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ABSTRACT

Pre-training has enabled state-of-the-art results on many tasks. In spite of its
recognized contribution to generalization, we observed in this study that pre-
training also transfers adversarial non-robustness from pre-trained model into fine-
tuned model in the downstream tasks. Using image classification as an example, we
first conducted experiments on various datasets and network backbones to uncover
the adversarial non-robustness in fine-tuned model. Further analysis was conducted
on examining the learned knowledge of fine-tuned model and standard model, and
revealed that the reason leading to the non-robustness is the non-robust features
transferred from pre-trained model. Finally, we analyzed the preference for feature
learning of the pre-trained model, explored the factors influencing robustness, and
introduced a simple robust pre-traning solution.

1 INTRODUCTION

Benefited from both algorithmic development and adequate training data, deep neural networks
have achieved state-of-the-art performance across a range of tasks. However, in many real-world
applications, it is still expensive or impossible to label sufficient training data. In these cases, a
well-established paradigm has been to pre-train a model using large-scale data (e.g., ImageNet) and
then fine-tune it on target tasks1. Pre-training these days is becoming the default setting not only
in researches Xie & Richmond (2018); Lee et al. (2020), but in many industry solutions Chen et al.
(2019); Kolesnikov et al. (2020); Brown et al. (2020).

What’s wrong with pre-training? With the gradual popularization of pre-training in addressing
real-world tasks, it is vital to consider beyond the accuracy on experimental data, especially for
tasks with high-reliability requirements. As illustrated in Figure 1, we find in typical pre-training
enabled scenarios, the fine-tuned models tend to have an unsatisfactory performance on robustness2.
While confidently recognizing the original input, the fine-tuned models are very sensitive to trivial
perturbation and incorrectly classify the adversarial input. The success of pre-training in generaliza-
tion improvement conceals its defect in decreasing robustness. In this work, we will investigate the
robustness of pre-training by systematically demonstrating the performance on robustness, discuss
how non-robustness emerges, and analyze what factors influence the robustness.

What accounts for the robustness decrease in the fine-tuned model? We then delve into the
cause of the non-robustness by examining the learned knowledge of fine-tuned model. Even though
the target tasks of fine-tuned model and standard model are the same, we find that they are quite
different in terms of learned knowledge. Furthermore, we analyze what features learned by models
lead to the differences and how these features affect robustness. The non-robust features in the
fine-tuned model are demonstrated to be mostly transferred from the pre-trained model and the
mediators that derive non-robustness. Finally, we attribute the preference for utilizing non-robust
features to the difference between the source task and the target task. The difference positively
correlates to the robustness decrease.

1Pre-training typically involves three models as pre-trained model trained on large-scale source dataset,
fine-tuned model initialized with pre-trained model and then fine-tuned on target dataset, and standard model
directly trained on target dataset (trained from scratch).

2Robustness in this paper refers to adversarial robustness. We mix these two terms when no ambiguity is
caused.
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Figure 1: Example of two typical scenarios using pre-training. Regarding the true label, the fine-tuned
model obtains higher confidence on original input yet lower confidence on adversarial input than the
standard model.

Why does the pre-trained model learn non-robust features? We hypothesize that model can
both utilize robust features and non-robust features, and the pre-trained model tends to rely more on
non-robust features when the model capacity is too limited or the source task is too difficult. Then
we study how model capacity and task difficulty, the influencing factors on generalization in prior
studies Vapnik & Chervonenkis (2015); Bartlett & Mendelson (2002), influence the learned features
of pre-trained model and the robustness of fine-tuned model. It is observed that limited pre-trained
model capacity and difficult source task basically lead to non-robust fine-tuned model.

Finally, with the observation that non-robust feature are transferred, a simple robust pre-training
solution is introduced by adversarially training the pre-trained model and then regularizing steepness
at the fine-tuning stage. Experimental comparison validates its effectiveness of regularizing the
difference between target and source tasks.

2 RELATED WORK

It is well-known that transfer learning with CNNs can improve generalization, and many researchers
focus on achieving state-of-the-art generalization on downstream tasks Xie & Richmond (2018);
Tajbakhsh et al. (2016); Lee et al. (2020). Works investigating the robustness of transfer learning has
emerged in the recent years. Adversarial training Madry et al. (2018) provided an alternative way to
improve robustness at the fine-tuning stage (denoted as AT@stage-2). Salman et al. (2020) introduced
adversarial training into the pre-training stage for increasing downstream-task accuracy, and the
increase in robustness is actually a byproduct (denoted as AT@stage-1). Hendrycks et al. (2019)
investigated the gains of pre-training on label corruption, class imbalance, and out-of-distribution
detection. They also found employing adversarial training both in pre-training stage and fine-tuning
stage can improve adversarial robustness compared with adversarially standard training (denoted as
AT@stage-1&2). Shafahi et al. (2020) implemented Knowledge Distillation, a defensive tool Papernot
et al. (2016), at the fine-tuning stage to improve robustness (denoted as KD@stage-2). The authors
were motivated by forgetting/un-inheriting knowledge from pre-trained model to the fine-tuned model.
However, according to our observation, the non-robust features transferred/inherited from pre-trained
model to the fine-tuned model results in non-robustness.

