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Abstract: We aim to bridge the sim-to-real gap of dense, distributed, 3-axes,1

magnet-based tactile sensors, like u-skin, which balances well between tactile2

density, high-durability, and compactness. Unlike prior works that use binariza-3

tion techniques, we propose GCS, a novel sim-to-real technique to learn contact-4

rich insertion skills. We evaluated our approach in blind insertion tasks and show5

zero-shot sim-to-real transfer of RL policies with raw tactile readings as input.6

Keywords: Tactile Sensor, Sim-to-Real, Insertion7

1 Introduction8

Sense of touch is an important sensing modality for humans. With dense, distributed sensors on our9

skin, humans can detect subtle changes in external contact, and conduct dexterous skills like tool use.10

There has been tremendous effort [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] to replicate11

the capability on robots for manipulation. Among various tactile sensors, magnet-based sensors,12

like uskin [12, 13], can provide dense, distributed, 3-axes forces, and are durable and compact to be13

integrated into dexterous hands [18]. However, using magnet-based tactile sensors in robot learning14

has not been widely explored in previous work.15

Figure 1: Comparison of simulated 6 × 5 tactile readings in MuJoCo and in the real world under
the same physical state. For the right four figures, the redness represents normal forces and the
green arrows represent the shear forces, on each taxel. This visualizes the sim-to-real gap of tactile
readings.

Our work focuses on bridging the sim-to-real gap of dense, distributed, 3-axes, magnet-based sen-16

sors [12, 19]. We use a commercial magnet-based sensor ([19]) with 6×5 grid of 4.7mm×4.7mm17

taxels, i.e., 6 × 5 × 3 tensor readings, for blind insertion tasks. Most importantly, we managed to18

solve the task with a tactile-based RL-policy trained only in simulation. Furthermore, in our method,19

we avoid using techniques like binarization [10, 9], that loses much information from tactile sensors.20

Instead, we aim to bridge the sim-to-real gap of raw sensor readings (Figure 1).21
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Figure 2: (a) Product PX6AX-GEN1-PAP-L4629 from PaXini Tech, figure from [19]. (b) MJCF
visualization of the tactile sensor model in simulation. We use 6× 5 small cubes instead of a single
cube. (c) Illustration of Poisson Effect on the tactile sensor in real world. Gray cubes represent
the small magnets injected in the gel [12]. (d) Illustration of convolution technique to approximate
Poisson Effect noise in real sensor readings. Red dots represent the normal force on each taxel,
which is convolved with poisson-effect kernels in both directions. cx,y are hyper-parameters that
control the noise scale.

To achieve this, we first identify key aspects of the sim-to-real gap: non-uniform contact, contact22

Poisson Effect, and force scaling difference. We then develop simple yet efficient techniques to23

mitigate these gaps (Figure 3): surface with Gaussian bumps, Convolution for Poisson Effect and24

domain randomization for Force Scaling. In our experiment, we show that our approach GCS25

enables zero-shot sim-to-real transfer of RL policy on blind peg-in-hole insertion tasks, i.e., the26

robot does not have accurate peg poses. Results suggest that our GCS method outperforms all27

previous sim-to-real techniques and improves the success rate by 50%. For some tasks, our RL28

policy succeeds on 9 out of 10 real-world trials.29

2 Method30

In our work, we use the dense, distributed, 3-axes, magnet-based tactile sensor: PX6AX-GEN1-31

PAP-L4629 (Figure 2a) from PaXini Tech [19]. To simulate tactile sensors, we extend Robosuite32

[20] which is built on the MuJoCo [21] physics engine. Similar to Sferrazza et al. [22], we use the33

Touch Grid plugin provided by MuJoCo to get the aggregate contact forces in each taxel area. In34

addition, as shown in Figure 2b, instead of using a single cube as the contact pad of the sensor, we35

discretize the contact pad with small cubes of 4.6mm× 4.6mm× 1mm (W×H×D).36

Figure 1 compares tactile readings in MuJoCo with readings from real world sensors under the same37

physical state. In the first row, the robot holds the cubic peg handle, which has no contact with38

external environment. In the second row, the robot holds the same handle, while the peg is in contact39

with the back rim of the square hole. There exists a significant sim-to-real gap in tactile sensor40

readings. Please refer to the appendix for an intuitive interpretation of the gap.41

