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Figure 1. Human-centric pre-training. We pre-train a model for cross-view and cross-pose completion on body and hands image pairs
(middle). This model serves as initialization for fine-tuning on several downstream tasks for both hands (left) and bodies (right). Our
model, based on a generic transformer architecture, achieves competitive performance on these tasks without bells and whistles.

Abstract

Human perception and understanding is a major domain
of computer vision which, like many other vision subdo-
mains recently, stands to gain from the use of large mod-
els pre-trained on large datasets. We hypothesize that the
most common pre-training strategy of relying on general
purpose, object-centric image datasets such as ImageNet,
is limited by an important domain shift. On the other
hand, collecting domain-specific ground truth such as 2D
or 3D labels does not scale well. Therefore, we propose
a pre-training approach based on self-supervised learning
that works on human-centric data using only images. Our
method uses pairs of images of humans: the first is par-
tially masked and the model is trained to reconstruct the
masked parts given the visible ones and a second image. It
relies on both stereoscopic (cross-view) pairs, and tempo-
ral (cross-pose) pairs taken from videos, in order to learn
priors about 3D as well as human motion. We pre-train a
model for body-centric tasks and one for hand-centric tasks.
With a generic transformer architecture, these models out-
perform existing self-supervised pre-training methods on a
wide set of human-centric downstream tasks, and obtain
state-of-the-art performance for instance when fine-tuning
for model-based and model-free human mesh recovery.

1. Introduction
The main catalyst of performance improvement in computer
vision tasks in the last decade has arguably been the training
of large models on large datasets [11, 24, 46, 51, 53, 66, 83].
For human-centric vision tasks, the standard approach is to
pre-train models on ImageNet classification tasks and then
fine-tune them on downstream tasks with specific datasets
[32, 36, 57, 76]. This has at least three drawbacks: a) the
size of the pre-training dataset is limited by label acquisi-
tion, b) there can be a large domain shift between ImageNet
and downstream images, c) object-centric classification is
different from human understanding, which may hinder the
relevance of pre-trained features. Collecting large annotated
datasets for human centric vision tasks is hard: target sig-
nal is costly and hard to acquire in the wild, e.g. relying on
motion capture systems to obtain 3D pose.

To leverage large amounts of data and scale to large mod-
els, self-supervised pre-training methods such as contrastive
learning [8, 10, 14, 31, 79] and masked signal modeling
[25, 34] – have been developed. In these paradigms, a pre-
text task is constructed from the data itself so that no manual
labeling is required. The epitome of this philosophy is that
of foundation models, such as GPT [7], trained on a large
corpus of data with no manual annotation and fine-tuned
to perform efficiently various downstream tasks. In com-
puter vision, most self-supervised learning methods have
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3DPW [76]  JRDB [56]  PoseTrack [37]

PennAction [86]  MARS [88]  AIST [73] �

HUMBI [84] � synthetic §� InterHand2.6M [59] �
Figure 2. Examples of pre-training pairs taken from the different pre-training datasets. � denote multi-view datasets,  video datasets
and § synthetic data.

been developed on ImageNet and evaluated chiefly on im-
age classification tasks. Pioneering work in [82] provided
a study of masked image modeling (MIM) pre-training on
data dedicated to human-centric tasks, but found limited
success. In contrast, we design a pre-training method to
capture prior knowledge about the human body, which we
use with human-centric data – see Figure 1 for an overview.
It is inspired by masked image modeling [25, 34], where
parts of an image are hidden and the network is trained to
reconstruct them using the visible ones as input.

Unlike MAE [34] which operates on individual images,
in our case pairs of images of human bodies are leveraged.
These pairs are constructed in two ways: a) by taking two
views of the same pose – plenty of those are available but
the variability in pose and background is limited [59, 73, 84]
– and b) by taking two poses in a motion sequence at differ-
ent time steps – for instance from videos showing a person
in movement, which are also plentiful [37, 56, 76, 86, 88];
see examples in Figure 2. Once a pair is constructed, parts
of the first pose are masked, and the network is trained to re-
construct them from the unmasked regions as well as from
the second image. This approach is close in spirit to cross-
view completion (CroCo), proposed in [78], which per-
forms masked image modeling with pairs of images. How-
ever, CroCo works with a different type of data (typically
buildings or interiors [68]) with relatively small view-point
changes. In their case, the objects are rigid, and therefore

CroCo only requires static pairs of the first type. To capture
the deformable nature of the human body, we generalize
their approach to the second type of pairs, — two differ-
ent poses of a dynamic motion – and we refer to the cor-
responding task as cross-pose completion. We also include
static pairs with extreme viewpoint changes, such as front
and back views, to acquire a broad 3D understanding of the
human body beyond stereo reconstruction. We propose a
procedure to build suitable pairs of both types. These are
taken from two human pose and motion modalities: views
of full human bodies, and closeups of hands. This covers
a wider input domain and captures information about hu-
man motion at two levels. Indeed, one of the specificity of
general human-centric vision is the wide range of expected
accuracy depending on the task. For instance, images of
humans from afar may be sufficient for body pose estima-
tion, but the millimetric accuracy expected for hand pose
estimation requires close-ups of these parts.

