

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LFRD: ENHANCING ADVERSARIAL TRANSFERABILITY VIA LOW-RANK FEATURES GUIDANCE AND REPRESENTATION DISPERSION REGULARIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Transfer-based adversarial attacks have become a mainstream approach for fooling modern deep neural networks. Numerous methods have aimed to enhance adversarial transferability by perturbing intermediate-layer features. However, existing methods overfit surrogate-specific features and generate imbalanced feature activations to unseen models. To address these issues, we propose LFRD, a transferable adversarial attack framework that combines low-rank features extraction and representation dispersion regularization. Specifically, Singular Value Decomposition (SVD) is employed to isolate low-rank components that capture dominant and invariant semantic features shared across models, providing model-free guidance and mitigating surrogate-specific overfitting. In parallel, a regularization term based on the Herfindahl–Hirschman Index (HHI) is introduced to balance feature activations by penalizing overly dominant responses and amplifying weaker ones. By jointly aligning perturbations with low-rank semantic structures and promoting dispersed feature utilization, LFRD yields adversarial examples with improved representation-level generalization. Experimental results on both standard and robust models show that our method demonstrates stronger adversarial transferability than state-of-the-art methods.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success in many computer vision tasks (Rawat & Wang, 2017; Li et al., 2018; Xu et al., 2019; Wang et al., 2021a; 2023), yet remain highly vulnerable to adversarial examples, subtle perturbations that mislead predictions while remaining imperceptible to humans. This vulnerability raises serious concerns for real-world applications (Deng et al., 2020; Hu et al., 2023; 2024) such as autonomous driving and face recognition. In black-box scenarios, where attackers lack access to the target model’s parameters or architecture, the success of an attack depends on the transferability of adversarial examples crafted on source models. However, differences in model design and training often reduce transfer effectiveness. Thus, improving adversarial transferability is a critical and ongoing challenge in deep learning security.

Existing transfer-based attacks can be broadly categorized into two main approaches. The first class, including FGSM (Goodfellow et al., 2015), I-FGSM (Kurakin et al., 2018), MI-FGSM(Dong et al., 2018), and their variants (Dong et al., 2019; Lin et al., 2019; Xie et al., 2019; Jang et al., 2022; Zou et al., 2022), generates perturbations by optimizing gradients with respect to the output logits, effectively pushing the input toward the decision boundary of the source model. Although computationally efficient and easy to implement, these methods tend to overfit the source model’s decision boundaries, leading to poor generalization on unseen architectures, particularly those with different inductive biases. In contrast, the second class seeks to improve transferability by perturbing intermediate-layer features, which often encode more stable and semantically meaningful representations across models. Among such approaches, Feature Importance-Aware Attack (FIA) (Wang et al., 2021b) emphasizes perturbing features based on their class-wise discriminative importance, encouraging alignment with task-relevant semantics. Neuron Attribution-Based Attack (NAA) (Zhang et al., 2022) extends this approach by employing integrated gradients to identify highly influential neurons, thereby refining the direction and focus of adversarial perturbation. Building on this direction, Intermediate-Level Perturbation Decay (ILPD) (Li et al., 2023) introduces

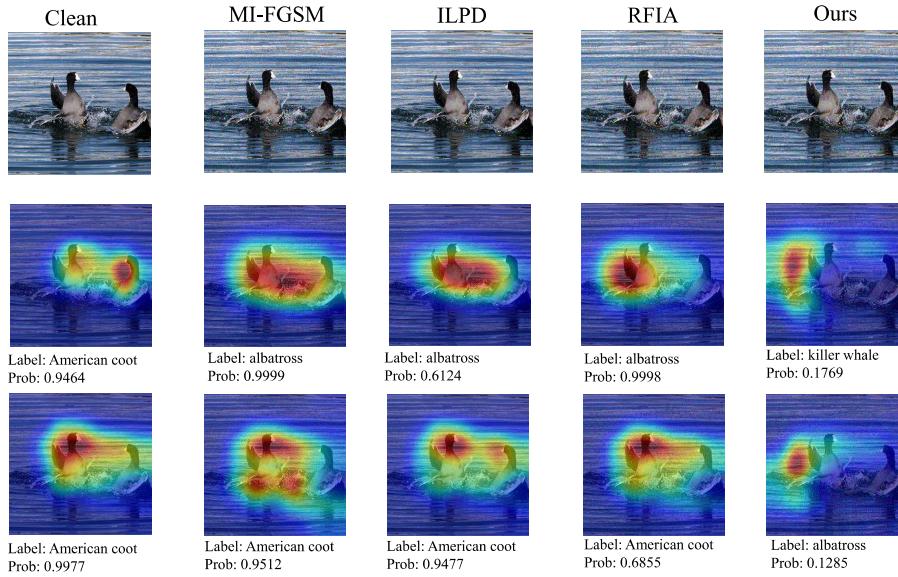


Figure 1: Visualization of attention shifts for clean images and adversarial examples generated by MI-FGSM, ILPD, RFIA and our method. Adversarial examples are crafted on the source model Inception-v3 and evaluated on the Victim model ResNet-50. Attention maps are computed using Eigen-CAM(Muhammad & Yeasin, 2020).

a decay mechanism that suppresses perturbation in less transferable channels. Prioritizing feature dimensions that better generalize across architectures. Recently, Relative Feature Importance-Aware Attack (RFIA) (Li et al., 2025) improves transferability by leveraging clean image gradients to construct relative feature importance, combining both dominant and noncritical semantics to guide perturbations that generalize across architectures. However, existing transfer-based methods often overfit surrogate-specific features and lack mechanisms to regulate perturbation effects on feature activations, leading to distortions dominated by a few high-activation units while neglecting low-activation regions. This imbalance narrows the coverage of perturbations and weakens generalization across different architectures.