2.1 GCS: Bridge Sim-to-Real Gap42

Prior work bridges the sim-to-real gap via binarization techniques [9, 23, 10]. However, this may43

lose information that is crucial in other tasks. In our work, we aim to bridge the sim-to-real gap44

of raw tactile readings of dense, distributed, 3-axes tactile forces, as it is the most general form of45

tactile input. To this end, we propose three simple yet effective techniques to address the above gaps.46

1. Surface with Gaussian Bumps. We randomize the depth of the small cubes on the surface pad47

in simulation. Specifically speaking, we randomly select a 2-dimensional Gaussian distribution, i.e.,48

mean (gx, gy) ∈ G = [0, 5] × [0, 6] and standard deviation (sx, sy). Then, given the coordinate of49

each taxel (i, j) ∈ G, we denote D((i, j), (gx, gy)) =
√
(gx − i)2/s2x + (gy − j)2/s2y . Then, the50

depth h of taxel cube (i, j) is51

h(i, j) = hmin +
D((i, j), (gx, gy))

max(i,j)∈G D((i, j), (gx, gy))
∗ (hmax − hmin).
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Figure 3: For right 3 figures, we show the left finger GCS tactile readings (A)(B)(C) under 3 random
parameters sampled from Table 3, and compare them with the real-world tactile readings and the
original raw simulation tactile readings under the same physical states as in Figure 1.

Here hmax and hmin denotes the maximal and minimal cube depth, which are chosen as hyper-52

parameters.53

2. Convolution for Poisson Effect. We approximate the Poisson Effect noise via a simple approach,54

avoiding time-consuming methods like FEM simulation. Observing that the scale of the shear force55

is proportional to the normal force in its surroundings, we approximate the Poisson Effect shear56

displacement by convolving the normal forces tensor with poisson-effect kernels, illustrated in Fig-57

ure 2d. The poisson-effect scale is determined by parameters cx, cy respectively for each direction.58

3. Domain Randomization of Force Scaling. We randomize the force scaling factors in each59

episode during training. To be specific, we randomize the scaling for each axis of the all taxels, i.e.,60

αk, k ∈ [x, y, z], and independently randomize the scale of each taxel βij , (i, j) ∈ G. Namely, each61

taxel reading fk(i, j) = f̂k(i, j) ∗ αk ∗ βij , where f̂k(i, j) is the raw force reading from the physics62

engine for taxel (i, j) in direction k.63

Figure 3 illustrates the revised tactile readings with GCS, in the same physical states as Figure 1.64

3 Experiment65

Task. We use the following 6 blind insertion tasks in our experiment (Figure 6). The robot is blind66

so that it does not know the pose of the peg, while the peg is randomly placed between fingers at67

each initialization. Consequently, the robot is required to infer contact between the peg and the hole68

base from tactile sensing. Please refer to the appendix for task details.69

- RY-2mm: Round peg with cylinder handle, and 2mm clearance round hole.70

- RU-2mm: Round peg with cubic handle, and 2mm clearance round hole.71

- SQ-2mm: Square peg with cubic handle, and 2mm clearance square hole.72

- SQ-1mm: Square peg with cubic handle, and 1mm clearance square hole.73

- SX-2mm: Square peg with cubic handle, and 2mm clearance groove along the x-axis. In addi-74

tion, the hole pose is also blind to the robot.75

- SY-2mm: Square peg with cubic handle, and 2mm clearance groove along the y-axis. In addi-76

tion, the hole pose is also blind to the robot.77

Baselines. We compare GCS with the following baselines, that are trained with asymmetric SAC.78

Implementation details are listed in the appendix.79

1. No Tactile (NT). The policy π(pt) is a 2-layer MLP that does not use tactile information.80

2. Total Force (TF). Total contact force ft on each surface pad is computed by summing all taxel81

readings. The force input ft is a 6k-dim vector, which is concatenated with pt, i.e., π(pt, ft).82

