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Abstract

Although great progress has been made by pre-001
vious table understanding methods including re-002
cent approaches based on large language mod-003
els (LLMs), they are seriously dependent on the004
premise that all given tables must be converted005
into a certain text sequence (such as Markdown006
or HTML) to serve as model input. However,007
it is difficult to access such textual table repre-008
sentations in some practical scenarios, and the009
table images are much more accessible. There-010
fore, how to directly understand tables using011
intuitive visual information is a crucial and ur-012
gent challenge for more applications. In this pa-013
per, we propose a new problem, multimodal ta-014
ble understanding, where the model is required015
to generate correct responses to various table-016
related requests (e.g., questions) according to017
the given table image. To support research on018
this problem, we construct a large-scale dataset019
named MMTab, which covers diverse table020
tasks and can facilitate both the model train-021
ing and evaluation. On this basis, we develop022
a generalist tabular multimodal large language023
models (MLLMs) Table-LLaVA, which signifi-024
cantly outperforms open-source MLLM base-025
lines on 24 benchmarks including held-in and026
held-out settings.027

1 Introduction028

Tables are commonly used to store and present data029

across various fields, e.g., scientific research and030

government reports (Lautert et al., 2013; Shigarov,031

2023). Consequently, the table understanding (TU)032

technique, which aims at automatically understand-033

ing tables and completing table-based downstream034

tasks, such as question answering (Pasupat and035

Liang, 2015) and text generation (Parikh et al.,036

2020), holds substantial and wide-ranging appli-037

cations and significantly elevates work efficiency038

in many scenarios and industries.039

Though the NLP community has dedicated lots040

of efforts to table-based tasks (Herzig et al., 2020;041

Figure 1: An overall performance comparison of Table-
LLaVA and existing MLLMs on a variety of multimodal
table understanding benchmarks. Table-LLaVA signif-
icantly outperforms open-source MLLMs and is even
competitive with the powerful GPT-4V on most tasks.

Wang et al., 2021), most previous models can only 042

fulfill very limited tasks until the emergence of 043

large language models (LLMs) (Brown et al., 2020; 044

Chowdhery et al., 2022). With the help of pow- 045

erful LLMs, we are getting closer to the vision 046

that a versatile model can perform a variety of 047

table-based tasks. However, existing table oriented 048

LLMs (Zhang et al., 2023b; Li et al., 2023c; Zha 049

et al., 2023) heavily rely on the prerequisite that 050

all given tables must be converted into a certain 051

text sequence (like Markdown or HTML) to be in- 052

put to LLMs. Under some practical scenarios like 053

scanned documents, it is difficult to obtain such 054

high-quality textual table representations, and yet a 055

table image is more accessible. Moreover, humans 056

can directly understand two-dimensional tables us- 057

ing the intuitive visual information, whereas LLMs 058

can only interpret tables in a one-directional textual 059

perspective, which may increase the difficulty of 060
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comprehending diverse table structures and colored061

table elements. In summary, for the sake of conve-062

nience and intuitiveness, it is a crucial and urgent063

challenge to explore how to directly digest table064

images using visual features.065

To promote the advancement of table understand-066

ing and its applications, we propose the multi-067

modal table understanding problem, where the068

model is required to generate correct responses to069

table-related requests (e.g., questions) in an end-to-070

end fashion based on the table image. Despite the071

fact that recent multimodal large language models072

(MLLMs) have demonstrated excellent capabili-073

ties in many multimodal tasks, they fall short in074

completing the proposed task. As shown in Figure075

1, the popular MiniGPT-4 (Zhu et al., 2023) and076

BLIP2 (Li et al., 2023b) can only give a perfor-077

mance close to zero on most tasks. More impor-078

tantly, there is a lack of comprehensive dataset that079

can support both the development and evaluation080

of generalist MLLMs for multimodal table tasks.081

To address the above issue, we construct082

MMTab, the first open-source large-scale dataset083

for multimodal table understanding problem, based084

on 14 publicly available table datasets of 8 domains.085

We carefully design scripts to convert original tex-086

tual tables in these datasets into high-quality table087

images and transform all task-specific samples into088

multimodal instruction-tuning samples with a uni-089

fied format of <table image, input request,090

output response>. The resulting dataset con-091

tains 108K table images with a broad coverage of092

table structures, 150K table recognition samples093

for pre-training (named MMTab-pre), 232K sam-094

ples of 15 table-based tasks for instruction tuning095

(named MMTab-instruct), and 49K samples for096

evaluation. During the dataset construction, data097

augmentations at multiple levels (e.g., table-level,098

task-level) were also adopted to further improve the099

data diversity. Specifically, we supplement table100

structure understanding tasks that has been over-101

looked in previous table-related studies.102

Based on the curated dataset, we develop a ver-103

satile tabular MLLM named Table-LLaVA with an104

enhanced two-stage training paradigm. In the first105

stage, we pre-train LLaVA-1.5 (Liu et al., 2023a)106

with an extra table recognition task on the MMTab-107

pre, which requires the model to generate textual se-108

quences (like HTML) based on table images. This109

stage helps align the structures and elements within110

table images to textual modality. In the second111

stage, we continue to instruction-tuning the model112

with diverse table-based downstream tasks on the 113

MMTab-instruct, which endows the model with 114

multimodal table instruction-following ability. 115

We compare Table-LLaVA with a series of 116

MLLMs on a range of held-in and held-out tasks. 117

Experimental results show that Table-LLaVA beats 118

strong MLLM baselines on all 17 held-in and 7 119

held-out benchmarks, and is even competitive with 120

the powerful GPT-4V on 14 held-in benchmarks. 121

We also conduct extensive ablation experiments to 122

analyse how various training data contributes mul- 123

timodal table understanding. We hope this work 124

could establish a strong base for future research on 125

the multimodal table understanding problem and 126

facilitate the progress of generalist MLLMs. 127

We conclude our contributions as follows: 128

1) We make the first systematic exploration 129

of the multimodal table understanding problem, 130

which is complementary to the traditional text-only 131

setting. 132

2) Accordingly, we construct and release a large- 133

scale dataset MM-Tab with a broad coverage of 134

diverse tables and tasks, including a series of novel 135

table structure understanding tasks. 136

3) We develop a versatile tabular MLLM Table- 137

LLaVA, which significantly outperforms a range 138

of strong MLLM baselines under both held-in and 139

held-out settings (Figure 1). 140

2 Related Work 141

2.1 Table Understanding 142

The table understanding (TU) problem concen- 143

trates on how to automatically extract, transform 144

and interpret essential information from tabular 145

data, and it has attracted significant attention in the 146

past years (Bonfitto et al., 2021; Shigarov, 2023). 147

Many tasks fall under the umbrella of table under- 148

standing problem, e.g., Table Question Answering 149

(TQA) (Nan et al., 2022; Zheng et al., 2023), Table 150

Fact Verification (TFV) (Wenhu Chen and Wang, 151

2020) and Table-to-Text (T2T) generation (Cheng 152

et al., 2022). Different approaches have been pro- 153

posed to solve limited TU tasks and handle tables 154

of specific types (Chen et al., 2023a; Dong et al., 155

2022). Recently, the emerging LLMs have opened 156

up new possibilities for utilizing one single model 157

to fulfill multiple table tasks. Researchers have 158

devoted considerable efforts to enhancing the TU 159

ability of LLMs through prompt engineering (Chen, 160

2023; Sui et al., 2023), instruction tuning (Zhang 161

et al., 2023b; Li et al., 2023c) and external tools (Lu 162
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Figure 2: Illustration of dataset examples. Task defini-
tions and more examples are shown in Appendix A.1.

