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Abstract

BERT and other pre-trained language models001
(PLMs) are ubiquitous in the modern NLP.002
Even though PLMs are the state-of-the-art003
(SOTA) models for almost every NLP task (Qiu004
et al., 2020), the significant latency during in-005
ference forbids more widely industrial usage.006
In this work, we propose Patient and Confident007
Early Exiting BERT (PCEE-BERT), an off-the-008
shelf sample-dependent early exiting method009
that can work with different PLMs and can also010
work along with popular model compression011
methods. With a multi-exit BERT as the back-012
bone model, PCEE-BERT will make the early013
exiting decision if enough numbers (patience014
parameter) of consecutive intermediate layers015
are confident about their predictions. The en-016
tropy value measures the confidence level of an017
intermediate layer’s prediction. Experiments018
on the GLUE benchmark demonstrate that our019
method outperforms previous SOTA early ex-020
iting methods. Ablation studies show that: (a)021
our method performs consistently well on other022
PLMs, such as ALBERT and TinyBERT; (b)023
PCEE-BERT can make achieve different speed-024
up ratios by adjusting the patience parameter025
and the confidence threshold.026

1 Introduction027

Since BERT (Devlin et al., 2018), the pre-trained028

language models (PLMs) become the default state-029

of-the-art (SOTA) models for natural language pro-030

cessing (NLP). The recent years have witnessed031

the rise of many PLMs, such as GPT (Radford032

et al., 2019), XLNet (Yang et al., 2019), and AL-033

BERT (Lan et al., 2020), and so forth. These BERT-034

style models achieved considerable improvements035

in many Natural Language Processing (NLP) tasks036

by pre-training on the unlabeled corpus and fine-037

tuning on labeled tasks, such as text classification,038

natural language inference (NLI), sequence label-039

ing. Despite their excellent performances, there are040

two issues for PLMs.041

First, previous studies show that PLMs such 042

as BERT suffer from the over-thinking problem. 043

(Zhou et al., 2020; Zhu et al., 2021) shows that in 044

the sentence classification task, BERT’s last few 045

layers may be too deep for some samples. For a 046

sentence classification task, if we insert a classifier 047

on a certain intermediate layer and drop the deeper 048

layers, these intermediate layers may outperform 049

the last layer. 050

Figure 1: This figure demonstrates the overthinking
problem in BERT when it is applied to the sentence
classification task, such as CoLA from the GLUE bench-
mark.

The second drawback of PLMs is their high la- 051

tency. Sentence classification (CLS) tasks play a 052

central role in many application scenarios, such as 053

dialogue systems, document analysis, content rec- 054

ommendation, etc. However, these applications are 055

time-sensitive. For example, if a task-oriented dia- 056

logue (TOD) system takes a lot of time to respond, 057

users will have no doubt stop using this system. 058

User experience studies show that a response has 059

to be made in between 0-100 ms. Thus, a CLS mod- 060

ule should be efficient and accurate. In addition, 061

a special feature of consumer queries is that there 062

are times when the number of queries is extremely 063

high. For example, during the flu season, online 064

medical consultation will be used much often than 065

usual. Thus, it is important for deployed models 066
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(a) PABEE (b) PCEE-BERT

Figure 2: Comparison between PABEE (Zhou et al., 2020) and our PCEE-BERT, a novel early exiting method that
combines the score-based early exiting with the patience-based early exiting.