3. Taxel Binarization (TB). Similar as [23, 9], we binarize the taxel reading with a 0.1N threshold.83

The tactile input is a 2k × 6× 5 tensor of [0, 1]. We encode with a similar CNN.84
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4. Taxel Direction (TD). Inspired by [10], we binarize each taxel reading in each axis with 0.1N85

threshold, together with the sign to represent the direction. Thus, the tactile input is a 6k× 6× 586

tensor of value [−1, 0, 1], encoded with a similar CNN.87

5. Direct Transfer (DT). We use the tactile reading from the simulator (Figure 1) directly, which88

is a 6k × 6× 5 tensor, and is encoded with a similar CNN encoder.89

Results. For real-world evaluation, we test each method with 10 randomly initialized trials. In90

simulation, we test with 50 trials. The result is shown in Table 1.91

Table 1: Comparative evaluation on success rate of baselines and ours GCS in simulation and real
world. NT: No Tactile; TF: Total Force; TB: Taxel Binarization; TD: Taxel Direction; DT: Direct
Transfer.

Method RY-2mm RU-2mm SQ-2mm SQ-1mm SX-2mm SY-2mm Avg

NT (Sim) 0.94 0.82 0.6 0.56 0.42 0.2 0.59
NT (Real) 0.4 0.4 0.0 0.1 0.0 0.0 0.15

TF (Sim) 1.0 0.98 0.8 0.0 1.0 0.74 0.75
TF (Real) 0.4 0.3 0.3 0.0 0.4 0.1 0.25

TB (Sim) 1.0 0.82 0.62 0.36 0.84 0.1 0.62
TB (Real) 0.5 0.3 0.4 0.1 0.5 0.2 0.33

TD (Sim) 1.0 0.86 0.9 0.88 0.88 0.80 0.88
TD (Real) 0.1 0.4 0.0 0.2 0.2 0.2 0.18

DT (Sim) 1.0 0.96 0.84 0.94 0.96 0.84 0.92
DT (Real) 0.6 0.2 0.1 0.3 0.4 0.1 0.28

GCS (Sim) 1.0 0.9 0.84 0.98 0.98 0.76 0.91
GCS (Real) 0.9 0.8 0.9 0.6 0.9 0.7 0.8

We find that baselines cannot produce good policies that transfer well to the real world. For NT, it92

has only <60% success rate on square peg tasks even in simulation and in real world, it has <10%93

success rate. For TF, it has a higher success rate in simulation than NT. However, as discussed in94

Section 2, the real-world reading is quite noisy. We observe that the total force on the pad can even95

point upward when there is no external contact. Consequently, the policy cannot perform well in96

real world.97

Binarization techniques (TB, TD) are useful for in-hand orientation tasks [9, 23] translation [10],98

we find that they are not useful for insertion tasks. The real-world shear force noise makes the99

feature in these methods non-transferrable to the real-world rollouts. In terms of DT, owing to large100

sim-to-real gap (Figure 1row), the real-world success rate also is low due to distribution shift.101

We observe that GCS outperforms all baselines by a 50% margin on average. In many tasks such as102

RY-2mm, SQ-2mm, and SX-2mm, it has a real-world success rate of 90% with barely any perfor-103

mance drop than in the simulation. The largest sim-to-real gap occurs in the SQ-1mm case, which104

is the hardest task owing to the small clearance. On SQ-1mm, one needs fine-grained and compliant105

control. Small action error, potentially from sim-to-real tactile gap, will cause the peg to miss the106

hole in the next step.107

4 Conclusion108

Dense, distributed, 3-axes, magnet-based tactile sensor (i.e., u-skin) balances well between dura-109

bility, tactile density, and compactness. In our work, we try to bridge the sim-to-real gap of these110

sensors. Here, we identify three aspects of the sim-to-real gap: non-uniform contact, poisson effect,111

and scale difference, and propose a novel GCS method to mitigate these gaps. We evaluate our112

approach on blind insertion tasks and show that GCS improves the real-world success rate by 50%113

over baselines. Our work creates new possibilities to future sim-to-real learning of visual-tactile114

manipulation skills with magnet-based sensors.115
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A Related Works265

Robot Manipulation with Tactile Sensors. Tactile sensors are crucial for many manipulation tasks.266