3 PRE-TRAINING IS NON-ROBUST

3.1 NOTATIONS AND SETTINGS

Pre-training. Pre-training is commonly used to initialize the network for target task. We decompose
the network for target task into two parts: feature extractor f with parameters θf , and classifier g
with parameters θg . Given an original input x, f(x; θf ) denotes the mapping from x to its embedding
representation ex, and g(ex; θg) denotes the mapping from ex to its predicted label. Typical pre-
training involves with two fine-tuning settings: partial fine-tuning, in which only fully connected
layer corresponding to the classifier g(·; θg) is updated; and full fine-tuning, in which both f(·; θf )
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Table 1: Comparison of generalization and robustness between standard model, partial fine-tuned
model and full fine-tuned model. For each model, we report accuracy of original inputs (AOI),
accuracy of adversarial inputs (AAI), and decline ratio (DR) on 7 different target datasets.

Model Pets NICO Flowers Cars Food CIFAR10 Alphabet

Standard
AOI 60.62 81.29 61.29 74.54 74.52 95.44 100.00
AAI 40.23 53.45 55.96 53.61 28.24 57.33 99.92
DR 33.63 34.24 8.69 28.07 62.10 39.93 0.06

Partial Fine-tuned
AOI 86.45 91.03 87.98 41.90 58.59 78.48 59.60
AAI 3.38 10.34 8.23 0.12 0.74 0.00 0.00
DR 96.09 88.64 90.64 99.76 98.73 100.00 100.00

Full Fine-tuned
AOI 89.78 94.27 91.98 81.25 78.93 95.54 99.94
AAI 15.7 28.33 27.86 18.57 22.30 1.34 2.90
DR 82.51 69.95 69.71 77.14 71.74 98.59 97.10

and g(·; θg) of pre-trained model are fine-tuned on the target dataset, and f(·; θf ) is usually assigned
a smaller learning rate.

Adversarial robustness. Adversarial robustness, i.e., robustness, measures model’s stability to
adversarial example when small perturbation (often imperceptible) is added to the original input. To
generate the adversarial example, given an original input x and the corresponding true label y, the
goal is to maximize the loss L(x+δ, y) for input x, under the constraint that the generated adversarial
example x′ = x+ δ should look visually similar to the original input x (by restricting ‖δ‖p ≤ ε, in
this work, we use ‖δ‖∞ ≤ ε) and g(f(x′)) 6= y.

Non-robust feature. According to the definition in Ilyas et al. (2019), who simplified classification
into a binary case: input space X → {±1} which predicts a label ŷ corresponding to an input x
sampled from a dataset D. Each feature h : X → R maps the input space X to the real number. A
feature h is η-useful for a dataset D when there exists a η > 0 such that,

E(x,ŷ)∈D[ŷ · h(x)] ≥ η, (1)

which represents h is correlated with the class ŷ of an input x. For a given input under adversarial
perturbation (for some specified set of valid perturbations ∆) x+ δ, a feature h is γ-robust when,

E(x,ŷ)∈D[ inf
δ∈∆

ŷ · h(x)] ≥ γ. (2)

Otherwise, a feature h is non-robust when it is η-useful for some η bounded away from zero, but is
not a γ-robust feature for any γ ≥ 0. Therefore, a classifier C is comprised of a set of featuresH, a
weight vector w, and a bias b, such that,

C(x) = sgn(b+
∑
h∈H

wh · h(x)), (3)

where wh reflects the dependence of C on its corresponding feature h.

Datasets. We carry out our study on several widely-used image classification datasets including
Pets Parkhi et al. (2012), NICO He et al. (2020), Flowers Nilsback & Zisserman (2008), Cars Krause
et al. (2013), Food Bossard et al. (2014), and CIFAR10 Krizhevsky et al. (2009). In addition, we
craft a new Alphabet dataset as a comparing example with low semantic complexity and relatively
sufficient training data. The Alphabet dataset is constructed by offsetting the 26 English letters and
adding random noise, resulting in 1, 000 training images and 200 testing images for each letter class.
Example images of these datasets are illustrated in Figure 2.

3.2 EXPERIMENTAL RESULTS ON ROBUSTNESS

To examine whether pre-training transfers non-robustness, we compare the performance of standard
model, partial fine-tuned model and full fine-tuned model. Regarding adversarial robustness, we
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Figure 2: Example images of Pets, NICO, Flowers, Cars, Food, CIFAR10 and Alphabet, respectively.

introduce decline ratio (DR) as an additional evaluation metric. Given the recognition accuracy of
original inputs (AOI) and adversarial inputs (AAI), DR is defined as DR = (AOI-AAI)/AOI. DR
serves as a more balanced indicator of model robustness than AAI, especially when two models
perform quite differently on original inputs (i.e., AOI). Large DR indicates sharp accuracy decrease
in case of input perturbation, and thus inferior robustness.

The pre-trained model is trained on ImageNet dataset with 224× 224× 3 input resolution, then all
target datasets are set to the same input resolution before feeding into the models. For each type of
model, we report maximum accuracy (over different combinations of learning rates for θf and θg)
based on ResNet-18 backbone in Table 1. The robustness is evaluated against PGD-10 attack Kurakin
et al. (2017) under ε = 0.5 and set step size = 1.25 · (ε/step). The results based on ResNet-50
backbone and WideResNet-50-2 backbone are shown in Supplement B (Table 6 and Table 7).