to adjust their latency dynamically. During peak067

hours, it switches to a low-latency mode to deal068

with more queries. And in other hours, it makes069

the best of itself to provide accurate answers. So070

how can we make model inference dynamically?071

The answer is adaptive inference.072

There exists a branch of literature focusing on073

making PLMs’ inference more efficient via net-074

work pruning (Zhu and Gupta, 2018; Xu et al.,075

2020; Fan et al., 2020; Michel et al., 2019), knowl-076

edge distillation (Sun et al., 2019; Sanh et al., 2019;077

Jiao et al., 2020a), weight quantization (Zhang078

et al., 2020; Bai et al., 2020; Kim et al., 2021) and079

adaptive inference (Zhou et al., 2020; Xin et al.,080

2020; Liu et al., 2020). The adaptive inference081

has drawn much attention. The idea of adaptive082

inference is to deal with simple examples with only083

shallow layers of BERT and process more diffi-084

cult queries with deeper layers, thus significantly085

speeding up the inference time on average while086

maintaining high accuracy. The speed-up ratio can087

be easily controlled with certain hyper-parameters088

to process significant changes in query traffic with-089

out re-deploying the model services or maintaining090

a group of models.091

Early exiting is one of the most important adap-092

tive inference methods (Bolukbasi et al., 2017).093

As depicted in Figure 2(b), it implements adaptive094

inference by installing an early exit, i.e., an inter-095

mediate prediction layer, at each layer of BERT096

and early exiting "easy" samples to speed up infer-097

ence. At the training stage, all the exits are jointly098

optimized with BERT’s parameters. At the infer-099

ence stage, there are two different settings. First,100

in budgeted exiting mode, the model makes a pre-101

diction with a fixed exit for all queries. This mode 102

deals with heavy traffic by assigning a shallower 103

exit for prediction. The other one is dynamic exit- 104

ing mode. That is, some strategies for early exiting 105

are designed to decide whether to exit at each layer 106

given the currently obtained predictions (from pre- 107

vious and current layers) (Teerapittayanon et al., 108

2016; Kaya et al., 2019; Xin et al., 2020; Zhou 109

et al., 2020). In this mode, different samples can 110

exit at different depths. 111

There are mainly three early exiting strategies 112

for BERT dynamic exiting. The first one is score- 113

based early exiting. BranchyNet (Teerapittayanon 114

et al., 2016), FastBERT (Liu et al., 2020), and Dee- 115

BERT (Xin et al., 2020) calculated the entropy of 116

the prediction probability distribution as an esti- 117

mation for the confidence of exiting classifiers to 118

enable dynamic early exiting. Shallow-Deep Nets 119

(Kaya et al., 2019) and RightTool (Schwartz et al., 120

2020a) leveraged the maximum of the predicted 121

distribution as the exiting signal. The second type 122

is the learned exiting (Elbayad et al., 2020). In this 123

type of work, an early exiting signal is generated 124

by a learnable module in the neural network. For 125

example, BERxiT (Xin et al., 2021) install a fully 126

connected layer right after each transformer block 127

of BERT to output a score that is used to decide 128

whether the BERT should stop inference and exit 129

early. The third type is patience-based early exiting, 130

which relies on cross-layer comparison to formu- 131

late the exiting signal. PABEE (Zhou et al., 2020) 132

propose a dynamic exiting strategy analogous to 133

early stopping model training. That is, if the ex- 134

its’ predictions remain unchanged for a pre-defined 135

number of times (patience), the model will stop 136
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inference and exit early. PABEE achieves SOTAs137