et al., 2023a; Li et al., 2023a). However, LLM-163

based methods are unable to directly process image164

tables, which limits their applications.165

2.2 Multimodal Large Language Models166

Recent studies have tried to endow the purely texu-167

tal LLMs with understanding and perception capa-168

bilities of multimodal information such as image169

and video, leading to the emergence of MLLMs (Li170

et al., 2022; Zhu et al., 2023). Flamingo (Alayrac171

et al., 2022) and BLIP2 (Li et al., 2023b) integrates172

the cross-attention machenism between vision en-173

coders and LLMs to align vision and language174

modalities. LLaVA (Liu et al., 2023b) proposes175

using a linear layer as simpler cross-modal connec-176

tors and achieve powerful performance with better177

data efficiency. More recently, Vary (Wei et al.,178

2023) and Monkey (Li et al., 2023d) made valuable179

efforts to enhance the visual encoder, e.g., scaling180

up the vision vocabulary or image resolutions.181

Though previous MLLMs demonstrated re-182

markable performance on multiple multimodal183

tasks (Liu et al., 2023c; Yu et al., 2023), their184

ability to digest table images and perform down-185

stream tasks has not been thoroughly investigated.186

In this work, we build the first large-scale mul-187

timodal table understanding dataset and develop188

Table-LLaVA, a versatile tabular MLLM for di-189

verse table-based tasks. To stimulate future en-190

deavours on this problem, we also provide a com-191

prehensive benchmark and fully evaluate the table192

understanding ability of existing models.193

3 MMTab Dataset194

3.1 Data Collection195

As shown in Table 1, with a pursuit of diverse ta-196

ble structures, tasks, and domains, we collect sam-197

ples from 14 public table datasets of 8 domains198

(the first 14 rows in Table 1), covering 9 represen- 199

tative academic tasks. The detailed definition of 200

each task can be found in Table 6. The original ta- 201

bles in these datasets are stored in divergent textual 202

formats such as HTML or Markdown. We care- 203

fully design Python scripts with external packages 204

like html2image to convert textual tables into high- 205

quality table images. The task-specific input and 206

output texts are transformed into the instruction- 207

following format with pre-defined instruction tem- 208

plates. To minimize errors during answering pars- 209

ing, we also add extra instructions, requiring mod- 210

els to output the final answer in the JSON format. 211

As shown in the Figure 2, the rendered table images 212

and processed input-output pairs constitute the final 213

multimodal instruction-tuning samples with a uni- 214

fied format of <table image, input request, 215

output response>. We adhere to the original 216

dataset partitioning and select 11 datasets for model 217

training and held-in evaluation. 3 datasets with non- 218

overlapping domains are used for held-out evalu- 219

ation. In this way, we obtain 108K table images, 220

147K train samples and 42K test samples. 221

3.2 Data Augmentations 222

Previous works have shown that the diversity of 223

instruction-following data is crucial to the capa- 224

bility of the resulting instruction-following mod- 225

els (Zhou et al., 2023; Si et al., 2023; Li et al., 226

2023c). To create more data diversity and avoid 227

over-fitting in the model training, we perform addi- 228

tional data augmentations at multiple levels. 229

Table-level augmentations. Real-world tables 230

often have varied structures and styles. An ideal 231

table understanding model should be able to pro- 232

cess divergent tables like a human reader. Since 233

our dataset already includes diverse table struc- 234

tures from academic datasets, we separately de- 235

sign scripts to render table images with three differ- 236

ent styles: Web-page (70.8%), Excel (19.4%) and 237

Markdown (9.8%). Fine-grained adjustments such 238

as font type and cell colors are also considered. 239

Instruction-level augmentations. In practical 240

scenarios, user instructions for the same task are 241

likely to vary from user to user. To improve mod- 242

els’ robustness towards such variations, we resort 243

to GPT-4 to generate new instruction templates and 244

descriptions about JSON output format based on 245

several manually annotated demonstrations. Gener- 246

ated instruction templates with grammar mistakes 247

or deviation from the original task are filtered out. 248

When we construct input requests of each dataset, 249
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we randomly select an instruction template and an250

