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Abstract

Generative models for structure-based drug de-
sign (SBDD) have shown promising results in
recent years. Existing works mainly focus on
how to generate molecules with higher binding
affinity, ignoring the feasibility prerequisites for
generated 3D poses and resulting in false posi-
tives. We conduct thorough studies on key factors
of ill-conformational problems when applying
autoregressive methods and diffusion to SBDD,
including mode collapse and hybrid continuous-
discrete space. In this paper, we introduce Mol-
CRAFT, the first SBDD model that operates in
the continuous parameter space, together with
a novel noise reduced sampling strategy. Em-
pirical results show that our model consistently
achieves superior performance in binding affinity
with more stable 3D structure, demonstrating our
ability to accurately model interatomic interac-
tions. To our best knowledge, MolCRAFT is the
first to achieve reference-level Vina Scores (-6.59
kcal/mol) with comparable molecular size, outper-
forming other strong baselines by a wide margin
(-0.84 kcal/mol). Code is available at https:
//github.com/AlgoMole/MolCRAFT.

1. Introduction
Structure-based drug design (SBDD) advances drug discov-
ery by leveraging 3D structures of biological targets, thereby
facilitating efficient and rational design of molecules within
a certain chemical space of interests (Wang et al., 2022; Is-
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ert et al., 2023). Recently, generative models for molecules
have emerged as a promising direction, which could stream-
line SBDD by directly proposing desired molecules, elimi-
nating the need for exhaustive blind search in the vast space
(Walters, 2019; Luo et al., 2021). Recent progress in SBDD
can be divided into two categories, i.e. auto-regressive mod-
els (Luo et al., 2021; Peng et al., 2022; Zhang et al., 2023)
as next-token prediction for text generation, and diffusion
models (Guan et al., 2022; 2023) as for image generation.

The essential criteria for drug-like candidate molecules are
outlined as follows: (i) high affinity towards specific binding
sites (a.k.a, protein pockets), where a higher affinity indi-
cates better performance, (ii) satisfactory drug-like prop-
erties, such as synthesizability and drug-likeness scores,
which often serve as thresholds for filtering out unfavor-
able compounds (Ursu et al., 2011; Tian et al., 2015), and
(iii) well-conformational 3D structure, which needs special
attention as there is a danger of generating unrealistic 3D
conformations yet with deceptively high affinities.

However, current generative models focus primarily on (i)
and (ii), whereas we observe that the generated molecules
often fail to meet all criteria simultaneously, especially for
(iii) conformational stability. This challenge manifests as the
False Positives phenomenon (FP) in generative modeling of
SBDD, where models yield molecules that reside outside the
true molecular manifold yet appear to exhibit good binding
affinity after redocking. Specifically, these molecules suffer
from distorted structure, displaying problematically unusual
topology, and inferior binding mode, whereby the generated
poses fail to capture true interactions and may even violate
biophysical constraints, and thus go through post-fixes and
significant rearrangements from docking software. Such
problems threaten to jeopardize reliable model assessment,
ultimately hindering their application in SBDD (Sec. 2.1).

Both autoregressive and diffusion-based models exhibit chal-
lenges with generating accurate molecular conformations,
yet these issues stem from distinct causes. In Sec. 2.2, we
delve into the mode collapse issue faced by autoregressive
methods. Empirically, they tend to repeatedly generate a
limited number of specific (sub-)structures due to an unnat-
ural atom ordering imposed during generation. On the other
hand, the problem with diffusion-based models is attributed
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Figure 1: Typical failure modes. (a) Unusual 3-membered
rings generated by AR, large fused rings with more than 7
atoms generated by diffusion models. (b) Examples of steric
clashes by FLAG, and other ligand undergoing significant
conformational rearrangements upon redocking (Before:
blue. After: green). (c) Failures in generation process. Left:
atoms mis-connected in autoregressive sampling. Right:
incomplete molecules with multiple components.

to denoising in hybrid yet highly twisted space, which is a
blend of discrete atomic types and continuous atomic coor-
dinates. Different modalities need to be carefully handled
in the hybrid space, and lack of consideration might result
in severely strained and infeasible outputs (Sec. 2.3).

Notably, DecompDiff (Guan et al., 2023) proposes to in-
ject the molecular inductive bias by manually decomposing
ligands into arms and scaffolds priors before training, and
utilizing validity guidance in sampling. However, it cannot
fully address the ill-conformational problem, since the in-
ductive bias is simply impossible to enumerate. As shown
in Fig. 2, for common C-N and C-O bond with two modes
of typical length distribution, nearly all SBDD models are
struggling to fit this substructural pattern. More visualiza-
tion results can be referred to in Fig. 8, 9, 10, Appendix D.

In order to capture the complicated data manifold for
molecules, we take a shift to a unified continuous parameter
space instead of a hybrid space, inspired by Graves et al.
(2023). We propose MolCRAFT (Continuous paRAmeter
space Facilitated molecular generaTion), which not only
alleviates the mode collapse issue by non-autoregressive
generation as in its diffusion counterparts, but also addresses
the continuous-discrete gap by applying continuous noise
and smooth transformation.

Our contributions can be summarized as follows:

• We investigate the challenges of current SBDD models,
and identify key issues including the mode collapse
of autoregressive methods, and the gap of continuous-
discrete space when applying diffusion models.

• We propose MolCRAFT to address these two issues,
which is a unified SE-(3) equivariant generative model,
equipped with sampling in the parameter space that
avoids further noise.

• We conduct comprehensive evaluation under controlled
molecular sizes. Experiments show that our model
generates high-affinity binders with feasible 3D poses.
To our best knowledge, we are the first to achieve
reference-level Vina Scores (-6.59 vs. -6.36 kcal/mol)
with comparable molecule size, outperforming other
strong baselines by a wide margin (-0.84 kcal/mol).

2. Challenges of Generative Models in SBDD
We provide an overview of current obstacles in pocket-based
generation. We summarize common failures in Sec. 2.1, and
then investigate the underlying problems, i.e. the mode col-
lapse issue of autoregressive-based models in Sec. 2.2, and
hybrid denoising issue of diffusion-based models in Sec. 2.3.
Based on the aforementioned challenges, we propose to gen-
erate molecules in the continuous parameter space.

2.1. Failure Modes of Generated Molecules

As shown in Fig. 1, we divide undesired molecules in SBDD
into three categories:

(a) Distorted geometry. We visualize the generated
molecules at median strain energy (see Table 2), and
models tend to produce either too many uncommon 3-
or 4-membered rings, or extra-large rings with unstable
structures, leading to much higher strain energy.

(b) Inferior binding mode. We observe a notable number
of generated ligand conformations rearrange drastically
after redocking, with some even violating biophysical
constraints and producing steric clashes with the pro-
tein surface. This suggests that 3D SBDD models
do not capture true interatomic interactions and rely
on post-fixing via redocking as noted by Harris et al.
(2023), which severely harms the credibility of gener-
ating molecules directly in 3D space.

(c) Generation failure. Autoregressive models tend to
misplace an element and terminate prematurely, while
diffusion models might generate incomplete molecules
with disconnected parts, limiting sample efficiency.
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Figure 2: Bond length distribution of reference and generated molecules by autoregressive models (upper row) and non-
autoregressive models (lower row) for top-5 frequent bond types.

The above problems hinder the applicability of SBDD mod-
els. In the following sections, we provide deeper understand-
ing of the problematic methods underlying these failures.

2.2. Molecular Mode Collapse

The mode collapse issue focuses on the empirical perfor-
mance of SBDD methods that tend to generate a limited
number of specific (sub-)structures, where atom-based au-
toregressive models have displayed a particular preference
for certain modes. We provide quantitative results from both
the chemical and geometrical perspectives.