In this paper, we propose LFRD, a transferable adversarial attack framework that integrates two complementary modules to enhance cross-model generalization. The first module employs Singular Value Decomposition (SVD) on intermediate features to isolate low-rank components that capture dominant semantic patterns shared across different architectures. These low-rank features provide model-free guidance and are fused with the original logits to form a multi-path optimization strategy. The second module introduces a representation dispersion regularization term based on the Herfindahl–Hirschman Index (HHI), which balances feature activations by suppressing overly dominant responses and amplifying weaker ones. This design prevents perturbations from being confined to a small set of high-activation regions and promotes broader utilization of perturbations. As shown in Figure 1, MI-FGSM, ILPD and RFIA primarily disrupt attention within the source model, but fail to sufficiently shift the victim model’s focus, which still attends to the original semantic regions. In contrast, our method consistently redirects attention in both the source and victim models toward irrelevant regions, demonstrating stronger cross-model misdirection and improved transferability. In summary, our contributions are as follows:

- We propose LFRD, a transferable adversarial attack that improves transferability by reducing surrogate-specific overfitting and mitigating imbalanced feature activations.
- LFRD integrates two modules, including SVD-guided features extraction to identify architecture-invariant directions, and HHI-based regularization to encourage uniformly distributed feature activations across spatial and channel dimensions.

108 • Experiments on both normally and adversarially trained models demonstrate that LFRD,
 109 when combined with gradient stabilization, surpasses existing state-of-the-art transfer-
 110 based attacks in transferability performance.

112 **2 RELATED WORK**

114 **Adversarial Attacks and Transferability.** Adversarial attacks exploit the vulnerability of deep
 115 neural networks (DNNs) by introducing imperceptible perturbations that induce misclassification.
 116 In black-box settings, where model details are unavailable, transfer-based attacks generate adver-
 117 sarial examples on source models, requiring strong cross-model generalization. Early methods such
 118 as FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2018), MI-FGSM (Dong et al., 2018),
 119 NI-FGSM (Lin et al., 2019), PI-FGSM (Gao et al., 2020), VMI-FGSM (Wang & He, 2021) and
 120 SVRE-MI (Xiong et al., 2022) optimize perturbations at the output layer but often overfit the source
 121 model’s decision boundary, limiting transferability. To overcome this, intermediate-layer attacks like
 122 FDA (Ganeshan et al., 2019), NAA (Zhang et al., 2022), and FIA (Wang et al., 2021b) target more
 123 stable semantic representations shared across architectures. Extending this line of research, Rela-
 124 tive Feature Importance-Aware Attack (RFIA) (Li et al., 2025) introduces a gradient-based strategy
 125 that constructs relative feature importance from clean-image activations, guiding perturbations along
 126 both dominant and non-dominant semantic dimensions.

127 **Singular Value Decomposition in Vision and Attack.** Singular Value Decomposition (Golub &
 128 Reinsch, 1971) is a classical tool in computer vision (Sadek, 2012), (Bermeitinger et al., 2019),
 129 (Levinson et al., 2020) that decomposes high-dimensional data into orthogonal components ranked
 130 by importance, enabling the extraction of dominant low-rank semantic patterns. Recent works have
 131 shown that the rank-1 component of intermediate features often encodes architecture-invariant se-
 132 mantics, making it a promising direction for enhancing adversarial transferability. Weng et al. Weng
 133 et al. (2024) introduced the use of SVD to guide perturbations along dominant directions via logit
 134 fusion.

135 **Dispersion Regularization and HHI.** In transferable adversarial attacks, ensuring broad spatial and
 136 semantic dispersion of perturbations is crucial for cross-model generalization, as overly concentrated
 137 noise often overfits surrogate-specific patterns. UFAF (Xu et al., 2024) proposes a dispersion loss
 138 and a distance loss to jointly guide transferable adversarial perturbations. Inspired by this, we in-
 139 troduce a regularization term based on the Herfindahl–Hirschman Index (HHI) regulate perturbation
 140 impact by suppressing overly dominant activations and enhancing weaker ones across spatial and
 141 channel dimensions. Originally used in economics to measure market concentration, HHI (Rhoades,
 142 1993) reflects the degree to which activation energy is unevenly distributed.

143 **3 METHODOLOGY**

145 **3.1 PRELIMINARY**

147 We consider the standard setting of untargeted adversarial attacks in a black-box transfer scenario.
 148 Given an input image x with ground-truth label y and a source model f , the objective is to generate
 149 an adversarial example x^{adv} such that

$$\text{argmax } f'(x^{\text{adv}}) \neq y, \text{ and } \|x^{\text{adv}} - x\|_{\infty} \leq \epsilon \quad (1)$$

150 where f' denotes the target (black-box) model inaccessible to the attacker, and $\epsilon > 0$ defines the
 151 allowed perturbation budget under the l_{∞} -norm constraint. In this setting, adversarial examples are
 152 generated solely using the source model f , and evaluated for transferability by testing their success
 153 rate on unseen target models f' . Since output-layer decision boundaries often vary significantly
 154 across architectures, many transfer-based attacks operate not on the final logits, but on internal
 155 feature representations, which tend to encode more stable and semantically meaningful patterns.