output format description from the candidate pool,251

and then combine them with the task-specific in-252

put such as table-related questions to produce the253

final input request. This combination strategy can254

bring more diversity of input requests. Using the255

TABMWP dataset as an example, we show its in-256

struction templates and Python code for building257

diversified input requests in Figure 7.258

Task-level augmentations. Though the selected259

14 public datasets highlight 9 academic tasks (e.g.,260

Flat TQA and Cell Description) which demand261

table-based reasoning capabilities, it is still a ques-262

tion whether existing MLLMs are truly aware of263

the basic table structures. Prior study has found264

that, despite achieving great performance on down-265

stream table-based tasks, table-oriented LLMs may266

still exhibit poor capacity for perceiving table struc-267

tures (Sui et al., 2023). To further strengthen the268

fundamental table structure understanding ability269

of models, 6 table structure understanding tasks270

(the 6 rows with ‘Structure Understanding’ task271

category in Table 1) are devised, e.g., table size de-272

tection (TSD) task (task descriptions are shown273

in Table 6). For each task, we use the above-274

mentioned method to generate input requests and275

design scripts to automatically extract the final an-276

swer from the texutal table representations. Finally,277

8K training samples, 1K or 1.25K evaluation sam-278

ples were constructed for each structure understand-279

ing task. Besides above-mentioned strategies, we280

also perform additional data augmentations, such281

as combining single-turn samples of the same table282

to compose 37K multi-turn conversation samples.283

At last, we obtain a dataset of 232K instruction-284

tuning samples, 45K held-in and 4K held-out eval-285

uation samples covering 15 table-based tasks. We286

denote this dataset as MMTab-instruct.287

Inspired by existing MLLMs which align textual288

descriptions with input images through image-text289

pre-training, we introduce the table recognition task290

as an important pre-training task for multimodal291

table understanding. In this task, MLLMs learn292

to generate a textual table representation such as293

an HTML sequence given the table image, which294

helps aligning structure and text information in the295

table image with the ground-truth. We consider ta-296

ble representations of three formats: HTML, Mark-297

down and Latex. To provide sufficient pre-training298

data, we additionally collect 20K table images from299

the ToTTo (Parikh et al., 2020) training split and300

merge them with 82K table images in the MMTab-301

instruct training split. Based on 102K table im- 302

ages and their original textual table representations, 303

we conduct data augmentations to acquire table 304

recognition samples of new formats, e.g., convert- 305

ing Markdown table sequence into Latex table se- 306

quence. The resulting pre-training dataset contains 307

96K, 27K and 27K samples with HTML, Mark- 308

down, Latex table sequences respectively, and we 309

denote it as MMTab-pre. 310

3.3 Dataset Analysis 311

MMTab offers the following advantages: (1) Large 312

volume of data. It contains 150K samples for pre- 313

training, 232K samples for instruction-tuning, 45K 314

samples and 4K samples for held-in and held-out 315

evaluation, respectively. (2) Including tables of di- 316

verse structures, styles and domains. It includes 317

105K table images covering a broad range of struc- 318

tures (e.g., simple tables with flat structures as well 319

as complex tables with merged cells and hierarchi- 320

cal headers), divergent styles (i.e., Web page, Excel, 321

and Markdown tables) and multiple domains (e.g., 322

Wikipedia and financial reports). (3) Encompass- 323

ing a wide range of tabular tasks. In addition to 324

9 academic tasks which mainly evaluate the ad- 325

vanced table-based reasoning ability, MMTab also 326

comprises 6 tasks aimed at assessing models’ basic 327

understanding of table structures. The broad cov- 328

erage of tables and tasks can not only improve the 329

generalization of the resulting model, but also pro- 330

vide a comprehensive testbed for MLLM research. 331

4 Table-LLaVA 332

After constructing the MMTab dataset, we en- 333

deavor to fully leverage this data to promote mod- 334

els’ multimodal table understanding ability. In- 335

spired by the widely adopted training paradigm 336

of previous MLLMs (Li et al., 2023b; Liu et al., 337

2023b; Zhu et al., 2023), we devise an enhanced 338

two-stage training procedure and choose LLaVA- 339

1.5 (Liu et al., 2023a) as the backbone to develop a 340

versatile tabular MLLM named Table-LLaVA. The 341

whole training process is illustrated in the Figure 3. 342

4.1 Model Architecture 343

Following LLaVA-1.5, the proposed Table-LLaVA 344

consists of three modules: a pre-trained ViT 345

model (Radford et al., 2021) as the visual encoder, 346

a two-layer MLP as the vision-language connec- 347

tor and a Vicuna model (Chiang et al., 2023) as 348

the backbone LLM. The ViT model encodes the 349

input image into visual features, which are then 350
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MMTab Task Category Task Name Dataset Table Style Domain Held-in
# Tables # Samples Avg. Length

(input/output)Train Test Train Test

MMTab-
instruct

Table
Question

Answering
(TQA)

Flat TQA WTQ (2015) W Wikipedia Yes 1.6K 0.4K 17K 4K 45.9/10.4
Free-form TQA FeTaQA (2022) W Wikipedia Yes 8K 2K 8K 2K 32.3/18.69

Hierarchical TQA
HiTab (2022) E

Wikipedia
goverment reports

Yes 3K 0.5K 8K 1.5K 63.5/12.6

AIT-QA (2021) E Airline No - 0.1K - 0.5K 41.8/10.2
Multi-choice TQA TabMCQ (2016) M science exams No - 0.05K - 1K 47.9/13.2

Tabular
Numerical Reasoning

TABMWP (2023b) W math exams Yes 30K 7K 30K 7K 54.2/51.9
TAT-QA (2021) M financial reports Yes 1.7K 0.2K 5.9K 0.7K 40.1/16.5

Table Fact
Verification (TFV)

TFV
TabFact (2020) E, M Wikipedia Yes 9K 1K 31K 6.8K 49.9/18.3
InfoTabs (2020) W Wikipedia Yes 1.9K 0.6K 18K 5.4K 54.2/18.6

PubHealthTab (2022) W public health No - 0.3K - 1.9K 71.9/18.4

Table to
Text

(T2T)

Cell Description
ToTTo (2020) W Wikipedia Yes 15K 7.7K 15K 7.7K 31.1/14.8

HiTab_T2T (2022) E
Wikipedia

goverment reports
Yes 3K 1.5K 3K 1.5K 39.1/14.7

Game Summary Rotowire (2017) E NBA games Yes 3.4K 0.3K 3.4K 0.3K 27.6/291.7
Biography Generation WikiBIO (2016) E Wikipedia Yes 4.9K 1K 4.9K 1K 18.1/84.2

Table
Structure

Understanding
(TSU)

Table Size Detection TSD W, E, M - Yes 8K 1.25K 8K 1.25K 30.1/17.9
Table Cell Extraction TCE W, E, M - Yes 8K 1.25K 8K 1.25K 51.6/19.9
Table Cell Locating TCL W, E, M - Yes 8K 1.25K 8K 1.25K 72.5/45.6

Merged Cell Detection MCD W, E, M - Yes 8K 1K 8K 1K 57.49/28.2
Row&Column Extraction RCE W, E, M - Yes 8K 1.25K 8K 1.25K 45.6/55.1

Table Recognition TR W, E, M - Yes 8K 1K 8K 1K 16.3/389.2
ToTal 82K 23K 232K 49K 44.9/60.1

MMTab-pre Table Recognition TR for pre-training W, E, M - - 150K - 150K - 16.3/397.5

Table 1: Breakdown statistics of the proposed MMTab dataset. W, E and M represents Web page, Excel, and
Markdown tables, respectively. Task descriptions and more dataset examples are shown in Appendix A.1. For TSD,
TCE, TCL, RCE tasks, their test samples contains 1K held-in and 0.25K held-out evaluation samples.
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Figure 3: The two-stage training tasks and evaluation of
Table-LLaVA. The red font represents our contribution.

projected into the word embedding space of LLM351

by the MLP connector. The Vicuna takes as input352

the concatenation of processed visual features and353

embedded textual features to generate responses.354

4.2 Model Training355

Pre-training. As depicted in the top-left region356

of Fig. 3, the vision-language connector is first357

pre-trained with the table recognition task on the358

MMTab-pre dataset, where the model is required359

to output a textual table representation (e.g., an360

HTML string) which encompasses both the table361

structure and table content. This process aims at 362

aligning the visual features of diversified table im- 363

ages with the ground-truth textual table represen- 364

tation, which endows the model with augmented 365

table structure perceiving and OCR ability and thus 366

lays the foundation of more advanced tabular tasks. 367

Instruction fine-tuning. In the second stage, 368

the pre-trained vision-language connector and the 369

LLM are jointly fine-tuned with instruction follow- 370

ing data of multimodal tables tasks and traditional 371

multimodal tasks. While a plethora of multimodal 372

datasets have been previously constructed (Liu 373

et al., 2023b; Lyu et al., 2023; Xu et al., 2023), 374

none of them have adequately solved the multi- 375

modal table understanding problem. The proposed 376

MMTab-instruct contributes to addressing this gap 377

and we use it to endow models with the advanced 378

ability to perform downstream table tasks. We also 379

include the original pre-training and fine-tuning 380

data of LLaVA-1.5 during the training process to 381

improve the generalization of the resulting model 382

and we analyze their influence in the ablation study. 383

5 Experiments 384

5.1 Experimental Setup 385

Baselines. We consider baselines of three gen- 386

res: (1) Open-source MLLMs including BLIP (Li 387

et al., 2022), OFA-Huge (Wang et al., 2022), 388

BLIP2 (Li et al., 2023b), MiniGPT-4 (Zhu et al., 389
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Method LLM Res.
Question Answering Fact Verification Text Generation