Chemical assessment is shown in Table 1. In order to mea-
sure molecular distribution, we report the percentage of
unique samples (Unique) averaged on different pockets.1 It
can be seen that the ratio of unique molecules of AR (Luo
et al., 2021) and Pocket2Mol (Peng et al., 2022) is consid-
erably lower than other counterparts. Moreover, Decom-
pDiff (Guan et al., 2023) is also found to generate repeated
molecules, possibly due to its use of prior clusters At the
substructural level, we report the percentage of molecules
with certain types of rings defined by Jiang et al. (2024),
with respect to all ring-structured molecules. Pocket2Mol
displays a preference for more fused rings as also noted by
Harris et al. (2023), while AR exhibits an obvious pattern
in generating repeated three-membered rings.

Geometrically measured, as shown in Fig. 2, atom-based
autoregressive methods model the bond lengths for different
bond types similarly, where reference distribution is multi-
modal and varies across different types, while Pocket2Mol
only captures a single mode, and for AR different bond

1Here we remove all post-filters from autoregressive models
that avoid generating duplicate or invalid molecules, in order to
faithfully demonstrate their performances. In all other experiments,
we stick to the original implementation.

Table 1: Percentage (%) of molecular modes in terms of
distribution and substructures. Note: Fused refers to 80
specific rings, 3-Ring denotes three-membered rings, and so
on. Highly deviated values are highlighted in bold Italic.

Unique Fused 3-Ring 4-Ring 5-Ring 6-Ring

Reference - 30.0 4.0 0.0 49.0 84.0
Train - 21.6 3.8 0.6 56.1 90.9
AR 36.2 39.7 50.8 0.8 35.8 71.9
Pocket2Mol 73.7 52.0 0.3 0.1 38.0 88.6
FLAG 99.7 42.4 3.1 0.0 39.9 84.7
TargetDiff 99.6 37.8 0.0 7.3 57.0 76.1
Decomp-O 61.6 13.1 9.0 11.4 64.0 83.3
Decomp-R 50.3 28.1 5.4 8.3 51.5 65.6
Ours 97.7 30.9 0.0 0.6 47.0 85.1

lengths are distributed in a very similar fashion.

FLAG (Zhang et al., 2023) generates fragment-by-fragment,
which avoids collapsing by explicitly incorporating optimal
and diverse substructures. But it suffers from more severe er-
ror accumulation, resulting in significant steric clashes and
undesirable Vina Score (see Sec. 5.2). Generally speaking,
autoregressive models are still trapped in sub-optimal per-
formance. Intuitively, such limitations could be attributed
to an unnatural atom ordering imposed during generation.
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Figure 3: Percentage of valid, complete molecules in the
trajectories during generative process.
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2.3. Hybrid Continuous-Discrete Space

Diffusion-based models, on the other hand, successfully
alleviate mode collapse problem via non-autoregressive gen-
eration in terms of substructural distribution (see Fig. 2).
However, the inconsistency between different modalities has
long troubled molecular generation models, as suggested
by MolDiff (Peng et al., 2023) and EquiFM (Song et al.,
2024b), where a careful design of either different noise
levels or different probability paths is required.

A key insight is that the hybrid continuous-discrete space
poses challenges to accurately capture the complicated data
manifold for molecules, where the sample space in diffusion
models is exposed to high variance, and the intermediate
noisy latent is very likely to go outside the manifold. In-
spired by GeoBFN (Song et al., 2024a), we propose to
operate within the fully continuous pamarater space, which
enables considerably lower input variance and a smooth
transformation towards the target distribution.

To further illustrate the difference between continuous-
discrete diffusion and our fully continuous MolCRAFT,
we sample 10 molecules for each of the 100 test proteins,
and plot the curves of the ratio of valid, complete molecules
against different timesteps during sampling. As shown in
Fig. 3, continuous-discrete diffusions heavily rely on the
latter steps, passing a certain validity and completeness
threshold in the final 60%-90% stage where noise scales
are lower, while MolCRAFT approaches target distribution
far earlier (in the first 20%-40% steps), thereby possessing
greater capacity to progressively refine and adjust the gener-
ated feasible structures, resulting in better conformations.

3. Preliminary
In this section, we briefly overview Bayesian Flow Networks
(BFN) (Graves et al., 2023) in comparison with diffusion
models for SBDD. For its detailed formulation and mathe-
matical details, we refer readers to Appendix A.

3.1. Problem Definition

Structure-based Drug Design (SBDD) can be formulated
as a conditional generation task. Given input protein
binding site P = {(x(i)

P ,v
(i)
P )}NP

i=1, which contains NP

atoms with each x
(i)
P ∈ R3 and v

(i)
P ∈ RDP corre-

spond to atom coordinates and atom features, respectively
(e.g., element types, backbone or side chain indicator).
The output is a ligand molecule M = {(x(i)

M ,v
(i)
M )}NM

i=1 ,
where x

(i)
M ∈ R3 and v

(i)
M ∈ RDM , NM is the num-

ber of atoms in molecule. For convenience, we denote
p = [xP ,vP ], (xP ∈ RNP×3,vP ∈ RNP×DP ) and
m = [xM ,vM ], (xM ∈ RNM×3,vM ∈ RNM×DM ) as
the concatenation of all protein or ligand atoms.

SE-(3) NN
 

KL-div

Update
 

Parameter
Space

......

Add Noise

Reduce
Noise

Add Noise

Sample
Space

Figure 4: Overall Architecture.

3.2. Molecular Generation in Parameter Space

The overall architecture of MolCRAFT are shown in Fig. 4.
The generative process is viewed as message exchanges
between a sender and a receiver, where the sender is only
visible in sample space, and the receiver makes the guess
from its understanding of samples and parameters. In every
round of communication, the sender selects a molecule
datapoint m, adds noise for timestep ti according to sender
distribution pS(yi |m;αi), and sends the noisy latent y to
receiver, resembling the forward diffusion process. Here αi

is a noise factor from the schedule β(ti).

The receiver, on the other hand, outputs the reconstructed
molecule m̂ based on its previous knowledge of parameters
θ, yielding output distribution pO. With the sender’s noisy
factor α known, the receiver can also add noise to the esti-
mated output and give the predicted noisy latent, arriving at
receiver distribution pR.

pR(yi | θi−1,p; ti) = E
m̂∼pO

pS(yi | m̂;αi), (1)

where pO(m̂ | θi−1,p; ti) = Φ(θi−1,p, ti). (2)

Φ is a neural network which is expected to reconstruct clean
sample m̂ given parameters θi−1, pocket p and time ti.

The key difference between BFN and diffusion lies in its
introduction of parameters. Thanks to structured Bayesian
updates defined via Bayesian inference, the receiver is able
to maintain fully continuous parameters and perform closed-
form update on its belief of parameters. Bayesian update
distribution pU stems from the Bayesian update function h,

pU (θi | θi−1,m,p;αi) = E
y′
i∼pS

δ
(
θi −h(θi−1,yi, αi)

)
, (3)

where δ(·) is Dirac delta distribution. The parameter space
enables arbitrarily applying noise as long as the Bayesian
update is tractable, and eliminates the need to invert a pre-
defined forward process as in diffusion models.
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According to the nice additive property of accuracy (Graves
et al., 2023), the Bayesian flow distribution pF could be
obtained to achieve simulation-free training, once teacher
forcing with m is applied:

pF (θi |m,p; ti) = E
θ1...i−1∼pU

pU (θi | θi−1,m,p;αi)

= pU (θi | θ0,m,p;β(ti)) (4)

Therefore, the training objective for n steps is to minimize:

Ln(m,p) = E
i∼U(1,n)

E
yi∼pS ,θi−1∼pF

DKL(pS ∥ pR). (5)

4. Methodology
We introduce our proposed MolCRAFT in as follows: in
Sec. 4.1, we demonstrate how to model continuous atom
coordinates and discrete atom types within BFN framework,
with the guarantee of SE-(3) equivariance for molecular
data. Then in Sec. 4.2, we elaborate our novel sampling
strategy tailored for the parameter space. Within the fully
continuous and differentiable space, MolCRAFT is able to
capture the global connection between different modalities,
and sample efficiently with low variance.