158 **3.2 LFRD FRAMEWORK OVERVIEW**

159 To overcome the limited semantic generalization and spatial concentration observed in prior transfer
 160 attacks, we propose LFRD, which introduces two complementary modules to enhance adversarial

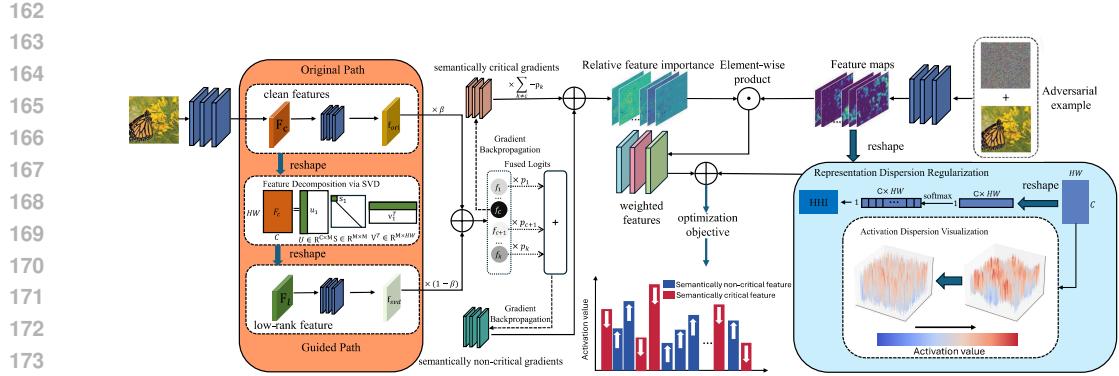


Figure 2: The overall framework of our proposed LFRD method. Based on the RFIA framework, it integrates a low-rank features guidance via SVD and a representation dispersion regularization module via HHI.

transferability. As illustrated in Figure 2, LFRD constructs a multi-path optimization framework by integrating a SVD-guided features path and a representation dispersion regularization. The SVD-guided feature path extracts a low-rank dominant direction from intermediate features via SVD, capturing transferable semantics shared across architectures. In parallel, an HHI-based dispersion regularizer penalizes peaked activation patterns by suppressing overly dominant responses and elevating weaker ones to disperse perturbation effects across spatial locations and channels. These modules steer perturbations toward model-free semantic features while avoiding concentration in a few regions.

3.3 LOW-RANK FEATURES GUIDANCE VIA SVD

To improve the semantic generalization capability of adversarial examples, LFRD introduces a secondary optimization path that explicitly models dominant transferable features using Singular Value Decomposition (SVD). The core idea is that the most semantically meaningful and architecture-invariant information within intermediate representations is often concentrated in a low-rank subspace. Instead of relying solely on gradients from the standard feature stream, which may contain model-specific or noisy activation patterns, this module extracts the principal semantic direction from the clean input and leverages it to guide adversarial optimization.

Given an intermediate feature map $h(x) \in \mathbb{R}^{C \times H \times W}$ from the source model, we reshape it into a 2D matrix $H \in \mathbb{R}^{C \times (H \times W)}$. We apply SVD to decompose it into:

$$H = U \Sigma V^T \quad (2)$$

We retain only the leading singular value σ_1 and its corresponding vectors $u_1 \in \mathbb{R}^C$, $v_1 \in \mathbb{R}^{H \times W}$, to reconstruct a rank-1 approximation:

$$Z = \sigma_1 u_1 v_1^T \quad (3)$$

This component is reshaped back to the original spatial dimensions to form a low-rank feature map $h^{\text{svd}} \in \mathbb{R}^{C \times H \times W}$, which serves as a parallel semantic representation of the clean input. To integrate this semantic guidance into the attack process, we compute logits from both the feature $h(x)$ and the low-rank feature h^{svd} , denoted as f_{ori} and f_{svd} , respectively. These logits are linearly fused using a hyperparameter $\beta \in [0, 1]$:

$$f_{\text{fused}} = \beta f_{\text{ori}} + (1 - \beta) f_{\text{svd}} \quad (4)$$

Finally, the classification loss is computed on the fused logits:

$$\mathcal{L}_{\text{cls}} = \mathcal{L}_{\text{CE}}(f_{\text{fused}}, y) \quad (5)$$

216 This design enables dual-path gradient optimization: one that captures fine-grained discriminative
 217 patterns from the original feature maps, and another that follows the global, architecture-agnostic
 218 semantic direction derived via SVD.

220 3.4 REPRESENTATION DISPERSION REGULARIZATION VIA HHI

222 While semantic guidance steers perturbations toward transferable features, we observe that the re-
 223 sulting distortions can become concentrated in a few spatial locations or channels, dominating lim-
 224 ited regions of the feature space. Such concentration aligns with surrogate-specific attention patterns
 225 and undermines generalization to architectures with different inductive biases. To mitigate this is-
 226 sue, LFRD introduces a representation dispersion regularization based on the Herfindahl–Hirschman
 227 Index (HHI).

228 In the context of adversarial learning, we reinterpret HHI as a differentiable indicator of how
 229 activation energy is distributed across a feature tensor. Given an intermediate activation map
 230 $h(x^{\text{adv}}) \in \mathbb{R}^{C \times H \times W}$, we treat its absolute values as an unnormalized energy distribution over all
 231 spatial and channel dimensions. We first flatten and normalize the tensor into a probability vector:

$$232 E = \text{softmax}(|h(x^{\text{adv}})|) \in \mathbb{R}^{C \times H \times W} \quad (6)$$

233 Each row of E represents a normalized energy distribution over the feature dimensions for a single
 234 image.

235 The Herfindahl-Hirschman Index is then computed for each sample as:

$$237 238 HHI(E) = \sum_{i=1}^D E_i^2 \quad (7)$$

240 Higher HHI indicates a peaked (dominated) activation distribution, whereas lower HHI indicates a
 241 more dispersed influence across elements. We therefore define the dispersion loss as the mean HHI
 242 and minimize it:

$$243 \mathcal{L}_{\text{HHI}} = 1 - (HHI(E)) \quad (8)$$

244 Minimizing \mathcal{L}_{HHI} penalizes overly dominant activations and relatively elevates weaker ones, dis-
 245 persing the perturbation’s effect over spatial and channel dimensions and disrupting feature repre-
 246 sentations more broadly.

