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Abstract
Recently, a confluence between trends in neuroscience and
machine learning has brought a renewed focus on unsuper-
vised learning, where sensory processing systems learn to
exploit the statistical structure of their inputs in the absence of
explicit training targets or rewards. Sophisticated experimental
approaches have enabled the investigation of the influence of
sensory experience on neural self-organization and its syn-
aptic bases. Meanwhile, novel algorithms for unsupervised and
self-supervised learning have become increasingly popular
both as inspiration for theories of the brain, particularly for the
function of intermediate visual cortical areas, and as building
blocks of real-world learning machines. Here we review some
of these recent developments, placing them in historical
context and highlighting some research lines that promise
exciting breakthroughs in the near future.
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Introduction
Natural and artificial perceptual systems face the chal-
lenge of learning how to map the sensory environment
into representations that are useful to guide perceptual
decisions, motor behavior, and memory formation. Two
primary methods exist for creating these maps. Learning
can occur in the presence of a “teaching signal,” offering
www.sciencedirect.com
explicit feedback on the perceptual representations
generated by the system. This feedback can range from
precise information on the correct perceptual categori-
zation of specific inputs (supervised learning) to a more
generic rating of the overall perceptual processing
outcome (reinforcement learning). Alternatively,
learning can unfold in an unsupervised way, exploiting
the inherent statistical structure of sensory experience

without any explicit guidance (unsupervised
learning) [1].

Reinforcement and supervised learning are thought to
play a key role in the learning of sensorimotor trans-
formations and the abstract cognitive representations
guiding goal-directed behavior [2,3], as well as in fine-
tuning sensitivity for perceptual tasks [4]. Instead, un-
supervised learning has been suggested as the leading
mechanism for the experience-dependent development
of neuronal tuning from middle- (e.g. primary visual

cortex - V1) to high-order areas (e.g. inferotemporal
cortex - IT) along cortical sensory processing hierarchies
[5]. This idea has two main motivations. First, unsu-
pervised learning lends itself naturally to local imple-
mentations based on simple synaptic learning rules
[6e15], obviating the need to transmit error feedback
messages from high-order classification/decision centers
to lower sensory areas. This problem, known as credit
assignment, is solved by backpropagation in artificial
neural networks (NNs), but, despite recent efforts,
there is still no evidence for a mechanism that could

have this role in the sensory cortex [16]. Second, during
the early life of an animal, the amount of “labeled”
sensory data is likely too little to provide the amount of
training samples that are required for supervised
learning [17].

Unsupervised learning could therefore support the
continuous adaptation of cortical sensory representa-
tions to sensory input statistics, acting as a bridge be-
tween the largely hard-wired and evolutionary-
determined processing circuits of low-level areas [18]

(e.g. the retina) and the categorial/conceptual repre-
sentations learned under supervision in higher-order
memory/decision centers (Figure 1). In the following,
after providing a historical perspective, we review the
most recent evidence in support of the role played by
unsupervised learning in the visual cortex.
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Figure 1

Learning across the visual processing hierarchy. (a) Schematic of the primate visual processing hierarchy. Each area is plotted so that its size is
proportional to its cortical surface area; the approximate total number of neurons (both hemispheres) is shown (M = million) following [5]. The shade of
gray reflects the level of processing (light-to-dark = early-to-high). (b) Gradient of relevance of different wiring principles across the primate visual hi-
erarchy, with associated keywords indicating some of the most important perceptual processes involved at each level.
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Synaptic mechanisms
The earliest and most influential hypothesis about how
learning can take place in the brain can be traced back
to Hebb’s intuition [19] that, upon simultaneous
activation, the strength of the synaptic connection
between two neurons increases (Figure 3a). Hebb’s
speculation received neurobiological support from the

discovery of long-term synaptic potentiation (LTP;
initiated by a postsynaptic calcium influx via N-
methyl-D-aspartate (NMDA) receptors) and long-
term depression (LTD), followed by the realization
that both LTP and LTD can depend upon the timing
of presynaptic and postsynaptic spikesea form of
learning known as spike-timing-dependent plasticity
(STDP) [20].