results for BERT early exiting.138

Despite its state-of-the-art performances during139

early exiting, PABEE is inflexible in adjusting the140

speedup ratios. On a given task, once the multi-141

exit BERT is fine-tuned and the patience parame-142

ter is fixed, PABEE can only achieve a fixed aver-143

age speedup ratio. Thus, PABEE can not achieve144

speedup ratios of certain values. This drawback145

makes PABEE inconvenient to use in real indus-146

trial scenarios. Thus, it is of great importance to147

come up with a method that can flexibly adjust148

its speedup ratios and performs comparable to or149

better than PABEE.150

In this work, we propose Patiently Confidently151

Early Exiting BERT (PCEE-BERT), a novel early152

exiting method that combines the advantage of153

score-based methods and the patience based early154

exiting method. A multi-exit BERT is adopted as155

the backbone model, and an intermediate classi-156

fier (i.e., an exit) is installed right after each trans-157

former black. PCEE-BERT will early exit if there158

are enough numbers (i.e., the patience parameter)159

of consecutive exits being confident for their pre-160

dicted distributions. We mainly use entropy as the161

confidence measure. Intuitively, our method re-162

quires patience and confidence. It will not rush163

into an early exiting if we only see a couple of164

intermediate layers being confident. In addition,165

it allows the next layer to modify the predictions.166

In this way, our PCEE-BERT can exit with higher167

accuracy while maintaining flexibility.168

Extensive experiments are conducted on the169

GLUE benchmark (Wang et al., 2018). The re-170

sults show that our method outperforms the pre-171

vious SOTA early exiting methods, especially in172

cases where the speedup ratio is large. In addition,173

one can adjust the patience and confidence thresh-174

old so that PCEE-BERT can arrive at different175

speedup ratios. A series of ablation studies are con-176

ducted, resulting in the following observations: (a)177

PCEE-BERT can work with different confidence178

measures; (b) our method performs consistently179

well on different PLMs, and can work alongside180

model compression methods to further speed up181

the BERT’s inference; (c) our PCEE-BERT can182

also be applied to computer vision tasks.183

The rest of the paper is organized as follows.184

First, we introduce the preliminaries for multi-exit185

BERT and early exiting. Second, we elaborate186

on our PCEE-BERT method. Third, we conduct187

experiments on the GLUE benchmark and conduct 188

a series of ablations studies. Finally, we conclude 189

with possible future works. 190

2 Preliminaries 191

In this section, we introduce the necessary back- 192

ground for BERT early exiting. Throughout this 193

work, we consider the case of multi-class classifi- 194

cation with samples {(x, y), x ∈ X , y ∈ Y, i = 195

1, 2, ..., N}, e.g., sentences, and the number of 196

classes is K. 197

2.1 Backbone models 198

In this work, we adopt BERT as the backbone 199

model. BERT is a multi-layer Transformer 200

(Vaswani et al., 2017) network, which is pre-trained 201

in a self-supervised manner on a large corpus. The 202

number of transformer layers of our backbone is 203

denoted as M , and the hidden dimension is d. 204

2.2 Early-exiting Architecture 205

As depicted in Figure 2, early exiting architec- 206

tures are networks with exits at each transformer 207

layer. With M exits, M classifiers f (m)(x; θ(m)) : 208

X → ∆K (m = 1, 2, ...,M ) are designated at M 209

layers of BERT, each of which maps its input to 210

p(m)(x; θ(m)), a probability distribution over the 211

K classes. All the parameters of the transformer 212

layers and exits are denoted as Θ. 213

2.2.1 Training 214

At the training stage, all the exits are jointly op- 215

timized with a summed loss function. Following 216

Huang et al. (2017) and Zhou et al. (2020), the 217

loss function is the weighted average of the cross- 218

entropy (CE) losses given by 219

L =

∑M
m=1m ∗ L(m)∑M

m=1m
, (1) 220

where L(m) = CE(y, p(m)(x; θ(m))) denotes the 221

cross-entropy loss of the m-th exit. Note that the 222

weight m corresponds to the relative inference cost 223

of exit m. 224

2.2.2 Inference 225

During inference, the multi-exit BERT can exit 226

early in two different modes, depending on whether 227

the computational budget to classify an example is 228

known or not. 229

Budgeted Exiting. If the computational budget 230

is known, we can directly appoint a suitable exit m∗ 231

of BERT, f (m∗)(x; θ(m
∗)), to predict all queries. 232
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RTE QNLI MRPC
patience=1 3.24 2.25 2.00
patience=2 4.96 3.87 3.00
patience=3 6.69 5.32 4.18
patience=4 7.77 6.50 5.60
patience=5 8.78 7.61 6.81
patience=6 9.75 8.64 7.91
patience=7 10.68 9.54 8.83
patience=8 11.47 10.36 9.72
patience=9 11.79 11.04 10.51
patience=10 11.92 11.57 11.26
patience=11 12.00 12.00 12.00

Table 1: Average inference layers of PABEE on the
RTE, QNLI and MRPC tasks.