4.1. Resolving Different Modalities in Parameter Space

This section demonstrates how to resolve continuous atom
coordinates and discrete atom types in parameter space.

Unified parameter θ
def
:= [θx,θv] Following Hoogeboom

et al. (2022), continuous atom coordinates x are char-
acterized by Gaussian distribution N (x | µ, ρ−1I), and
we set θx = {µ, ρ}, where µ is learned and ρ is pre-
defined by noise factor α. The Bayesian update function
{µi, ρi} ← h(

{
µi−1, ρi−1

}
,yx, αi) is defined as:

ρi = ρi−1 + αi (6)

µi =
µi−1ρi−1 + yxαi

ρi
(7)

For discrete atom types v, we use a categorical distribution
θv ∈ RNM×K , and update it given α′ via

h(θv
i−1,y

v, α′
i)

def
:=

ey
v

θv
i−1∑K

k=1 e
yv
k(θv

i−1)k
(8)

For prior θ0, we adopt standard Gaussian and uniform dis-
tribution respectively, following Graves et al. (2023).

Applying noise for different modalities Thanks to the
continuous nature of parameters, we are able to apply the
following continuous noise even for discrete atom types,

instantiating the sender distribution pS :

pS(y
x | xM ;α) = N (yx | xM , α−1I) (9)

pS(y
v | vM ;α′) = N

(
yv | α′(KevM

− 1), α′KI
)

(10)

where evM
= [e

v
(1)
M

, . . . , e
v
(NM )

M

] ∈ RNM×K , ej ∈ RK is
the projection from the class index j to the length-K one-hot
vector, and K the number of atom types. Note that we could
set different noise schedules for different modalities (α for
coordinates and α′ for types) for more efficient training of
the joint noise prediction network.

Thereby for receiver distribution in Eq. 1,

pR(y
x | θx,p; t) = N (yx | Φ(θx,p, t), α−1I) (11)

pR(y
v | θv,p; t) =

[
pR

(
(yv)(d)| ·

)]
d=1...N

, (12)

where pR

(
(yv)(d)| ·

)
=

∑
k p

v
O(k|·)pvS

(
(yv)(d)|k;α

)
.

SE-(3) equivariance We introduce a fundamental induc-
tive bias for SBDD to BFN, i.e. the density should be invari-
ant to translation and rotation of protein-molecule complex
(Satorras et al., 2021; Xu et al., 2021; Hoogeboom et al.,
2022), in the following proposition (proof in Appendix B).

Proposition 4.1. Denote the SE-(3) transformation as Tg,
the likelihood is invariant w.r.t. Tg on the protein-ligand
complex: pϕ(Tg(m|p)) = pϕ(m|p) if we shift the Center
of Mass (CoM) of protein atoms to zero and parameterize
Φ(θ,p, t) with an SE-(3) equivariant network.

4.2. Noise Reduced Sampling in Parameter Space

MolCRAFT addresses the high-variance discrete variable
problem by maintaining a continuous probability mass func-
tion as beliefs of distributional parameters, which allows a
smooth transformation towards the target distribution. This
natural coherence with continuous coordinates gives us an
advantage over continuous-discrete diffusion process.

During sampling, original BFN shifts the denoising process
from sample space (recall diffusion yi−1 → yi) to parame-
ter space (θi−1,yi)→ θi via Bayesian update function h,
where the information flows in this direction:

θi−1
Φ−→ m̂

pS−→ yi
pU−−→ θi, (13)

where pU (θi | θi−1,m,p;αi) is defined in Eq. 3, and m is
set to estimated m̂ drawn from pO in Eq. 2.

It should be noted that the existing generative process of
BFN, as well as that of diffusion models, performs contin-
uous atom coordinates and discrete atom type sampling at
each timestep. This risks introducing too much noise, and
might end up generating incomplete molecules. To alleviate
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such a problem, we design an empirically effective sampling
strategy, which operates within the parameter space, and
thus avoids introducing further noise from sampling discrete
variables. The graphical description becomes:

θi−1
Φ−→ m̂

pF−−→ θi (14)

Specifically, denoting γ(t)
def
:= β(t)

1−β(t) , we update the param-
eter via Eq. 4, which simplifies to:

pF (µ | x̂,p; t) = N
(
µ | γ(t)x̂, γ(t)(1− γ(t))I

)
(15)

pF (θ
v | v̂,p; t)

= E
N
(
yv|β(t)(Kev̂−1),β(t)KI

)δ(θv − softmax(yv)) (16)

We use the estimated m̂ = [x̂, v̂] (note that v̂ directly takes
the continuous output categorical values without sampling)
to directly update parameter for the next step, bypassing
the sampling of noisy data needed for Bayesian update
θi = h(θi−1,y, α). The whole generative process hap-
pens in the parameter space except for the final step, which
enjoys the advantage of lower variance and accelerates the
overall generation path towards the complicated structure
of molecules, with greatly improved sample quality at sig-
nificantly fewer sampling steps, as shown in Fig. 7. Details
of sampling are described in Algorithm 2.

5. Experiments
5.1. Experimental Setup

Dataset We use the CrossDocked dataset (Francoeur et al.,
2020a) for training and testing, which originally contains
22.5 million protein-ligand pairs, and after the RMSD-based
filtering and 30% sequence identity split by Luo et al. (2021),
results in 100,000 training pairs and 100 test proteins. For
each test protein, we sample 100 molecules for evaluation.

Baselines For autoregressive sampling-based models,
we choose atom-based models AR (Luo et al., 2021),
Pocket2Mol (Peng et al., 2022) and fragment-based model
FLAG (Zhang et al., 2023). For diffusion-based models, we
consider TargetDiff (Guan et al., 2022) and two variants of
DecompDiff (Guan et al., 2023). Decomp-R uses the prior
estimated from reference molecules in the test set, while
Decomp-O selects the optimal prior from the reference prior
and pocket prior, where the pocket prior center is predicted
by AlphaSpace2 (Katigbak et al., 2020) and ligand atom
number by a neural classifier.

Evaluation We conduct a comprehensive evaluation of
SBDD models on all 100 proteins in test set, including:

• Binding Affinity. We employ AutoDock Vina (Trott
& Olson, 2010) to measure binding affinity as it is a
common practice (Luo et al., 2021; Peng et al., 2022;
Guan et al., 2022; 2023), and report Vina Score, a di-
rect score of generated pose, Vina Min, which scores
the optimized pose after a local minimization of en-
ergy, and Vina Dock, the best possible score after
re-docking, a global grid-based search optimization
process. Therefore, it is highly favorable if Vina Score
is close to Vina Min and Vina Dock, suggesting that
the generated poses capture the 3D interaction well.

• Conformation Stability. We measure the stability for
ligand-only and binding complex conformation. For
ligand-only, we use the Jensen-Shannon divergence
(JSD) between reference and generated distributions
of bond length, bond angle and torsion angle at sub-
structure level, and for a more global view, we employ
Strain Energy to evaluate the rationality of generated
ligand conformation. For binding complex, we adopt
Steric Clashes (Clash) to detect possible clashes in
protein-ligand complex, following Harris et al. (2023).
We further propose to evaluate symmetry-corrected
RMSD between the generated ligand atoms and Vina
redocked poses as the metric of binding mode consis-
tency, where poses with an RMSD below 2Å is gen-
erally regarded as chemically meaningful (Alhossary
et al., 2015; Hassan et al., 2017; McNutt et al., 2021).