Table 1 shows that: (1) For most of the examined datasets, fine-tuned models usually achieve better
generalization (AOI), but worse robustness (AAI and DR) than standard model. This demonstrates
that pre-training not only improves the ability to recognize original input of target tasks, but also
transfers non-robustness and makes the fine-tuned model more sensitive to adversarial perturbation.
(2) Within the two pre-training settings, full fine-tuning consistently obtains better robustness as well
as generalization than partial fine-tuning setting. This suggests that full fine-tuning is preferable when
employing pre-training in practical applications to alleviate the decrease in robustness. In the rest of
the paper, we deploy full fine-tuning as the default pre-training setting. (3) For CIFAR10 and Alphabet
when the standard models trained on target datasets already achieve good AOI, pre-training contributes
to trivial improvement on generalization (even with decreased AOI when partially fine-tuned on
CIFAR10) but severe non-robustness to the fine-tuned model. In this view, instead of improving
fine-tuned model, pre-training actually plays a role as poisoning model Koh & Liang (2017); Liu
et al. (2020) (The model behaves normally when encountering normal inputs, but anomalous patterns
are activated for some specific inputs.). This further demonstrates the risk of arbitrarily employing
pre-training and the necessity to explore the factors influencing the performance of pre-training in
subsequent target tasks.

More robustness criteria. To solidly demonstrates the non-robustness of fine-tuned model, we
evaluate AAI under stronger/more diverse attacks and different perturbation levels. Aside from the
PGD-10#0.5 (i.e., PGD-10 attack under ε = 0.5) used in Table 1, FGSM#0.5 (i.e., FGSM attack
under ε = 0.5), FGSM#2.0 (i.e., FGSM attack under ε = 2.0) and AA#0.5 (i.e., Auto Attack Croce
& Hein (2020) under ε = 0.5) are employed as more robustness criteria. Table 2 shows the AAI of
fine-tuned model is lower than standard model using every criterion. Especially when the AOI of the
fine-tuned model is basically higher than that of the standard model, the gap between the DR of the
fine-tuned model and the standard model is larger. This further demonstrates the fine-tuned model
has lower robustness than standard model.

4 DIFFERENCE BETWEEN FINE-TUNED MODEL AND STANDARD MODEL

4.1 ON THE LEARNED KNOWLEDGE

Knowledge measurement. To understand the performance difference between the fine-tuned
model and standard model, we start from examining their learned knowledge. Motivated by many
studies on model knowledge measurement Raghu et al. (2017); Morcos et al. (2018); Wang et al.
(2018); Kornblith et al. (2019); Liang et al. (2019), we employ a recognized metric, Canonical
Correlation Analysis (CCA) Raghu et al. (2017); Hardoon et al. (2004), to quantify the representation
similarity between two networks. It is a statistical technique to determine the representational
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Table 2: The AAI of standard model and fine-tuned model under different adversarial attack and ε.
Criterion Model Pets NICO Flowers Cars Food CIFAR10 Alphabet

PGD-10#2.0
Standard 5.45 3.89 39.31 6.90 0.61 1.14 95.73
Fine-tuned 0.00 0.08 0.24 0.00 0.02 0.00 0.00

FGSM#0.5
Standard 38.18 51.88 55.20 52.20 28.86 63.10 99.87
Fine-tuned 26.25 39.02 39.00 25.06 12.19 24.52 75.83

FGSM#2.0
Standard 6.54 9.74 37.94 13.79 4.29 22.02 97.33
Fine-tuned 1.39 6.13 8.81 1.68 4.97 9.34 53.13

AA#0.5
Standard 5.61 13.06 3.48 3.46 2.45 18.61 99.69
Fine-tuned 1.04 5.57 11.35 2.46 0.20 0.41 0.00

similarity between two layers L1, L2. We briefly explain the flow according to Raghu et al. (2017);
Morcos et al. (2018). Let L1, L2 be i × j (i is the number of images, j is the number of neurons)
dimensional matrices. To find vectors z, s in Ri, such that the correlation coefficient ρ is maximized:

ρ =

〈
zTL1, s

TL2

〉
‖zTL1‖ · ‖sTL2‖

. (4)

By calculating a series of pairwise orthogonal singular vectors, the mean correlation coefficient is
used to represent the similarity of L1, L2: 1

k

∑k
a=1 ρ

(a), where k = min(i, j). Specifically, feature
extractor f(·; θf ) consists of 4 layers, and we compare the similarity between fine-tuned model and
standard model using the output of bottom-layer feature (only conv2_x) and the output of total feature
extractor (considering features of all 4 layers) respectively. More detailed experimental settings are
reported in Supplement C.
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Figure 3: The CCA similarities between different models, which is normalized to [0, 100].

Experimental results. As shown in Figure 3, the fine-tuned model is more similar to the pre-
trained model than to the standard model, both on bottom-layer and all-layer features for most of
the examined datasets. Since the pre-trained model and standard model are trained on source dataset
and target dataset separately, this result seems to tell that more knowledge learned in the fine-tuned
model is transferred from the source task data, than from the fine-tuning target task data. By further
comparing Figure 3(a) with Figure 3(b), we find that the bottom-layer features of the fine-tuned model
and standard model are relatively more similar than all-layer features, suggesting that the bottom-layer
features (e.g., edges, simple textures) extract some shared semantics between the source and target
tasks. This justifies the role of initialization of pre-training and its contribution to generalization
improvement.

