-level feature distributions so that the metric

7The WholeSongGen model from Wang et al. (2024) is also trained on the POP909 dataset. Our evaluation
set is a subset of their test set so there is no in-sample evaluation issue on their model.

8Note density is the number of onset notes at each time

9
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also considers the temporal order of the features. MOA is defined as

MOA(f) =
1

N

N∑
i=1

overlap(πgen
i (f), πgt

i (f)),

where πgen
i (f) is the distribution of feature f in the i-th generated segment, and πgt

i (f)) is the
distribution of feature f in the i-th ground truth segment. The MOA’s for different methods are
shown in the last 3 columns in Table 1. Our method significantly outperforms the baselines in terms
of all these metrics.

Methods Chord Similarity OA(pitch) OA(duration) OA(note density)
FTG (Ours) 0.720± 0.007 0.643± 0.005 0.644± 0.006 0.845± 0.005

WholeSongGen 0.611± 0.010 0.471± 0.006 0.586± 0.005 0.726± 0.005

GETMusic 0.394± 0.012 0.323± 0.010 0.377± 0.011 0.661± 0.011

Table 1: Evaluation of the similarity with ground truth for all methods.

5.2.5 ABLATION STUDY

In this section, we conduct ablation studies to better illustrate the effectiveness of our FTG method.
We run two additional experiments on the same accompaniment generation task to analyze the im-
pact of the fine-grained conditioning during training and the fine-grained control in sampling. The
first experiment involves the same model trained with fine-grained conditioning but without control
during sampling, while the second is an unconditional model without any conditioning or control
in both the training and sampling process. Both experiments used the same model architecture and
random seeds as the one with full control for comparability.

We evaluate the frequency of out-of-key notes by computing the percentage of steps in the gener-
ated sequences containing at least one out-of-key note, where each step corresponds to a 16th note.
Additionally, we assessed overall model performance using the same quantitative metrics as in the
previous section. The results are shown in Table 2. We can see that the model achieves best per-
formance when both kinds of controls are added. Specifically, conditioning in the training process
reduces out-of-key notes, but they are not completely avoided until we add sampling control. In
summary, conditioning in training and control in sampling both contribute to reducing out-of-key
notes and improving overall performance.

Methods % Out-of-Key Chord OA OA OA
Notes Similarity (pitch) (duration) (note density)

Training and 0% 0.720 0.643 0.644 0.845

Sampling Control ±0.007 ±0.005 ±0.006 ±0.005

Only 6.0% 0.690 0.614 0.643 0.829

Training Control ±0.008 ±0.005 ±0.005 ±0.004

10.1% 0.378 0.427 0.265 0.682

No Control ±0.007 ±0.006 ±0.007 ±0.005

Table 2: Comparison of the results with and without control in the sampling process.

6 CONCLUSION

In this work, we apply fine-grained textural guidance (FTG) on symbolic music generation models.
We provide theoretical analysis and empirical evidence to highlight the need for fine-grained and
precise control over the model output. We also provide theoretical analysis to quantify and upper
bound the potential effect of fine-grained control on learned local patterns, and provide samples
and numerical results for demonstrating the effectiveness of our approach. For the impact of our
method, we note that the FTG method can be integrated with other diffusion-based symbolic music
generation methods. While sacrificing some creative flexibility, the FTG method prioritizes real-
time generation stability and enables efficient generation with precise control.

10
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A SUMMARY OF NON-STANDARD NOTATIONS

Table 3: Summary of Notations

Notation Type Description

Piano Roll-like Matrices

M , M, Mi discrete Fixed/random/samples of piano roll in {0, 1}L×H .

M̂ discrete Estimated or generated piano roll

M̃ discrete Generated piano roll with fine-grained sampling guidance

M cond discrete The piano roll representing fine-grained conditions.

X , X, Xi continuous Fixed/random/samples of continuous approximation of
piano roll.

X̂, X̂0 continuous Estimated or generated value of X, diffusion output.