While many studies focused on connecting synaptic
plasticity to memory, others focused on its role in

experience-dependent sensory plasticity, e.g. demon-
strating that ocular dominance plasticity in the visual
cortex is prevented by blocking NMDA receptors [21].
Researchers successfully manipulated the response
properties of single neurons by pairing visual stimulation
with artificially triggered spiking activity, in agreement
Current Opinion in Neurobiology 2024, 84:102834
with Hebb’s hypothesis [22]. In subsequent studies
[23,24], by precisely controlling the time of postsynaptic
spikes with respect to visual stimulation using in vivo

patch clamp, it was possible to strengthen the responses
of V1 neurons at specific visual field locations, thus
obtaining a rapid unsupervised reshaping of neuronal
receptive fields (RFs).

More recently, El-Boustani et al. [25] employed in vivo
two-photon imaging and optogenetics to provide an un-
precedented view of how synaptic plasticity underlies
functional, unsupervised changes in sensory neurons
(Figure 2). By consistently pairing visual stimuli with
optogenetically-induced, temporally-precise spiking in V1

of awake mice, the authors triggered Hebbian plasticity,
eventually shifting the receptive field of the targeted
neuron towards the paired location. They also showed that
spine volume changes correlated with the positional
tuning of each synapse, indicating a transition from LTP
(i.e. volume increase) toLTD(i.e. volumedecrease)based
on spine-RF center proximity to the paired location. LTP
was found to be coordinated with gradual LTD of adjacent
spines, consistent with a form of heterosynaptic plasticity
acting in concert with Hebbian plasticity.
www.sciencedirect.com
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Figure 2

Hebbian plasticity can reshape visual RFs in vivo. chematic of the experiment by El Boustani et al. [25] showing a pyramidal neuron undergoing the
visual-optogenetic stimulation pairing protocol. Left: initial condition. The neuron responds very weakly to visual stimulation of the target location indicated
by the white rectangle. The efficacy of the synapse with the afferent neuron tuned to that location is low, as represented by its small volume. The somatic
receptive field is offset with respect to the target location. After repeatedly pairing the presentation of the target stimulus with precisely timed optogenetic
stimulation, which induces spiking in the target neuron, many spines undergo LTP or LTD. Right: outcome. The neuron responds strongly to visual
stimulation of the target location. The efficacy of the synapse with the afferent neuron tuned to that location is increased while the others are reduced, as
highlighted by corresponding changes in spine volume. The somatic receptive field now overlaps with the target location. LTP, long-term synaptic
potentiation.
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Another promising line of research focuses on under-
standing how top-down feedback, interacting with local
circuit mechanisms, regulates synaptic plasticity,
potentially helping the brain to solve the credit assign-
ment problem [26]. For instance, acetylcholine can

facilitate plasticity by disinhibiting NMDA-driven cal-
cium entry in the dendritic segments of pyramidal
neurons via activation of nicotinic receptors on specific
inhibitory interneurons. This mechanism, likely critical
in reinforcement learning, could also play a key role in
unsupervised learning, where higher-level neurons
might provide feedback to control the plasticity of
relevant low-level features [26].
Theoretical foundation: From efficient
coding to sparse coding and unsupervised
temporal learning
From a theoretical perspective, it is useful to formulate
high-level organizational principles that capture the
emergent functional effect of learning in neural circuits.
A notable example is the efficient coding principle,

which, broadly speaking, postulates that neural
processing is adapted to exploit the statistical structure
of the natural environment. Efficient coding has been
remarkably successful in generating compact theoretical
www.sciencedirect.com
descriptions of evolutionary-inherited principles of
wiring in the sensory periphery (see references in
Ref. [27]) as well as experience-dependent shaping of
perceptual systems in central circuits [18].

Early insights into unsupervised learning of efficient
codes came from the study of information maximization
in artificial neural networks [11,12]. Later, Levy et al.
showed that information and energetic efficiency can be
incorporated by sparse codes, where only a few coding
elements are active to represent each message [28].
Remarkably, Olshausen and Field showed that opti-
mizing a neural code simultaneously for representational
power and sparseness on natural images can lead to
neural filters made of flanking, oriented subfields with
alternating excitatory/inhibitory polarity, very similar to

the RFs of V1 simple cells [29].