Empirically, we pre-train a transformer architecture us-
ing the cross-pose and cross-view completion pretext tasks,
on the two data modalities, i.e., human bodies and hands.
We fine-tune our model on the human-centric downstream
tasks of pose and mesh recovery for bodies and hands [40,
45], and dense pose estimation [32, 60]. Using a generic
transformer-based architecture, we demonstrate that our
pre-training method transfers better than supervised Ima-
geNet pre-training or existing self-supervised pre-training
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methods when fine-tuning on downstream tasks. This al-
lows our models to achieve competitive performance on
these downstream tasks without requiring task-specific de-
signs. We release two pre-trained models for human-centric
vision: CroCo-Body and CroCo-Hand, specialized either
for body or hand related tasks respectively. We demonstrate
that these can easily be transferred to a variety of coarse-
and fine-grained downstream tasks. For instance, our pre-
training allows reaching state-of-the-art performance for
model-based and model-free human mesh recovery.

2. Related work
We first discuss self-supervised learning in computer vision
and then their application to human-centric tasks.
Self-supervised learning. Popular methods for self-
supervised pre-training can be coarsely separated into two
categories. The first one is based on instance discrimina-
tion [9, 10, 14, 31, 79] where various data augmentations
are applied to an image to obtain different variants of it, and
features extracted from the model are trained to be similar
for these variants while being different from features ex-
tracted from other images. These methods produce models
that transfer remarkably well to image-level tasks such as
image classification and have achieved state-of-the-art per-
formance on several vision benchmarks. However, recent
studies suggest that the object-centric and the balanced na-
ture of ImageNet [2, 61, 67] play a big role in this success,
and indeed transfer performance degrades when tasks of a
very different nature are considered [74].

The second paradigm relies on masked image modeling
(MIM). Inspired by BERT [25] in natural language process-
ing, MIM aims at reconstructing masked information from
an input image either in pixel space [4, 5, 13, 26, 34, 80]
or in feature space [3, 6, 77]. These methods have obtained
some success on denser tasks such as object detection [34]
and human pose estimation [82], which is of particular in-
terest to our work. In [78], a MIM method that works with
pairs of scene images has been proposed based on the cross-
view completion task (CroCo). A second view of a scene is
added to the MIM framework: this view can be used to im-
prove reconstruction accuracy of the masked parts, provided
that the model can exploit scene geometry. This approach
allows the design of pretext tasks through a careful choice of
image pairs. While CroCo is designed for static problems,
we design a pre-training procedure intended to capture the
articulated nature of the human body, by building pairs tak-
ing different poses from a dynamic motion, referred to as
cross-pose completion, which we use alongside cross-view
completion. MIM has also been applied on videos [27, 72]:
information is also shared between frames, though in this
case the goal is to learn from context rather than geometry.
Human-centric pre-training. A large percentage of im-
ages/videos captured in our daily life contains humans.

However collecting annotations related to human pose in an
image is cumbersome, especially when 3D annotations are
required [33, 76], and in practice supervised data is scarce.
This motivates the development of self-supervised methods
tailored to human-centric data. In recent works [52, 82, 87],
existing self-supervised learning strategies were adapted to
human-centric data. A popular approach is to leverage
the fact that humans have a well-defined structure, for in-
stance by learning human pose in an unsupervised man-
ner [38, 39, 63, 69]. Jakab et al. [38] extract 2D landmark of
faces and bodies in an unsupervised way by learning to dis-
entangle pose from appearance through conditional image
generation from image pairs. However, the learned 2D land-
marks do not have structure and do not correspond to any
predefined human skeleton. In their following work [39],
this issue was solved by leveraging Motion Capture (Mo-
Cap) data to ensure that the 2D landmarks are matching a
certain pose distribution. However, this is quite limiting, es-
pecially in the presence of rare or unseen poses. Following
a different pre-training strategy, HCMoCo [35] learn a rep-
resentation on multimodal data including RGB, depth or 2D
keypoints, using contrastive learning. It obtains convincing
results on multiple downstream tasks such as part segmen-
tation or 3D pose estimation. However, acquiring such mul-
timodal data outside of studio environments is difficult and
prevents the use of this method in the wild. UniHCP [22]
and PATH [71] followed this direction by both proposing to
learn a model using multitask training. They required anno-
tations on several tasks however, and mainly focused on 2D
downstream tasks. Most recently, LiftedCL [16] leverages
contrastive learning to obtain a representation invariant to
data augmentations. They encourage the pose representa-
tion to be realistic via the use of an adversarial strategy on
3D skeleton data. More recently, SOLIDER [15] focused
on disentangling semantics and appearances in an unsuper-
vised manner. They generate pseudo semantic labels using
DINO [10]. While reaching good performances on 2D tasks
such as human parsing or attribute recognition, they do not
present results on 3D tasks.

Contrary to these, we do not impose any constraint on
the learned human representation. We instead cast our pre-
training as a conditional image generation where image
pairs are selected from different viewpoints or time steps.

3. Method
We first present our pre-training objective (Section 3.1),
then our data collection process to collect cross-view (Sec-
tion 3.2) and cross-pose (Section 3.3) data, and finally the
fine-tuning on downstream tasks (Section 3.4).

3.1. Multi-view masked image modeling

Masked image modeling as proposed in [34] proceeds by
dividing an image x into N non-overlapping patches p =
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{p1, . . . ,pN}. A subset of n = ⌊rN⌋ tokens (i.e., encoded
patches) is randomly masked, with r ∈ [0, 1] an hyper-
parameter controlling the masking ratio, and the remaining
set of visible patches is denoted p̃ = {pi|mi = 0}, with
mi = 0 indicating that the patch pi

1 is not masked (mi = 1
otherwise). A model is trained to predict masked tokens
given the visible ones. While there is an inherent ambiguity
on the masked content, empirically [34] has shown that such
an approach of minimizing a deterministic L2 loss between
prediction and target is a succesful pre-training objective.