Dynamic Exiting. Under this mode, after re-233

ceiving a query input x, the model starts to predict234

on the classifiers f (1)(x; θ(1)), f (2)(x; θ(2)), ..., in235

turn in a forward pass, reusing computation where236

possible. It will continue to do so until it receives a237

signal to stop early at an exit m∗ < M , or arrives238

at the last exit M . At this point, it will output the239

final predictions based on the current and previous240

predictions. Note that under this early exit setting,241

different samples might exit at different layers.242

3 PCEE-BERT243

3.1 Motivation244

PABEE achieves the SOTA performances for BERT245

early exiting by applying an early exiting decision-246

making process that mimics the early stopping of247

model training. However, one drawback of PABEE248

is that it can not flexibly adjust the average infer-249

ence layers (i.e., speed-ups) for a given dataset once250

its patience parameter is set. Table 1 shows PABEE251

can not achieve certain values for average inference252

layers, such as around 4.0, 6.0, or 9.0 on RTE. This253

drawback may limit the industrial usage of early254

exiting techniques. Thus, it is of great importance255

to develop a new method that performs comparably256

with PABEE and is more flexible than PABEE.257

3.2 PCEE-BERT: a novel dynamic exiting258

method259

The inference process of PCEE-BERT is illustrated260

in Figure 2(b). Assume the feed forward process261

for predicting sample x has gone through layers 1,262

..., m− 1, and we are now at layer m. After going263

through the transformer layer m, the intermediate264

classifier f (m)(x; θ(m)) predicts a class label distri-265

bution p(m)(x; θ(m)). The confidence level of layer266

m is measured by the entropy value of distribution267

p(m)(x; θ(m)): 268

C(m) =

∑K
k=1 p

(m)
k log p

(m)
k

log(1/K)
, (2) 269

where p(m)
k is the probability mass for k-th class la- 270

bel. If C(m) is smaller than a pre-defined threshold 271

τ , the predictions of layer m is considered confi- 272

dent. Otherwise, it is considered in-confident. 273

We use a patience counter pct to store the num- 274

ber of times that the predictions remain confident 275

in consecutive layers. Formally, at layer m, pct(m) 276

is calculated as 277

pct(m) =

{
pct(m−1) + 1, if C(m) < τ,

0, otherwise.
(3) 278

We stop inference early at layer m when pct(m) 279

reaches a predefined integer number t (the patience 280

parameter). If this condition is never fulfilled, we 281

use the final classifier M for prediction. In this way, 282

the model can make an early exit without passing 283

through all layers to make a prediction. 284

Our method draws advantages from the previ- 285

ous score-based early exiting method (Teerapit- 286

tayanon et al., 2016) and patience-based method 287

(Zhou et al., 2020) and overcomes their shortcom- 288

ings. First, the score-based early exiting method 289

relies on the confidence score from only the cur- 290

rent layer. However, as revealed by Szegedy et al. 291

(2014); Jiang et al. (2018), prediction of probability 292

distributions (i.e., softmax scores) suffers from be- 293

ing over-confident to one class, making it an unreli- 294

able metric to represent confidence. In our method, 295

early exiting occurs when a group of consecutive 296

layers is confident, thus making the early exiting 297

decision more reliable. Second, with a patience- 298

based early exiting method like PABEE, when a 299

deeper layer tries to correct the predictions, the pa- 300

tience count resets to zero. As a result, PABEE is 301

less efficient than our PCEE-BERT. Third, since 302

our method is a combination of PABEE and the 303

score-based method, one can conveniently adjust 304

the threshold and patience parameters to control 305

the speed-up ratios, which makes our method more 306

flexible than PABEE. 307

4 Experiments 308

4.1 Datasets 309

We evaluate our proposed approach to the classi- 310

fication tasks on the GLUE benchmark. We only 311
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exclude the STS-B task since it is a regression task,312