TABMWP WTQ HiTab TAT-QA FeTaQA TabFact InfoTabs ToTTo HiTab_T2T Rotowire WikiBIO
Acc. Acc. Acc. Acc. BLEU Acc. Acc. BLEU BLEU BLEU BLEU

MLLM
BLIP 385M 384 3.94 1.24 0.12 0.13 0.02 0.17 0.22 0 0.18 0.04 0.02

OFA-Huge 930M - 0 0.06 0.07 0 0.07 0.26 0.11 0.20 0.15 0 0
BLIP2 Flan-T5 3B 224 3.34 2.01 1.52 2.20 2.34 18.62 27.53 4.3 2.63 1.08 0.72

MiniGPT-4 Vicuna 7B 224 0.22 0.90 0.20 0.13 0.39 0 0.10 0.20 0.11 1.26 0.33
Qwen-VL Qwen 7B 448 3.30 0.09 0.06 0.13 0.45 1.12 0.65 0.80 0.18 0 0

InternLM-XComposer InternLM 7B 224 0.06 0.05 0.12 0.26 2.62 1.19 1.11 7.10 3.25 0.43 1.52
mPLUG-Owl Llama 7B 224 1.76 0.62 0.25 0.13 7.42 7.46 5.53 3.50 1.75 1.96 1.37

mPLUG-Owl2 Llama-2 7B 448 6.83 0.67 0.13 0.39 11.91 8.21 26.19 5.30 2.11 1.23 2.16
LLaVA v1.5 Vicuna-1.5 7B 336 6.05 1.24 2.03 2.97 8.24 18.9 28.31 6.40 2.07 1.92 2.34

Vary-toy Qwen 1.8B 1024 4.42 7.96 3.42 8.81 2.44 6.33 6.98 0.70 0.27 0.46 0.37
Monkey Qwen 7B 896 13.26 19.07† 6.41 12.31 3.41 22.56† 22.11 3.50 1.12 0.03 2.77

LLM
Llama 2+Oracle Llama-2 7B - 17.88 4.26 1.21 3.62 5.54 4.21 7.55 6.20 1.84 4.67 1.33
Llama 2+OCR Llama-2 7B - 16.35 3.91 0.77 5.27 5.15 4.32 7.17 - 1.56 3.90 1.28

TableLlama+Oracle Llama-2 7B - 12.98 31.63‡ 64.71‡ 2.84 39.05‡ 82.55‡ 2.85 20.77‡ 0.19 0.13 0.39
TableLlama+OCR Llama-2 7B - 11.09 12.49 13.51† 2.72 25.44† 44.54† 2.18 - 0.12 0.13 0.31

Ours
Table-LLaVA 7B Vicuna-1.5 7B 336 57.78 18.43 10.09 12.82 25.60 59.85 65.26 23.00 9.74 10.46 9.68
Table-LLaVA 13B Vicuna-1.5 13B 336 59.77 20.41 10.85 15.67 28.03 65.00 66.91 24.10 10.40 8.83 9.67

Table 2: Evaluation on the original academic tabular benchmark. ‘+Oracle’ and ‘+OCR’ represents that the ground
truth or OCR-extracted (PaddleOCR) textual table representations are provided to LLMs, respectively. We only
report model performance in the ideal ‘+Oracle’ setting and compare with models in the more practical ‘+OCR’
setting. † indicates the model has trained on the dataset, ‡ denotes results from original papers.

2023), Qwen-VL (Bai et al., 2023), InternLM-390

XComposer (Zhang et al., 2023a), mPLUG-391

Owl (Ye et al., 2023a) and mPLUG-Owl2 (Ye392

et al., 2023b), LLaVA-1.5 (Liu et al., 2023a), Vary-393

toy (Wei et al., 2024) and Monkey (Li et al., 2023d).394

(2) Open-source LLMs including Llama2 (Touvron395

et al., 2023) and its counterpart TableLlama (Zhang396

et al., 2023b), which uses LongLoRA (Chen et al.,397

2023c) to fine-tune LLama2 on a series of tabular398

tasks. (3) The GPT-4V with low or high image399

resolution. Considering the high cost of GPT-4V,400

we randomly select 100 or 200 testing samples of401

each task, and compare Table-LLaVA with GPT-402

4V on this subset of testing data. For all base-403

lines and Table-LLaVA, the zero-shot setting was404

adopted during evaluation and no demonstration405

examples were provided. Implementation details406

can be found in Appendix B.407

Evaluation metrics. For TQA, TFV, and T2T408

benchmarks, we use accuracy or BLEU (Papineni409

et al., 2002). For TSD, we compute accuracy for410

predicted row and column numbers separately. For411

TCE and TCL, we compute accuracy at cell-level.412

For MCD, we use cell-level F1. For RCE, we com-413

pute cell-level F1 for extracted rows and columns,414

respectively. For table recognition (TR) task, we415

follow Zhong et al. (2020) and use the Tree-Edit-416

Distance-based Similarity (TEDS) score, which is417

based on the tree structure of HTML table sequence418

and can measure both the structure similarity and 419

the cell content similarity between the prediction 420

and the ground truth. The score is normalized be- 421

tween 0 and 1, where 1 means perfect matching. 422

For TR testing samples whose target sequence is 423

in the Markdown or Latex format, we convert the 424

predicted sequences into the HTML format to com- 425

pute their TEDS scores. 426

5.2 Results and Analysis 427

Original academic tabular benchmark results. 428

Performance of open-source MLLMs. As we can 429

see from the MLLM rows in Table 2, the early 430

MLLMs (e.g., MiniGPT-4, BLIP) exhibited min- 431

imal proficiency in multimodal table understand- 432

ing, but the recent MLLMs (e.g., LLaVA-1.5 and 433

Monkey) have yielded great improvements in their 434

capacity for table understanding, which can be at- 435

tributed to the emphasis on the OCR and text-rich 436

scenarios. Especially, among existing MLLMs, 437

Monkey performs the best in most QA tasks and 438

fact verification tasks because that it included rele- 439

vant training datasets (i.e., WTQ and TabFact). 440

Performance of LLMs. From the LLM rows of 441

Table 2, it can be observed that Llama 2+OCR 442

and TableLlama+OCR have their own strengths 443

and weaknesses in various tasks. Compared with 444

Llama2+OCR, TableLlama+OCR performs better 445

on several tasks (e.g., HiTab, FeTaQA, TabFact) 446
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Method LLM Res. TSD TCE TCL MCD RCE TR
Row
Acc.