The framework proposed in CroCo [78] extends this con-
cept to pairs of images. In our case, we build two types
of image pairs: a) cross-pose; where the pair comes from
two different time-steps but the same camera or – b) cross-
view; where the pair depicts the same pose of a person seen
from two different viewpoints, see Figure 2 for examples
of pairs. Let xv

t be an image viewed from viewpoint v and
taken at timestep t. Images in a pair are divided into sets of
patches, denoted (pv

t ,p
w
t′
), patches from the target are ran-

domly masked, let p̃v
t denote the set of remaining patches,

both views are encoded separately with an encoder Eθ shar-
ing the weights between the two images, and decoded to-
gether with a decoder Dϕ:

p̂v
t θ,ϕ = Dϕ

(
Eθ(p̃

v
t );Eθ(p

w
t′ )

)
. (1)

While CroCo considered static pairs of images, denoted
(xv,xw) in this work, the human body is a deformable ob-
ject; therefore we also consider dynamic pairs, representing
different poses taken at different steps of a human motion,
denoted (xt,xt′). We denote Dpose the set of cross-pose
(dynamic) pairs and Dview the set of cross-view (static) im-
age pairs. The model is trained by optimizing:

min
θ,ϕ

∑
(pt,pt′ )∈Dpose

||p̂tθ,ϕ − pt||2︸ ︷︷ ︸
(a) cross-pose completion

+
∑

(pv,pw)∈Dview

||p̂v
θ,ϕ − pv||2.

︸ ︷︷ ︸
(b) cross-view completion

(2)
In the case where only (b) is used, the objective boils

down to the same as in [78], with different data.
Human-centric masking strategy. Following standard
MIM practice, we mask a subset of whole tokens (i.e.,
squared patches in the image). While standard MIM meth-
ods mask each token with equal probability, we leverage the
prior knowledge that pixels belonging to the humans are the
relevant ones. Therefore, when segmentations can be eas-
ily obtained, we explore non-uniform masking strategies.
Specifically, the set of N image patches is separated into
NH human and NB background patches (N = NH +NB).
The masking ratio is applied to NH only, i.e. we keep visi-
ble n = NH − ⌊rNH⌋ patches. Since NH varies between
images, so does n: for each training batch, we add to the vis-
ible set of patches randomly chosen background patches, up
to a fixed sequence length set to the maximum of NH over

the batch. This has two consequences: a) token sequences
of fixed length can be used as input within a batch, which
speeds up training and b) the model sees distracting back-
ground patches in the first input. Experiments on masking
ratio (ranging from 60% to 90%) did not yield any signif-
icant downstream performance difference. We thus use a
75% masking ratio, in line with [34].

We now detail how to obtain pairs of images of full-
bodied human data suitable for pre-training. To generate
pairs for hands, we use the InterHand2.6M [59] dataset,
from which we sample both cross-view and cross-pose pairs
in equal number.

3.2. Cross-view pair construction

While CroCo [78] required pairs with rather small camera
baselines due to unconstrained scenes, in our case, we work
with the strong assumption of a known object – a person
– and therefore any viewpoint change is admissible. We
rely on existing multi-view datasets for two data modalities,
namely human bodies and hands, where subjects are cap-
tured from multiple viewpoints by synchronous cameras,
selected to have diversity in identities, appearances, poses
and backgrounds. We use the HUMBI [84] and AIST [73]
datasets as well as synthetic data. HUMBI contains more
than 300 subjects, with a wide range of age, body-shapes,
and clothing variety but a restricted set of poses, while AIST
sequences are captured from only 40 subjects with 9 differ-
ent camera viewpoints, with plain clothing, but contain a
great diversity of poses, with e.g. dance moves from pro-
fessional performers. We gather 1510 sequences with more
than 5M images in total.
Obtaining information for masking. For HUMBI, we
run an off-the-shelf human parser, the PGN method from
CIHP [30], to generate silhouette information needed for
human masking. Note that only a rough estimate of the sil-
houette is needed for patch-level-guided masking.
Increased diversity with synthetic data. Taken together,
HUMBI and AIST contain a wide variety of identities
and poses, but lack diversity in terms of environment, as
they were captured in an indoor studio setting. To rem-
edy this, we create a synthetic dataset where we generate
multiple-view renderings of SMPL meshes following SUR-
REAL [75], with diverse lighting conditions and camera
viewpoint, overlaid on top of distracting background im-
ages from COCO [51] or rendered inside the Habitat sim-
ulator [68]. Body parameters and poses are sampled from
AMASS [55] to generate images with fully-visible persons.

3.3. Cross-pose pairs construction

As the human body is non-rigid, going beyond the static set-
ting proposed in CroCo [78] can enable the model to gain
some understanding of how body-parts interact and move
w.r.t. one another. Dynamic pairs can be constructed from
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multi-view data video data Body Mesh Recovery DensePose
�   PA-MPJPE↓ MPVPE↓ AUC30↑ AUC10↑

✓ 58.6 112.3 0.655 0.379
✓ 58.1 111.8 0.645 0.367

✓ ✓ 58.4 111.4 0.651 0.372
✓ ✓ 57.5 111.5 0.692 0.416

(a) Pre-training data for CroCo-body.  denotes cross-pose images and � in-
dicates cross-view images.

multi-view data Hand Mesh Recovery Gesture
�  PA-MPJPE↓ MPVPE↓ Acc(%)↑

✓ 7.97 16.02 97.48
✓ 8.40 16.96 97.13

✓ ✓ 8.21 16.69 97.36

(b) Pre-training data for CroCo-Hand.  denotes cross-pose im-
ages and � indicates cross-view images.