• Drug-like Properties. Drug-likeliness (QED), syn-
thetic accessibility (SA), and diversity (Div) are
adopted as molecular property metrics.

• Overall. To evaluate the overall quality of generated
molecules, we calculate the Binding Feasibility as the
ratio of molecules with reasonable affinity (Vina Score
< -2.49 kcal/mol) and stable conformation (Strain En-
ergy < 836 kcal/mol, RMSD < 2Å) simultaneously,
where the threshold values are set to the 95 percentile
of the reference molecules. We also report Success
Rate (Vina Dock < -8.18, QED > 0.25, SA > 0.59)
following Long et al. (2022) and Guan et al. (2022).

• Sample Efficiency. In order to make a practical com-
parison among non-autoregressive methods, we re-
port the average Time and Generation Success, with
the latter defined as the ratio of valid and complete
molecules versus the intended number of samples.

5.2. Main Results

Our main findings are listed as below:

• MolCRAFT resembles and even surpasses the refer-
ence set in terms of binding affinity and overall fea-
sibility, showing that we effectively learn the binding
dynamics from protein-ligand complex distribution.
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Table 2: Summary of different properties of reference and generated molecules under different sizes. (↑) / (↓) indicates larger
/ smaller is better. Top 2 results are highlighted with bold text and underlined text. Note: SE is short for Strain Energy,
Div for Diversity, BF for Binding Feasibility, and SR for Success Rate. Baselines are either evaluated based on publicly
available codebase (Decomp-R) or officially released samples (others).

Methods
Binding Affinity Conformation Stability Drug-like Properties OverallLigand Complex

Vina Score (↓) Vina Min (↓) Vina Dock (↓) SE (↓) Clash (↓) RMSD (↑) SA (↑) QED (↑) Div (↑) BF (↑) SR (↑) Size
Avg. Med. Avg. Med. Avg. Med. 25% 50% 75% Avg. % < 2 Å Avg. Avg. Avg. (%) (%) Avg.

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 34 107 196 5.51 34.0 0.73 0.48 - 29.0 25.0 22.8
AR -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 259 595 2286 4.49 31.1 0.64 0.51 0.70 17.3 7.1 17.7
Pocket2Mol -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 102 189 374 6.24 30.8 0.76 0.57 0.69 24.6 24.4 17.7
Ours-small -5.96 -5.89 -6.33 -6.04 -6.98 -6.63 44 103 274 4.88 38.6 0.74 0.52 0.74 33.3 17.4 17.8
FLAG2 16.48 4.53 1.21 -4.04 -5.63 -6.61 143 396 1164 40.83 8.2 0.70 0.49 0.70 3.8 14.1 21.5
TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 369 1243 13871 10.84 29.4 0.58 0.48 0.72 14.4 10.5 24.2
Decomp-R -5.19 -5.27 -6.03 -6.00 -7.03 -7.16 115 421 1424 8.16 22.7 0.66 0.51 0.73 14.6 14.9 21.2
Ours -6.59 -7.04 -7.27 -7.26 -7.92 -8.01 83 195 510 7.09 41.8 0.69 0.50 0.72 33.8 26.8 22.7
Decomp-O -5.67 -6.04 -7.04 -7.09 -8.39 -8.43 379 983 4133 14.63 23.9 0.61 0.45 0.68 11.1 24.5 29.4
Ours-large -6.61 -8.14 -8.14 -8.42 -9.25 -9.20 171 333 1110 10.73 42.7 0.62 0.46 0.61 31.1 36.1 29.4

• Non-autoregressive molecule generation could benefit
from modeling in continuous parameter space, demon-
strated by our performance in capturing diverse sub-
structural modes and greatly improved conformation.

• Reliable evaluation of SBDD ought to take molecule
sizes into account. To achieve fair comparison, con-
trolled experiment regarding molecule size is needed.

Binding Affinity We report Vina metrics in Table 2.

I. Our model consistently outperforms other strong base-
lines in affinities, achieving a reference-level Vina Score of
-6.59 kcal/mol. As Vina Score directly scores the pose and
Vina Min only optimizes locally, they directly measure the
generated pose quality. To the best of our knowledge, Mol-
CRAFT is the first to achieve reference-level affinity scores
without significant rearrangements via redocking, showing
our superiority in learning binding interactions.

II. Vina Dock can potentially be hacked by generating larger
molecules. Intuitively, larger molecules have more chances
of forming interactions with protein surfaces. With the
largest molecule sizes, Decomp-O achieves the second-
best Vina Dock (-8.39 kcal/mol), far better than reference
molecules. Further investigation reveals that Decomp-O
gains an advantage by producing considerably larger out-
of-distribution (OOD) molecules and thereby brings up the
highest possible affinity post-docking. For a fair comparison,
we report variants of DecompDiff and MolCRAFT stratified
by size, and with the same number of atoms as Decomp-O,
our model consistently achieves SOTA affinities, underscor-
ing its robustness across different molecular sizes.

Conformation Stability We report the substructural
level’s average Jensen-Shannon divergence (JSD) between

2Though relatively worse than reported in FLAG paper, the
evaluation is based on released samples and confirmed by authors.

Table 3: Summary of molecular conformation results. (↓)
indicates smaller is better. Top 2 results are highlighted with
bold text and underlined text. Note: JSD is calculated be-
tween distributions estimated from generated and reference
molecules, we report the mean of all JSD values here.

Methods Length (↓) Angle (↓) Torsion (↓)
Avg. JSD Avg. JSD Avg. JSD

AR 0.554 0.507 0.552
Pocket2Mol 0.485 0.482 0.459
FLAG 0.511 0.406 0.270

TargetDiff 0.382 0.435 0.400
Decomp-O 0.359 0.414 0.358
Decomp-R 0.348 0.412 0.317
Ours 0.319 0.379 0.300

reference and generated bond length, angle and torsion an-
gle distributions in Table 3 (detailed results for different
bond/angle/torsion types in Appendix D). At the global
structure level, we report strain energy for ligand-only con-
formational stability, and measure clashes in the binding
complex, together with RMSD between generated and re-
docked poses in Table 2.

I. Our model excels in modeling diverse local modes, and
ranks first in bond length and angle distributions. Moreover,
Fig. 2 shows MolCRAFT is the only model that captures
two distinct modes for multi-modal C-C, C-N and C-O bond,
justifying our choice of modeling in the joint continuous
parameter space. More results are in Fig. 8, 9 and 10.

II. Injecting substructural inductive bias helps to capture
more modes. Fragment-based model FLAG displays the best
torsion angle distribution, and prior-enhanced DecompDiff
also exhibits relatively competitive performances in mod-
eling molecular geometries, whereas other autoregressive
models collapse into certain modes as in Fig. 2.

III. For ligand-only stability, we greatly improve upon
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Figure 5: Sample efficiency, where Generation Success
means the generated molecules are both valid and complete.

the strained conformations, even surpassing autoregressive
methods. According to Table 2, our model is at least an
order of magnitude better than diffusion-based counterparts,
and is close to reference. While autoregressive methods gen-
erally display better strain energy, MolCRAFT still achieves
superior performance under comparable molecule sizes.

IV. Our binding complex contains fewer clashes and remains
consistent after redocking. We achieve few steric clashes,
and has the best RMSD performance, which means 46% of
our molecules already resemble accurate docking pose even
without force field optimization or redocking, rendering it
reliable for generating molecules in 3D space. The reason
why we achieve even better RMSD than reference can be
explained by a distribution shift. In dataset construction3,
the training set contains 52.4% docked molecules, while the
test set only contains 37.0% docked ones, which aligns with
the fact that for reference there are only 34.0% with RMSD
< 2Å. This accounts for why MolCRAFT has more consis-
tent and high-affinity binders, which effectively captures the
training set distribution and learns the binding dynamics.