X̃0, X̃t continuous Diffusion samples with fine-grained sampling guidance

Textural Conditions or Guidance (abstract)

K, K(l) condition/control Key-signature condition or control for entire piano roll/at
time l.

C, C(l) condition Chord condition.

R,R(l) condition Rhythmic condition.

B,B(l) control Rhythmic control.

Set of Indexes

l ⊂ J1, LK set of time values.

h, h(l) ⊂ J1, HK set of pitch values (as function of l).

ωK(l) ⊂ J1, HK pitch values that are out of key K at time l.

γC(l) ⊂ J1, HK pitch values corresponding to chord C(l) at time l.

γR ⊂ J1, LK onset time values corresponding to rhythm R.

Set of Matrices

WK set of M with out-of-key notes for key signature K.

W′
K set of X corresponding to set WK of M .

CK set of M with contexts accommodating out-of-key K notes.

Probability and Events

w,w1 event M has out-of-key notes.

c, c̄ event M has or does not have “good contexts”

PM, P̂M discrete probability Probability/estimated probability regarding distribution
of M

pX, p̂X density Density/estimated density regarding distribution of X

P,Pδ class Distribution class of pX

13
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B EXAMPLES OF HUMAN-COMPOSED ACCOMPANIMENT

(a) Shostakovich: 5 Pieces for Two Violins and Piano: I. Prelude

(b) Beethoven: Violin Sonata No. 5 in F major, Op. 24, ”Spring”

(c) Dvořák: Romance, Op. 75 No. 1 in F minor for Violin and Piano

Figure 5: Examples of piano accompaniment by human composers, sourced from IMSLP and other
references, showing that the accompaniment (displayed at the bottom of each figure) can follow
highly regular patterns.

C PROOF OF PROPOSITIONS AND CALCULATION DETAILS

C.1 PROOF OF PROPOSITION 1

We first provide the following definition 1, which is adopted from Fu et al. (2024).

Definition 1. Denote the space of density functions

P0 =
{
p(X) = f(X) exp(−C∥X∥22) : f ∈ L(RL×H , B), f(X) ≥ α > 0

}
,

where C and α can be any given constants, and L(RL×H , B) denotes the class of Lipschitz contin-
uous functions on RL×H with Lipschitz constant bounded by B.

Suppose that the density function of X belongs to the following space

Pδ = {p(X) ∈ P0|PM (c̄,w) = δ} , (13)

where the distribution of M is defined from X by

Mlh = 1{Xlh ≥ 1/2}.

14
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Proposition 3. Consider approximating PM with the distribution of a continuous random variable
X. Suppose n i.i.d. data {Xi}ni=1 come from distribution pX. Let {Mi}ni=1 where Mi

lh = 1{Xi
lh ≥

1/2} be the training data provided to the continuous estimator p̂X. Let P̂M be derived from p̂X via

the connection M̂
i

lh = 1{X̂
i

lh ≥ 1/2}. We have ∃C > 0,

inf
p̂X

sup
pX∈Pδ

E{Mi}n
i=1

P̂M(c̄,w) ≥ C · n− 1
LH+2 − PM(c̄,w), (14)

where P̂M is derived from p̂X via the connection M̂
i

lh = 1{X̂
i

lh ≥ 1/2}.

Proof. We first restate a special case of proposition 4.3 of Fu et al. (2024) as the following lemma.

Lemma 1. (Fu et al. (2024), proposition 4.3) Fix a constant C2 > 0. Consider estimating a
distribution P (x) with a density function belonging to the space

P =
{
p(x) = f(x) exp(−C2∥x∥22) : f(x) ∈ L(Rd, B), f(x) ≥ C > 0

}
.

Given n i.i.d. data {xi}ni=1, we have

inf
µ̂

sup
p∈P

E{xi}n
i=1

[TV(µ̂, P )] ≳ n− 1
d+2 ,

where the infimum is taken over all possible estimators µ̂ based on the data.