4.2 ON NON-ROBUST FEATURES

Universal adversarial perturbation. In this subsection, we investigate what features lead to the
difference in learned knowledge and how these features affect robustness. Different from standard
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adversarial perturbation which is sample-specific, Universal Adversarial Perturbation (UAP) Moosavi-
Dezfooli et al. (2017); Poursaeed et al. (2018) is fixed for a given model misleading most of the
input samples Moosavi-Dezfooli et al. (2017). Let µ denotes a distribution of images x in Rd with
corresponding true label y, the focus of UAP is to seek perturbation v that can fool the model by
identifying almost all datapoints sampled from µ as the target class ỹ (targeted perturbation):

g(f(x+ v)) = ỹ for mostx ∼ µ (5)

In this work, we mainly focus on targeted UAP and generate it by an encoder-decoder network Pour-
saeed et al. (2018). Rather than categorizing it as mere adversarial perturbation in the current
understanding of a series of works Moosavi-Dezfooli et al. (2017); Poursaeed et al. (2018); Zhang
et al. (2020), we find that it contains features that can also work independently. In other words,
without adding into any images, the targeted UAP can be identified as the target class with 100.00%
confidence, e.g., the first picture in Figure 4 is recognized as letter "A" by the standard model with
100.00% confidence. The two properties demonstrate that UAP contains patterns that not only
effectively cover native semantic features in images, but also can be independently recognized by
the model as belonging to the target class. Therefore, we employ UAP as the probe for features on
which the model relies and to understand model behavior.

Fine-tuned Model Standard Model

letter “A” letter “O” letter “A” letter “O”

Figure 4: Visualization of UAP for fine-tuned and standard models on Alphabet: UAPs with different
attacking letter classes.

Visualization on features. Figure 4 illustrates the UAP for fine-tuned and standard models on
the crafted Alphabet dataset. It is shown that UAP of fine-tuned model expresses no semantics,
indicating fine-tuned model prefers to rely on non-robust features. Relying on these noise-alike
features, fine-tuned models are vulnerable to adversarial attacks. In contrast, the UAP of standard
model contains clear semantics related to the target class. We can see that misleading the standard
model is non-trivial and needs to add more human-perceptible information (e.g., edge of "A"). This
coincides with the superior robustness of standard model than fine-tuned model.
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Figure 5: UAP attack results: (a) Using UAP of fine-tuned model and standard model to attack
themselves at different training batches (on Alphabet). (b) Using UAP of pre-trained model to attack
the fine-tuned model and standard model (on other datasets).

The learning process for non-robust features. Next, we employ UAP to examine how the non-
robust features are learned. Since the premise behind successful UAP attack is that the models
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actually extract the corresponding features, we are motivated to use the above obtained UAP to attack
model during its training process to observe when the non-robust features are learned. As shown in
Figure 5(a), we record the attack success rate (i.e., the perturbated images are misclassified as the
attack letter) at different training batches for the fine-tuned model and standard model respectively.
It is easy to perceive that the attack success rate of fine-tuned model remains at a very high level at
the very beginning of training. This indicates that these non-robust features are more likely to be
transferred from the pre-trained model than learned from the target data. Other observation includes
that the UAP of fine-tuned model has a much stronger attack ability than that of standard model,
which again demonstrates the inferior robustness of fine-tuned model compared with standard model.

The transferred non-robust feature. We conduct further experiments to confirm whether the
specific non-robust features (derived from the source task/pre-trained model instead of other ways)
are transferred. The idea is to generate UAP on the pre-trained model, and then use this UAP to
attack the fine-tuned and standard model on different target tasks. The DR value is reported in
Figure 5(b), showing the obvious robustness decrease for the fine-tuned model and trivial influence
on the standard model. Note that UAP is model-dependent, the fact that UAP of pre-trained model
succeeds in attacking the fine-tuned model validates our assumption that pre-training transfers
non-robust features.
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Figure 6: The MMD distance between source dataset and target dataset v.s. DR of fine-tuned model.

The factors affecting the transfer of non-robust features. To delve into the reason why non-
robust features are transferred during fine-tuning, we then investigate how the difference between
the source task and target task relates to the robustness decrease. We introduce maximum mean
discrepancy (MMD) Gretton et al. (2012) to measure the similarity between embedding of source
dataset ex1

∼ p and embedding of target dataset ex2
∼ q:

MMD(p, q,J ) := sup
J∈J

(Eex1
∼p[J(ex1)]− Eex2

∼q[J(ex2)]), (6)

where J is a set containing all continuous functions. To solve this problem, Gretton et al. (2012)
restricted J to be a unit ball in the reproducing kernel Hilbert space. Figure 6 compares the DR value
of fine-tuned model (from Table 1) with the MMD distance between source dataset and target dataset.
We can see that basically DR and MMD distance are in a positive correlation, i.e., the more different
target dataset is from source dataset, the more non-robust the fine-tuned model is. Specially, when
MMD distance is greater than 1.0, the DR value is almost 100% (the worst case). We draw a rough
conclusion that the deviation of the target task from the source task largely affects the robustness of
fine-tuned model.

Discussion. It has been recognized that the knowledge and features pre-training transfers are
semantic-oriented Yosinski et al. (2014); He et al. (2019). We find from the above analysis that
pre-training transfers not only semantic but also non-robust features. Recent studies suggested that
non-robust features can help to improve generalization Ilyas et al. (2019) and belong to so-called
"shortcut" features Geirhos et al. (2020). We speculate that the transferred non-robust features in
pre-training also contributes to the generalization improvement, but imposes robustness problem at
the same time. In particular, the experimental results with excessive differences between the source
dataset and target dataset (High MMD distance indicates that semantic features are hardly helpful
for downstream tasks while the partial fine-tuned model can still achieve passable performance.
E.g., in Table 1, the partial fine-tuned model has no robustness (AAI of 0%) but has an AOI of
59.6%.) suggest that non-robust features seem to be the more transferable than semantic features.
The difference between the target task and source task encourages the non-robust features transfer
and increases the risk for robustness decrease.
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Table 3: The performance of fine-tuned model with different pre-training architectures (from left to
right, the model size increases gradually). Results are averaged over all 7 datasets.