and we exclude the WNLI task following previous313

work (Devlin et al., 2018; Xu et al., 2020).314

4.2 Baselines315

We compare our approaches with three groups of316

baselines.317

Backbone models: We mainly choose the318

BERT-base model open-sourced by Devlin et al.319

(2019) as the backbone model. We also investi-320

gate whether our method is applicable across dif-321

ferent backbones, so we also run ablation experi-322

ments with ALBERT base (Lan et al., 2020) and323

TinyBERT6 (Jiao et al., 2020b).324

Budgeted exiting: In the section 2.2 we have in-325

troduced how to train a multi-exit BERT. Once the326

multi-exit BERT, we can conduct budgeted early327

exiting, that is, asking a designated intermediate328

layer to encode and predict all the samples. Bud-329

geted exiting is a direct way to speed up BERT’s330

inference, but it is instance adaptive. Some of the331

samples may not need to go through many of the332

BERT’s layers, and the others may be more diffi-333

cult and require deeper feature encoding from the334

deeper layers of BERT.335

Dynamic exiting: In this part, we compare336

our methods with a series of strong baselines, in-337

cluding BranchyNet (Teerapittayanon et al., 2016),338

Shallow-Deep (Kaya et al., 2019), BERxiT (Xin339

et al., 2021), and PABEE (Zhou et al., 2020). Note340

that PABEE can not flexibly adjust the average in-341

ference layers on a task once the patience parameter342

is set. So we will adjust the thresholds in the other343

baselines and our PCEE-BERT so that all methods’344

number of average inference layers are close.345

4.3 Evaluation of early exiting method346

In this work, we strictly follow the GLUE bench-347

mark to report the performances metrics on each348

task. Note that this work focuses on investigat-349

ing the early exiting of PLMs. Thus we have to350

consider the trade-offs between performance and351

efficiency. Following PABEE (Zhou et al., 2020),352

we mainly report the speedup ratio as the efficiency353

metric. Assume the PLM backbone has N layers354

in total. For each test sample xi (i ∈ {0, 1, ..., N}),355

the early exiting layer is mi, then the average356

speedup ratio on the test set is calculated by357

Speedup = 1−
∑N

1 mi∑N
1 M

. (4)358

We choose this efficiency metric for the following 359

reason: (1) it is linear w.r.t. the actual amount of 360

computation; (2) according to our experiments, it 361

is proportional to actual wall-clock runtime and is 362

also more stable across different runs compared 363

with actual runtime due to randomness by other 364

processes on the same machine. 365

4.4 Experimental settings 366

Training We add a linear output layer after each 367

intermediate layer of the pre-trained BERT or other 368

backbone models as the internal classifiers. We 369

perform grid search over batch sizes of 16, 32, 370

128, and learning rates of 1e-5, 2e-5, 3e-5, 5e-5 371

with an Adam optimizer. The hyper-parameters 372

are selected via the 5-fold cross validation on the 373

train set of GLUE tasks. We implement PCEE- 374

BERT on the base of Hugging Face’s Transformers 375

(Wolf et al., 2020). Experiments are conducted on 376

a single Nvidia V100 16GB GPU. 377

Inference Following prior work on input- 378

adaptive inference (Teerapittayanon et al., 2016; 379

Kaya et al., 2019), inference is on a per-instance 380

basis, i.e., the batch size for inference is set to 1. 381

This is a common scenario in the industry where 382

individual requests from different users (Schwartz 383

et al., 2020b) come at different time points. We 384

report the median performance over five runs with 385

different random seeds. 386

4.5 Main results 387

In Table 2, we report the performance comparisons 388

of each method on the GLUE benchmark under 389

three different speedup settings. The three speedup 390

settings are: (1) 74% to 82% speedup; (2) 46% 391

to 54% speedup; (3) 23% to 28% speedup. Since 392

PABEE can not flexibly adjust the speedup ratios 393

for a given patience parameter and a given task, 394

we adjust the hyper-parameters (such as entropy 395

threshold) of our PCEE-BERT and the other base- 396

lines to achieve similar speedups with PABEE. The 397

results in table 2 clearly show that our PCEE-BERT 398

method outperforms the baseline methods under 399

different speedup ratios. Table 2 also shows that 400

the PABEE method is the best performing baseline. 401

Thus, in order to further analyze and better visual- 402

ize the results, we draw the score-speedup curves 403

(in Figure 3) for budgeted early exiting, PABEE 404

and PCEE-BERT, on the QNLI and MRPC tasks. 405
1 With Table 2 and Figure 3, we can make the 406

1The score-speedup curves for the other five GLUE tasks
can be found in the appendix.
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(a) QNLI task (b) MRPC task

Figure 3: Performance–efficiency trade-offs using different exiting strategies. We can see that our PCEE-BERT
consistently outperforms the strong baseline, PABEE, especially when the speed-up ratio is large.