From lemma 1, since all the conditions are satisfied, we know that

inf
p̂X

sup
pX∈P0

E{xi}n
i=1

[TV(p̂X, pX)] ≳ n− 1
LH+2 , (15)

where

TV(p̂X, pX) =

∫
RL×H

|p̂X(X)− pX(X)|dX. (16)

From the following, all distribution and density functions are conditional distributions and densities
with key signature condition K, therefore, we omit the term K for simplicity of notations.

Without loss of generality, suppose event w1 denoting a note-out-of-key occurring at (l, h) = (1, 1)
is contained in w. By PM(c̄,w) = 0, we have

P̂M(w1) =

∫
( 1
2 ,+∞)

dX11

∫
RL×H−1

dY p̂X(X11,Y )

∆
=

∫
Ωw1

p̂X(X)dX,

(17)

where Y is a (LH − 1)-dimensional variable denoting the elements in matrix X excluding X11.
Let C(w1) denotes the set of all possible realizations of piano roll M with a “good context” to
accommodate the out-of-key note w1, and contains the note w1. For each M ∈ C(w1), let

δ(M) = {(l, h) ∈ J1, LK × J1, HK|Mlh = 1}.

We have

P̂M(c,w1) =
∑

M∈Cw1

∫
( 1
2 ,+∞)|δ(M)|

dXδ(M)

∫
(−∞, 12 )

L×H−|δ(M)|
dY p̂X(Xδ(M), XL×H\δ(M))

∆
=

∫
ΩC(w1)

p̂X(X)dX,

(18)
and note that ΩC(w1) ⊂ Ωw1 , we have

P̂M(c̄,w1) = P̂M(w1)− P̂M(c,w1) =

∫
Ωw1\ΩC(w1)

p̂X(X)dX (19)
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To better explain and summarize equation 17, equation 18 and equation 19, P̂M(·) is always calcu-
lated by integrating p̂X(X) on a corresponding domain. Similarly, for the ground truth distributions
and under definition 1 which provides PM (c̄,w) = δ, we have

PM (c̄,w1) =

∫
Ωw1

\ΩC(w1)

pX(X)dX ≤ δ.

Therefore,

P̂M(c̄,w1) =

∫
Ωw1

\ΩC(w1)

p̂X(X)dX

≥
∫
Ωw1

\ΩC(w1)

|p̂X(X)− pX(X)| − pX(X)dX

≥
∫
Ωw1

\ΩC(w1)

|p̂X(X)− pX(X)| dX − δ

(20)

Therefore,
P̂M(c̄,w1) = TV|Ωw1\ΩC(w1)

(p̂X, pX)− δ, (21)

where TV|Ωw1
\ΩC(w1)

is the total variation integral restricted on the domain Ωw1\ΩC(w1).

By construction of packing numbers provided in the proof of proposition 4.3 of Fu et al. (2024), we
note that constraint PM (c̄,w) = δ or restricting the integral of total variation on Ωw1

\ΩC(w1) does
not change the order of the packing numbers, i.e., P0 and Pδ have the same packing numbers. Let

PΩw1
\ΩC(w1)

δ =
{
C(Ωw1

\ΩC(w1)) · p(X)1X∈Ωw1\ΩC(w1)
| p(X) ∈ Pδ

}
,

where the constant C(Ωw1\ΩC(w1)) is a scale factor to ensure that C(Ωw1\ΩC(w1)) ·
p(X)1X∈Ωw1

\ΩC(w1)
is a probability density function. For simplicity we use P(δ,w1) for short

of PΩw1
\ΩC(w1)

δ .