Model
RN-18 RN-50 RN-101 WRN-50-2 WRN-101-2

Model Size 42.7MB 90.1MB 162.8MB 255.4MB 477.0MB

Full Fine-tuned
AOI 90.24 92.36 92.58 92.91 93.01
AAI 16.71 21.07 23.43 26.73 29.64
DR 81.47 78.11 75.53 72.01 69.12

Table 4: The performance of fine-tuned model using different source pre-training datasets.
Dataset Pets NICO

AOI AAI DR AOI AAI DR

ImageNet-10animals 75.91 17.03 77.56 88.90 41.71 53.08
CIFAR10 62.85 26.49 57.85 77.76 47.72 38.63

5 THE NON-ROBUST FEATURE FROM PRE-TRAINED MODEL

The previous sections demonstrate that the non-robustness in pre-training is derived from the non-
robust features originating from the pre-trained model. The issue is how pre-trained model gets the
non-robust features during the pre-training phase. So this section investigates the feature preference
of pre-trained model and the factors influencing the preference. A simple hypothesis: when the model
capacity is too limited or the source task is too difficult, the pre-trained model itself tends to rely
more on non-robust features and represents more risk to affect the robustness of fine-tuned models.

5.1 ANALYTICAL RESULTS ON MODEL CAPACITY AND TASK DIFFICULTY

The key to understanding the pre-trained model’s preference for utilizing features is to observe
their weights wrh (for robust feature) and wnh (for non-robust feature) during the training phase. For
utilizing non-robust features hn, we evaluate the weights wnh by perturbing the non-robust features
and observing change of accuracy during the training phase, a larger change indicates that more
non-robust features are utilized. For utilizing robust features hr, since it is difficult to perturb them
directly, we evaluate the weights wrh by penalizing non-robust weights wnh (approaching zero, via
adversarial training) and observing accuracy during the training phase, a better accuracy indicates
that more robust features are utilized. We find that: (1) The limited model lacks the ability to learn
sufficient robust features and prefers to utilize more non-robust features; (2) The difficult task makes
the model lack the ability to learn sufficient robust features (utilize more non-robust features). The
detailed results are reported in Supplement D.

5.2 FACTORS INFLUENCING ROBUSTNESS OF FINE-TUNED MODEL

Model capacity. We then employ model size to examine the influence on fine-tuned model. Table 3
shows the average results for 5 ResNet-based backbones as pre-training architecture (detailed results
are reported in Supplement E (Table 8)): ResNet-18 (RN-18), ResNet-50 (RN-50), ResNet-101
(RN-101), WideResNet-50-2 (WRN-50-2), and WideResNet-101-2 (WRN-101-2). It is easy to find
that as network size increases, both the generalization and robustness consistently improve (with DR
value decreasing from 81.47 to 69.12). This indicates that the high capacity of the pre-trained model
alleviates the non-robustness transfer to the fine-tuned models.

Task difficulty. Task difficulty largely depends on the dataset. In this work, we measure task
difficulty as the amount of semantics in the dataset necessary to solve the task. Specifically, we
select 2 source datasets for comparison: ImageNet-10animals (a subset of ImageNet, with sufficient
semantics and containing images of animals) and CIFAR10 (with insufficient semantics and containing
images of animals) with the equal number of training images (50, 000 images of 10 classes). To
ensure the scale of source domain to target domain, we select 2 target datasets that also contain images
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Table 5: The AAI value based on different pre-training methods. Results are averaged over 7 datasets.
raw AT@stage-1 AT@stage-2 AT@stage-1&2 KD@stage-2 MD@stage-1&2

16.71 65.07 70.39 74.67 34.19 76.36

of animals: Pets and NICO. The performance of fine-tuning on different target datasets is reported
in Table 4. It is unsurprising that employing ImageNet-10animals as pre-training dataset gives rise
to fine-tuned models with higher AOI. However, the fine-tuned models transferred from CIFAR10
achieves lower DR (better robustness), which indicates that the source dataset with more semantics
improves generalization yet has more risk to transfer non-robustness. Therefore, the guideline in
selecting source dataset for robust fine-tuned models seems not that straightforward. Uncovering
the paradox between generalization improvement and robustness decrease for pre-training needs to
further study the mechanism of feature learning.

6 ROBUST PRE-TRAINING

The related works have mainly focused on how to improve robustness of pre-training, but hardly any
work has paid to how and why pre-training derives non-robustness. Ignoring it and simply using
generic adversarial defenses may lead to a gap from the theoretically optimal robustness, while
focusing on the difference between fine-tuned model and standard model has the potential to achieve
better performance than the above generic adversarial defenses. E.g., feature space steepness is a
characterizing factor for robustness, and we observe that using pre-training increases the feature
space steepness of the model. With the Local Lipschitzness Yang et al. (2020) as the indicator for
measuring feature space steepness, the model using pre-training shows significant discrepancy on the
same target task. Therefore, we propose a method called Discrepancy Mitigating that regularizes
the steepness of the feature space at (inspired by a smooth representation-based defense Zhang et al.
(2019)) the two stages (denoted as DM@stage-1&2), and it outperforms existing methods in transfer
learning as shown in Table 5. More details can be found in Supplement F. So the significance of
understanding why pre-training transfer non-robustness goes beyond itself, and we hope this study
can draw attention to delving into it.