247 Finally, LFRD integrates the classification loss and the representation dispersion regularization into
 248 a unified objective:

$$249 \mathcal{L}_{\text{LFRD}} = \lambda \mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{HHI}} \quad (9)$$

250 where λ is a tunable coefficient that controls the relative strength of semantic guidance in the opti-
 251 mization. The dispersion term is assigned a fixed weight to consistently enforce perturbation spread
 252 across feature space. On top of MI-FGSM, we generate the final adversarial examples by iteratively
 253 ascending the gradient of $\mathcal{L}_{\text{LFRD}}$.

254 4 EXPERIMENTS

255 4.1 EXPERIMENTAL SETTING

256 **Dataset.** Following recent works, we construct the attack dataset by randomly sampling 1000 im-
 257 ages from the ILSVRC 2012 validation set (Russakovsky et al., 2015), ensuring that each image
 258 is correctly classified by all target models. This design aligns with prior studies and enables a fair
 259 comparison with state-of-the-art transfer-based adversarial attacks.

260 **Models.** For generating adversarial examples, we select five commonly used source models with
 261 diverse architectures: ResNet-50(Res-50) (He et al., 2016), ResNet-152 (Res-152) (He et al., 2016),
 262 Vgg19 (Simonyan & Zisserman, 2014), Inception-v3(Inc-v3) (Szegedy et al., 2016), and Inception-
 263 v4(Inc-v4) (Szegedy et al., 2017). To evaluate the black-box transferability, we test the generated
 264 adversarial examples on both normally trained and adversarially trained models:

265 **Normally trained models:** ResNet-50, ResNet-152, DenseNet-121 (Huang et al., 2017), Inception-
 266 v3, Inception-v4, Vgg19, MLP-Mixer-b (Tolstikhin et al., 2021), ConvNeXt-T (Liu et al., 2022),
 267 ViT-B (Dosovitskiy et al., 2020), DeiT-B (Touvron et al., 2021), and Swin-B (Liu et al., 2021).

270 Table 1: Attack success rate (%) on 11 normally trained models for different attack methods.
271

272 Source 273 model	274 Methods	275 Res -50	276 Res -152	277 Inc -v3	278 Inc -v4	279 Vgg -19	280 Mix er-b	281 Conv next-T	282 ViT -b	283 DeiT -b	284 Swin -b	285 Dense -121	286 Avg
287 Res-50	MIM	100	88.7	64.9	64.8	75.4	46.0	36.9	27.2	28.0	20.9	84.8	57.96
	VMI	99.9	98.3	86.8	83.4	88.6	64.7	62.9	46.3	48.9	39.5	97.0	74.21
	ILPD	99.8	94.9	75.2	76.5	82.7	49.5	56.0	30.8	33.5	32.9	90.6	65.67
	RFIA-AB	100	97.4	89.0	88.1	90.8	66.5	70.0	49.9	52.1	47.0	96.4	77.01
	LFRD-AB	100	97.3	92.2	91.6	93.4	69.2	71.9	52.8	51.7	48.8	97.3	78.74
288 Res-152	MIM	92.7	100	65.2	63.4	74.3	46.1	39.8	27.6	30.2	23.0	85.7	58.90
	VMI	98.4	100	86.2	82.6	86.2	64.8	69.8	50.2	54.9	45.5	96.8	75.94
	ILPD	95.2	99.9	74.7	74.5	76.7	49.5	57.3	32.0	37.4	37.1	91.4	65.97
	RFIA-AB	97.7	100	87.7	84.6	85.2	67.3	68.0	52.2	53.3	47.4	94.7	76.19
	LFRD-AB	97.7	100	91.3	89.5	88.6	70.9	72.1	55.7	56.4	51.7	96.8	79.15
289 Inc-v3	MIM	49.6	42.5	99.4	60.7	65.4	36.6	20.8	20.2	17.6	10.5	45.6	42.62
	VMI	68.8	63.7	99.6	75.3	74.6	48.0	38.7	31.0	30.2	24.6	64.9	56.30
	ILPD	52.8	49.7	95.8	65.6	63.5	33.3	30.5	18.8	19.3	17.7	49.9	45.17
	RFIA-ABC	78.9	75.2	99.8	85.2	81.9	54.9	52.8	36.8	32.7	30.9	76.8	64.17
	LFRD-ABC	80.1	76.6	99.0	86.9	83.3	55.8	53.7	36.6	33.2	32.3	79.0	65.13
290 Inc-v4	MIM	45.9	38.8	62.1	97.7	64.8	36.2	27.3	19.4	17.2	14.3	41.4	42.28
	VMI	65.9	61.4	77.8	97.9	75.3	47.4	48.6	31.9	33.2	29.2	62.0	57.32
	ILPD	43.7	42.1	57.6	90.7	63.5	32.7	35.4	18.8	19.8	20.3	41.9	42.40
	RFIA-ABC	74.0	69.1	83.2	99.1	80.1	52.6	55.4	35.4	33.7	34.6	69.5	62.42
	LFRD-ABC	74.8	70.2	84.1	98.6	81.2	53.7	57.4	34.9	32.7	34.1	72.1	63.07
291 Vgg19	MIM	74.4	60.8	67.8	73.1	99.8	44.2	44.6	23.4	24.0	20.8	68.2	54.64
	VMI	89.3	78.3	81.1	85.7	100	55.9	62.7	36.3	37.2	34.6	81.7	67.52
	ILPD	86.6	76.0	76.9	84.7	99.9	44.6	67.6	25.1	25.1	33.9	80.3	63.70
	RFIA-AB	91.5	85.1	89.7	93.9	100	61.8	74.6	41.6	40.8	46.0	89.6	74.05
	LFRD-AB	92.9	86.5	91.2	95.2	100	61.8	76.0	42.0	41.4	44.4	90.8	74.74