Sparseness is one of the key computational constraints
that have been instantiated in the class of unsupervised
learning approaches that we will refer to as unsupervised
spatial learning (USL), because they rely only on the
spatial statistics of natural input and ignore its temporal
dimension. These approaches have also been applied to
model V1 complex cells [30], the edge detector units
Current Opinion in Neurobiology 2024, 84:102834
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Figure 3

Learning selectivity and invariance through USL and UTL. (a) Schematic showing the hypothesized mechanism by which Hebbian USL could support
the learning of V1 simple cells, starting from an LGN-like center-surround representation. Top: initial condition for the developing simple cell. One strong
synapse drives the output of the neuron, as the somatic receptive field reflects that of the dominant afferent from lateral geniculate nucleus (LGN).
Exposure to a stimulus ensemble containing a vertical bar as a common spatial feature induces repeated co-activation of several LGN-afferent neurons
coding for different bar parts. Bottom: this exposure eventually causes Hebbian strengthening of the synapses of all co-activated afferents (and weak-
ening of the others), leading to the formation of an oriented receptive field in the mature simple cell. (b) Schematic showing the hypothesized mechanism
by which UTL, based on a trace rule, could support learning of position-invariant, oriented-edge detectors (i.e. complex cells), starting from a population of
presynaptic simple cells. Left: the initial condition for the developing complex cell. One strong synapse drives the output of the neuron, and the somatic
receptive field reflects that of this dominant simple cell afferent. As a stimulus containing its preferred vertical edge drifts through the RF of the dominant
afferent, the postsynaptic neuron responds strongly (time = t, top). As the stimulus keeps drifting to an adjacent position (time = t + Dt, bottom), hitting the
RF of another, weakly connected afferent, the lingering trace of recent activity in the postsynaptic neuron enables potentiation of the synapse with the
currently active afferent. Right: this exposure eventually causes the strengthening of the synapses of all simple-cell afferents along the trajectory of the
stimulus, endowing the neuron with a selectivity for the vertical bar at any point along the trajectory (i.e. position-invariant encoding). USL, unsupervised
spatial learning; UTL, unsupervised temporal learning; RF, receptive field.
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Unsupervised learning in visual cortex Matteucci et al. 5
that encode orientation in a (locally) position-tolerant
manner [31]. Transformation tolerance, however, has
been more commonly modeled as the result of unsu-
pervised temporal learning (UTL), namely those algo-
rithms that exploit the full spatiotemporal structure of
an incoming data stream. UTL exploits the temporal
continuity of visual experience, where the natural ten-
dency of different appearances (or views) of the same

visual features to occur nearby in time is used to factor
out feature identity (e.g. edge orientation) from other
faster-varying, lower-level visual attributes
(e.g. edge position).

The first instantiation of UTL can be traced back to
Földiák’s introduction of a “trace rule” as a variation of
classical Hebbian learning, where the strengthening of a
synapse is not merely proportional to the instantaneous
firing of the presynaptic and postsynaptic units, but to
the presynaptic activity and to a record of the recent

history (a “memory trace”) of postsynaptic activity [10].
This allows the postsynaptic cell to potentiate its syn-
apses with presynaptic units that are activated sequen-
tially over time (e.g., because a given visual feature
sweeps through the visual field), thus inheriting their
same selectivity while acquiring larger invariance (e.g. to
translation or scaling; Figure 3b). Földiák’s learning
scheme successfully produced complex cell represen-
tations starting from the existence of a bank of simu-
lated simple cells, as several later NN models based on
UTL did [32e36]. Another family of UTL models

produces complex cell RFs directly from the pixel
(i.e. “retinal”) representation, thus simultaneously
learning shape selectivity and invariance. The most
influential of such approaches is slow feature analysis
(SFA), an unsupervised learning algorithm designed to
extract slowly varying features from temporally varying
input signals [37]. This approach finds a transformation
of the input data that yields output features with min-
imal temporal variation, thus maximizing the “slowness”
of the output signal. When applied to natural videos [38]
or patterns of simulated spontaneous retinal activity
[39], SFA produces response properties that are similar

to those of V1 complex cells. When instantiated in a
feedforward hierarchical structure, the slowness princi-
ple, often in combination with sparseness, is able to
extract higher-order properties of a scene, including
those encoded in deeper areas of the ventral visual
stream [36,40] and the hippocampus [41]. Interestingly,
recent efforts investigating plausible neurobiological
implementations of USL and UTL have shown that
STDP not only enables unsupervised extraction of
complex visual features from natural images in a multi-
layer feedforward spiking neural network [42], but can

also approximate independent component analysis [43]
or slow feature analysis [15] under suitable conditions.