7 CONCLUSION AND DISCUSSION

Conclusion In this work, we demonstrate that pre-training has risk to transfer non-robustness. Using
image classification as an example, we first explore the influencing factors of model capacity and
task difficulty to provide some practical guidelines for robust pre-training settings. Then we discuss
the reason for robustness decrease that the difference between target and source tasks encourages the
transfer of non-robust features from pre-trained model to fine-tuned model. Finally, we introduce a
simple yet effective robust pre-training solution by regularizing the steepness of pre-trained feature
space on target dataset. Experimental results further validate the role of target-source task difference
in transferring non-robustness.

Discussion This paper studies pre-training as the example paradigm of transfer learning. Also of
vital importance is to examine the reliability of other transfer learning paradigms like knowledge
distillation and domain adaption. A particular phenomenon is the non-reliability accumulation in
iterative transfer learning. For example, there has been an increasing attempt to automatically label
data by a well-trained model Yalniz et al. (2019); Zoph et al. (2020); Xie et al. (2020); Kahn et al.
(2020). Since it is difficult to tell whether the data is labeled by human or by model, there exists a
risk to iteratively transfer the pseudo label from one to another model. Without human intervention to
correct the potentially faulty knowledge, the continuous transfer of knowledge among models likely
leads to the so-called “echo chamber” situation in sociology Barberá et al. (2015). As observed in
this work, one single round of knowledge transfer can contribute to considerable reliability issues,
and iterative transfer may result in catastrophic results. In summary, many works remain to explore
the mechanisms behind non-reliability transfer, and we are working towards developing more reliable
transfer learning solutions.
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8 REPRODUCIBILITY STATEMENT

In Section 3.2, we described the details of the data processing and robustness evaluation. In Supple-
ment A, we reported the details of the experimental settings. In Supplement B, we analyzed the effect
of learning rate on robustness. In supplemental materials, we released easy-to-use code.
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A DATASET AND EXPERIMENTAL SETTING

Experimental setting All analyses and experiments are conducted on NVIDIA RTX 2080Ti GPUs.
The code for the analyses and experiments uses PyTorch framework. The pre-trained models using
ImageNet as training set are provided by PyTorch package. We run 100 epochs for training fine-tuned
model and standard model including ResNet-18, ResNet-50, ResNet-101, WideResNet-50-2 and
WideResNet-101-2 (batch size is 128, 64, 64, 32 and 32, respectively). The data augmentation
pipeline is first resize to 256× 256× 3 input resolution input resolution, then randomly cropped to
224× 224× 3 resolution.

Dataset We carry out our study on several widely used image classification datasets including Pets,
NICO, Flowers, Cars, Food, and CIFAR10. Pets has 37 categories, and contains 3, 680 training
images and 3, 669 testing images. NICO has 10 categories, and contains 10, 491 training images and
2, 496 testing images. Flowers has 102 categories, and contains 2, 040 training images and 6, 149
testing images. Cars has 196 categories, and contains 8, 144 training images and 8, 041 testing
images. Food has 101 categories, and contains 75, 750 training images and 25, 250 testing images.
CIFAR10 has 10 categories, and contains 50, 000 training images and 10, 000 testing images.

(a) AOI (b) AAI (c) DR

Figure 7: The performance of fine-tuned model on CIFAR10 dataset using ADAM optimizer.

(a) AOI (b) AAI (c) DR

Figure 8: The performance of fine-tuned model on CIFAR10 dataset using SGD optimizer.

(a) AOI (b) AAI (c) DR

Figure 9: The performance of fine-tuned model on Pets dataset using ADAM optimizer.
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(a) AOI (b) AAI (c) DR

Figure 10: The performance of fine-tuned model on Pets dataset using SGD optimizer.

Table 6: Comparison of generalization and robustness between standard model, partial fine-tuned
model and full fine-tuned model based on ResNet-50 backbone.

Model Pets NICO Flowers Cars Food CIFAR10 Alphabet

Standard
AOI 67.94 84.41 57.87 71.35 82.80 94.38 99.96
AAI 37.63 44.23 49.45 39.51 22.29 54.20 99.65
DR 44.60 47.60 14.55 44.63 73.07 42.57 0.30

Partial Fine-tuned
AOI 91.93 95.39 91.73 50.31 69.51 82.62 64.21
AAI 4.38 12.33 2.94 0.00 0.08 0.00 0.00
DR 95.22 87.06 96.79 100.00 99.87 100.00 100.00

Full Fine-tuned
AOI 93.45 96.63 95.47 82.02 82.20 96.78 100.00
AAI 15.72 25.52 24.75 2.40 9.04 0.58 69.53
DR 83.17 73.59 74.07 97.07 89.00 99.40 30.46

B EXTRA EXPERIMENTAL RESULTS ON ROBUSTNESS

We provide the performance of standard model, partial fine-tuned model and full fine-tuned model
based on other architectures. Table 6 shows the result of ResNet-50, Table 7 shows the result of
WideResNet-50-2. The experimental results are consistent with the previous observation that the
fine-tuning model is basically less robust than the standard model.

Influence of learning rates. To exclude the interference of learning rates on model robustness,
we evaluate different combinations of learning rates. Taking CIFAR10 and Pets as examples, the
learning rate is searched from 0.1 until 0.00001 with ADAM and SGD optimizers (each decay is half
of the previous one, the learning rate of f(·; θf ) is less than or equal to g(·; θf )). The Figure 7 8 9 10
show that the fine-tuned models are generally less robust than the standard model, regardless of the
learning rates or optimizers used.