Init.
Body Mesh Recovery DensePose
PA-MPJPE↓ MPVPE↓AUC30↑AUC10↑

CroCo [78] 57.5 111.5 0.692 0.416
Random 60.5 117.5 0.620 0.340

(c) Weights initialization for CroCo-Body.
Starting from pre-trained CroCo weights performs
better than a random initialization.

Masking
Body Mesh Recovery DensePose
PA-MPJPE↓ MPVPE↓AUC30↑AUC10↑

Human 57.5 111.5 0.692 0.416
Uniform 57.7 112.0 0.654 0.374

(d) Masking strategy. Performance on down-
stream tasks improves when the masking is fo-
cused on patches where humans are visible.

Init.
Hand Mesh Recovery Gesture
PA-MPJPE↓ MPVPE↓ Acc(%)↑

CroCo [78] 8.21 16.69 97.36
Random 8.63 17.97 97.18

(e) Weights initialization for CroCo-Hand.
Hand mesh recovery also benefits from starting
from pre-trained CroCo weights.

Table 1. Ablations for CroCo-Body (left) and CroCo-Hand (right) pre-training strategies. Default settings are highlighted in grey.

a monocular RGB video capturing a human motion. Such
data typically also provide more variety in terms of appear-
ance and background, as they can be captured from a single
camera, which is easier to collect in the wild. We tested
various strategies for temporal sampling, using predefined
time intervals. No significant difference was observed on
downstream performance. We thus keep a simple random
sampling strategy.
Extracting pairs from video datasets. We rely on a mix of
diverse human-centric datasets namely 3DPW [76], Pose-
track [37], PennAction [86], JRDB [56], MARS [88] and
AIST [73]. 3DPW includes video footage taken from a
moving phone camera of persons performing common ac-
tions such as walking or playing guitar. We use videos from
the training set only, leading to more than 22k frames from
34 sequences. Posetrack is a large-scale dataset for multi-
person pose estimation and tracking in videos that con-
tains more than 97k images from 3719 sequences. PennAc-
tion contains 2326 video sequences of 15 different actions.
JRDB contains 310k images from 2509 sequences collected
with a social mobile manipulator, JackRabbot. MARS is a
CCTV dataset containing video tracks of more than 1200
identities and 20k video sequences.

3.4. Fine-tuning on downstream tasks

Our model can be fine-tuned on a variety of downstream
tasks which can be either image-level (e.g. as mesh re-
covery) or dense, i.e., that require pixelwise predictions
(e.g. dense vertex coordinates regression). Interestingly, our
method can tackle monocular and/or binocular tasks. For
monocular task, the ViT-Base encoder is used alone, while
binocular tasks benefit from the pre-training of both the en-
coder and the decoder. For fine-tuning, we replace the linear
head from the pre-training model with a randomly initial-
ized prediction head. This prediction head can be of two

types depending on the aforementioned type of task. For
image-level tasks, we perform an average pooling on the
output tokens from the last transformer block and we use
an MLP to regress or classify. For dense tasks, we leverage
DPT [62], that assembles tokens from various stages into a
dense output with a prediction for each pixel.

4. Experiments
We evaluate our pre-training strategies on monocular
human-centric tasks listed in Section 4.1. We then provide
extensive ablations (Section 4.2) and comparison with prior
works (Section 4.3). Finally we show results in binocular
settings in Section 4.4. We provide qualitative examples for
several downstream tasks in Appendix C.

4.1. Downstream tasks

Body mesh recovery. We evaluate CroCo-Body on the
body mesh recovery task on the 3DPW test set [76] com-
posed of 35k human crops following prior works [40, 41,
45]. We use different type of training data for fine-tuning:
a) COCO-Part-EFT [40] which consists of 28k images
from COCO with pseudo-ground-truth of SMPL parame-
ters [54], b) Mix: a mix of 2D/3D datasets commonly
used by prior works [40, 41, 45] composed of COCO-
All-EFT [40], MPII [1], Human3.6M [36] and MPI-INF-
3DHP [57]), and c) Mix∗: the mix of datasets described in
b) plus 3DPW train set when comparing against the state
of the art. When not specified, we use COCO-Part-EFT
for fine-tuning on this task. a) a model-based method using
a vanilla ‘iterative regressor’ [40, 41, 45] prediction head,
which consists in regressing the SMPL parameters with an
MLP in an iterative manner starting from the mean param-
eters, and b) a model-free method which directly regresses
the 3D location of the vertices using the METRO predic-
tion head [49]. We report standard metrics: MPJPE (Mean
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Initialization Body Mesh Recovery Hand Mesh Recovery DensePose
PA-MPJPE↓ MPVPE↓ PA-MPJPE↓ MPVPE↓ AUC30↑ AUC10↑

Random 80.2 180.0 12.92 40.06 0.430 0.206
CroCo [78] 61.5 119.0 9.34 19.24 0.590 0.320
MAE-Body/Hand 59.1 115.1 8.75 17.93 0.625 0.351
MAE-IN1k [34] 59.6 113.0 8.64 16.84 0.678 0.392
CroCo-Body/Hand 57.4 111.5 7.97 16.02 0.692 0.416

(a) Comparison with other pre-training strategies
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Figure 3. Comparison with other pre-training methods on different downstream tasks (a) or under different fine-tuning data regimes
(b), i.e., when varying the number of annotated training samples from COCOpart for fine-tuning on the body mesh recovery task from 10%
to 100%. MAE-Body/Hand means that we pre-train MAE on the same data as CroCo-Body/Hand.