Maximization of sparseness and maximization of slow-
ness can be seen as opposite pulling forces on neuronal
www.sciencedirect.com
representationsethe first pushing neurons to become as
selective as possible, the second leading them to
respond as persistently as possible over time [44]. Thus,
the two main classes of USL and UTL algorithms nicely
recapitulate the well-known trade-off between shape
selectivity and transformation tolerance that is inherent
in object vision [5,45]. A central question is whether it is
the interplay between USL and UTL that accounts for

the build-up of selective yet invariant
representations along visual processing hierarchies, such
as the primate ventral stream [5]. Recent theoretical
efforts in this direction include studies integrating
sparse coding with manifold learning and slow feature
analysis [46] or with predictive coding [47]. The next
sections summarize the experimental evidence
supporting this hypothesis.
Unsupervised spatial learning:
Experimental evidence
Historically, the hypothesis that neuronal representa-
tions are adapted to the statistics of the visual world was
causally tested by a number of studies rearing animals in
altered visual environments, inspired by the concomi-
tant discovery of a postnatal critical period of maximal
cortical plasticity [48,49]. It was found that, in primary
visual cortex, many tuning properties (e.g. for orienta-

tion and direction) are already present at eye opening in
most species [48] (ferrets being the exception [50]).
Visual experience, however, seems necessary to sharpen
this “innate” tuning and maintain it. In cat V1, for
instance, monocular deprivation has a strong impact on
the development of ocular dominance, and restricting
early visual experience to a single orientation biases
orientation preference (see references in Ref. [51]).
USL models based on sparse coding [51] well account
for these phenomena, although we still lack experi-
mental proof of one of their key predictions, i.e. that the

lack of experience with images containing lines and
contours prevents the development of V1-like RFs
[29,51]. Despite early reports that rearing kittens in
visual environments made of sparse dots leads to some
reduction in the number of orientation-tuned cells in V1
[52], more recent experiments carried out on ferrets did
not find any impairment in the development of orien-
tation selectivity [53].

Going beyond V1, processing of visual textures has been
used to study whether perception of complex visual

patterns and higher-order cortical representations are
also consistent with USL. From a perceptual standpoint,
texture patterns that are more informative about visual
scenes have been found to be more salient than less
informative ones [54e56], consistent with the efficient
coding principle applied to high-order visual statistics
[56]. This result, initially established in humans for
black-and-white visual textures, has been recently
extended to grayscale images [57] and rodent vision
Current Opinion in Neurobiology 2024, 84:102834
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[58]. Neural representations of visual textures in in-
termediate ventral stream areas (V2, V4) have also been
found to be adapted to the spatial statistics of natural
images [59,60]. However, it remains unclear whether
these representations are the result of adaptation to
sensory statistics during development or arise from a
USL process unfolding at the evolutionary time scale. In
the future, this question could be addressed by

controlled-rearing studies.

This approach was successfully employed to investigate
the development of high-order facial representations in
newborn monkeys. Arcaro et al. showed that macaques
deprived of face exposure during early development did
not develop face-selective patches in the ITcortex [61].
Previous work [62,63], on the other hand, suggested
that monkeys reared without face experience still
possessed an innate ability to detect faces. However,
Sugita et al. also demonstrated that experience plays a

crucial role in shaping the monkeys’ preference for the
specific category of commonly experienced faces
(e.g. monkeys’ vs. humans’ faces) [63]. Both Arcaro’s
and Sugita’s results suggest the experience-dependency
of at least some aspects of face processing in primates.
Consistent with recent computational work [64], this
could result from an unsupervised learning process,
although, given the social importance of faces for pri-
mates, reinforcement processes could also play an
important role.
Unsupervised temporal learning:
Experimental evidence
Theoretical UTL models prompted several psycho-
physical tests of the link between the spatiotemporal
continuity of visual input and transformation tolerance
in human vision. Wallis et al. [65,66] showed that it is
possible to trick the visual system into considering two