C EXTRA EXPERIMENTAL RESULTS ON KNOWLEDGE

We break the ResNet-18 into 4 layers, the illustration is shown in Figure 11. In Section 4.1, we
report the results of Layer1 (bottom-layer feature) and Layer4 (all-layer feature) of ResNet-18. In
this section, we report the results of Layer2 and Layer3 of ResNet-18 as shown in Figure 12. We
can find that the results are consistent with our hypotheses: The knowledge learned by the fine-tuned
model is similar to that learned by the pre-trained model regardless of the layer.

D EXTRA ANALYTICAL RESULTS ON MODEL CAPACITY AND TASK
DIFFICULTY

Model capacity. Since the computational complexity of adversarial training on ImageNet dataset
is too high, we use CIFAR10 as the source dataset, ResNet-50 (RN-50) and WideResNet-50-2 (WRN-
50-2) as variable (ResNet-50 has smaller model size) to observe how model capacity influences
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Table 7: Comparison of generalization and robustness between standard model, partial fine-tuned
model and full fine-tuned model based on WideResNet-50-2 backbone.

Model Pets NICO Flowers Cars Food CIFAR10 Alphabet

Standard
AOI 69.80 82.69 58.09 75.12 83.54 95.09 99.98
AAI 31.42 37.25 47.92 28.45 25.07 48.38 99.69
DR 54.97 54.94 17.49 62.12 69.98 49.12 2.88

Partial Fine-tuned
AOI 91.11 95.23 88.51 41.69 62.68 81.27 59.13
AAI 3.46 9.33 1.20 0.00 0.12 0.00 0.00
DR 96.20 90.19 98.64 100.00 99.79 100.00 100.00

Full Fine-tuned
AOI 93.70 97.31 94.73 81.90 83.11 97.35 100.00
AAI 26.08 35.41 29.43 1.77 11.29 5.89 54.11
DR 72.16 63.60 68.92 97.82 86.41 93.94 45.88
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Figure 11: Illustration of the ResNet-18. The output of Layer1 is the corresponding bottom-layer
feature, the output of Layer4 is the corresponding all-layer feature.

utilizing features. Figure 13 (a) shows that ResNet-50 requires more training epochs to reach near-
zero error and converges more slowly than WideResNet-50-2 on the adversarial training images,
demonstrating the limited model lacks the ability to learn sufficient robust features; Figure 13 (b)
and (c) show that the ResNet-50’s gap (gray area) between adversarial images and original images is
narrower than WideResNet-50-2, demonstrating limited model utilizes more non-robust features.

Source task difficulty. We use ResNet-18 as backbone, CIFAR-10 and Alphabet as variable
(Alphabet has lower semantic) to observe how source task difficulty influences utilizing features.
Figure 13 (d) shows that CIFAR10 converges more harder than Alphabet on the adversarial training
images, demonstrating difficult tasks make the model lack the ability to learn sufficient robust features;
Figure 13 (e) and (f) show that the Alphabet’s gap (gray area) between adversarial images and original
images is narrower than CIFAR10, demonstrating the difficult tasks make the model utilize more
non-robust features.

E EXTRA EXPERIMENTAL RESULTS ON MODEL CAPACITY

Table 8 shows the detailed results for 5 ResNet-based backbones as pre-training architecture:
ResNet-18 (RN-18), ResNet-50 (RN-50), ResNet-101 (RN-101), WideResNet-50-2 (WRN-50-2),
and WideResNet-101-2 (WRN-101-2). It is easy to find that as network size increases, both the
generalization and robustness consistently improve.

F DETAILS ON ROBUST PRE-TRAINING

In this paper, we demonstrate that pre-training not only improves generalization but also transfers
non-robustness. As recognized in previous studies Yosinski et al. (2014); He et al. (2019); Hendrycks
et al. (2019), the fine-tuned model tends to obtain good initialization and generalization when the
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Figure 12: The CCA similarities between different models, which is normalized to [0, 100].
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Figure 13: The analytical results on model capacity and task difficulty. The top three figures are the
analytical results about model capacity, and the bottom three figures are the analytical results about
task complexity.

target and source tasks are similar. In our view, the improvement probably owes to the similarity that
transfers semantic-oriented features to the fine-tuned model. Next, we observe that the difference
between target and source tasks encourages the transfer of non-robust features which largely account
for the robustness decrease in fine-tuned model. Inspired by this, if we can constrict the difference
between target and source tasks, it is expected that non-robust features are discouraged to alleviate
robustness decrease and at the same time semantic features are reserved to guarantee generalization.
In this section, we first introduce a metric to quantify the difference between target and source tasks,
and then design a simple method to employ the metric towards robust pre-training.

F.1 STEEPNESS OF FEATURE SPACE

Since pre-training essentially serves as a feature extractor for the target task, we propose to measure
the difference by examining how the features extracted from pre-trained model fit to the images of
target task. Specifically, steepness of feature space is a recognized property closely related to model
robustness Yang et al. (2020). Local Lipschitzness (LL) is typically used to calculate steepness as
following:

LL(f(X)) =
1

n

n∑
i=1

max
x
′
i∈B∞(xi,ε)

‖f(xi)− f(x′i)‖1
‖xi − x′i‖∞

, (7)

where n denotes the number of images in dataset X , x is original image from dataset X , and x′ is the
corresponding adversarial image.