They provide information of contact between robots and objects, and contact between objects in267

hand and its surroundings. Moreover, such information cannot be easily revealed from visual in-268

formation alone. Many prior works used vision-based optical tactile sensors (e.g., Gelsight [1, 2])269

in grasping [3, 4], slip detection [24], cable manipulation [5, 6], cloth manipulation [25], visual-270

tactile slam [7, 8], contact-rich insertion [26, 27, 28], in hand manipulation [9] and in exploiting271

external contact [29, 30]. Recently, works have also used piezoelectric and magnet-based sensors272

[14, 31, 32] for various manipulation tasks, including visual-tactile in-hand reorientation and trans-273

lation [23, 33, 10]. Most importantly, a piezoelectric sensor, i.e., 3D-ViTac [11, 34] and a magnet-274

based sensor, e.g., u-skin [12, 13] have been introduced to robot manipulation. These two sensors275

can provide dense, distributed tactile signals. Works have used these high-dimensional tactile in-276

formation for complex manipulation tasks via imitation learning on tele-operated demonstrations277

[11, 35, 36, 37, 38]. Unlike these prior work, we focus on bridging the sim-to-real gap of dense,278

distributed, 3-axes, magnet-based sensors.279

Tactile Sensor Sim-to-Real. There is only limited data involving real-world tactile readings [39],280

e.s.p., data collected during robot manipulation [29, 11]. In contrast, simulation data are relatively281

cheap to acquire and work has shown learning dexterous skills with only simulation data [40, 9, 23].282

However, as the mechanisms of the rigid-body physics engines [21, 41] are different from the real283

world physics, bridging the large sim-to-real gap for manipulation with tactile sensors remains a284

challenge. For optical tactile sensors, prior work developed example-based simulators [42, 43],285

differentiable simulators [44], rigid-body simulators coupled with penalty-based models [17, 45] and286

FEM-based simulators [46, 47, 48]. Notably, Chen et al. [47] achieved zero-shot sim-to-real transfer287

on contact-rich tasks [47] with IPC-based [49] simulation. In addition, works have also shown288

success on dexterous in-hand orientation [23, 9] and translation [10], with binary tactile signals289

from magnet-based or piezoelectric sensors. However, binarization loses a lot of information from290

dense, distributed, 3-axes sensors. For example, in peg-in-hole insertion tasks, binarization does291

not provide information of contact between the peg and the hole base. In our work, we use the raw292

tactile reading directly as input to the RL policy and we develop a different technique to bridge the293

sim-to-real gap of raw tactile reading for dense, distributed, 3-axes, magnet-based sensors.294

B Additional Results295

B.1 Ablation Study296

Figure 4: Visualization of ablation’s left tactile readings in the no contact state. Noticing that read-
ings in GCS and ablations are randomized in training.

Here, we demonstrate the necessity of all G, C, S technique to bridge the sim-to-real gap.297

Table 2 shows the real-world success rate of the ablation. In simulation, the success rate is >80% for298

all ablations. Clearly, results show that all three G,C,S techniques are necessary. This is especially299

the case in SX-2mm and SY-2mm tasks, where it only uses tactile reading as input. Consequently,300

distribution mismatch between simulated and real-world tactile readings will result in the failure301

of the contact-rich insertion task. Figure 4 visualizes the tactile reading in simulation of different302

ablations. With all G,C,S techniques, the reading looks more similar to real world.303

9



Table 2: Ablation study of GCS on SX-2mm, SY-2mm, and SQ-2mm tasks. In each ablation, we
remove one technique in Section 2.1.

GCS GCS w/o G GCS w/o S GCS w/o C

SX-2mm 0.9 0.4 0.3 0.3
SY-2mm 0.7 0.0 0.6 0.2
SQ-2mm 0.9 0.9 0.8 0.6

B.2 Policy Interpretation304

Figure 5: Examples of policy rollout in SX-2mm (first row) and SY-2mm (second row). Stage I
corresponds to the initial state, and Stage IV corresponds to the success state. Stage II and Stage III
corresponds to the critical contact states that the policy infers the relative position from (Section B.2).