Per Joint Error), MPVPE (Mean Per Vertex Error) and PA-
MPJPE (Procrustes-Aligned MPJPE) in millimeters.

DensePose. We also evaluate on the DensePose task [32],
which consists in mapping every human pixel in an image
to a point on the surface of the body. It involves dense clas-
sification (of body parts) and dense regression (UV coor-
dinates). Our output and losses are similar to DensePose:
we learn a 25-way classification unit, and 24 2D regres-
sion functions. We do not target detection, so we train and
evaluate on single-person human-centered crops only. For
evaluation, we compute the ratio of correct points RCP (t)
among annotated pixels, where a correspondence is con-
sidered correct if the geodesic distance (on the surface)
between estimated pixel value and annotation is below a
threshold t. Next, taking all annotated points on the eval-
uation set, we consider the area under the curve (AUC), de-
fined as AUCa = 1

a

∫ a

0
RCP (t)dt, for a = 30 and a = 10.

Hand mesh recovery. We fine-tune CroCo-Hand on the
task of hand mesh recovery. The setup is similar to the body
mesh recovery task with the MANO parametric model [65].
We only use the vanilla ‘iterative regressor’ head [40, 41,
45] and we report results on the FreiHand dataset [90].

Hand gesture classification. We fine-tune CroCo-Hand
on HaGRID [42], which contains 18 gesture classes with
509,323 images for training and 43,669 for testing. Using
the full training set typically leads to very high accuracies
(e.g. above 99%), likely thanks to the large amount of anno-
tated samples, and in this regime, unsupervised pre-training
is thus unnecessary. In the regime where little data is avail-
able, however, pre-training is expected to have a noticeable
impact. We thus report few-shot accuracy considering 64
samples per class except otherwise stated.

Grasp classification. We fine-tune CroCo-Hand on the
Grasp UNderstanding (GUN-71) dataset [64], which con-
sists of 12k first-person RGB images annotated with 71
hand-object manipulation classes. We follow the evaluation
protocol of [64] on the 33 grasp taxonomy defined in [28]
with the ‘Best View’ and ‘All’ settings. This dataset is of
particular interest as the classes are fine-grained, with some
highly-specific grasps.

4.2. Ablation studies

Pair construction. In Table 1 (a) and (b), we construct
cross-view and cross-pose pairs only from datasets that can
be used to create both types of pairs – i.e., for body-centric
data, multi-view datasets that also include some temporal
sampling of motion, namely HUMBI, AIST and synthetic
data, InterHand for hand-centric data. This way, the pair
construction method is the only difference and the data used
is the same across variants and results are not influenced by
the use of additional data. Overall, the best results are ob-
tained with cross-view pairs, and it seems they should be fa-
vored when possible. However, the diversity of multi-view
data available is limited, and enriching the training data mix
with cross-pose pairs from monocular videos leads to a clear
performance boost, see last row of Table 1 (a).
Initialization. In Table 1 (c) and (e) we start the training
of CroCo-Body and CroCo-Hand from random weights, in-
stead of weights initialized from CroCo pre-training (de-
fault setting), and train for the same number of iterations.
We observe that this decreases the results on all tasks.
Masking. In Table 1 (d), we investigate the importance of
the masking strategy in our pre-training. We compare our
human-centric masking strategy to a naive uniform masking
strategy which consists in randomly sampling tokens from
the image. Performance degrades across tasks when using
the uniform sampling: we conclude that masking pixels that
belong to the person with higher probability is beneficial to
learning human-centric features.
Comparison with other pre-training strategies. In Fig-
ure 3 (a), we compare our pre-trained CroCo-Body and
CroCo-Hand models with the publicly released CroCo [78]
and MAE [34] weights. In order to evaluate the respective
contributions of pre-training data and pre-training method,
we also pre-train MAE on our data. We refer to these
models as MAE-Body/MAE-Hand and refer to the origi-
nal MAE model as MAE-IN1k. Our pre-training (bottom
row) outperforms both the CroCo and MAE-IN1k mod-
els. Interestingly, MAE-Body/Hand performs worse than
MAE-IN1k, thus the gains of our models come from the
pre-training objective rather than from the difference in pre-
training data. This is partly unexpected, as our pre-training
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Figure 4. Impact of the number of pre-training epochs. CroCo-Body is initial-
ized from CroCo while MAE is initialized from ImageNet.

Initialization Gesture↑ Grasp↑
16 32 64 BV All

Random 45.7 68.4 81.2 10.9 8.6
MAE-Hand 85.1 92.7 95.9 33.2 25.8
CroCo-Hand 92.5 95.8 97.4 37.8 29.2

Table 2. Impact of pre-training method for gesture
and grasp classification. For gesture, we report the
accuracy (%) when varying the number of samples per
class used for training. For grasp, we report both the
‘Best View’ (BV) and ‘All’ protocols from [64].

Pre-training supervision
Body Mesh Recovery

PA-MPJPE ↓ MPVPE ↓
2D keypoints (supervised) 54.6 116.7
CroCo-Body (self-supervised) 53.8 112.8
CroCo-Body + 2D keypoints 52.8 111.5

Table 3. Ablation on pretext task used for pre-training. All
models are pre-trained only on datasets for which we have key-
points annotations, namely 3DPW, PoseTrack, PennAction, AIST,
and JRDB. We use Mix for fine-tuning.

data is more tailored to the downstream tasks, but may be
explained by the fact that ImageNet-1k offers a vast di-
versity of backgrounds and texture, which may be benefi-
cial for pre-training. Figure 4 shows the evolution of per-
formance on downstream tasks after a varying number of
epochs; it shows that CroCo-Body starts off from a better
performance, and converges fast compared to MAE-Body.