images of two different objects as being different views
of the same object. This was achieved by passively
exposing viewers to animations where one object, while
undergoing viewpoint transformations (e.g. rotating in
depth), also smoothly changed its identity (e.g. face A
morphs into face B). A similar result was obtained for
abrupt position changes produced by saccades when
object identity was swapped in mid-saccade [67]. The
ability to create such “false” invariances suggests that, in
the adult brain, unsupervised learning mechanisms are
continuously at work to associate temporally contiguous

retinal images into the same perceptual representation.
This conclusion is supported by other studies reporting
better object recognition across in-depth rotations
following a period of passive exposure to sequences of
views of the object in close temporal proximity [68,69].
Notably, these studies found that object views do not
need to be shown in sequential order (although this
improves discrimination accuracy when few views per
sequence are used [69]), but exposure to views
Current Opinion in Neurobiology 2024, 84:102834
presented in random order is enough to increase object
recognition accuracy. This is in agreement with the
findings of [67] but not entirely consistent with [65,66],
where spatial consistency (i.e. smooth shape trans-
formation) across temporally contiguous views was
required to enable UTL for images of rotating face
morphs. While the differences between these studies
may be partly explained by the different types of stimuli

used (faces vs. generic three-dimensional shapes), the
importance of spatio-temporal consistency for UTL is
further supported by recent studies on newborn chicks.
This species develops more invariant object represen-
tations when reared with objects that rotate smoothly
over time rather than changing views discontinuously
[70] (Figure 4), with the amount of view invariance
being negatively correlated with the speed of the rota-
tion [71]. In summary, while temporal continuity seems
to play an essential role in the learning of transformation
tolerance, spatial continuity appears to have a facilita-

tory function (but see also [72] for a different view on
the subject).

At the cortical level, the existence of UTL mechanisms
shaping the tuning of visual neurons has been demon-
strated by Li and DiCarlo [73e75], who exposed mon-
keys to altered associations between object identities
across position and size changes. As a result of repeated
exposures to such altered spatiotemporal statistics,
neurons in IT weakened their original selectivity
(e.g. preference for object A over B) at the swapped

position/size and, in some cases, reversed it, thus either
losing their tolerance across these transformations or
even developing a “false” one. This reshaping of toler-
ance in IT takes place regardless of whether object
transformation is abrupt (across saccades) or continuous
(object A smoothly morphing into B while gradually
changing size). The process develops over the course of
a few hours of repeated exposures to the altered sta-
tistics and does not depend on the size of the reward or
its temporal contingency with these exposures, nor on
the actual engagement of the animal with the visual
stimuli. This suggests that UTL is a fully unsupervised

process (i.e. not requiring reward-based feedback) that
allows the visual system to continuously adapt to the
statistics of visual experience.

Recently, this UTL-based plasticity in monkey IT was
shown to account for the reshaping of transformation
tolerance reported in psychophysical studies. In
Ref. [76], a Hebbian plasticity rule (designed to reduce
the difference in neuronal responses to consecutive
images) was implemented in a simulated population of
IT neurons with realistic selectivity and tolerance. The

model successfully captured the changes in tuning
observed in IT following exposure to natural and altered
spatiotemporal statistics [74]. Importantly, a simple
linear readout of the simulated population accounted for
the changes in object discrimination accuracy observed
www.sciencedirect.com
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Figure 4

Controlled rearing to test unsupervised learning theories. (a) Schematic of the timeline of a controlled rearing experiment. During the critical period of
sensory development, animals are subjected to dark rearing from birth, except for repeated bouts of exposure to sensory stimuli with controlled statistics,
e.g. in Ref. [77]: either natural movies or their frame-scrambled version; in Ref. [70]: either smoothly or nonsmoothly rotating objects. The neuronal and
behavioral consequences of different “visual diets” can then be assessed and compared with theoretical predictions. (b) Example of a setup for controlled
visual rearing. A transparent cage is surrounded by monitors, enabling immersive visual stimulation of newborn rodents. An example stimulus presen-
tation is shown with a 3D object moving on the walls while rotating in depth and changing size (adapted from Ref. [77]).
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in human subjects exposed to the same stimuli, thus
providing a direct link between the psychophysical and
neural implementation levels.