To better understand how the policy trained in simulation transfers to real world, we visualize tra-305

jectories in SX-2mm and SY-2mm tasks, in Figure 5. In SY-2mm, it detects the relative position306

between the peg and the hole by the change of the shear forces. In stage II, the peg contacted with307

the front rim and thus shear force markers on the left finger changed counterclockwise and clock-308

wise on the right finger sensor. Consequently, the policy commanded the hand to move backward.309

However, it overshoot and contacted the back rim (stage III). Again, it detected the opposite change310

on both sensors and thus moved forward. This time, it managed to insert the peg in the groove.311

For SX-2mm, it detects the relative position by the change of distribution of normal force on the312

sensor pads. In stage II, it contacted the left rim and the normal force shifted downward on the left313

sensor, owing to the external torque. The policy then commanded it to move right. In stage III, it314

contacted with the right rim and the normal force on the right pad shifted downward this time. Then315

it moved left in fine-grained steps until the peg was inserted into the groove.316

C Experiment Details317

Sim-to-Real Gap. We identify that the gap comes from three main aspects:318

1. Non-uniform Contact. The actual surface gel is uneven and the injected small magnets [12]319

are not completely symmetric in terms of magnetic field. Therefore, we observe non-uniform320

activation of the dense distributed Hall Effect sensors, i.e., non-uniform normal force readings,321

despite that the contact surface is flat.322
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2. Contact Poisson Effect. There exists a significant non-zero shear force, even when the peg is323

not in contact with the environment. We find that this results from the Poisson Effect of the324

contact gel, which is illustrated in Figure 2c.325

3. Different Force Scale. We find that the absolute scale of real-world sensor force differs from326

the scale in simulation. This comes from the difference between the physics engine and real-327

world physics.328

Randomization Ranges Table 3 summarizes the randomization range of all factors in our pipeline.329

Table 3: Domain Randomization (DR) distribution of key parameters in our GCS method.

Parameters Axes Force αk Taxel Force βij Convolution cx,y Deviation sx,y

DR Range U(0.5, 1.5) N (1.0, 0.25), 20% Dropout U(0.1, 0.3) U(1.0, 3.0)
330

Task. We use Operation Space Controller (OSC) at 20Hz. For RY-2mm, RU-2mm, SQ-2mm, SQ-331

1mm, the policy network outputs 3-dim position delta (XYZ) in [−1, 1], scaled with 1cm, except for332

SQ-1mm, which is scaled with 5mm. Here, we freeze the rotation in OSC to simplify the tasks. For333

SX-2mm, we further freeze X-axis and for SY-2mm, we freeze Y-axis.334

At initialization of each episode in simulation, we randomize the parameters in Table 3. Similar to335

[50], we move the gripper to the peg grasp pose with small randomization before the policy rollout.336

In real world, we first command a randomized initial fingertip pose. Then we place the peg in the337

gripper with small position randomization.338

For real-world evaluation, we will consider success insertion if the bottom of the peg is in the hole.339

Each trial is truncated at 120 steps for SX-2mm and SY-2mm, and 200 steps for RY-2mm, RU-2mm,340

SQ-2mm, and SQ-1mm.341

Reward. The RL reward for all tasks is defined with the following 4 terms.342

- Reaching Reward. We compute the average distance d of keypoints of the peg to correspondent343

points on base. The reaching reward is rreach = 1
10∗d+ϵ .344

- Engagement Reward. Given the engagement distance h (the distance between the bottom of peg345

to the base bottom), if the peg is engaged with the hole, then we have rengage =
1

10∗h+ϵ , otherwise346

rengage = 0.347

- Success Bonus. The success bonus rsucc if h < hth, where hth is a threshold value.348

- Action Penalty. We penalize the action scale with raction = − ∥ a ∥2.349

The total reward is the weighted sum of these 4 terms. The weights are selected as hyper-paramters.350