CoLA MNLI MRPC QNLI QQP RTE SST-2
score speedup score speedup score speedup score speedup score speedup score speedup score speedup

BERT base 0.5426 0% 0.8312 0% 0.8687 0% 0.8988 0% 0.8923 0% 0.6917 0% 0.9135 0%
Budgeted-Exiting-3L 0.0 75% 0.7004 75% 0.7580 75% 0.7741 75% 0.8181 75% 0.5470 75% 0.8107 75%
Budgeted-Exiting-6L 0.0 50% 0.7968 50% 0.8470 50% 0.8538 50% 0.8934 50% 0.6814 50% 0.8864 50%
Budgeted-Exiting-9L 0.5195 25% 0.8306 25% 0.8704 25% 0.8840 25% 0.9029 25% 0.6898 25% 0.9116 25%

BranchyNet
0.0, 74% 0.6381 76% 0.7568 76% 0.7416 80% 0.7159 80% 0.5465 76% 0.7986 76%
0.0 51% 0.7827 53% 0.8298 52% 0.8711 47% 0.8927 50% 0.6738 47% 0.8831 49%

0.5213 27% 0.8297 25% 0.8579 24% 0.8926 27% 0.9005 26% 0.6795 26% 0.9124 24%

Shallow-Deep
0.0, 75% 0.6406 77% 0.7557 76% 0.7432 78% 0.7143 79% 0.5471 76% 0.7947 77%
0.0 52% 0.7818 51% 0.8279 51% 0.8715 49% 0.8956 51% 0.6721 48% 0.8843 48%

0.5232 26% 0.8288 26% 0.8568 25% 0.8931 26% 0.9012 27% 0.6778 26% 0.9115 25%

BERxiT
0.0, 76% 0.6354 76% 0.7562 76% 0.7331 78% 0.6828 80% 0.5531 77% 0.7953 76%

0.1232 52% 0.7842 51% 0.8298 51% 0.8705 48% 0.8914 49% 0.6731 47% 0.8829 49%
0.5218 25% 0.8321 26% 0.8617 26% 0.8958 27% 0.9012 26% 0.6812 27% 0.9138 24%

PABEE
0.0, 75% 0.6392 77% 0.7580 75% 0.7355 81% 0.6863 82% 0.5579 75% 0.7993 77%
0.0 50% 0.7885 52% 0.8306 53% 0.8723 46% 0.8956 49% 0.6770 46% 0.8876 48%

0.5241 26% 0.8342 24% 0.8608 26% 0.8981 28% 0.9043 24% 0.6834 28% 0.9174 22%

PCEE-BERT (ours)
0.0975 79% 0.7336 72% 0.7881 77% 0.8034 75% 0.7961 82% 0.5840 76% 0.8360 76%
0.2323 57% 0.7999 53% 0.8476 53% 0.8710 54% 0.9084 49% 0.6942 47% 0.9036 48%
0.5283 27% 0.8335 28% 0.8684 26% 0.9051 27% 0.9118 25% 0.6970 30% 0.9186 23%

Table 2: Experimental results of different early exiting methods with the same fine-tuned BERT backbone on the
GLUE benchmark. The results show that PCEE-BERT is effective in accelerating BERT’s inference with less
performance loss compared with the baseline methods.

following observations:407

• Although it is clear that PABEE performs408

better than the other baselines when the409

speedup ratio is around 50% or 25%, its advan-410

tages over the other baselines with the 75%411

speedup ratio is relatively small. With the412

75% speedup ratio for seven GLUE tasks, it413

performs better than the score-based methods414

only on three tasks. This observation moti-415

vates us to improve PABEE by combining its416

patience-based early exiting mechanism with417

the score-based ones.418

• Our PCEE-BERT consistently performs bet-419

ter than the baseline methods, especially when420

the speedup ratio is large. Note that our PCEE-421

BERT also consistently outperforms the bud-422

geted exiting speedup ratios, which the other423

baselines do not achieve. Figure 3(a) and 3(b) 424

show that score-speedup curve for PABEE is 425

interleaving with that of the budgeted exiting. 426

However, the score-speedup curve for PCEE- 427

BERT distances itself from the others for most 428

of the GLUE tasks. 429

• The overthinking problem is prevailing in the 430

GLUE benchmark, and our PCEE-BERT early 431

exiting can effectively take advantage of this 432

phenomenon. For 6 of the GLUE tasks, PCEE- 433

BERT can outperform BERT-base with a 25% 434

(or more than) speedup ratio. And for 2 of 435

the GLUE tasks, PCEE-BERT can outper- 436

form BERT-base with a 50% (or more than) 437

speedup ratio. 438

Putting performance comparisons aside, one ben- 439

efit of PCEE-BERT is that it is flexible since by 440
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adjusting the threshold and the patience parameter,441