A lower value of LL implies smoother feature space which is usually with good robustness. We
use ImageNet and Alphabet datasets as examples to respectively train pre-trained models f I(·) and
fA(·), and then use them to extract features for images from Alphabet dataset XA. LLF(f I(XA))
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Table 8: The detailed performance of fine-tuned model with different pre-training architectures (from
top to bottom, the model size increases gradually).

Model Pets NICO Flowers Cars Food CIFAR10 Alphabet

RN-18
AOI 89.78 94.27 91.98 81.25 78.93 95.54 99.94
AAI 15.7 28.33 27.86 18.57 22.30 1.34 2.90
DR 82.51 69.95 69.71 77.14 71.74 98.59 97.10

RN-50
AOI 93.45 96.63 95.47 82.02 82.20 96.78 100.00
AAI 15.72 25.52 24.75 2.40 9.04 0.58 69.53
DR 83.17 73.59 74.07 97.07 89.00 99.40 30.46

WRN-50-2
AOI 93.70 97.31 94.73 81.90 83.11 97.35 100.00
AAI 26.08 35.41 29.43 1.77 11.29 5.89 54.11
DR 72.16 63.60 68.92 97.82 86.41 93.94 45.88

RN-101
AOI 93.40 97.23 95.31 83.16 83.76 97.52 100.00
AAI 18.42 36.17 31.17 9.38 13.69 14.34 63.94
DR 80.27 62.79 67.29 88.70 83.65 85.29 36.05

WRN-101-2
AOI 93.64 97.67 95.16 83.32 83.90 97.41 100.00
AAI 29.62 33.45 31.82 4.78 15.09 12.71 80.00
DR 68.36 65.75 66.55 94.25 82.00 86.95 20.00

Table 9: Comparison of pre-training methods on ResNet18.
Method Pets NICO Flowers Cars Food CIFAR10 Alphabet

Full Fine-tuned
AOI 89.78 94.27 91.98 81.25 78.93 95.54 99.94
AAI 15.7 28.33 27.86 18.57 22.30 1.34 2.90
DR 82.51 69.95 69.71 77.14 71.74 98.59 97.10

AT@stage-1
AOI 86.02 92.31 86.23 61.87 70.48 95.78 99.94
AAI 75.44 83.93 77.98 45.49 44.50 66.10 99.31
DR 12.29 9.07 9.56 26.47 36.85 30.98 0.63

AT@stage-2
AOI 40.28 91.55 90.55 70.38 70.35 80.68 99.92
AAI 31.56 80.89 71.93 44.04 52.77 74.53 99.79
DR 21.65 11.64 20.56 37.42 24.99 7.62 0.13

AT@stage-1&2
AOI 71.52 82.61 81.31 65.39 67.54 90.88 99.88
AAI 64.49 76.68 77.28 59.02 58.48 86.93 99.83
DR 9.83 7.17 4.96 9.73 13.42 4.34 0.05

KD@stage-2
AOI 87.74 91.87 90.71 68.09 74.41 94.56 99.98
AAI 21.37 31.97 42.06 4.75 5.43 44.28 89.50
DR 75.64 65.19 53.63 93.02 92.71 53.17 10.48

MD@stage-1&2
AOI 86.48 91.71 87.17 64.83 70.04 95.62 99.96
AAI 77.73 85.50 81.41 53.46 47.93 88.63 99.90
DR 10.11 6.77 6.60 17.53 31.56 7.31 0.05

and LLF(fA(XA)) thus represent how ImageNet-trained and Alphabet-trained features fit to the
Alphabet images. The result is LL(f I(XA)) = 367.4 and LL(fA(XA)) = 32.9, indicating that the
features pre-trained from ImageNet fail to fit to the Alphabet images.

F.2 STEEPNESS REGULARIZATION

We propose to reduce the steepness of pre-trained feature space on the target samples to mitigate
the influence of the discrepancy between target and source tasks (called Discrepancy Mitigating).
Specifically, in addition to the traditional fine-tuning loss, LLF regularization term is added to derive
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the following objective function:

min
θf ,θg

1

m

m∑
i=1

C(y, g(f(xi))) + λ · LL(f(X)), (8)

where C is the cross-entropy classification loss, LL(f(X)) is the steepness regularization term as
defined in equation 7, xi is original image from dataset X , m denotes the number of images in dataset
X , and λ is the balancing parameter to control the trade-off between generalization and robustness.
The hyperparameter λ in this work is set to be 500. The above optimization problem can be easily
solved by PGD-like procedures.

To evaluate the effectiveness of steepness regularization in robust pre-training, we consider several
baselines (listed in Section 2) for comparison. Basically speaking, to improve the robustness of
fine-tuned model involves with the two stages of fine-tuning and pre-training. Our proposed robust
pre-training solution (denoted as DM@stage-1&2) combines the two stages: at the pre-training stage
we employ adversarial training as in Salman et al. (2020) to obtain a robust pre-trained model, and at
the fine-tuning stage we fine-tune on the target dataset according to equation 8 to reduce the feature
space steepness caused by the discrepancy between target and source tasks.

The experimental results of ResNet-18 backbone are shown in Table 9. We have the following main
findings: (1) Regarding robustness, MD@stage-1&2 achieves superior AAI and DR in most examined
datasets, owing to regularizing the transferred feature space steepness; (2) Regarding generalization,
MD@stage-1&2 guarantees performance compared to the original fine-tuned model, and achieves
comparable if not better performance than the baseline methods. This demonstrates the feasibility
of regularizing the difference between target and source tasks in addressing the paradox between
pre-training robustness and generalization.
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