Overall We report the overall feasible rate and success
rate in Table 2. MolCRAFT achieves the best among all,
demonstrating our competency in generating molecules with
high affinity and stable conformation. Our method captures
the interatomic interactions in 3D space, and proposes de-
sirable molecules without relying on post-fixed docking
poses. This further validates our choice of learning in the
continuous parameter space.

Sampling performance We compare the generation
speed (average time for generating 100 samples) and gen-
eration success in Figure 5. We achieve SOTA sampling
performance in both dimensions, generating more complete

3There are two kinds of 3D ligand poses in the dataset,
i.e. Vina minimized poses in the given receptor, and Vina
docked poses. https://github.com/gnina/models/
tree/master/data/CrossDocked2020

(96.7%) molecules at 30× speedup. While it takes on aver-
age 3428s and 6189s for TargetDiff and DecompDiff to gen-
erate 100 samples respectively, our model only uses 141s,
thanks to our improved sampling strategy (see Sec. 5.3).

5.3. Ablation Study of Sampling Strategy

Considering that we propose the first-of-its-kind SBDD
model that operates in the fully continuous parameter space,
and present a noise-reduced sampling approach adapted
to the space, we conduct ablation study that validates our
design, showing a performance boost from Vina Score/Min
of -5.42/-6.30 kcal/mol to -6.51/-7.13 kcal/mol.

We test different sampling strategies with different steps for
the same checkpoint, and sample 10 molecules each for 100
test proteins. We plot the curves of QED, SA, Completeness
(↑) and Vina Score (↓) in Figure 7, Appendix D.2. As the
sampling step increases to training steps, we found the orig-
inal sampling strategy exhibits first enhanced then slightly
decreased sample quality, possibly because the update of pa-
rameters is smoothed or oversmoothed by finer partitioned
noise factor α, whereas the noise reduced strategy displays
this tendency far earlier and generates the best quality of
molecules with fewer sampling steps, indicating its high
efficiency. Considering the overall sample quality, we de-
cide to use 100 sampling steps for our model, which is 10×
faster than sampling at original 1000 training steps.

6. Related Work
Target-Aware Molecule Generation Trained on protein-
ligand complex data, target-aware methods directly model
the interaction between protein pockets and ligands. Early
attempts are based on 1D SMILES or 2D molecular graph
generation (Bjerrum & Threlfall, 2017; Gómez-Bombarelli
et al., 2018; Segler et al., 2018) and fail to consider spatial
information. Recent works focus on 3D molecule gener-
ation, and there are mainly two fashions: (1) Autoregres-
sive methods. For atom-based methods, LiGAN (Masuda
et al., 2020) and AR (Luo et al., 2021) adopt an atomic
density grid view of molecules, the former predicting a
voxelized density grid and performing optimization to re-
construct atom types and coordinates, the latter assigning
atomic probability to each voxel and utilizes MCMC to
generate atom-by-atom. GraphBP (Liu et al., 2022) uses
normalizing flow and encodes the context to preserve 3D
geometric equivariance, and Pocket2Mol (Peng et al., 2022)
further adds bond generation for more realistic molecular
structure. For fragment-based methods (Powers et al., 2022;
Zhang & Liu, 2023; Zhang et al., 2023), molecules are de-
composed into chemically meaningful motifs rather than
seperated atom point cloud, and generated via motif as-
sembling. (2) Diffusion-based methods have recently been
proposed, aiming to overcome the problem of sampling ef-
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ficiency and unnatural ordering brought by autoregressive
fashion (Schneuing et al., 2022; Guan et al., 2022; 2023).
But these methods still suffer from false positive problems.

7. Conclusion
In this paper, we first investigate the challenges of current
generative models in SBDD, i.e., distorted structures and
sub-optimal binding modes. Based on the observations
concerning mode collapse and hybrid space, we propose
MolCRAFT, an SE-(3) equivariant generative model operat-
ing in the continuous parameter space with a noise reduced
sampling strategy, which yields higher quality molecules.
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Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Graves, A., Srivastava, R. K., Atkinson, T., and
Gomez, F. Bayesian flow networks. arXiv preprint
arXiv:2308.07037, 2023.

Guan, J., Qian, W. W., Ma, W.-Y., Ma, J., and Peng, J.
Energy-inspired molecular conformation optimization.
In international conference on learning representations,
2021.

Guan, J., Qian, W. W., Peng, X., Su, Y., Peng, J., and Ma, J.
3d equivariant diffusion for target-aware molecule genera-
tion and affinity prediction. In The Eleventh International
Conference on Learning Representations, 2022.

Guan, J., Zhou, X., Yang, Y., Bao, Y., Peng, J., Ma, J.,
Liu, Q., Wang, L., and Gu, Q. DecompDiff: Diffu-
sion models with decomposed priors for structure-based
drug design. In Krause, A., Brunskill, E., Cho, K.,
Engelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 11827–11846. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/guan23a.html.

Harris, C., Didi, K., Jamasb, A. R., Joshi, C. K., Mathis,
S. V., Lio, P., and Blundell, T. Benchmarking generated
poses: How rational is structure-based drug design with
generative models? arXiv preprint arXiv:2308.07413,
2023.

Hassan, N. M., Alhossary, A. A., Mu, Y., and Kwoh, C.-
K. Protein-ligand blind docking using quickvina-w with
inter-process spatio-temporal integration. Scientific re-
ports, 7(1):15451, 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

9

https://doi.org/10.1021/acs.jcim.0c00411
https://doi.org/10.1021/acs.jcim.0c00411
https://proceedings.mlr.press/v202/guan23a.html
https://proceedings.mlr.press/v202/guan23a.html


MolCRAFT: Structure-Based Drug Design in Continuous Parameter Space

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling, M.
Equivariant diffusion for molecule generation in 3d. In
International conference on machine learning, pp. 8867–
8887. PMLR, 2022.

Isert, C., Atz, K., and Schneider, G. Structure-based
drug design with geometric deep learning. Cur-
rent Opinion in Structural Biology, 79:102548, April
2023. ISSN 0959440X. doi: 10.1016/j.sbi.2023.
102548. URL https://linkinghub.elsevier.
com/retrieve/pii/S0959440X23000222.

Jiang, Y., Zhang, G., You, J., Zhang, H., Yao, R., Xie, H.,
Zhang, L., Xia, Z., Dai, M., Wu, Y., et al. Pocketflow is
a data-and-knowledge-driven structure-based molecular
generative model. Nature Machine Intelligence, pp. 1–12,
2024.

Katigbak, J., Li, H., Rooklin, D., and Zhang, Y. Al-
phaspace 2.0: Representing concave biomolecular sur-
faces using beta-clusters. Journal of Chemical Infor-
mation and Modeling, 60(3):1494–1508, 2020. doi:
10.1021/acs.jcim.9b00652. URL https://doi.org/
10.1021/acs.jcim.9b00652. PMID: 31995373.

Liu, M., Luo, Y., Uchino, K., Maruhashi, K., and Ji, S.
Generating 3D Molecules for Target Protein Binding,
May 2022. URL http://arxiv.org/abs/2204.
09410. arXiv:2204.09410 [cs, q-bio].

Long, S., Zhou, Y., Dai, X., and Zhou, H. Zero-shot 3d drug
design by sketching and generating. In NeurIPS, 2022.

Luo, S., Guan, J., Ma, J., and Peng, J. A 3D Gen-
erative Model for Structure-Based Drug Design. Ad-
vances in Neural Information Processing Systems, 34:
6229–6239, 2021. URL http://arxiv.org/abs/
2203.10446.