We have
inf
p̂X

sup
p∈P(δ,w1)

E{Xi}n
i=1

TV(p̂X, pX) ≳ n− 1
LH+2 . (22)

Combining with equation 21, and noting that P̂M(c̄,w) ≥ P̂M(c̄,w1), we have

inf
p̂X

sup
p∈Pδ

E{Xi}n
i=1

P̂M(c̄,w) + δ = inf
p̂X

sup
p∈Pδ

TV|Ωw1
\ΩC(w1)

(p̂X, pX)− δ

inf
p̂X

sup
p∈P(δ,w1)

≥ TV(p̂X, pX) ≳ n− 1
LH+2 .

Therefore, ∃C > 0, ∀n,

inf
p̂X

sup
p∈Pδ

E{Xi}n
i=1

P̂M(c̄,w) ≥ C · n− 1
LH+2 − PM (c̄,w).

which finishes the proof.

C.2 CALCULATION DETAILS IN 4.2

Our goal is to find the optimal solution of problem (10). Since the constraint is an element-wise
constraint on a linear function of ε and the objective is separable, we can find the optimal solution
by element-wise optimization. Consider the (l, h)-element of ε.

First, if (l, h) /∈ ωK(l), there is no constraint on εlh. Therefore, the optimal solution of εlh is
ε̂θ,lh(Xt, t|C,R).

If (l, h) ∈ ωK(l), the constraint on εlh is

Xt,lh −
√
1− ᾱtεlh√

ᾱt
≤ 1

2
,

16
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which is equivalent to

εlh ≥ 1√
1− ᾱt

(
Xt,lh −

√
ᾱt

2

)
.

The objective is to minimize ∥εlh − ε̂θ,lh(Xt, t|C,R)∥. Therefore, the optimal solution of εlh is

εlh = max

{
ε̂θ,lh(Xt, t|C,R),

1√
1− ᾱt

(
Xt,lh −

√
ᾱt

2

)}
.

C.3 PROOF OF PROPOSITION 2

Proof. Under the SDE formulation, the denoising process can take the form of a solution to stochas-
tic differential equation (SDE):

dXt = −
[
1

2
β(t)Xt + β(t)∇Xt

log pt(Xt)

]
dt+

√
β(t)dW̄t, (23)

where β(t/T ) = Tβt, W̄t is the reverse time standard Wiener process. According to Song et al.
(2020b), as T → ∞, the solution to the SDE converges to the real data distribution p0.

In the diffusion model, ∇Xt
log pt(Xt) is approximated by −εθ(Xt, t)/

√
1− e

−
∫ t
t0

β(s)ds. There-
fore, the approximated reverse-SDE sampling process without harmonic guidance is

dX̂t = −

1
2
β(t)X̂t − β(t)

εθ(X̂t, t)√
1− e

−
∫ t
t0

β(s)ds

 dt+
√
β(t)dW̄t. (24)

Similarly, the sampling process with fine-grained harmonic guidance is

dX̃t = −

1
2
β(t)X̃t − β(t)

ε̃θ(X̃t, t)√
1− e

−
∫ t
t0

β(s)ds

 dt+
√
β(t)dW̄t, (25)

where ε̃θ is defined as equation 10 and equation 11.

For simplicity, we denote the drift terms as follows:

f(Xt, t) = −
[
1

2
β(t)Xt + β(t)∇Xt

log pt(Xt)

]

f̂(X̂t, t) = −

1
2
β(t)X̂t − β(t)

εθ(X̂t, t)√
1− e

−
∫ t
t0

β(s)ds

 ,

f̃(X̃t, t) = −

1
2
β(t)X̃t − β(t)

ε̃θ(X̃t, t)√
1− e

−
∫ t
t0

β(s)ds

 .

Since
EXt∼pt [∥ε∗(Xt, t)− εθ(Xt, t)∥2] ≤ δ,

and

ε∗(Xt, t) = −
√

1− e
−

∫ t
t0

β(s)ds∇Xt
log pt(Xt),

we have

EX∼pt
[∥f(X, t)− f̂(X, t)∥] ≤ β(t)√

1− e
−

∫ t
t0

β(s)ds

δ.