300
301 **Adversarially trained robust models:** Inc-v3_{adv} (Madry et al., 2017), Inc-v3_{ens3}, Inc-v3_{ens4},
302 IncRes-v2_{adv}, IncRes-v2_{ens3} (Tramèr et al., 2017), EfficientNet-b0(robust), NFFNet-l0(robust), PVT-
303 v2-b0(robust), and Sequencer2d-s(robust).

304 **Baseline Methods.** We choose MI-FGSM(MIM) as the basic gradient-based baseline, and include
305 several advanced variant such as VMI. To highlight the advantage of semantic-guided feature per-
306 turbation, we also compare LFRD with leading intermediate-level perturbation methods , including
307 FIA, NAA, ILPD, and RFIA.

308 **Parameters.** Following the experimental setup in prior works, we adopt consistent parameter set-
309 tings to ensure fair comparison and reproducibility. The maximum perturbation is set to 16/255,
310 with an iteration step size of 1.6/255 and a total of 10 iterations across all attacks. Momentum is
311 applied uniformly to stabilize updates, using a decay factor of $\mu = 1.0$. VMI uses $N = 10$ gradient
312 samples per iteration, with the neighborhood radius bounded at $\beta = 1.5 \times \epsilon$. For all intermediate-
313 layer-based methods including FIA, NAA, ILPD, RFIA and our LFRD which we select specific
314 layers from each source model as target feature blocks. Specifically, we use layer2.4 for ResNet-50,
315 layer3.6 for ResNet-152, Mixed-6b for Inception-v3, Reduction-A for Inception-v4, and Conv3-4
316 for Vgg-19. In methods requiring gradient aggregation , Gaussian noise with zero mean and a vari-
317 ance of 0.1 is added to the input at each iteration to promote robustness. The dropout probability in
318 FIA is fixed at 0.1. Finally, the number of aggregations in FIA, NAA, ILPD, RFIA, and our LFRD
319 method is uniformly set to 10, ensuring equal computational complexity across all approaches com-
320 pared. In f_{fused} , the hyperparameter β is set to 0.5.

321 **Robust Gradient Stabilization Strategies.** To ensure stable and transferable gradient signals dur-
322 ing adversarial optimization, we follow RFIA and apply three widely used robust gradient strategies:
323 Integrated Gradient (IG) (Sundararajan et al., 2017), SmoothGrad (SG) (Smilkov et al., 2017), and

324 Table 2: Attack success rate (%) on 9 adversarially trained models for different attack methods.
325

326 Source 327 model	328 Methods	329 Adv-I 330 nc-v3	331 Adv-Inc 332 res-v2	333 Ens3-Adv 334 Inc-v3	335 Ens4-Adv 336 Inc-v3	337 Ens-Inc 338 res-v2	339 Effici 340 entnet-b0	341 Nfnet 342 -10	343 pvt 344 -v2	345 Sequencer 346 -2d	347 Avg
328 Res-50	MIM	42.4	37.2	41.7	38.6	29.8	66.6	46.7	66.2	37.0	45.13
	VMI	73.5	69.7	72.2	70.0	61.6	90.3	72.4	85.9	64.5	73.34
	ILPD	59.1	50.4	56.6	53.1	40.7	82.2	63.6	79.0	56.3	60.11
	RFIA-AB	77.4	73.3	75.8	74.6	65.1	92.4	76.7	88.0	69.0	76.91
	LFRD-AB	82.1	77.5	78.6	75.1	68.2	92.4	78.2	88.2	70.6	79.21
328 Res-152	MIM	45.3	43.5	43.4	43.7	32.6	69.7	45.8	63.4	40.4	47.53
	VMI	78.8	76.6	77.8	76.4	70.1	89.3	76.3	84.8	68.7	77.65
	ILPD	62.2	56.1	58.8	54.5	45.1	78.6	66.0	75.0	57.5	61.54
	RFIA-AB	77.0	75.4	74.3	72.1	63.6	88.4	74.2	83.6	67.4	75.11
	LFRD-AB	83.4	81.2	78.9	75.8	69.5	93.0	78.0	87.4	71.1	79.81
328 Inc-v3	MIM	26.7	23.9	22.4	21.9	10.1	44.9	26.8	46.2	21.8	27.66
	VMI	45.5	45.1	42.2	42.6	24.6	66.2	46.4	62.5	40.6	46.74
	ILPD	30.6	30.4	29.2	30.3	16.8	49.5	35.9	51.5	28.1	33.59
	RFIA-ABC	54.2	56.8	43.1	42.8	25.3	78.6	58.4	74.6	50.0	53.76
	LFRD-ABC	54.6	57.6	42.3	42.0	25.2	79.6	59.0	76.2	50.7	54.13
328 Inc-v4	MIM	23.1	21.3	18.1	18.2	11.4	46.6	32.1	43.1	22.7	26.29
	VMI	42.8	44.4	41.2	40.6	27.7	65.8	55.3	61.4	44.7	47.65
	ILPD	24.0	26.2	26.3	26.4	16.3	43.9	41.5	44.2	31.4	31.13
	RFIA-ABC	46.8	50.6	43.0	41.3	24.7	74.0	63.6	68.7	51.1	51.54
	LFRD-ABC	48.1	53.9	44.1	40.9	25.5	75.1	65.6	71.1	52.4	52.96
328 Vgg19	MIM	38.7	32.5	35.4	33.8	23.0	71.1	54.5	73.3	41.7	44.89
	VMI	60.9	53.4	56.7	54.3	40.7	83.6	72.1	87.4	59.6	63.41
	ILPD	53.2	38.3	46.2	41.7	27.7	82.6	74.1	83.4	60.2	56.37
	RFIA-AB	72.6	64.9	67.8	62.7	51.0	90.6	82.1	90.3	70.4	72.60
	LFRD-AB	75.7	65.3	69.2	63.3	51.3	91.4	81.6	90.9	69.5	73.13