Masuda, T., Ragoza, M., and Koes, D. R. Generating
3D Molecular Structures Conditional on a Receptor
Binding Site with Deep Generative Models, Novem-
ber 2020. URL http://arxiv.org/abs/2010.
14442. arXiv:2010.14442 [physics, q-bio].

McNutt, A. T., Francoeur, P., Aggarwal, R., Masuda, T.,
Meli, R., Ragoza, M., Sunseri, J., and Koes, D. R. Gnina
1.0: molecular docking with deep learning. Journal of
cheminformatics, 13(1):1–20, 2021.

Peng, X., Luo, S., Guan, J., Xie, Q., Peng, J., and Ma, J.
Pocket2Mol: Efficient molecular sampling based on 3D
protein pockets. In Chaudhuri, K., Jegelka, S., Song,
L., Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 17644–17655. PMLR, 17–23 Jul

2022. URL https://proceedings.mlr.press/
v162/peng22b.html.

Peng, X., Guan, J., Liu, Q., and Ma, J. Moldiff: Addressing
the atom-bond inconsistency problem in 3d molecule
diffusion generation. In International Conference on
Machine Learning, pp. 27611–27629. PMLR, 2023.

Powers, A. S., Yu, H. H., Suriana, P. A., and Dror,
R. O. Fragment-based ligand generation guided by
geometric deep learning on protein-ligand structures.
In ICLR2022 Machine Learning for Drug Discovery,
2022. URL https://openreview.net/forum?
id=192L9cr-8HU.

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n)
equivariant graph neural networks. In International con-
ference on machine learning, pp. 9323–9332. PMLR,
2021.

Schneuing, A., Du, Y., Harris, C., Jamasb, A., Igashov,
I., Du, W., Blundell, T., Lió, P., Gomes, C., Welling,
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A. Detailed Formulation of BFN
Introducing parameters to diffusion process Classic diffusion process consists of a forward process which gradually
applies noise to the data yi ∼ p(yi|m;αi) till finally standard Gaussian y0 ∼ N (0, I), and a reverse process which starts
from Gaussian noise y0 and iteratively denoises yi ∼ p(yi|yi−1,p; t) to produce a sample m ∼ p(m|yn,p;n). Thus the
key designs of diffusion are about how to apply noise given m, and how to denoise with (y,p).

The Variational Lower Bound for diffusion models (Ho et al., 2020) is:

− log pθ(m|p) ≤ LVLB = DKL

(
q(y0...n|m,p)∥pϕ(y0...n|p)

)
(17)

Through adding noise to m and denoising from y0 and p, diffusion transports a simple prior distribution p(y0) to the desired
data distribution p(m|p), and generates target-aware molecules in a non-autoregressive fashion. To transfer the generative
process from sample space to parameter space, latent variables θ0...n are further introduced to characterize the distribution
of y1...n (Graves et al., 2023):

LVLB = DKL

(
q(y1...n,θ0...n|m,p)∥pϕ(y1...n,θ0...n|p)

)
= n E

i∼U(1,n)
E

yi,θi−1∼q
DKL

(
q(yi|m)∥pϕ(yi|θi−1,p)

)
. (18)

With Eq. 18 pulling close pϕ to q, pϕ is finally able to alternatively generates yi and θi, i.e., a generative process driven
from the parameter space. Here for BFN, the generative process is characterized by receiver distribution (Eq. 1) with the
help of output distribution (Eq. 2), and the noise adding process by sender distribution:

q(yi |m) = pS(yi |m;αi) (19)

Training objective BFN can be trained by minimizing the KL-divergence between noisy sample distributions. BFN
allows training in discrete time and continuous time, and for efficiency we adopt the n-step discrete loss. Since the atom
coordinates and the noise are Gaussian, the loss can be written analytically as follows:

Ln
x = DKL

(
N (x, α−1

i I) ∥ N (x̂(θi−1,p, t), α
−1
i I)

)
=

αi

2

∥∥∥x− x̂(θi−1,p, t)
∥∥∥2 (20)

Similarly, atom type loss can also be derived by taking KL-divergence between Gaussians, yielding:

Ln
v = lnN

(
yv | αi(Kev − 1), αiKI

)
− (21)

NM∑
d=1

ln
( K∑

k=1

pO(k|θ; t)N
(
·(d) |αi(Kek − 1), αiKI

))

Algorithm 1 Discrete-Time Loss

Require: xM ∈ R3NM ,vM ∈ RNMK ,p ∈ RNP (3+DP ), σ1, β1 ∈ R+

1: i ∼ U(1, n), t← i−1
n

2: µ ∼ pxF (µ|xM ,p; t, β(t) = σ−2t
1 − 1)

3: θv ∼ pvF (θ
v|vM ,p; t, β(t) = t2β1)

4: x̂, v̂← pO(µ,θ
v,p, t)

5: Ln
x ←

(1−σ
2/n
1 )

2σ
2i/n
1

∥xM − x̂∥2

6: α← β1(
2i−1
n2 )

7: yv ∼ pvS(y
v|vM , α))

8: Ln
v ← ln pvS(y

v|vM ;α)− ln pvR(y
v|v̂;α, t)

9: return Ln(m,p) = Ln
x + Ln

v

12
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Algorithm 2 Sampling

1: function update(x̂ ∈ R3N , v̂ ∈ RNK , β(t), β′(t), t ∈ R+)

2: γ ← β(t)
1−β(t)

3: µ ∼ N (γx̂, γ(1− γ)I)
4: yv ∼ N (yv|β′(t)(Kev̂ − 1), β′(t)KI)
5: θv ← [softmax((yv)(d))]d=1...NM

6: return µ,θv

7: end function
Require: Network Φ, p ∈ RNP (3+DP ), N, nM ,K ∈ N+, σ1, β1 ∈ R+

8: µ← 0, ρ← 1,θv ← [ 1K ]nM×K

9: for i = 1 to N do
10: t← i−1

n
11: x̂, v̂← pO(µ,θ

v,p, t)
12: µ,θv ← update(x̂, v̂, σ1, β1, t)
13: end for
14: x̂, pvO(v̂|θ

v,p; 1)← pO(µ,θ
v,p, 1)

15: v̂ ∼ pvO(v̂|θ
v,p; 1)

16: return [x̂, v̂]

B. Proof of SE-(3) Invariant Objective and SE-(3) Equivariant Sampling Process
Density estimation and distribution learning on the 3D molecules should take translational and rotational invariance of the
protein-ligand complex into consideration, a.k.a, the Special Euclidean group (SE-(3)) in 3D space (Satorras et al., 2021;
Xu et al., 2021; Hoogeboom et al., 2022). Denote Tg as the group of SE-(3) transformation, Tg(x) = Rx + b, where
R ∈ R3×3 is the rotation matrix, and b ∈ R3 is the translation vector.

Following Guan et al. (2022), we move the center of protein to zero, i.e., p̃ = [x̃P ,vP ], x̃P = QxP , Q = I3 ⊗ (INP
−

1
NP

1NP
1⊤
NP

) and shift molecule m and variable µ the same way. In another word, p̃, m̃, µ̃ are only defined with zero
gravity of p, namely zero Center-of-Mass (CoM) space. That is, for any Tg applied to the protein and molecule/variable
complex, we always have Tg(m̃, p̃) = R(m̃, p̃), Tg(µ̃, p̃) = R(µ̃, p̃). Thus translational invariance is naturally satisfied
on p̃, m̃, µ̃ by definition. For convenience, in the following discussion, we mention p̃, m̃, µ̃ as p,m,µ.

Then we slightly rewrite the key steps in Algorithm 1, and for convenience we omit θv , vM , vP and t since these variables
are not in the 3D space.