Another recent study [77] extended the investigation
of UTL to a lower visual cortical area, focusing on
tuning for much simpler features than visual
objects and applying a fully ecological, unconstrained
exposure to natural or altered spatiotemporal statistics
(Figure 4). Newborn rats were reared, for the whole
duration of the critical period, in controlled visual en-
vironments with either natural movies (control group)
or their temporally scrambled version (experimental
group). This controlled rearing led to a sizable reduc-

tion of the number of complex cells in V1 of the
experimental rats and an impairment in their ability to
encode orientation in a position-invariant way
(compared to controls). This indicates that a form of
www.sciencedirect.com
UTL must be at work during postnatal development to
leverage the spatiotemporal continuity of uncon-
strained visual experience and support the emergence

of invariance in a visual area as low as V1. Crucially, such
a learning process took place without the need for any
explicit task or reward (which could have engaged
general attentional/arousal mechanisms in
Refs. [73e75]) or any ordered, sequential presentation
of isolated stimuli (which could have helped the
learning of relevant object representations in these
earlier monkey studies). At the same time, the devel-
opment of simple cells was not affected, and orienta-
tion tuning was equally sharp in both groups. This
suggests that learning mechanisms based on

USL, rather than UTL, underlie the development of
shape selectivity, and that both forms of unsupervised
learning are necessary to fully account for the devel-
opment of visual cortical tuning [41,44,46].
Current Opinion in Neurobiology 2024, 84:102834
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Interestingly, a previous study in which adult rats were
exposed to repeated swaps of grating orientation across
spatial frequency (SF) changes found that this manip-
ulation did not induce any change in orientation selec-
tivity at the swapped SF [78]. In light of the findings
reviewed above, demonstrating developmental UTL in
rat visual cortex [77] and fast adult UTL in monkey IT
cortex [73e75]), failure to observe UTL in Ref. [78]

points to differences in the level of experience-
dependent plasticity retained by sensory cortices
across the lifespan. While high-order visual centers like
ITretain their UTL-based plasticity well into adulthood
(to constantly adapt high-order representations to the
environment), the tuning of primary visual neurons for
such basic features as oriented edges is likely more rigid
during adulthood. These building blocks of visual rep-
resentations are possibly learned once and for all during
early postnatal development to remain stable after the
closure of the critical period [48,49].

Rat visual cortex was also exploited in another recent
study [79] to test whether visual representations
become progressively slower across consecutive stages of
the cortical object processing pathway. This should be
the case if the role of UTL was to support the encoding
of those features that, in the visual input, vary more
slowly, like object identity [37]. However, such stimuli
could engage adaptive and predictive processes, which
could in principle fully counterbalance any increase in
slowness of the cortical representationefor instance, by

encoding preferentially “surprising” events, such as the
appearance or disappearance of a stimulus, rather than
its permanence within the field of view. In Ref. [79], rats
were exposed to a set of natural movies, while neuronal
responses were recorded from the anatomical progres-
sion of visual cortical areas (V1/LM/LI/LL) that
forms the rat homologue of the ventral stream [80].
Stimulus representations were indeed slower in higher-
order areas as compared to V1, although differences
were small (w50 ms). However, a much steeper hier-
archy of temporal stability emerged when responses to
movie segments containing isolated objects were

considered, with representations in LI/LL being more
than 1s slower than in V1. In addition, and
consistent with previous findings in sensorimotor hier-
archies in monkeys [81] and mice [82], the intrinsic
timescale of the within-trial correlation of neuronal ac-
tivity also increased along the cortical pathway, being
w200 ms longer in LL than in V1. This may point to an
increased role of recurrent and adaptive mechanisms
along the hierarchy, which may support longer temporal
receptive windows and may be beneficial for evidence
accumulation and consistency of behavioral readouts

[83]. Another intriguing possibility is that such
extended lingering of postsynaptic activity may reflect
the existence of mechanisms allowing higher-order
neurons to deploy the “trace” learning rule at the base
of UTL [10] over longer integration times. These
Current Opinion in Neurobiology 2024, 84:102834
findings were replicated by re-analyzing existing data
recorded in mice [84], which additionally revealed a
dependence of the coding timescales on the behavioral
state of the animal.
Self-supervised learning on the rise
The last few years saw a surge in research papers
connecting the machine-learning concept of “self-su-
pervised learning” with neuroscience. Self-supervision
is an increasingly popular form of unsupervised
learning that creates meaningful data representations by
solving a proxy task, with the intrinsic structure of input
data acting as implicit supervision. Such proxy tasks
might include reconstructing hidden image parts
(masked autoencoders), restoring corrupted data

(denoising autoencoders and diffusion models), gener-
ating new data samples (variational autoencoders and
generative adversarial networks), or predicting the next
data sample (contrastive predictive coding) [85].
Notably, some recent and influential work appeals
directly to Barlow’s redundancy reduction principle
(i.e. discarding “repetitive” information, thereby effi-
ciently encoding only the important aspects of the visual
input) to arrive at nontrivial solutions for self-supervised
learning problems [86].