it can easily control the average inference layers442

and cover (or achieve values close to) any speedup443

ratios.2444

4.6 Ablation studies445

4.6.1 Ablation on the confidence measures446

Note that our PCEE-BERT is a novel combination447

of PABEE and BranchyNet. Thus PCEE-BERT448

mainly uses the entropy of predicted distributions449

as the confidence measure of an intermediate layer.450

However, can PCEE-BERT work with the other451

confidence measures, such as Shallow-Deep? We452

switch the entropy-based confidence level C(M)453

(Equation 2) with that from Shallow-Deep (Kaya454

et al., 2019):455

C(M) = Argmaxkp
(m)
k , (5)456

and we will call this version of PCEE-BERT as457

PCEE-BERT-v1. Note that PCEE-BERT-v1 does458

not require a newly fine-tuned model.459

With BERxiT, we can come up with PCEE-460

BERT-v2. Following BERxiT, PCEE-BERT-v2461

fine-tunes the multi-exit BERT with a fully con-462

nected layer right after each transformer block des-463

ignated to evaluate the confidence score C(M) for464

early exiting at that layer. C(M) is learned along465

with the training of intermediate classifiers. Note466

that PCEE-BERT-v2 can not reuse the fine-tuned467

checkpoints used in PCEE-BERT and requires one468

to fine-tune the BERT backbones on the task at469

hand.470

We conduct the experiments on the QNLI tasks,471

and the results are reported in Figure 4. We can see472

that PCEE-BERT-v1 and PCEE-BERT-v2 perform473

comparably to PCEE-BERT. The results show that474

the proposed PCEE-BERT early exiting mecha-475

nism is off-the-shelf, and the reason for the success476

of our PCEE-BERT is its early exiting mechanism,477

that is, early exit if a group of consecutive exits is478

confident for their predictions.479

4.6.2 Ablation of PLM backbones480

In the main experiments, we use BERT as the pre-481

trained backbone model. However, PCEE-BERT482

can also work with the other types of pre-trained483

backbones, such as ALBERT base (Lan et al., 2020)484

and TinyBERT6 (Jiao et al., 2020b). We conduct485

the experiments on the QNLI task with these two486

2See the Appendix for demonstration on MRPC.

Figure 4: This figure demonstrates that PCEE-BERT
can work with other confidence measures.

backbone models, and results are presented in Fig- 487

ure 5(a) and 5(b). We can see that when using 488

the other pre-trained backbones, PCEE-BERT also 489

performs better than the baseline methods. 490

The results for PCEE-BERT on the TinyBERT 491

also convey an important message: as an infer- 492

ence speedup method, our PCEE method can work 493

alongside the model compression methods to fur- 494

ther reduce the latency of BERT. 495

4.6.3 Ablation of cross-layer ensemble 496

Since we have a prediction module at each layer 497

of BERT, we can conduct model ensemble across 498

layers that the forward pass has gone through al- 499

ready. In Figure 6, we conduct the ablation studies 500

on the RTE and QNLI tasks. According to Figure 6, 501

cross-layer ensemble leads to performance degra- 502

dation when the speedup ratio is large, while when 503

the average inference layers is close to the num- 504

ber of BERT’s transformer blocks M , cross-layer 505

ensemble results in slight improvements. In con- 506

clusion, the cross-layer ensemble does not result in 507

consistent performance improvements. 508

A possible application of the above results is to 509

apply the cross-layer ensemble when a low speedup 510

ratio is applied. And when we ask the model to exit 511

early in the shallow layers, the cross-layer ensem- 512

ble is not used. 513

4.6.4 PCEE-BERT are effective for image 514

classification 515

Our main experiments are conducted on BERT, a 516

pre-trained language model, and the GLUE bench- 517

mark, a series of natural language understanding 518

tasks. However, our PCEE-BERT method is a plug- 519

and-play early exiting and can be applied to mod- 520

els and tasks of different modalities. To demon- 521
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(a) ALBERT base as backbone (b) TinyBERT6 as backbone

Figure 5: Ablation study on alternative PLMs.