µ = γxM + γ(1− γ)ϵ

x̂ = Φ(µ,xP )

Ln
x(xM ,xP ) = const∥xM − x̂∥2

Since ϵ is sampled from isotropic Gaussian, ϵ = Rϵ′ is from the same distribution. If we apply Tg to the µ,xP , since
Φ(µ,xp) is an SE-(3) equivariant graph network, the output of network Φ will be

Φ(Tg(µ,xP )) = Φ(R(µ,xP )) = R(Φ(µ,xP )) = R(x̂) = Tg(x̂) (22)

Thus the loss of Tg-transformed complex will be

∥Tg(xM )− Tg(x̂)∥2 = ∥RxM + b−Rx̂− b∥2 = ∥RxM −Rx̂∥2

= (xM − x̂)⊤R⊤R(xM − x̂) = (xM − x̂)⊤(xM − x̂) = ∥xM − x̂∥2 (23)

Thus the objective is SE-(3) invariant to p,m,µ.

Before discuss the sampling process in Algorithm 2, we slightly rewrite the key steps, and for convenience, we omit

13
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θv,vM ,vP and t since these variables are not in the 3D space.

µ0 = 0, ρ0 = 1

xi = Φ(µi−1,xP )

yx
i = xi + αiϵ

ρi = ρi−1 + αi

µi =
ρi−1µi−1 + αiy

x
i

ρi
.

At step 1, since Φ(µ,xP ) is an SE-(3) equivariant graph network,

Tg(x1) = Tg(Φ(µ0,xP )) = Φ(Tg(µ0,xP )) = Φ(µ0, Tg(xP )), (24)

thus x1 is SE-(3) Equivariant to µ0,xP .

For every step i, if we assume Tg(xi) = Tg(Φ(µi−1,xP )) = Φ(Tg(µi−1,xP )), i.e., xi is SE-(3) equivariant to µi−1,xP ,
we have (1) yx

i is SE-(3) equivariant to xi since this update is simple addition and ϵ from isotropic Gaussian, (2) µi is
SE-(3) equivariant to µi−1,y

x
i , thus µi is SE-(3) equivariant to xi,xP . And xi+1 is is SE-(3) equivariant to µi,xP , thus

xi+1 is SE-(3) equivariant to xi,xP .

With mathematical induction, we have xi SE-(3) equivariant to µ0,xP , thus the final sample xN is also SE-(3) equivariant
to µ0,xP . The sampling process in Algorithm 2 is SE-(3) equivariant to xP .

C. Implementation Details
C.1. Parameterization with SE-(3) Equivariant Network

We model the interaction between ligand molecule atoms and protein pocket atoms with an SE-(3) equivariant network,
PosNet3D (Guan et al., 2021), as our backbone Φ in Eq. 2.

A protein-molecule graph is firstly constructed through k-nearest neighbor search of the atom coordinates, G = ⟨V,E⟩. For
each layer, the atom hidden states hl and coordinates xl are updated alternately as follows:

hl+1
i = hl

i +
∑

j∈NG(i)

ϕh

(
dij ,h

l
i,h

l
j , eij , t

)
(25)

∆xi =
∑

j∈NG(i)

(
xl
j − xl

i

)
ϕx

(
dij ,h

l+1
i ,hl+1

j , eij , t
)

xl+1
i = xl

i +∆xi · 1mol (26)

where NG(i) denotes the neighborhood of atom i in G, (hi,xi) and (hj ,xj) denote atom i and j, dlij is the euclidean
distance between atoms i and j, eij indicates the connection is between protein atoms, ligand atoms, or protein atom and
ligand atom, 1mol is to indicate only ligand atoms are updated, ϕh and ϕx are attention blocks which take hl

i as query and
[hl

i,h
l
j , eij ] as keys and values.

For the first layer, x0 = [µ,xP ], h0 = linear(θv,vP , t). For the last layer, Φ directly outputs an estimation x̂ = Φx. And
for discrete variable v(d), Φ takes softmax over the network output as distribution v̂(d) = softmax

(
(Φv)(d)

)
.

C.2. Featurization

For each protein atom, we represent it by several features, including a one-hot element indicator (H, C, N, O, S, Se) to identify
the element type, a one-hot amino acid type indicator (20 dimension) to indicate the amino acid type, a one-dimension flag
to indicate if the atom is a backbone atom, and a one-hot arm/scaffold region indicator to determine if the atom belongs to
an arm or scaffold region based on its distance from the arm prior center.

The features for the ligand atom include a one-hot element indicator (C, N, O, F, P, S, Cl) to represent the element type, and
a one-hot arm/scaffold indicator to differentiate between aromatic and non-aromatic atoms.
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Two graphs are dynamically built for message passing in the protein-ligand complex, a k-nearest neighbors graph for ligand
atoms and protein atoms, and a fully-connected graph for ligand atoms. The edge features in the k-nearest neighbors graph
are the outer products of distance embedding (obtained by expanding the distance using radial basis functions) and edge
type (a 4-dim one-hot vector indicating the type of edge). The ligand graph represents ligand bonds with a one-hot bond
type vector (non-bond, single, double, triple, aromatic).

C.3. Model Hyperparameters

For the SE-(3) equivariant network, we experiment with kNN graphs with 32-nearest neighbor search to construct graph, 9
layers with hidden dimension of 128, 16 head attention, ReLU activation with Layer Normalization (Ba et al., 2016).

For the noise schedules, we use β1 = 1.5 for atom types, σ1 = 0.03 for atom coordinates, and train the model with discrete
time loss of 1000 training steps.

For training, we use Adam optimizer with learning rate 0.005, batch size of 8, and exponential moving average of model
parameters with a factor of 0.999. The training will converge within 15 epochs on a single RTX 3090, taking around 24
hours. For sampling, we take 100 sample steps with noise-reduced sampling strategy.

D. Additional Experimental Results
D.1. Full Evaluation Results

Binding Interaction In addition to our main results in Table 2, we provide evaluation in terms of key interactions in
Table 4, i.e., No. Hydrogen Bond Donors (HB Donors), No. Hydrogen Bond Acceptors (HB Acceptors), van-der Waals
contacts (vdWs) and Hydrophobic interactions as described in PoseCheck (Harris et al., 2023). It can be seen that under
different molecule sizes, ours is consistently the best in forming hydrogen bonds, indicating that MolCRAFT finely captures
key protein-ligand interactions.

Table 4: Number of key interactions for SBDD models under different molecule sizes. Top-1 values highlighted in bold text.

HB Donors (Avg.) HB Acceptor (Avg.) vdWs (Avg.) Hydrophobic (Avg.) Molecule Size

Reference 0.87 1.42 6.61 5.06 22.8

Smaller-size

AR 0.51 0.90 5.54 3.78 17.7
Pocket2Mol 0.32 0.63 5.25 4.53 17.7
FLAG 0.28 0.30 5.85 3.76 16.7
Ours-small 0.62 1.09 6.24 4.42 17.8

Reference-size
TargetDiff 0.63 0.98 7.92 5.43 24.2
Decomp-R 0.56 0.99 6.70 4.37 21.2
Ours 0.71 1.25 7.38 5.07 22.7

Larger-size Decomp-O 0.52 0.87 9.14 6.84 29.4
Ours-large 0.75 1.38 8.64 6.07 29.4
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Figure 6: RMSD distribution of generated molecules compared with reference molecules. Note: values in [] are RMSD
ranges for each model, which generally lie in [0, 13] except for significant outliers of DecompDiff.
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Comformation Stability Besides the substructural analyis in Table 3, we present the full evaluation results for bond
length, bond angle and torsion angle distributions of different types are presented in Table 5, 6, and 7, and further visualize
the distributions in Fig. 8, 9, and 10, in order to look into details of 3D local structures.