Since the first wave of application of deep learning to
explain brain representations, deep NNs trained with
supervised learning methods have become the best
models of high-level object vision in primates [87].
Recently, however, Zhuang et al. demonstrated that
deep unsupervised contrastive embedding models can
match or surpass supervised models in predicting neural
activity in various ventral visual cortical areas [88].
Notably, these models mimic brain-like representations
when trained solely on real-world child developmental
data collected from head-mounted cameras. Further-

more, these techniques can be enhanced by sparse su-
pervisory signals (such as occasional verbal labels) for
semi-supervised learning using Local Label Propaga-
tion (LLP) [89]. LLP extrapolates labels for the entire
dataset from a small number of available labels by
inferring pseudo-labels for unlabeled images based on
their proximity to labeled ones. Self-supervised models
have also been claimed to outperform supervised
methods in explaining visual representations in mice
ventral and dorsal areas [90,91].

Other recent work reconnecting state-of-the-art unsu-
pervised learning with neuroscience focused on
explaining human brain activity. Konkle et al. demon-
strated that unsupervised learning can extract category
data from natural visual input and create representations
as effective as category-supervised models in explaining
human ventral stream functional magnetic resonance
imaging (fMRI) representations [92]. This supports
“domain-general” cognitive theories, which favor visual
www.sciencedirect.com
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input statistics and universal learning mechanisms over
innate biases in visual representation learning. In a
similar vein, Choksi et al. demonstrated the potential of
multimodal (i.e. visual-linguistic) self-supervised
learning [93], as instantiated by the CLIP model
(Contrastive Language-Image Pretraining; a model
trained to associate images with textual descriptions
[94]), in explaining the fMRI activity of the human

hippocampus. CLIP has also been recently reported to
contain units encoding highly abstract multimodal
concepts [95], strikingly similar to medial temporal lobe
neurons of human patients [96]. Other research effec-
tively used unsupervised models to elucidate human
psychophysical data, demonstrating that variational
autoencoders could more accurately predict human
perceptions and misperceptions of a complex perceptual
feature such as gloss than their supervised counter-
parts [97].

Efferent copies of outgoing motor commands could also
be instrumental in self-supervised learning. This idea
goes back to classic developmental physiology studies
[98], but has recently been explored with modern
experimental and theoretical tools. Benucci, for
instance, showed that integrating efferent copies of eye
movements with visual inputs in convolutional neural
networks enhances classification performance and pro-
vides robust visual representations invariant to saccadic
shifts [99]. In a similar vein, Mineault et al. created a
model of the primate dorsal visual pathway using a 3D

convolutional NN to predict an agent’s self-motion pa-
rameters from visual input [100]. Their network’s re-
sponses strongly resembled those of primate and rodent
visual neurons [100,101], underscoring the potential of
exploring the interplay between self-initiated move-
ments and the learning of sensory representations.

Recently, Halvagal et al. introduced the Latent Predic-
tive Learning (LPL) plasticity rule, which merges a
selectivity-building Hebbian learning term with an
invariance-building predictive learning term [102]. LPL
aims to learn stable latent object representations that

predict future inputs, thereby forming unsupervised,
disentangled, invariant representations in deep sensory
networks. Furthermore, LPL recapitulates selectivity
changes observed in primate inferotemporal cortex
following altered visual experiences [73] as well as in
rats reared in the absence of temporal continuity of the
visual input [77].

Parallelly, Illing et al. formulated Contrastive Local and
Predictive Plasticity (CLAPP), a self-supervised local
learning rule for constructing deep hierarchical repre-

sentations of images [103]. Drawing on spatial and
temporal unsupervised learning principles and inte-
grating predictive dendritic input, CLAPP constitutes a
biologically plausible form of contrastive predictive
learning using saccades as implicit time labels. CLAPP’s
www.sciencedirect.com
demand for ‘self-awareness’ of saccades aligns it with the
above-mentioned studies investigating self-motion-
induced transformations for self-supervised learning.
This rule aims at overcoming the need for back-
propagation of error signals, providing a viable biological
alternative for creating deep hierarchical representa-
tions that perform well in sensory classification tasks.