353 Gradient Accumulation (GA) (Wang et al., 2021b), which respectively aim to alleviate gradient saturation,
354 suppress noisy gradients, and reduce model-specific information. These strategies enhance
355 the computation of relative feature importance and consistently improve cross-model transferability.
356 For clarity in comparison, we append suffixes to each attack method to indicate the stabilization
357 strategies used: -A corresponds to IG, -B to SG, and -C to GA, with -AB, -AC, -BC, and -ABC
358 denoting their respective combinations. For example, LFRD-ABC refers to the variant where all
359 three strategies are applied, while LFRD-B indicates that only SmoothGrad is used.

360 4.2 ATTACK RESULTS

362 In this section, we evaluate the proposed LFRD framework across a comprehensive set of normally
363 and adversarially trained models to validate its effectiveness in enhancing adversarial transferabil-
364 ity. It is necessary to explain how the three robust strategies ought to be applied when integrated
365 with LFRD (for instance, LFRD-ABC). Actually, no special attention is paid to the order in which
366 these strategies are applied. For example, regarding LFRD-ABC, strategies A, B, and C are merely
367 implemented in sequence.

368 We compare our proposed method (LFRD) with MIM and its variant (VMI), as well as with ILPD
369 and RFIA, as shown in Table 1 and Table 2, which present the average attack success rates across
370 11 normally trained models and 9 adversarially trained models. It can be clearly observed that our
371 method consistently outperforms the others in most cases, and the average results are always su-
372 perior. The - notation indicates the best-performing combination of robust gradient stabilization stra-
373 tegies for each method on each source model. It can be observed that the optimal strategy selection
374 for RFIA and our LFRD method remains consistent across different source models. Specifically, the
375 ABC combination demonstrates better adaptability on Inc-v3 and Inc-v4, while the AB combination
376 proves to be more effective on Res-50, Res-152, and Vgg19. These results suggest that selecting
377 appropriate gradient stabilization strategies tailored to the characteristics of each source model is
378 crucial for enhancing attack transferability.

378
 379 Table 3: Attack success rates (%) of ILPD, FIA, NAA, RFIA and our LFRD with different combi-
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866

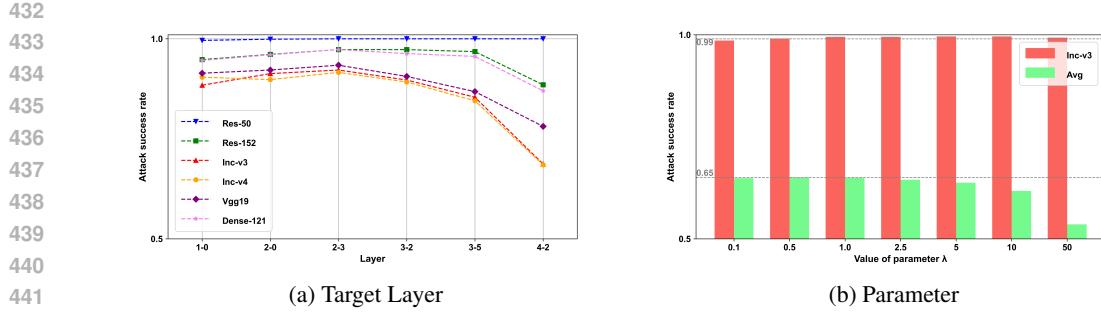


Figure 3: Ablation study on target layer and parameter. (a) Attack success rates using different target layers. Adversarial examples are crafted using Res-50 as the source model. (b) Attack success rates on Inc-v3 (red) and attack success rates averaged on 11 normally trained models (green) under different λ values. Adversarial examples are crafted using Inc-v3 as the source model.

Table 4: Ablation results of low-rank features guidance (SVD) and representation dispersion regularization (HHI) on three source models. Results are Attack success rate (%) averaged on 11 normally trained models.

Methods	Res-50	Inc-v4	Vgg19
Baseline (RFIA)	78.02	61.94	72.84
+SVD only	78.26	62.76	74.67
+HHI only	78.55	62.82	73.51
LFRD (Ours)	78.74	63.07	74.74

transferability. During evaluation, we adopt the best-performing gradient stabilization configuration (AB or ABC) for each variant to ensure fair and consistent comparison.