As shown in Table 7, FLAG (Zhang et al., 2023) displays the best torsion angle distribution, owing to its fragment-based
sampling strategy. However, FLAG has been observed to generate 0.2% severe outlier molecules that could not be parsed in
JSD calculation, casting doubt on its local structures associated with fragment linkers.

Another perspective is given in Fig. 2, where we find that atom-based autoregressive models can hardly distinguish different
bond types, yet diffusion models and our model show clear pattern similar to reference, which demonstrates another
drawback of autoregressive models for SBDD. Since FLAG is a fragment-based autoregressive model, it inherits natural
bonds by its nature. AR is a voxel-based model, thus its curves are not smooth as expected.

Next, we move on for a closer inspection into conformation stability of binding complex. According to Table 2, our model
has the best RMSD of binding poses, which means 46% of our generated molecules already have accurate docking pose even
without force field optimization or redocking, rendering our results more reliable for drug discovery. A notable phenomenon
is the extremely low rate of FLAG, thus we investigate the overall distributions in Fig. 6. From this figure, we find AR
(Luo et al., 2021), Pocket2Mol (Peng et al., 2022), TargetDiff and our model have closer distribution and value ranges to
reference, yet FLAG has an obvious mode around 5, which explains the extremely low RMSD of FLAG.

For the reason why our model has better RMSD than reference, a possible explanation is that in CrossDocked (Francoeur
et al., 2020b) training set, 52.4% poses are obtained via Vina Dock, while in the test set, only 37% molecules undergo
redocking. This ratio accounts for the reference contains 34% RMSD below 2Å, and ours (46.1%) is approaching the limit
of training set (52.4%).

Besides RMSD, we also report steric clashes (Harris et al., 2023) in protein-ligand complex conformation. As shown in
Table 3, we achieve considerably fewer steric clashes. It could be seen that DecompDiff does surpass TargetDiff with
the help of better priors, but it also suffers from the distribution shift of molecular size (29.4, larger than reference 22.8)
introduced by manually chosen priors.
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Figure 7: Ablation study on our proposed noise reduced sampling strategy under different sampling steps. Higher QED, SA,
Completeness and lower Vina Score indicate better performance. The model is trained with 1000 steps.

D.2. Ablation Studies

As described in Fig. 5, our method samples at significantly faster speed. The reason of our considerable speed up mainly
contributes to our improved sampling strategy from the parameter space, discussed in Sec. 4.2. For this reason, TargetDiff
and DecompDiff requires 1000 steps for sampling, yet our model requires much fewer sampling steps to achieve comparable
results. Therefore, we conduct ablation studies on sampling strategy and sampling steps so as to validate our design.

We test different sampling strategies with different steps for the same checkpoint, and sample 10 molecules each for 100 test
proteins. We plot the curves of QED, SA, Completeness (↑) and Vina Score (↓) in Figure 7. As the sampling step increases
to training steps, we found the original sampling strategy exhibits first enhanced then slightly decreased sample quality,
possibly because the update of parameters is smoothed / oversmoothed by finer partitioned noise factor α, whereas the noise
reduced strategy displays this tendency far earlier and generates the best quality of molecules with fewer sampling steps,
indicating its high efficiency. Considering the overall sample quality, we decide to use 100 sampling steps for our model.
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Table 5: Jensen-Shannon divergence of top-8 frequent bond length distributions between the reference and the generated
molecules (↓ is better). No connected line, “=”, and “:” represent single, double, and aromatic bonds. Top 2 results are
highlighted with bold text and underlined text, respectively.

Bond AR Pocket2Mol FLAG TargetDiff Decomp-O Decomp-R Ours

CC 0.610 0.494 0.231 0.369 0.359 0.326 0.290
C:C 0.450 0.414 0.366 0.263 0.251 0.238 0.330
CO 0.490 0.452 0.556 0.421 0.375 0.346 0.339
CN 0.472 0.422 0.529 0.362 0.342 0.337 0.292
C:N 0.551 0.484 0.470 0.235 0.269 0.235 0.242
OP 0.676 0.523 0.690 0.441 0.435 0.450 0.347

C=O 0.556 0.510 0.638 0.461 0.368 0.391 0.342
O=P 0.626 0.581 0.609 0.506 0.472 0.458 0.369

Avg. 0.554 0.485 0.511 0.382 0.359 0.348 0.319

Table 6: Jensen-Shannon divergence of top-8 frequent bond angle distributions between the reference and the generated
molecules (↓ is better). Top 2 results are highlighted with bold text and underlined text.

Angle AR Pocket2Mol FLAG TargetDiff Decomp-O Decomp-R Ours

CCC 0.372 0.380 0.231 0.345 0.358 0.337 0.280
C:C:C 0.572 0.480 0.199 0.283 0.266 0.255 0.172
CCO 0.477 0.475 0.318 0.440 0.403 0.394 0.319

C:C:N 0.537 0.506 0.465 0.454 0.429 0.429 0.446
CCN 0.447 0.443 0.388 0.437 0.404 0.419 0.377
CNC 0.535 0.498 0.510 0.521 0.498 0.504 0.499
COC 0.496 0.494 0.607 0.502 0.484 0.492 0.460

C:N:C 0.619 0.580 0.526 0.495 0.473 0.462 0.475

Avg. 0.507 0.482 0.406 0.435 0.414 0.412 0.379

Table 7: Jensen-Shannon divergence of top-8 frequent torsion angle distributions between the reference and the generated
molecules (↓ is better). Top 2 results are highlighted with bold text and underlined text.

Torsion Angle AR Pocket2Mol TargetDiff Decomp-O Decomp-R Ours

CCCC 0.378 0.320 0.312 0.349 0.348 0.286
C:C:C:C 0.704 0.514 0.348 0.264 0.230 0.130
CCOC 0.419 0.401 0.390 0.392 0.391 0.393
CCCO 0.431 0.405 0.403 0.402 0.403 0.396
CCNC 0.430 0.437 0.423 0.403 0.398 0.401

C:C:N:C 0.664 0.504 0.386 0.285 0.197 0.212
C:C:C:N 0.663 0.512 0.441 0.388 0.316 0.281
C:N:C:N 0.742 0.535 0.476 0.366 0.247 0.303
CCCN 0.495 0.549 0.512 0.501 0.525 0.493

Avg. 0.547 0.464 0.410 0.372 0.340 0.322
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Figure 8: Bond length distribution of generated molecules compared with reference molecules.
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Figure 9: Bond angle distribution of generated molecules compared with reference molecules.
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(b) C:C:C:C Torsion Angle

Figure 10: Torsion angle distribution of generated molecules compared with reference molecules.

FLAG (4RLU): RMSD 5.11Å, 93 clashes

DecompDiff (4RLU): RMSD 4.83Å, 10 clashes

AR (4RLU) 
Strain: 395.0 kcal/mol


Vina Dock: -9.834 kcal/mol

Pocket2Mol (4RLU) 
Strain: 173.2 kcal/mol


Vina Dock: -10.441 kcal/mol

TargetDiff (4RLU) 
Strain: 700.8 kcal/mol


Vina Dock: -9.94 kcal/mol

Reference (4RLU)

Strain: 14.2 kcal/mol


Vina Dock: -8.422 kcal/mol

Ours (4RLU) 
Strain: 170.3 kcal/mol


Vina Dock: -9.75 kcal/mol Ours (4RLU): RMSD 2.44Å, 1 clash

DecompDiff (4RLU) 
Strain: 573.5 kcal/mol


Vina Dock: -8.60 kcal/mol

Figure 11: Visualization of molecules for a randomly chosen test protein (PDB ID: 4RLU), representative in the median
values of strain energy (Strain) and RMSD.
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