The recent studies reviewed in this section attest to the
growing significance and practical application of various
forms of self-supervised learning in providing normative
accounts of sensory representations in the brain. Overall,
we can discern an emerging trend: a shift from tradi-
tional supervised learning paradigms to a more biologi-
cally plausible framework of unsupervised learning,
including self-supervised learning approaches.
Conclusions
Mid-level cortical representations are a good fit for un-
supervised learning because they capture a large number
of general-purpose, high-order features of a sensory data
stream. By general-purpose, we mean that such repre-
sentations are not specific to any task and are broadly
relevant to perceptual experience. By high-order, we

mean that they are not simple properties that can be
easily computed directly from the elementary constit-
uents of the data, like luminance or contrast from the
amount of light impinging on photoreceptors in the
retina. Therefore, learning such features without
explicit supervision from the statistical structure of the
world may be both possible, because of their
generality, and necessary, because their large number
and complexity make them intractable in a supervised
setting (due to a lack of labeled data) or as a target for
hardcoding by evolution (due to a genomic bottle-
neck [17]).

In this review, we have identified convergent trends
across neuroscience and machine learning that leverage
these intuitions to shed new light on the functioning of
the sensory cortex at all levelsephysiological, behavioral,
and theoretical. With new experimental and computa-
tional techniques becoming available at a rapid pace,
this approach promises significant breakthroughs in the
coming years.

On the neurobiological front, emerging experimental

techniques hold great promise for illuminating the
plasticity rules at work in the brain. Genetic and mo-
lecular tools for studying plasticity in vivo have the po-
tential to bridge synaptic changes to modifications of
neuronal tuning and behavior [104]. For instance, super
ecliptic pHluorin (SEP)-GluA1, a pH-sensitive green
fluorescent protein (GFP)-tagged a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptor
subunit, allows direct imaging of AMPA receptor inser-
tion produced by LTP during learning [105]. Similarly,
Current Opinion in Neurobiology 2024, 84:102834
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genetic strategies using immediate early gene (IEG)
promoters can tag active neurons, enabling selective
expression of sensors and effectors in c-fos-positive
neurons following specific experiences [106]. Such
tools, already used to study the encoding of engrams
[107, 108] and sensory stimuli [109], hold great promise
for investigating the plasticity processes underlying
unsupervised sensory learning. Finally, pairing different

forms of imaging with spatially patterned and temporally
precise optogenetic stimulation [110] could soon allow
for investigating the unfolding of USL and UTL at the
cellular and circuit level. For instance, it could be
possible to simultaneously and repeatedly activate via
optogenetic stimulation an ensemble of neurons tuned
for different visual features [111], while tracking the
neuronal and synaptic activity and looking for the
emergence of a unit tuned for a composite, higher-order
visual pattern made of such features. Alternatively, by
repeatedly activating a set of V1 simple cells having

similar orientation selectivity but RFs in slightly offset
positions, it could become possible to directly observe
the emergence of the invariant tuning of a complex cell.
These experiments would finally allow to study directly
the synaptic plasticity mechanisms at the base of the
USL and UTL processes depicted in Figure 3, possibly
down to the dendritic spine level.

On the computational front, we are witnessing the
effectiveness of self-supervised learning in producing
powerful artificial systems for the processing of sensory

data. Increasingly, the neuroscience community will
seize the opportunity to work with more biologically
plausible systems that can replicate many sensory and
cognitive computations of interest. In this context,
machine learning and computational neuroscience re-
searchers should join forces to bridge the gap between
the abstraction level of global cost function minimiza-
tion and the one of local learning rules. This is
crucial because local learning rules are more directly
interpretable in terms of synaptic mechanisms, allowing
for practical testing in system neuroscience experi-
ments. Starting from a common foundation, a renewed

union of the study of biological plasticity and learning
with modern machine learning will inspire more human-
like and interpretable artificial intelligent systems and
provide insights into the blueprints of the cortical cir-
cuits that compute the sensory representations under-
lying intelligent behavior.
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