Now we consider ε̃θ(X̃t, t), which is the solution of the optimization problem (10). In the continu-
ous SDE case, the corresponding optimization problem becomes

17
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min
ε

∥ε− ε̂θ(Xt, t|C,R)∥

s.t.

Xt −
√
1− e

−
∫ t
t0

β(s)ds
ε

e
− 1

2

∫ t
t0

β(s)ds

 ∈ RL×H\W′
K.

(26)

According to Proposition 1 of Chung et al. (2022), the posterior mean of X0 conditioning on Xt is

E[X0|Xt] =
1

e
− 1

2

∫ t
t0

β(s)ds

(
Xt + (1− e

− 1
2

∫ t
t0

β(s)ds
)∇Xt log pt(Xt)

)
=

1

e
− 1

2

∫ t
t0

β(s)ds

(
Xt −

√
1− e

−
∫ t
t0

β(s)ds
ε∗(Xt, t)

)
.

Since the domain of X0 is RL×H\W′
K, which is a convex set, we know that the posterior mean

E[X0|Xt] naturally belongs to its domain. Therefore, ε∗(Xt, t) is feasible to the problem (26).
Since the optimal solution of the problem is ε̃θ(Xt, t), we have

∥ε̃θ(Xt, t)− εθ(Xt, t)∥ ≤ ∥ε∗(Xt, t)− εθ(Xt, t)∥
for all Xt and t. This further leads to the result that

EX∼pt
[∥f̃(X, t)− f̂(X, t)∥] ≤ β(t)√

1− e
−

∫ t
t0

β(s)ds

δ. (27)

Moreover, since ε̃θ(Xt, t) is essentially the projection of εθ(Xt, t) onto the convex set defined by
the constraints in (26), and ε∗(Xt, t) also belongs to the set, we know that the inner product of
ε∗(Xt, t)− ε̃θ(Xt, t) and εθ(Xt, t)− ε̃θ(Xt, t) is negative, which further leads to the result that

∥ε̃θ(Xt, t)− ε∗(Xt, t)∥ ≤ ∥ε∗(Xt, t)− εθ(Xt, t)∥, (28)

which further implies

EX∼pt [∥f̃(X, t)− f(X, t)∥] ≤ β(t)√
1− e

−
∫ t
t0

β(s)ds

δ. (29)

The following Girsanov’s Theorem (Karatzas & Shreve (1991)) will be used (together with equa-
tion 27 and equation 29) to prove the upper bounds for the KL-divergences in our Proposition 2:

Proposition 4. Let p0 be any probability distribution, and let Z = (Zt)t∈[0,T ], Z ′ = (Z ′
t)t∈[0,T ] be

two different processes satisfying

dZt = b(Zt, t)dt+ σ(t)dBt, Z0 ∼ p0,

dZ ′
t = b′(Z ′

t, t)dt+ σ(t)dBt, Z ′
0 ∼ p0.

We define the distributions of Zt and Z ′
t as pt and p′t, and the path measures of Z and Z ′ as P and

P′ respectively.

Suppose the following Novikov’s condition:

EP

[
exp

(∫ T

0

1

2

∫
x

σ−2(t)∥(b− b′)(x, t)∥2dxdt

)]
< ∞. (30)

Then, the Radon-Nikodym derivative of P with respect to P′ is

dP
dP′ (Z) = exp

{
−1

2

∫ T

0

σ(t)−2∥(b− b′)(Zt, t)∥2dt−
∫ T

0

σ(t)−1(b− b′)(Zt, t)dBt

}
,

and therefore we have that

KL(pT ∥p′T ) ≤ KL(P∥P′) =

∫ T

0

1

2

∫
x

pt(x)σ(t)
−2∥(b− b′)(x, t)∥2dxdt.