Col.
Acc.

Acc. Acc. F1
Row

F1
Col.
F1

HTML
TEDS

Markdown
TEDS

Latex
TEDS

MLLM
BLIP 385M 384 0 0.10 0.76 0 0 0 0 0 0.18 0

OFA-Huge 930M - 0 0.10 0.26 0 0 0 0 0 0.16 0
BLIP2 Flan-T5 3B 224 0.20 0.30 0.15 0 0 0.06 0 0 0.25 0

MiniGPT-4 Vicuna 7B 224 0.40 0.40 0 0 0 0 0 0 0.34 0
Qwen-VL Qwen 7B 448 0 0 0.03 0.03 0.38 0 0 0 2.51 0

InternLM-XComposer InternLM 7B 224 0.90 3.00 0.89 0.28 0.14 0.28 0.25 13.33 2.61 1.34
mPLUG-Owl Llama 7B 224 1.20 3.90 0.13 0.16 0.34 2.04 1.38 15.31 7.36 3.13

mPLUG-Owl2 Llama-2 7B 448 0.50 3.50 0.51 0.17 0.45 3.49 2.38 15.71 6.67 4.43
LLaVA v1.5 Vicuna-1.5 7B 336 0.80 2.50 0.22 0.62 1.26 1.66 4.13 12.88 10.74 1.55

Vary-toy Qwen 1.8B 1024 1.30 2.20 1.96 0.73 0.52 2.01 2.38 10.13 12.72 11.67
Monkey Qwen 7B 896 0.80 0.60 1.46 1.31 0.67 3.89 4.53 21.96 13.29 4.54

LLM
Llama 2+Oracle Llama-2 7B - 1.70 3.60 0.62 0.17 - 9.36 18.03 - - -
Llama 2+OCR Llama-2 7B - 1.30 3.40 0.35 0.15 - 8.15 10.45 - - -

TableLlama+Oracle Llama-2 7B - 5.30 4.40 9.35 0.82 - 4.34 5.26 - - -
TableLlama+OCR Llama-2 7B - 3.90 3.70 3.95 0.65 - 2.82 2.39 - - -

Ours
Table-LLaVA 7B Vicuna-1.5 7B 336 33.10 33.20 19.45 29.31 17.14 31.43 37.93 50.24 44.82 46.11
Table-LLaVA 13B Vicuna-1.5 13B 336 34.40 27.60 19.53 29.68 16.52 31.07 41.49 51.44 46.00 46.50

Table 3: Evaluation on the Table Structure Understanding benchmarks. For all evaluation metrics, high values
indicate better performance. HTML, Markdown and Latex represents the format of target textual table representations
in the table recognition (TR) tasks, and TEDS score is its evaluation metric. See Section 5.1 for the detailed
explanation.

through fine-tuning on the corresponding train-447

ing data, but this damaged its generalization abil-448

ity on unseen tasks (e.g., text generation tasks,449

TABMWP). While the Oracle textual table se-450

quence for table image is often unavailable in real-451

ity, we use it to explore the upper bound of LLM452

capabilities in table tasks. Compared to LLama453

2+OCR, Llama 2+Oracle does not achieve notable454

improvements, indicating that its bottleneck is the455

ability to understand and follow table-related in-456

structions, rather than the table recognition ability.457

On the contrary, TableLlama+Oracle consistently458

outperforms TableLlama+OCR in all tasks, be-459

cause TableLlama has undergone good fine-tuning460

with table instructions. After being able to fol-461

low such instructions, the provided Oracle table462

sequences breaks the bottleneck of existing OCR463

models’ table recognition capabilities, resulting in464

a significant improvement.465

Comparison between Table-LLaVA and exist-466

ing models. Compared to previous open-source467

MLLMs and LLMs+OCR, Table-LLaVA 7b and468

13b both surpass them with large margins, except469

for the accuracy of TableLlama+OCR on HiTab,470

which maybe because tables in this dataset are rela-471

tively large, leading to some information loss when472

resizing them into desired resolutions of Table-473

LLaVA (i.e., 336×336).474

Table structure understanding benchmark re- 475

sults. Table structure understanding is a funda- 476

mental ability for multimodal table understanding, 477

which has been overlooked in previous research. 478

From Table 3, it can be seen that both previous 479

MLLMs and LLMs+OCR failed to generalize well 480

on these tasks. Especially for the LLM-based meth- 481

ods, even given Oracle table sequences, the perfor- 482

mance is still poor, indicating that such LLM+OCR 483

solution is indeed not suitable for solving tasks 484

which rely more on visual information such as the 485

table structure. 486

Held-out tabular benchmark results. Table 9 487

reports the model performance on 7 held-out bench- 488

marks whose data do not appear in the model train- 489

ing. We can find that previous open-source mod- 490

els excel at different datasets respectively, and no 491

model can consistently outperform others among 492

all these tasks. By contrast, our Table-LLaVA can 493

consistently outperform the previous best, except 494

for the accuracy of Vary-toy on AIT-QA, which is 495

probably because tables in AIT-QA are from an- 496

nual reports of airline companies and Vary-toy may 497

have seen similar large tables in its training data 498

like document images. Besides, the higher resolu- 499

tion adopted by Vary-toy is also more friendly for 500

such large tables. 501
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Method TQA TFV T2T TSU Held-out
GPT-4V (Subset)

Low Resolution 24.15 52.00 2.42 28.11 30.40
High Resolution 35.91 55.55 3.05 31.16 44.49

Ours (Subset)
Table-LLaVA 7B 24.55 65.25 9.49 34.24 23.16
Table-LLaVA 13B 26.63 64.50 9.12 34.36 24.71

Table-LLaVA 13B 26.95 65.96 13.25 34.42 25.62
Table-LLaVA 7B 24.94 62.56 13.22 34.27 24.46
w/o LLaVA-pre 24.06 61.45 12.40 31.18 21.50

△ -0.88 -1.11 -0.82 -3.09 -2.96
w/o MMTab-pre 23.45 60.32 12.26 29.55 21.73

△ -1.49 -2.24 -0.97 -4.73 -2.72
w/o LLaVA-instruct 24.98 61.85 12.87 33.98 23.90

△ +0.04 -0.71 -0.36 -0.29 -0.56
w/o MMTab-instruct 2.82 20.57 4.08 5.68 3.02

△ -22.12 -41.99 -9.14 -28.60 -21.43
w/o TSU-instruct 24.34 62.28 12.39 5.99 13.24

△ -0.60 -0.28 -0.83 -28.28 -11.22
w successively IFT 24.76 61.99 13.06 33.89 23.85

△ -0.18 -0.57 -0.16 -0.38 -0.61

Table 4: Upper: Comparison with GPT-4V. Lower: Ab-
lation experiment results. The results are computed
by the average performance over the multiple datasets
under five types, respectively. △ stands for the perfor-
mance gap between Table-LLaVA 7B and its variants.
’TSU-instruct’ stands for 6 table structure understanding
datasets (subset of MMTab-instruct). ‘successively IFT’
represents that ’LLaVA-instruct’ and ’MMTab-instruct’
are used to fine-tune the model in a sequential order
rather than mixed together.