Figure 6: Results for ablation study of whether PCEE-
BERT should apply the cross-layer ensemble.

Method CIFAR-10 CIFAR-100
speed-up Acc. speed-up Acc.

ResNet-56 0.0 91.8 0.0 68.6

PABEE
77% 78.3 76% 51.2
52% 86.7 48% 62.5
26% 91.9 24% 69.2

PCEE-BERT
76% 81.2 74% 55.6
51% 87.3 49% 64.8
25% 92.1 24% 69.4

Table 3: Experimental results of PCEE-BERT when
applied in the image classification tasks.

strate the effectiveness of PCEE-BERT on the im-522

age classification task, we follow the experimen-523

tal settings in PABEE (Zhou et al., 2020). We524

conduct experiments on two image classification525

datasets, CIFAR-10 and CIFAR-100 (Krizhevsky,526

2009). The ResNet-56 model (He et al., 2016)527

serves as the backbone, and we compare PCEE-528

BERT with PABEE. We place an exiting classifier529

at every two convolutional layers. We set the batch530

size to 128 and use an SGD optimizer with a learn-531

ing rate of 0.1.532

Table 3 reports the results. PCEE-BERT out- 533

performs PABEE when early exiting at different 534

speedup ratios. In addition, the performance advan- 535

tages of PCEE-BERT are larger when the speedup 536

ratio is large, which is also observed in the NLP 537

tasks. And PCEE-BERT outperforms the original 538

ResNet-56 on both tasks even when it provides 539

around 25% speedup. 540

5 Conclusion 541

In this work, we propose PCEE-BERT, a novel 542

efficient inference method that can yield a better 543

performance-speed trade-off than the existing early 544

exiting methods. PCEE-BERT adopts BERT as the 545

backbone model and makes the exiting decision if 546

there are enough intermediate layers to make confi- 547

dent predictions. The confidence level is measured 548

by the entropy of the predicted distributions. Exper- 549

iments on the GLUE benchmark demonstrate that 550

our method outperforms the previous SOTA early 551

exiting methods, especially when the speedup ratio 552

is large. In addition, PCEE-BERT can achieve dif- 553

ferent speedup ratios by adjusting the patience pa- 554

rameter and the confidence threshold, which makes 555

it more flexible in industrial usage. Ablation studies 556

show that: (a) our PCEE-BERT can adopt different 557

confidence measures, such as maximum probability 558

mass; (b) our method performs consistently well on 559

different PLMs and can work together with model 560

compression methods to speed up the BERT’s in- 561

ference; (c) our PCEE-BERT also performs well 562

on computer vision tasks. 563
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A Appendix718

A.1 Quality–efficiency trade-offs on GLUE719

benchmark tasks.720

In the main content, we present the qual-721

ity–efficiency trade-offs curves for 2 GLUE tasks.722

And here we put the results of the other five tasks723

in Figure 7.724

A.2 Demonstrating PCEE-BERT can cover 725

(or achieve values close to) any speedup 726

ratios 727

PCEE-BERT’s speedup ratio can be conveniently 728

adjusted by setting different values for the patience 729

parameter and the confidence threshold. To vali- 730

date our claim, we alternate the threshold among 731

100 points between 0.0 to 1.0 when the patience 732

parameter takes the value of 1, 2, 3, 6. The average 733

numbers of inference layers are reported in the scat- 734

ter plot (Figure 8). We can see that by adjusting the 735

threshold and the patience parameter, one can eas- 736

ily control the average inference layers and cover 737

(or achieve values close to) any speedup ratios. 738
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(a) CoLA task (b) RTE task

(c) SST-2 task (d) MNLI task (e) QQP task

Figure 7: Performance–efficiency trade-offs using different exiting strategies. We can see that our PCEE-BERT
consistently outperforms the strong baseline, PABEE, especially when the speed-up ratio is large.

Figure 8: This figure demonstrates that PCEE-BERT
can cover (or achieve values close to) any speedup ra-
tios.
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