Target Layer. Considering that the choice of target layer can affect the adversarial examples generated by our method, it is necessary to determine which layer of the source model yields the most effective attacks. As shown in the Figure 3a, selecting mid-level layers consistently results in higher attack success rates compared to shallow or deep layers. This suggests that mid-level features exhibit greater semantic consistency across different architectures, while both shallow and deep layers contain more model-specific information.

Parameter. To evaluate the sensitivity of LFRD to the weighting factor λ , we conduct experiments by varying λ in the Equation 9. As shown in Figure 3b, setting $\lambda = 1.0$ achieves a better balance between semantic guidance and representation dispersion regularization. A too-small λ underutilizes semantic supervision and unsaturated white-box performance, while a too-large value weakens dispersion and reduce transferability. This demonstrates the necessity of jointly optimizing both components for robust transferability.

5 CONCLUSION

In this paper, we propose LFRD, a novel adversarial attack method that enhances transferability by integrating SVD-based low-rank features guidance and HHI-based representation dispersion regularization. These components together steer perturbations toward model-shared features while dispersing activation influence across space and channels. LFRD yields adversarial examples with improved representation-level generalization. Extensive experiments on both standard and robust models confirm that LFRD outperforms existing transfer-based attacks, demonstrating strong generalization and stability across architectures. In the future work, we will focus on multi-layer selection and alternative dispersion penalties beyond HHI to further improve transferability.

486 ETHICS STATEMENT
487

488 This research investigates transfer-based adversarial attacks to better understand and benchmark
489 the robustness of deep neural networks. No human subjects or animal experiments were involved.
490 We use publicly available datasets (ILSVRC 2012 ImageNet validation set) under their licenses
491 and do not process personally identifiable information. We acknowledge the dual-use nature of
492 adversarial attack. All experiments are conducted for scientific evaluation, and our releases are
493 intended to support robustness research. We will refrain from deploying or encouraging use in real-
494 world systems and will follow community norms for responsible disclosure and dissemination.

495
496 REFERENCES
497

498 Bernhard Bermeitinger, Tomas Hrycej, and Siegfried Handschuh. Singular value decomposition
499 and neural networks. In *International Conference on Artificial Neural Networks*, pp. 153–164.
500 Springer, 2019.

501 Yao Deng, Xi Zheng, Tianyi Zhang, Chen Chen, Guannan Lou, and Miryung Kim. An analysis
502 of adversarial attacks and defenses on autonomous driving models. In *2020 IEEE international
503 conference on pervasive computing and communications (PerCom)*, pp. 1–10. IEEE, 2020.

504 Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
505 ing adversarial attacks with momentum. In *Proceedings of the IEEE conference on computer
506 vision and pattern recognition*, pp. 9185–9193, 2018.

507 Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to transferable adversar-
508 ial examples by translation-invariant attacks. In *Proceedings of the IEEE/CVF conference on
509 computer vision and pattern recognition*, pp. 4312–4321, 2019.

510 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
511 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
512 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
513 arXiv:2010.11929*, 2020.

514 Aditya Ganeshan, Vivek BS, and R Venkatesh Babu. Fda: Feature disruptive attack. In *Proceedings
515 of the IEEE/CVF international conference on computer vision*, pp. 8069–8079, 2019.

516 Lianli Gao, Qilong Zhang, Jingkuan Song, Xianglong Liu, and Heng Tao Shen. Patch-wise attack
517 for fooling deep neural network. In *European Conference on Computer Vision*, pp. 307–322.
518 Springer, 2020.

519 Gene H Golub and Christian Reinsch. Singular value decomposition and least squares solutions. In
520 *Linear algebra*, pp. 134–151. Springer, 1971.

521 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
522 examples. In Yoshua Bengio and Yann LeCun (eds.), *3rd International Conference on Learning
523 Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
524 ings*, 2015. URL <http://arxiv.org/abs/1412.6572>.

525 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
526 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
527 770–778, 2016.

528 Cong Hu, Yuanbo Li, Zhenhua Feng, and Xiaojun Wu. Attention-guided evolutionary attack with
529 elastic-net regularization on face recognition. *Pattern recognition*, 143:109760, 2023.

530 Cong Hu, Yuanbo Li, Zhenhua Feng, and Xiaojun Wu. Toward transferable attack via adversarial
531 diffusion in face recognition. *IEEE Transactions on Information Forensics and Security*, 19:
532 5506–5519, 2024.

533 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
534 convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern
535 recognition*, pp. 4700–4708, 2017.

540 Donggon Jang, Sanghyeok Son, and Dae-Shik Kim. Strengthening the transferability of adversarial examples using advanced looking ahead and self-cutmix. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 148–155, 2022.

541

542

543

544 Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world. In *Artificial intelligence safety and security*, pp. 99–112. Chapman and Hall/CRC, 2018.

545

546 Jake Levinson, Carlos Esteves, Kefan Chen, Noah Snavely, Angjoo Kanazawa, Afshin Ros-
547 tamizadeh, and Ameesh Makadia. An analysis of svd for deep rotation estimation. *Advances
548 in Neural Information Processing Systems*, 33:22554–22565, 2020.

549

550 Hui Li, Xiao-Jun Wu, and Josef Kittler. Infrared and visible image fusion using a deep learning
551 framework. In *2018 24th international conference on pattern recognition (ICPR)*, pp. 2705–2710.
552 IEEE, 2018.

553 Jian-Wei Li, Wen-Ze Shao, Yu-Bao Sun, Li-Qian Wang, Qi Ge, and Liang Xiao. Boosting adversarial
554 transferability via relative feature importance-aware attacks. *IEEE Transactions on Information
555 Forensics and Security*, 2025.