Comparison with GPT-4V. Table 4 upper part502

compares Table-LLaVA and GPT-4V on five types503

of tasks separately. Overall, GPT-4V achieves re-504

markable results under both low (512×512) and505

high (768×2000) image resolutions. Table-LLaVA506

(336×336 resolution) defeats GPT-4V with low507

resolution(512×512) in the vast majority (4/5) of508

tasks, while GPT-4V surpasses ours in held-out509

scenario. Besides, it can be seen that higher resolu-510

tion can consistently bring gain in all tasks. This is511

because, intuitively, it is not possible to accurately512

determine the table elements and structures when513

the resolution is too low. We also analyze the influ-514

ence of image resolutions for Table-LLaVA on the515

multimodal table understanding in Appendix C.2.516

Ablation study. We conduct sufficient ablation517

experiments to validate the effectiveness of our pro-518

posed dataset and training strategy. We divide the519

ablation study into three parts: 1) Ablation of pre-520

training. As shown in Table 4, both ’w/o LLaVA-521

pre’ and ’w/o MMTab-pre’ cause negative effects,522

and the latter results a larger margin. This is be-523

cause both LLaVA-pre and MMTab-pre help align524

visual and textual modalities, while MMTab-pre525

is more suitable for multimodal alignment in the 526

text-rich scenes of table understanding. 2) Ablation 527

of instruction fine-tuning. ’w/o LLaVA-instruct’ 528

causes a slight performance decrease, indicating 529

that though the image domains and task settings 530

of LLaVA-instruct is different with the proposed 531

benchmark, it has benefits for the multimodal ta- 532

ble understanding scenarios due to the enhance- 533

ment of instruction-following ability. ’w/o MMTab- 534

instruct’ causes a significant performance drop on 535

all types of tasks, resulting in extremely poor per- 536

formance (e.g., 3.02 accuracy on held-out test sets). 537

This further confirms that the data we construct can 538

supplement the missing capabilities of the current 539

MLLMs. The proposed MMTab-instruct can be di- 540

vided into two categories: one is the traditional ta- 541

ble dataset collected from academic and converted 542

into a multimodal version, and the other is the table 543

structure understanding dataset we proposed. If 544

the latter is removed, (i.e., ’w/o TSU-instruct’) al- 545

though it does not cause clear performance damage 546

in traditional tasks such as TQA and TFV, it has a 547

huge negative impact on challenging tasks such as 548

TSU and Held-out tasks. This indicates that the pro- 549

posed table structure understanding datasets help 550

with model reasoning and generalization. 3) Abla- 551

tion of training strategies. Table 4 also compares 552

the models instruction-tuned with LLaVA-pre and 553

MMTab-pre in sequence (i.e., ’w successfully IFT’) 554

or mixed together. We find that ’w successfully 555

IFT’ has slightly weaker performance, which sug- 556

gests that mixed data is more conducive to model 557

performance. 558

6 Conclusion 559

This paper proposes a novel multimodal table un- 560

derstanding problem, together with a large-scale 561

open-source dataset MMTab, which covers a broad 562

range of multimodal table structures and tabu- 563

lar tasks. This dataset provides a comprehensive 564

testbed for MLLM research with held-in and held- 565

out multimodal tabular benchmarks. On this basis 566

of MMTab’s training data, we empower LLaVA 567

1.5 to be a tabular generalist MLLM Table-LLaVA. 568

Experimental results show that Table-LLaVA con- 569

sistently outperforms existing MLLMs on total 24 570

benchmark datasets, is even on par with the pow- 571

erful GPT-4V. In conclusion, the contributions of 572

this paper lie at prompting the research on multi- 573

modal table understanding from the task, dataset 574

and model perspectives. 575
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7 Limitations576

Though this work makes the first comprehensive ex-577

ploration towards the multimodal table understand-578

ing problem, there are certain limitations that can579

be left to the follow-ups. First, the proposed dataset580

mainly focus on the single table in English. The581

multi-table scenario together with broader language582

coverage have not yet been considered.Second,583

MMTab is based on real-world tables from care-584

fully selected table datasets and it contains diverse585

high-quality table images rendered by automatic586

scripts. Nevertheless, table images in the wild can587

be low-quality. For instance, blurred or incomplete588

table images. To further bridge the gap between589

the academic research and the real application sce-590

narios, more diversified table images from the wild591

could be collected in the future. In the end, though592

the proposed Table-LLaVA demonstrates great per-593

formance on a wide range of table-based tasks, the594

resolution of input images is relatively low and595

may limit the upper bound of its capacity. Luckily,596

with the emergence of MLLMs which possess high597

input image resolutions (e.g., Monkey (Li et al.,598

2023d), LLaVA-Next (Liu et al., 2024)), we can use599

MMTab to develop more powerful tabular MLLM600

in the future research.601

8 Ethical Considerations602

The proposed MMTab dataset is constructed based603

on the academic datasets like WTQ and TabFact,604

which are free and open datasets for research use605

with MIT License1 or CC-BY-SA-4.0 License 2.606

We design scripts to render textual table repre-607

sentions (like HTML) in these datasets to obtain608

table images, and build multimodal instruction-609

following data based on original samples. The610

resulting dataset MMTab is also a free and open re-611

source for the community to study the multimodal612

table understanding problem. Thus, the authors613

foresee no ethical concerns with the research in614

this paper.615
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A More Information about MMTab968

A.1 Task Descriptions and More Dataset969

Examples970

Table 6 gives detailed description of each task and971

their evaluation metrics, and Figure 4, 5, 6 illus-972

trate more dataset examples. When we collect ta-973

bles from the TabMCQ dataset, we filter extremely974

long tables more than 50 rows. For the hybrid-QA975

dataset TAT-QA, we only preserve questions that976

can be answered with the table information. For977

the ToTTo dataset, its training set contains 35K ta-978

bles and we randomly select 15K tables for training979

in order to reduce the cost of transforming HTML980

tables into table images.981

Besides mentioned strategies in 3.2, we also982

perform additional data augmentations, including983

“response-level augmentations”, where we con-984

struct target output with chain-of-thoughts using985

the annotated intermediate computational proce-986

dures and the final answer, as well as “conversation-987

level augmentations”, where we randomly choose988

samples of the same table image to compose multi-989

turn conversation samples.990

Hyperparameter Pre-train Fine-tune

training data
MMTab-pre (150K),
LLaVA-pre (558K)

MMTab-instruct (232K),
LLaVA-instruct (665K)

batch size 256 128
max length 2560

learning rate (lr) 1e-3 2e-5
lr schedule cosine decay

warmup ratio 0.03
weight decay 0

optimizer AdamW
epoch 1

Deepspeed Stage 2 3
machine one machine with 8 80GB A800

training time 2.5 days 2 days

Table 5: Hyperparameter setting and training details of
Table-LLaVA.