In Table 2, we compare our CroCo-Hand to MAE-Hand
and a random initialization on the hand classification tasks
(gesture and grasp). In all cases, we outperform MAE-
Hand, which itself outperforms a random initialization.
Fine-tuning data efficiency. One motivation for pre-
training is that the fine-tuning stage on a specific task re-
quires less annotated training samples to reach good per-
formance. In Figure 3 (b), we report the performance on
body tasks of different pre-training strategies and their ef-
ficiency under different fine-tuning data regimes. CroCo-
Body achieves better performance compared to other pre-
training strategies (MAE-IN1K and Random) with the same
number of training samples: it reaches the same perfor-
mance as MAE-Body with 2 to 3 times less training sam-
ples. In particular, CroCo-Body obtains a PA-MPJPE of
65mm with 10% of the training set while MAE-IN1K re-
quires 25% of the train set to reach a similar performance.
Table 2 reports the results for grasp recognition and for few-
shot gesture classification with 16, 32 and 64 samples per
class for a network initialized randomly, with MAE-Hand or
with CroCo-Hand. CroCo-Hand outperforms MAE-Hand
which itself obtains significantly higher accuracies than a
random initialization. Interestingly, CroCo-Hand obtains

above 92% accuracy even with only 16 shots, while MAE-
Hand requires 32 samples per class to reach such accuracy.
Keypoints supervision. We evaluate how the proposed
self-supervised pre-training strategy compares to a fully-
supervised pre-training. 2D keypoints annotations are avail-
able for multiple human-centric datasets, and we thus pre-
train a network in a fully-supervised manner to regress body
keypoints as dense 2D heatmaps, following usual practice
in the field [18, 70]. We fine-tune this model on human-
related downstream tasks, and compare performance with
the proposed CroCo-Body pre-training on the same data.
CroCo-Body pre-training led to better performances than
the supervised approach for all downstream tasks consid-
ered (see Table 3), confirming the interest of the proposed
approach. Yet, by combining 2D keypoints supervision to
cross-view completion during pre-training, we were able to
obtain a small additional performance boost.

4.3. Comparison to the state of the art

We now compare our performance against state-of-the-art
methods, reported in Table 4 and 5.

On the task of Body Mesh Recovery (Table 4 (a)),
CroCo-Body achieves state-of-the-art performances using
either a model-based or model-free head. CroCo-Body
yields consistent gains across choices of head, which in-
dicates that our proposed pre-training stage learns highly
transferable features for the task of mesh recovery.

We report in Table 4 (b) the results on the DensePose
task. We follow the setup of [32] and observe that CroCo-
Body achieves better performance on all metrics.

Next, we report the results on hand mesh recovery in
Table 5 (a). CroCo-Hand gets results on par with prior
work. Recent methods leverage more complicated predic-
tion heads (see Section 4.1), however, we show that without
bells and whistles, we perform on par with these methods.

Finally, we report grasp classification in Table 5 (b).
CroCo-Hand is competitive with prior works [19, 23, 64]
but does not reach state-of-the-art performances. This can
be explained by the extremely limited variety of back-
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Method PA-MPJPE↓ MPJPE↓
m

od
el

-b
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ed HybrIK [47] 48.8 80.0
ROMP [70] 47.3 76.7
PARE [44] 46.5 74.5
Choi et al. [21] 56.8 -
CroCo-Body 46.2 76.2

m
od

el
-f

re
e

Pose2Mesh [20] 56.3 89.5
METRO [49] 47.9 77.1
MeshGraphormer [50] 45.6 74.7
FastMETRO [18] 44.6 73.5
PointHMR [43] 44.9 73.9
CroCo-Body 44.2 73.3

(a) Body mesh recovery on 3DPW [76] after fine-tuning on Mix*

Method AUC10 ↑ AUC30 ↑
DensePose [32] 0.378 0.614
CroCo-Body 0.416 0.692

(b) DensePose estimation on COCO [32]

Table 4. CroCo-Body vs. the state of the art. Using a generic
architecture, we achieve competitive performances with recent
works thanks to the proposed pre-training.

Method PA-MPJPE↓ PA-MPVPE↓
PIXIE hand expert [29] 12.0 12.1
MANO-CNN [90] 11.0 10.9
Pose2Mesh [20] 7.7 7.8
Hand4Whole [58] 7.7 7.7
METRO [49] 6.8 6.7
CroCo-Hand 7.4 8.0

(a) Hand mesh recovery on FreiHand [90]

Method Best View↑ All↑
Rogez et al. [64] 22.7 20.5
Coskun et al. [23] 42.3 N/A
Choi et al. [19] N/A 39.8
CroCo-Hand 37.8 29.2
CroCo-Hand† 49.9 49.6

(b) Grasp classification on GUN-71 [64]

Table 5. CroCo-Hand vs. the state of the art. CroCo-Hand †

represents our method pre-trained with more diverse data.