556 Qizhang Li, Yiwen Guo, Wangmeng Zuo, and Hao Chen. Improving adversarial transferability via
557 intermediate-level perturbation decay. *Advances in Neural Information Processing Systems*, 36:
558 32900–32912, 2023.

559

560 Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E Hopcroft. Nesterov accelerated
561 gradient and scale invariance for adversarial attacks. *arXiv preprint arXiv:1908.06281*, 2019.

562 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
563 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the
564 IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

565

566 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
567 A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and
568 pattern recognition*, pp. 11976–11986, 2022.

569 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
570 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
571 2017.

572 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
573 Towards deep learning models resistant to adversarial attacks. In *International Conference on
574 Learning Representations*, 2018.

575

576 Mohammed Bany Muhammad and Mohammed Yeasin. Eigen-cam: Class activation map using
577 principal components. In *2020 international joint conference on neural networks (IJCNN)*, pp.
578 1–7. IEEE, 2020.

579 Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image classification: A
580 comprehensive review. *Neural computation*, 29(9):2352–2449, 2017.

581

582 Stephen A Rhoades. The herfindahl-hirschman index. *Fed. Res. Bull.*, 79:188, 1993.

583

584 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
585 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
586 recognition challenge. *International journal of computer vision*, 115(3):211–252, 2015.

587 Rowayda A Sadek. Svd based image processing applications: state of the art, contributions and
588 research challenges. *arXiv preprint arXiv:1211.7102*, 2012.

589

590 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
591 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

592 Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
593 removing noise by adding noise. *arXiv preprint arXiv:1706.03825*, 2017.

594 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
 595 *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.
 596

597 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
 598 ing the inception architecture for computer vision. In *Proceedings of the IEEE conference on*
 599 *computer vision and pattern recognition*, pp. 2818–2826, 2016.

600 Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4, inception-
 601 resnet and the impact of residual connections on learning. In *Proceedings of the AAAI conference*
 602 *on artificial intelligence*, volume 31, 2017.

603 Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
 604 Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
 605 all-mlp architecture for vision. *Advances in neural information processing systems*, 34:24261–
 606 24272, 2021.

607

608 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 609 Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
 610 *International conference on machine learning*, pp. 10347–10357. PMLR, 2021.

611 Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
 612 Daniel. Ensemble adversarial training: Attacks and defenses. *arXiv preprint arXiv:1705.07204*,
 613 2017.

614

615 Rui Wang, Xiao-Jun Wu, Tianyang Xu, Cong Hu, and Josef Kittler. U-spdnet: An spd manifold
 616 learning-based neural network for visual classification. *Neural networks*, 161:382–396, 2023.

617 Xiaosen Wang and Kun He. Enhancing the transferability of adversarial attacks through variance
 618 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 619 pp. 1924–1933, 2021.

620

621 Yahang Wang, Xiaoning Song, Tianyang Xu, Zhenhua Feng, and Xiao-Jun Wu. From rgb to depth:
 622 Domain transfer network for face anti-spoofing. *IEEE Transactions on Information Forensics and*
 623 *Security*, 16:4280–4290, 2021a.

624

625 Zhibo Wang, Hengchang Guo, Zhifei Zhang, Wenxin Liu, Zhan Qin, and Kui Ren. Feature
 626 importance-aware transferable adversarial attacks. In *Proceedings of the IEEE/CVF international*
 627 *conference on computer vision*, pp. 7639–7648, 2021b.

628

629 Juanjuan Weng, Zhiming Luo, Shaozi Li, Dazhen Lin, and Zhun Zhong. Boosting adversarial trans-
 630 ferability via logits mixup with dominant decomposed feature. *IEEE Transactions on Information*
 631 *Forensics and Security*, 2024.

632

633 Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L Yuille.
 634 Improving transferability of adversarial examples with input diversity. In *Proceedings of the*
 635 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 2730–2739, 2019.

636

637 Yifeng Xiong, Jiadong Lin, Min Zhang, John E Hopcroft, and Kun He. Stochastic variance reduced
 638 ensemble adversarial attack for boosting the adversarial transferability. In *Proceedings of the*
 639 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 14983–14992, 2022.

640

641 Nanqing Xu, Weiwei Feng, Tianzhu Zhang, and Yongdong Zhang. A unified optimization frame-
 642 work for feature-based transferable attacks. *IEEE Transactions on Information Forensics and*
 643 *Security*, 19:4794–4808, 2024.

644

645 Tianyang Xu, Zhen-Hua Feng, Xiao-Jun Wu, and Josef Kittler. Learning adaptive discriminative
 646 correlation filters via temporal consistency preserving spatial feature selection for robust visual
 647 object tracking. *IEEE Transactions on Image Processing*, 28(11):5596–5609, 2019.

648

649 Jianping Zhang, Weibin Wu, Jen-tse Huang, Yizhan Huang, Wenxuan Wang, Yuxin Su, and
 650 Michael R Lyu. Improving adversarial transferability via neuron attribution-based attacks. In
 651 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14993–
 652 15002, 2022.

648 Junhua Zou, Yexin Duan, Boyu Li, Wu Zhang, Yu Pan, and Zhisong Pan. Making adversarial
649 examples more transferable and indistinguishable. In *Proceedings of the AAAI conference on*
650 *artificial intelligence*, volume 36, pp. 3662–3670, 2022.
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 APPENDIX

703

704 **A LLM USAGE**

705

706 We used a Large Language Model only for language polishing. It did not contribute to ideas, meth-
707 ods, analyses, experiments, or results. All scientific content is the authors' own. We take full
708 responsibility for the manuscript and ensured any LLM-edited text follows ethical guidelines and
709 avoids plagiarism or misconduct.

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755