A.2 Instruction Templates991

The diversity of the instruction-following data has992

a significant impact on the performance of the re-993

sulting model. As discussed in the Section 3.2,994

we utilize GPT-4 to generate new instruction tem-995

plates and create more diversity of input request.996

When we build input requests of each dataset, we997

randomly choose an instruction template and an998

output format description from the candidate pool,999

and then combine them with the task-specific in-1000

put such as the question to produce the final input1001

request. Figure 7 shows the Python code for this1002

combination process, together with all instruction1003

templates and JSON output format descriptions for 1004

the TABMWP dataset. Previous textual instruction- 1005

following datasets for tabular tasks (Zhang et al., 1006

2023b) usually adopt one fixed instruction template 1007

for each dataset. By contrast, we construct at least 1008

20 instruction templates for each dataset while con- 1009

sidering their respective characteristics. 1010

B Implementation Details 1011

Following LLaVA-1.5 (Liu et al., 2023a), we use 1012

the well-trained CLIP-ViT-L-336px (Radford et al., 1013

2021) as the visual encoder and input images are 1014

resized to 336×336. We develop two Table-LLaVA 1015

models with Vicuna-1.5 7B and 13B as the back- 1016

bone LLM, and we denote the resulting models 1017

as Table-LLaVA 7B and Table-LLaVA 13B, re- 1018

spectively. We follow the original hyper-parameter 1019

setting of LLaVA-1.5 except that We increased the 1020

max sequence length from 2048 to 2560 to accom- 1021

modate longer text sequences. The training hyper- 1022

parameters for both the pre-training and the visual 1023

instruction tuning are listed in Table 5. In this pa- 1024

per, all experiments including baseline experiments 1025

were conducted on a single machine with 8 80GB 1026

A800. The pre-training process and the instruction- 1027

tuning takes about 2.5 days and 2 days for one 1028

epoch, respectively. Unless otherwise specified, 1029

we evaluate performance of baseline models on 1030

our dataset with the official implementations. As 1031

mentioned in the Section 3.1, we add extra instruc- 1032

tions to the input request which require models to 1033

output the final answer in the JSON format, and 1034

we write Python scripts with regular expressions to 1035

extract the final answer for a fair comparion. For 1036

the ToTTo benchmark, since the ground-truth of 1037

testing samples have not been open-sourced, we 1038

submit the output results of different models to the 1039

official website to get evaluation results. 1040

C More Experimental Results and 1041

Analysis 1042

C.1 Appended Experiment Results and 1043

Analysis 1044

Due to space limitation, we put some experiment 1045

results and analysis in this section. 1046

C.2 Influence of Image Resolutions 1047

To shed more light on the influence of image res- 1048

olutions on the multimodal table understanding, 1049

we divide test samples into 5 groups according to 1050
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MMTab Task Category Task Name Dataset Task Description Metric

MMTab-
instruct

Question
Answering

Flat TQA
(F TQA)

WTQ
TQA based on tables which usually possesses a flat
structure with the first row as the sole column header.

Accuracy(↑)

Free-form TQA FeTaQA
TQA with a free-form text answer rather than a
short text span copied from the table.

BLEU(↑)

Hierarchical TQA
(H TQA)

HiTab TQA based on tables which usually possesses
hierachical headers and merged cells.

Accuracy(↑)
AIT-QA Accuracy(↑)

Multi-choice TQA TabMCQ TQA with multi-choice questions. Accuracy(↑)
Tabular

Numerical Reasoning
TABMWP TQA requiring mathematical reasoning operations such as

finding the largest number or do math computations.
Accuracy(↑)

TAT-QA Accuracy(↑)

Fact
Verification

Table
Fact Verification

TabFact Given a table as evidence and a statement, the
task is to distinguish whether the given
statement is entailed or refuted by the table.

Accuracy(↑)
InfoTabs Accuracy(↑)

PubHealthTab Accuracy(↑)

Text
Generation

Cell Description
ToTTo

Generate a one-sentence description for the
highlighted table cells.

BLEU(↑)

HiTab_T2T
Generate a one-sentence description for the
highlighted table cells using the provided
operators such as SUM, DIVISION.

BLEU(↑)

Game Summary Rotowire
Given a table recording box- and line-scores
of an NBA game, the task is to generate a
detail game summary which is sourced from rotowire.com.

BLEU(↑)

Biography Generation WikiBIO
Given a table containing information of a
person, the task is to generate a biography
to introduce this person.

BLEU(↑)

Structure
Understanding

Table Size Detection TSD
Determine the row number and column
number of the given table.

Accuracy at row
or column level(↑)

Table Cell Extraction TCE
Given a group of (row_id, column_id), the task
is to extract the corresponding table cells.

Accuracy(↑)

Table Cell Locating TCL
Given a group of cells, the task is to find
positions of these cells in the table and return

their position in theformat of (row_id, column_id).
Accuracy(↑)

Merged Cell Detection MCD
Determine whether the table contains
merged cells and return postions of top-left

and bottom-right cells in the merged regions.
F1(↑)

Row&Column Extraction RCE
Given a group of row_id or column_id, the task is to extract the
corresponding table cells in the target rows or target columns.

F1 at row
or column level(↑)

Table Recognition TR Given a table image, the task is to return a textual representation
of the table in the format of HTML, Markdown or Latex Same

TEDS(↑)
MMTab-

pre
Table Recognition TR for pre-training

Table 6: Detailed description of each task and their evaluation metrics.

their image resolutions and evaluate model perfor-1051

mance on different groups. The results, illustrated1052

in Figure 8, demonstrate that image resolution has1053

an significant effect on model performance. The1054

model performance gradually degenerates with the1055

increasing image resolution, which reveals that it1056

is almost necessary to enlarge the input image so-1057

lution of MLLMs in order to process large table1058

images.1059

C.3 Case Study1060

We conduct a side-by-side qualitative analysis to1061

compare Table-LLaVA with GPT-4V and other1062

MLLMs on different tasks, as illustrated in Figure1063

9-15. The results demonstrate that Table-LLaVA1064

can handle a series of table tasks and possesses1065

better multimodal table understanding ability than1066

existing open-source MLLMs. For instance, as can1067

be seen in Figure 9, Table-LLaVA provides both the1068

intermediate reasoning steps and the correct final1069

answer for the math word problem based on table1070

image, whereas other MLLMs including GPT-4V1071

fail to give the correct answer. This also validates 1072

the value of the proposed dataset, which can be 1073

directly utilized in the training process of future 1074

MLLMs to boost their multimodal table structure 1075

understanding ability. 1076

14



Figure 4: More dataset examples.