grounds and the absence of manipulated objects in the pre-
training dataset [59]. Pre-training on diverse images seems
to be critical for reaching high performance on GUN-71,
as suggested by the results of Coskun et al. [23] who pre-
trained their network on ImageNet. To solve this issue,
we pre-train CroCo-Hand using cross-view and cross-pose
pairs from more datasets containing hand-object interac-
tions and more diverse backgrounds (InterHand2.6M [59],
DexYCB [12], HO3D [33], HanCo [89]). This variant,

Input Pre-training
Hand Mesh Recovery Body Mesh Recovery

PA-MPJPE↓ PA-MPVPE↓ PA-MPJPE↓ PA-MPVPE↓

Monocular
MAE-IN1k 11.6 11.2 58.9 113.0

CroCo-Body/Hand 11.0 10.8 57.5 111.2

Binocular
MAE-IN1k 9.9 9.5 60.5 115.0

CroCo-Body/Hand 9.5 8.8 55.0 108.4

Table 6. Monocular vs. binocular mesh recovery performance
on the 3DPW test set (body) and on HanCo (hand).

denoted as CroCo-Hand †, leads to a clear improvement,
reaching state-of-the-art accuracy.

4.4. Extension to binocular tasks

One interesting property of our CroCo-Body and CroCo-
Hand architecture is that the decoder can also be leveraged
in binocular settings. In Table 6 we report performance of
CroCo-Body and CroCo-Hand using either a single-image
input with the encoder only, or using two inputs images and
leveraging both the encoder and decoder. For the body mesh
recovery task, we fine-tune on COCO-Part and the 3DPW
train set as well since 3DPW contains sequences, so we can
feed neighboring frames to our model as well. For hand
mesh recovery, we fine-tune on Hanco [89], a multi-view
extension of FreiHand. Results for the texture estimation
task are reported in Appendix A.

Using both the pre-trained encoder and decoder for fine-
tuning in a binocular framework proves to be beneficial
for both body and hand mesh recovery. For sanity’s sake,
we also fine-tune MAE-IN1k in binocular settings by ini-
tializing the decoder from scratch. While it degrades the
performance on the body mesh recovery task compared to
its monocular counterpart, we observe that it gets reason-
able performance on the hand mesh recovery task. This
can be explained by the fact that the HanCo training set
is large compared to the training set used for the body
mesh recovery task so the pre-training has less of an im-
pact. CroCo-Body/Hand still obtains better performance
than MAE-IN1k in both monocular and binocular settings.

5. Conclusion

We present a strategy to pre-train a model for various
human-centric tasks. Our approach is based on a self-
supervised pre-training method that leverages cross-view
completion (CroCo), using pairs of images of people taken
from different viewpoints or in different poses. Fine-tuning
a model pre-trained with this strategy leads to state-of-the-
art performance on various tasks, such as human mesh re-
covery and competitive performance on gesture classifica-
tion, while using a generic model architecture. The pro-
posed pre-training outperforms other popular pre-training
strategies such as MAE [34]. Lastly, we show how this pre-
training can be leveraged to perform binocular tasks such as
body mesh recovery from multiple views.
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Appendix
This appendix presents additional results on the human

texture estimation task (Section A), training cost informa-
tion (Section B) and qualitative results of the pre-training
objective as well as of several downstream tasks (Sec-
tion C).

A. Human texture estimation
Our pre-training objective has some similarities with the
task of novel-view synthesis. Given an observation of a
person (the reference image), and some information about a
target pose and viewpoint (the masked target image), the
network is trained to reconstruct an image of the person
from said viewpoint. In order to evaluate this particular
facet of human understanding, we compare different pre-
training strategies on the task of human novel-view genera-
tion. More particularly, we tackle human texture generation
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Figure 5. Evaluation scores of various pre-trained models on
the texture estimation task of TexFormer [81], at different fine-
tuning stages. From left to right, we report SSIM↑ (structural sim-
ilarity index) and LPIPS↓ [85] metrics. All models return a single
RGB texture.

from a single image, following the experimental setup of
TexFomer [81]. They define a key, query and value images
which are partly pre-computed, and partly based on the in-
put image. These images are encoded at different scales us-
ing 3 CNNs, then transformer layers perform multi-headed
attention at different scales. Resulting features are merged
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through another CNN. We modify their code, replacing
their whole network with our ViT-based encoder-decoder
architecture. The value image is discarded, and encoder
weights are fine-tuned independently for key and query im-
ages. The network is trained to return a single RGB tex-
ture. This adaptation is a bit naive, but our goal is mainly to
compare different pre-training methods on a different task,
that leverages both encoder and decoder of the pre-trained
network. We follow the TexFormer experimental setup in
terms of hyperparameters, datasets, and metrics. Results
for different network initializations are reported in Figure 5.
For MAE, we randomly initialize the decoder weights. Pre-
training the model does help a lot: both CroCo and MAE
provide a significant boost. CroCo performs slightly bet-
ter, which is probably due in part to the pre-trained decoder.
CroCo-Body outperforms both CroCo and MAE.

B. Training time

In this section, we give timings necessary for pre-training
and fine-tuning our models. Pre-training the CroCo-Body
model takes about 8 days on 4 NVIDIA A100 GPUs. Fine-
tuning it on a single A100 takes about half a day per down-
stream task. As for the CroCo-Hand model, pre-training
on 4 V100 GPUs requires 2.25 days, and fine-tuning on a
single V100 GPU takes about 8 hours per downstream task.