18
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Moreover, Chen et al. (2022) showed that if
∫
x
pt(x)σ

−2(t)∥(b− b′)(x, t)∥2dx ≤ C holds for some
constant C over all t, we have that

KL(pT ∥p′T ) ≤
∫ T

0

1

2

∫
x

pt(x)σ(t)
−2∥(b− b′)(x, t)∥2dxdt,

even if the Novikov’s condition equation 30 is not satisfied.

.

According to equation 27 and equation 29, we have∫
x

pt(x)β(t)
−1∥f̃(X, t)− f̂(X, t)∥dx ≤ β(t)√

1− e
−

∫ t
t0

β(s)ds

δ ≤ sup
t∈[t0,T ]

β(t)√
1− e

−
∫ t
t0

β(s)ds

δ,

(31)∫
x

pt(x)β(t)
−1∥f̃(X, t)− f(X, t)∥dx ≤ β(t)√

1− e
−

∫ t
t0

β(s)ds

δ ≤ sup
t∈[t0,T ]

β(t)√
1− e

−
∫ t
t0

β(s)ds

δ.

(32)
Therefore, we can apply Proposition 4 to obtain upper bounds for the KL-divergences, which leads
to

KL(p̃t0 |p̂t0) ≤
∫ T

t0

1

2

∫
x

pt(x)β(t)
−1∥f̃(X, t)− f̂(X, t)∥dx

≤ δ

∫ T

t0

1

2

β(t)√
1− e

−
∫ t
t0

β(s)ds

dt
(33)

and

KL(p̃t0 |pt0) ≤
∫ T

t0

1

2

∫
x

pt(x)β(t)
−1∥f̃(X, t)− f(X, t)∥dx

≤ δ

∫ T

t0

1

2

β(t)√
1− e

−
∫ t
t0

β(s)ds

dt.
(34)

D DETAILS OF CONDITIONING AND ALGORITHMS

D.1 MATHEMATICAL FORMULATION OF TEXTURAL CONDITIONS IN SECTION 4.1

Denote a chord progression by C, where C(l) denotes the chord at time l ∈ J1, LK. Let γC(l) ⊂
J1, HK denote the set of pitch index h that belongs to the pitch classes included in chord C(l).9, and
let γR ⊂ J1, LK denote the set of onset time indexes corresponding to rhythmic pattern R. We define
the following versions of representations for the condition:

• When harmonic (C) and rhythmic (R) conditions are both provided, the corresponding
conditional piano roll M cond(C,R) is given element-wise by M cond

lh(C,R) = 1{l ∈
γR}1{h ∈ γC(l)}, meaning that the (l, h)-element is 1 if pitch index h belongs to chord
C(l) and there is onset notes at time l, and 0 otherwise.

• When only harmonic (C) condition is provided, the corresponding piano roll M cond(C) is
given element-wise by M cond

lh(C) = −1− 1{h ∈ γC(l)}, meaning that the (l, h)-element
is −2 if pitch index h belongs to chord C(l), and −1 otherwise.

Figure 3 provides illustrative examples of M cond(C,R) and M cond(C). The use of −2 and −1
(rather than 1 and 0) in the latter case ensures that the model can fully capture the distinctions
between the two scenarios, as a unified model will be trained on both types of conditions.

9For example, when C(l) = C major (consisting of pitch classes C, E and G), γC includes all pitch values
corresponding to the three pitch classes across all octaves.
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D.2 ADDITIONAL ALGORITHMS IN SECTION 4.2

In this section, we provide the following algorithm: fine-grained sampling guidance additionally
with rhythmic regularization, fine-grained sampling guidance combined with DDIM sampling.

Let B denote the rhythmic regularization. Specifically, we have the following types of regularization:

• B1: Requiring exactly N onset of a note at time position l, i.e.,
∑

h∈J1,HK Mlh = N

• B2: Requiring at least N onsets at time position l, i.e.,
∃h ⊂ J1, HK, or ∃h ⊂ J1, HK\ωK(l) if harmonic regularization is jointly included

such that Mlh = 1, and |h| ≥ N

• B3: Requiring no onset of notes at time position l, i.e., ∀h ∈ J1, HK, Mlh = 0

Let the set of M satisfying a specific regularization B be denoted as MB, and the corresponding set
of X be denoted as M̃B, note that this includes the case where multiple requirements are satisfied,
resulting in

M̃B = M̃B1,B2,... = M̃B1
∩ M̃B2

∩ . . . .