Method LLM Res.
Question Answering Fact Verification Text Generation

TABMWP WTQ HiTab TAT-QA FeTaQA TabFact InfoTabs ToTTo HiTab_T2T Rotowire WikiBIO
Acc. Acc. Acc. Acc. BLEU Acc. Acc. BLEU BLEU BLEU BLEU

Ours (on all test samples)
Table-LLaVA 7B Vicuna-1.5 7B 336 57.78 18.43 10.09 12.82 25.60 59.85 65.26 23.00 9.74 10.46 9.68

Table-LLaVA 13B Vicuna-1.5 13B 336 59.77 20.41 10.85 15.67 28.03 65.00 66.91 24.10 10.40 8.83 9.67
GPT-4V (on a subset of test samples)

Low Resolution GPT-4 512 60.00 22.50 9.50 19.50 9.26 45.50 58.50 - 1.85 3.89 1.55
High Resolution GPT-4 768*2000 60.50 48.00 27.50 32.50 11.04 45.50 65.60 - 2.98 4.23 1.94

Ours (on a subset of test samples)
Table-LLaVA 7B Vicuna-1.5 7B 336 57.00 18.00 7.50 11.00 29.23 63.50 67.00 - 9.34 10.08 9.04

Table-LLaVA 13B Vicuna-1.5 13B 336 60.00 21.50 8.00 14.00 29.63 59.50 69.50 - 9.53 9.00 8.84

Table 7: Comparison between GPT-4V and Table-LLaVA on the original academic tabular benchmarks.Note that
we randomly select a subset of testing samples for each tasks due to the high cost of GPT-4V and we also evaluate
Table-LLaVA on the same subset.

Method LLM Res. TSD TCE TCL MCD RCE TR
Row
Acc.

Col.
Acc.

Acc. Acc. F1
Row

F1
Col.
F1

HTML
TEDS

Markdown
TEDS

Latex
TEDS

Ours (on all test samples)
Table-LLaVA 7B Vicuna-1.5 7B 336 33.10 33.20 19.45 29.31 17.14 31.43 37.93 50.24 44.82 46.11
Table-LLaVA 13B Vicuna-1.5 13B 336 34.40 27.60 19.53 29.68 16.52 31.07 41.49 51.44 46.00 46.50
GPT-4V (on a subset of test samples)

Low Resolution GPT-4 512 6.00 24.00 3.57 14.41 2.12 30.32 56.86 41.55 45.74 34.46
High Resolution GPT-4 768*2000 12.50 46.00 9.75 23.38 3.50 26.44 43.17 48.58 60.58 37.66

Ours (on a subset of test samples)
Table-LLaVA 7B Vicuna-1.5 7B 336 32.00 30.50 17.72 30.45 18.44 29.55 40.40 51.66 40.74 50.94
Table-LLaVA 13B Vicuna-1.5 13B 336 34.50 26.00 18.41 30.54 15.88 29.87 42.88 52.03 41.65 51.85

Table 8: Comparison between GPT-4V and Table-LLaVA on the table structure understanding benchmarks.

Method AIT-QA PubHealthTab TabMCQ TSD TCE TCL RCE
Acc Acc Acc Row Acc. Col. Acc. Acc. Acc. Row F1. Col. F1.

Previous Best Vary-toy Monkey Monkey LLaVA-1.5 mPLUG-Owl2 Monkey LLaVA-1.5 Monkey LLama2+OCR
9.39 18.89 17.89 2.40 3.60 0.76 0.93 4.29 4.54

Ours
Table-LLaVA 7B 5.48 51.03 44.51 25.20 16.40 11.28 26.10 21.97 18.14
Table-LLaVA 13B 6.06 48.46 51.51 31.60 14.80 11.38 26.17 21.94 18.67
GPT-4V

Low Resolution 19.00 59.50 66.00 8.00 15.00 10.29 17.73 27.69 50.36
High Resolution 62.50 67.00 66.00 19.00 38.00 14.36 27.91 48.52 57.14

Ours
Table-LLaVA 7B 5.00 52.50 43.50 22.00 16.00 12.73 26.27 16.57 13.91
Table-LLaVA 13B 6.50 53.50 45.50 30.00 15.00 11.92 25.45 20.77 13.78

Table 9: Evaluation on the held-out tabular benchmarks.
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Figure 5: More dataset examples.
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Figure 6: More dataset examples.

Figure 7: Exemplary instruction templates, JSON output format descriptions, and the Python Code for constructing
the input requests. Taking the TABMWP dataset as an example.
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Figure 8: Experimental results of Table-LLaVA 7B by different image resolutions. We divide test samples into
5 groups according to their image resolutions, e.g., ‘512’ represents the input image resolution is smaller than
512×512 but larger than 336×336. For TSD, MCD, RCE and TR, we report averaged results.

Figure 9: Visualization of Table-LLaVA’s comparison with existing MLLMs on the TABMWP and WTQ benchmark.
For the TABMWP dataset, the model needs to conduct multi-step reasoning to obtain the final answer.
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Figure 10: Visualization of Table-LLaVA’s comparison with existing MLLMs on the HiTab benchmark, where
the model is required to comprehend hierarchical tables with merged cells. It could be difficult for LLM-based
method to comprehend such table structures with the textual table representations. By contrast, a table image is
more intuitive and straightforward.

Figure 11: Visualization of Table-LLaVA’s comparison with existing MLLMs on the InfoTab and TAT-QA dataset.
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Figure 12: Visualization of Table-LLaVA’s comparison with existing MLLMs on the ToTTo and TSD benchmark.
Though facing a relatively small and simple table, existing powerful MLLMs may fail to determine the row number
and column number of this table. The basic ability to understand diverse table structures has been overlooked by
previous MLLM study and the proposed dataset alleviates this problem.

Figure 13: Visualization of Table-LLaVA’s comparison with existing MLLMs on the TCE and TCL benchmark,
where the model is required to extract the target cell content or find the target cell location based on the table image.
This task is easy for human readers yet is challenging for existing MLLMs, which reveals the gap between current
MLLMs and the human-level table understanding ability.
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Figure 14: Visualization of Table-LLaVA’s comparison with existing MLLMs on the TR (table recognition)
benchmark. Though Table-LLaVA generate the markdown sequence with correct table structure, its OCR ability is
restricted by the input resolution and needs to be enlarged. In the future work, the proposed MMTab dataset can be
combined with MLLMs with strong OCR ability like Vary and Monkey to build a more powerful tabular MLLM.

Figure 15: Visualization of Table-LLaVA’s comparison with existing MLLMs on the TABMWP benchmark. In this
case, the model needs to conduct table-based mathematical reasoning such as finding the largest number in the table
or do math computations. Moreover, more external tools like Python (Chen et al., 2023b) could be integrated with
Table-LLaVA to build MLLM-based table agents.
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