Hardware. We custom 3d-printed fingers to attach sensors to the Franka Research 3 Gripper (Fig-351

ure 6). We place Realsense L515 in front of the scene to capture object poses, which are labelled352

with Aruco markers. All poses are computed relative to the robot base frame with camera calibra-353

tion. Noticing that peg poses are not available to the robot and base poses in SX-2mm and SY-2mm354

are also not available. Here, we put markers for tracking and task initialization. We use Deoxys [51]355

to run the RL policy with Operation Space Controller (OSC) on the real robot.356

RL Policy. For all policies, the input includes relative pose from robot fingertip to the hole base pt357

(zeros for SX-2mm, SY-2mm tasks). For GCS and baselines (Section ??) with tactile inputs, we use358

a history of k tactile readings, where k is a hyperparameter for each method. In GCS, the tactile359

input ot is a 6k×6×5 (C×H×W ) tensor. The policy network first encodes the tactile reading with360

a CNN to a 128-dim latent vector tt = T (ot) and encodes ht = E(pt) to a 128-dim vector. Then,361

we feed them into a 2-layer MLP action head at = π(E(pt), T (ot)). Here, we use asymmetric362

SAC [52] to train the RL policy in Robosuite [20], implemented based on StableBaseline3 [53]. The363

critic network takes ground truth pose of objects and fingertip poses as input, but without tactile364

readings. For all tasks, the reward is the sum of reaching reward, engagement reward, and success365

bonus, which is similar to [50]. Please refer to the appendix for RL training details.366
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Training. We select the optimal k in {1, 5, 10, 20} for all baselines. We choose k=1 for TF, k=10367

for TB, TD and DT. For GCS, we choose k=20 for all tasks except SY-2mm, which we find k=10368

works better. In Section B.1, GCS ablations use the same k as GCS.369

The tactile tensor encoder T in TB, TD, DT, and GCS is a 4-layer CNN with BatchNorm and ReLU370

activation and the encoder for pt is a single-layer MLP. All MLP policy heads are 256-dim, 2-layer371

MLPs. For the critic in SAC, it is a 2-layer MLP that takes relative pose from peg to base and372

end-effector to base as inputs. The implementation is based on StableBaseline3 [53].373
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D Additional Figures374

Task Illustration. Figure 6 shows the illustration examples of our experiments.375

RY-2mm RU-2mm SQ-2mm SQ-1mm SX-2mm SY-2mm

Figure 6: Illustration of all 6 blind insertion tasks in our experiment.

Sensor Finger Mount. Figure 7a and Figure 7b show the 3d-printed custom finger to mount the376

tactile sensor and its CAD model. We attach the sensor with double-sided tape on the fingers.

(a) (b)

Figure 7: (a) The finger mount to attach the sensor on the Franka gripper. (b) CAD model for the
custom finger.

377

IsaacGym Tactile Reading. Figure 8 shows the tactile rendering in Isaac-Gym [41] holding the378

square peg, with no contact with the external environment. The sensor model is similar as Figure 2b.379

Clearly, the tactile reading is noisy and unstructured. Therefore, we choose MuJoCo as our base380

simulator.

Figure 8: Tactile rendering in Isaac-Gym [41] with square peg at no contact state.
381

Tactile Reading in RY-2mm. RY-2mm use a round peg with cylindric handle. Consequently, the382

contact surface is quite narrow between. Thus, RY-2mm is a relatively easy task as certain pose383

information can be revealed from the tactile reading. Figure 9 compares GCS readings with real-384

world readings.385

Policy Interpretation on SQ-1mm. With 1mm clearance, SQ-1mm is quite difficult and it requires386

soft, compliant motion. Figure 10 visualizes a policy rollout in SQ-1mm. In Stage II, the peg387

contacted with the back rim, which the policy managed to infer from small shear force change.388

Thus, it lifted the peg and moved forward. However, it overshoot and resulted in contact with the389

front rim (Stage III). This time, the policy lifted the peg and halt for a while instead of moving390

backward directly (Stage IV). Then it started to push the peg down, but it collided with the right391

rim and resulted in change in the distribution of normal force (Stage V). Then it moved left and392

downward. Here, it used very small actions and the peg was inserted successfully.393
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Figure 9: Tactile reading of RY-2mm task. The peg does not have contact with the base.

Videos. We have included example videos of real-world policy rollouts in the appendix.394
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Figure 10: Policy rollout on SQ-1mm task.
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