The correction of predicted noise score is then formulated as
ε̃θ(Xt, t|C,R) = argmin

ε
∥ε− ε̂θ(Xt, t|C,R)∥

s.t.
(
Xt −

√
1− ᾱtε√
ᾱt

)
∈ M̃B.

(35)

Further, we can perform predicted noise score correction with joint regularization on rhythm and
harmony, resulting in the corrected noise score

ε̃θ(Xt, t|C,R) = argmin
ε

∥ε− ε̂θ(Xt, t|C,R)∥

s.t.
(
Xt −

√
1− ᾱtε√
ᾱt

)
∈ (RL×H\W′

K) ∩ M̃B.
(36)

We for example provide a element-wise solution of ε̃θ(Xt, t|C,R) defined by problem (35). For
given l, suppose B(l) takes the form of B2, for simplicity take N = 1. This gives ε̃θ,lh = ε̂θ,lh if
maxh E[X0|Xt]hl ≥ 1

2 and E[X0|Xt]hl =
1
2 , h = argmaxh E[X0|Xt]hl, i.e.,

ε̃θ,lh =
1√

1− ᾱt

(
Xt,lh −

√
ᾱt

2

)
,

if maxh E[X0|Xt]hl <
1
2 . The correction applied to predicted X0 (E[X0|Xt]) is illustrated in the

following figure 6.

Algorithm 2: DDPM sampling with fine-grained textural guidance

Input: Input parameters: forward process variances βt, ᾱt =
∏t

s=1 βt, backward noise scale
σt, chord condition C, key signature K, rhythmic condition R, rhythmic guidance B

Output: generated piano roll M̃ ∈ {0, 1}L×H

1 XT ∼ N (0, I);
2 for t = T, T − 1, . . . , 1 do
3 Compute guided noise prediction ε̂θ(Xt, t|C,R);
4 Perform noise correction: derive ε̃θ(Xt, t|C,R) optimization equation 36;
5 Compute X̃t−1 by plugging the corrected noise ε̃θ(Xt, t|C,R) into equation 2
6 end
7 Convert X̃0 into piano roll M̃
8 return output;

We additionally remark that the fine-grained sampling guidance is empirically effective with the
DDIM sampling scheme, which drastically improves the generation speed. Specifically, select sub-
set {τi}mi=1 ⊂ J1, T K, and denote

Xτi−1
=
√
ᾱτi−1

(
Xt −

√
1− ᾱτi ε̂θ(Xτi , τi)√

ᾱτi

)
+
√
1− ᾱτi−1

− σ2
τi ε̂θ(Xτi , τi) + στiετi ,
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(a) Fine-grained control for E[X0|Xt] ∈ RL×H\W′
K. The col-

ored spots denote places that we require E[X0|Xt]lh ≤ 1
2

(b) Fine-grained control for E[X0|Xt] ∈ W′
B. Original notes

are removed at l if B3 is applied. Otherwise if B1 is applied
and currently no note exists, the “most likely notes” (i.e., at h =
argmaxE[X0|Xt]lh) are added.

Figure 6: Illustration of fine-grained control on predicted X0.
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we similarly perform the DDIM noise correction

ε̃θ(Xτi , τi|C,R) = argmin
ε

∥ε− ε̂θ(Xτi , τi|C,R)∥

s.t.
(
Xt −

√
1− ᾱτiε√
ᾱτi

)
∈ (RL×H\W′

K) ∩ M̃B.

on each step i.