C. Qualitative results

C.1. Pre-training

CroCo-Body. We illustrate the pre-training task of CroCo-
Body on both cross-view and cross-pose pairs in Figures 6
and 7 respectively, with data never seen by the model dur-
ing pre-training. We report predictions of CroCo-Body us-
ing either the reference image or a reference image entirely
black (‘no ref’), to ablate the cross-image completion ca-
pabilities of the decoder. CroCo tends to recover detailed
patterns on relatively flat surfaces, such as the t-shirt logo
on the first row of Figure 6. It lacks prior knowledge about
humans however, and struggles to reconstruct the left arm
on the second row. In contrast, CroCo-Body produces a
sharper arm reconstruction, which may be attributed to its
human-specific pre-training and the ability to leverage the
reference view. A similar effect is visible on the reconstruc-
tion of the head in the last row.

For cross-pose pairs (Figure 7), we observe that comple-
tions of CroCo are similar to the ones of CroCo-Body with
no reference image. This suggests that CroCo benefits lit-
tle from cross-image attention, being specifically trained to
exploit static stereoscopic pairs only. CroCo-Body on the
other hand seems able to recover information from the ref-
erence image about the lower-body garments even though
they are heavily occluded in the masked target in both ex-

amples, and achieves a better completion of the masked im-
age.
CroCo-Hand. We illustrate the pre-training task of CroCo-
Hand on unseen cross-pose pairs in indoor and outdoor
scenes in Figures 8 and 9, respectively. We tested CroCo-
Hand on internal images which have never been seen dur-
ing the pre-training stage. We observe that CroCo-Hand
learned the structure of a human hand such as shown in
Figure 8 where it reconstructs a pointed index finger from
a small handful of visible palm patches. CroCo-Hand also
performs well on outdoor images such as shown in Figure 9,
despite the fact the pre-training is done integrally using data
captured in labs. It is also interesting to notice that CroCo-
Hand also generalizes well to different skin tones.
Keypoints supervision. We give here more detailed infor-
mation about the keypoints supervision used for the pre-
training ablation in Section 4.2 and Table 3 of the main
paper. We select the set of 13 keypoints used in PennAc-
tion [86]. For each pre-training image, we generate a 13-
channels keypoint heatmap where each keypoint is repre-
sented as a Gaussian with σ = 8 pixels. Figure 10 illus-
trates the task on a simple example. During pre-training,
the encoded image is passed through a simple prediction
head that is trained to predict the heatmaps with a sim-
ple binary cross-entropy loss. Ground-truth keypoints are
weighted according to a confidence parameter (0 for miss-
ing keypoints). When pre-training with both objectives (Ta-
ble 3 of the main paper, last row), we train the keypoints
prediction on the encoded reference image, that is fully vis-
ible.

C.2. Downstream results

We now show some visualizations of the different down-
stream tasks that we evaluate on. Figures 11 and 12 show
results on regression tasks (DensePose and body/hand mesh
recovery, respectively), while Figure 13 shows results on the
grasp classification task.

13



Reference Masked CroCo CroCo-Body CroCo-Body Target
view input (no ref) image

Figure 6. Completion examples on cross-view (i.e. multi-view) pairs from the Mannequin Challenge dataset [48] (first row) and the
GeneBody dataset [17] (last two rows). CroCo-Body (no ref) stands for our model evaluated on the masked input, and a reference view set
to zero (i.e., a fully-black image).

Reference Masked CroCo CroCo-Body CroCo-Body Target
view input (no ref) image

Figure 7. Completion examples on cross-pose (i.e. temporal) pairs from 3DPW [76] validation set (unseen during pre-training). CroCo-
Body (no ref) stands for our model evaluated on the masked input, and a reference view set to zero (i.e., a fully-black image).
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input CroCo-Hand

Target
image

Figure 8. Completion examples of CroCo-Hand on unseen
cross-pose (i.e. temporal) pairs, in indoor scenes.

Reference
view

Masked
input CroCo-Hand

Target
image

Figure 9. Completion examples of CroCo-Hand on unseen
cross-pose (i.e. temporal) pairs, in outdoor scenes.

Input
image

Predicted
heatmap

Ground-truth
heatmap

Predicted
keypoints

Figure 10. Visualization of the supervised pretext task used
for the ablation in Table 3 of the main paper. The right shows
the position of predicted keypoints (blue) obtained with a simple
argmax on the predicted heatmap, on top of ground truth keypoints
(green). Heatmaps have been artificially converted to 3-channels
images for visualization purpose.

Input
image

Predicted
UV coordinates

Predicted
labels

Ground-truth
labels

Figure 11. Qualitative results of CroCo-Body on the DensePose
task on the COCO dataset. The sparse ground-truth labels used for
training and evaluation are dilated here for visualization purposes.

(a) Results on the body mesh recovery task on 3DPW [76].

(b) Results on the hand mesh recovery task on HanCo [89].

Figure 12. Qualitative examples of our models on the two mesh
recovery tasks. Each pair shows the input image, and the output
of CroCo-Body (top) or CroCo-Hand (bottom), overlaid on the
image.

GT: Palmar GT: Fixed Hook GT: Parallel Extension GT: Prismatic 4 Finger
Palmar: 96.46% Fixed Hook: 99.72% Palmar: 99.99% Prismatic 4 Finger: 96.41%

Adducted Thumb: 1.83% Distal Type: 0.24% Medium Wrap: 0.01% Precision Sphere: 1.44%
Medium Wrap: 0.51% Precision Disk: 0.02% Adducted Thumb: 0.00% Sphere 4 Finger: 1.27%

Figure 13. Qualitative examples of our models on the grasp
classification task on GUN-71 [64]. For the images on the top
row, we show below the ground-truth class as well as the top 3
prediction made by our model.
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