E COMPARISON WITH RELATED WORKS

We provide a detailed comparison between our method and two related works in controlled diffusion
models with constrained or guided intermediate sampling steps:

Comparison with reflected diffusion models In Lou & Ermon (2023), a bounded setting is used for
both the forward and backward processes, ensuring that the bound applies to the training objective
as well as the entire sampling process. In contrast, we do not adopt the framework of bounded
Brownian motion, because we do not require the entire sampling process to be bounded within a
given domain; instead, we only enforce that the final sample outcome aligns with the constraint.
While Lou & Ermon (2023) enforces thresholding on Xt in both forward and backward processes,
our approach is to perform a thresholding-like projection method on the predicted noise εθ(Xt, t),
interpreted as noise correction.

Comparison with non-differentiable rule guided diffusion Huang et al. (2024) guides the output
with musical rules by sampling multiple times at intermediate steps, and continuing with the sample
that best fits the musical rule, producing high-quality, rule-guided music. Our work centers on a
different aspect, prioritizing precise control to tackle the challenges of accuracy and regularization in
symbolic music generation. Also, we place additional emphasis on sampling speed, ensuring stable
generation of samples within seconds to facilitate interactive music creation and improvisation.

F NUMERICAL EXPERIMENT DETAILS

F.1 DETAILED DATA REPRESENTATION

The two-channel version of piano roll with with both harmonic and rhythm conditions
(Mcond(C,R)) and with harmonic condition (Mcond(C)) with onset and sustain are represented as:

• Mcond(C,R): In the first channel, the (l, h)-element is 1 if there are onset notes at time l
and pitch index h belongs to the chord C(l), and 0 otherwise. In the second channel, the
(l, h)-element is 1 if pitch index h belongs to the chord C(l) and there is no onset note at
time l.

• Mcond(C): In both channels, the (l, h)-element is 1 if pitch index h belongs to the chord
C(l), and 0 otherwise.

In each diffusion step t, the model input is a concatenated 4-channel piano roll with shape 4×L×128,
where the first two channels correspond to the noisy target Xt and the last two channels correspond
to the condition M cond (either Mcond(C,R) or Mcond(C)). The output is the noise prediction ε̂θ,
which is a 2-channel piano roll with the same shape as Xt. For the accompaniment generation
experiments, we provide melody as an additional condition, which is also represented by a 2-channel
piano roll with shape 2×L× 128, with the same resolution and length as X . The melody condition
is also concatenated with Xt and M cond as model input, which results in a full 6-channel matrix
with shape 6× L× 128.

F.2 TRAINING AND SAMPLING DETAILS

We set diffusion timesteps T = 1000 with β0 = 8.5e−4 and βT = 1.2e−2. We use AdamW
optimizer with a learning rate of 5e−5, β1 = 0.9, and β2 = 0.999. We train for 10 epochs with
batch size 16, resulting in 985 steps in each epoch.
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To speed up the sampling process, we select a sub-sequence of length 10 from {1, · · · , T} and
apply the accelerated sampling process in Song et al. (2020a). It takes 0.4 seconds to generate the
4-measure accompaniment on a NVIDIA RTX 6000 Ada Generation GPU.

G DISCUSSION

The role of generative AI in music and art remains an intriguing question. While AI has demon-
strated remarkable performance in fields such as image generation and language processing, these
domains possess two characteristics that symbolic music lacks: an abundance of training data and
well-designed objective metrics for evaluating quality. In contrast, for music, it is even unclear
whether it is necessary to set the goal as generating compositions that closely resemble10 some
“ground truth”.

In this work, we apply fine-grained sampling control to eliminate out-of-key notes, ensuring that
generated music adheres to the most common harmonies and chromatic progressions. This approach
allows the model to consistently and efficiently produce music that is (in some ways) “pleasing to
the ear”. While suitable for the task of quickly creating large amounts of mediocre pieces, such
models are never capable of replicating the artistry of a real composer, of creating sparkles with
unexpected “wrong” keys. Nevertheless, are they supposed to?

10or, in what sense?
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