
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LFRD: ENHANCING ADVERSARIAL TRANSFERABIL-
ITY VIA LOW-RANK FEATURES GUIDANCE AND
REPRESENTATION DISPERSION REGULARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transfer-based adversarial attacks have become a mainstream approach for fool-
ing modern deep neural networks. Numerous methods have aimed to enhance
adversarial transferability by perturbing intermediate-layer features. However, ex-
isting methods overfit surrogate-specific features and generate imbalanced feature
activations to unseen models. To address these issues, we propose LFRD, a trans-
ferable adversarial attack framework that combines low-rank features extraction
and representation dispersion regularization. Specifically, Singular Value Decom-
position (SVD) is employed to isolate low-rank components that capture domi-
nant and invariant semantic features shared across models, providing model-free
guidance and mitigating surrogate-specific overfitting. In parallel, a regulariza-
tion term based on the Herfindahl–Hirschman Index (HHI) is introduced to bal-
ance feature activations by penalizing overly dominant responses and amplifying
weaker ones. By jointly aligning perturbations with low-rank semantic structures
and promoting dispersed feature utilization, LFRD yields adversarial examples
with improved representation-level generalization. Experimental results on both
standard and robust models show that our method demonstrates stronger adversar-
ial transferability than state-of-the-art methods.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success in many computer vision tasks
(Rawat & Wang, 2017; Li et al., 2018; Xu et al., 2019; Wang et al., 2021a; 2023), yet remain
highly vulnerable to adversarial examples, subtile perturbations that mislead predictions while re-
maining imperceptible to humans. This vulnerability raises serious concerns for real-world applica-
tions (Deng et al., 2020; Hu et al., 2023; 2024) such as autonomous driving and face recognition. In
black-box scenarios, where attackers lack access to the target model’s parameters or architecture, the
success of an attack depends on the transferability of adversarial examples crafted on source mod-
els. However, differences in model design and training often reduce transfer effectiveness. Thus,
improving adversarial transferability is a critical and ongoing challenge in deep learning security.

Existing transfer-based attacks can be broadly categorized into two main approaches. The first
class, including FGSM (Goodfellow et al., 2015), I-FGSM (Kurakin et al., 2018), MI-FGSM(Dong
et al., 2018), and their variants (Dong et al., 2019; Lin et al., 2019; Xie et al., 2019; Jang et al.,
2022; Zou et al., 2022), generates perturbations by optimizing gradients with respect to the out-
put logits, effectively pushing the input toward the decision boundary of the source model. Al-
though computationally efficient and easy to implement, these methods tend to overfit the source
model’s decision boundaries, leading to poor generalization on unseen architectures, particularly
those with different inductive biases. In contrast, the second class seeks to improve transferability
by perturbing intermediate-layer features, which often encode more stable and semantically mean-
ingful representations across models. Among such approaches, Feature Importance-Aware Attack
(FIA) (Wang et al., 2021b) emphasizes perturbing features based on their class-wise discrimina-
tive importance, encouraging alignment with task-relevant semantics. Neuron Attribution-Based
Attack (NAA) (Zhang et al., 2022) extends this approach by employing integrated gradients to iden-
tify highly influential neurons, thereby refining the direction and focus of adversarial perturbation.
Building on this direction, Intermediate-Level Perturbation Decay (ILPD) (Li et al., 2023) introduces
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Figure 1: Visualization of attention shifts for clean images and adversarial examples generated by
MI-FGSM, ILPD, RFIA and our method. Adversarial examples are crafted on the source model
Inception-v3 and evaluated on the Victim model ResNet-50. Attention maps are computed using
Eigen-CAM(Muhammad & Yeasin, 2020).

a decay mechanism that suppresses perturbation in less transferable channels. Prioritizing feature di-
mensions that better generalize across architectures. Recently, Relative Feature Importance-Aware
Attack (RFIA) (Li et al., 2025) improves transferability by leveraging clean image gradients to
construct relative feature importance, combining both dominant and noncritical semantics to guide
perturbations that generalize across architectures. However, existing transfer-based methods often
overfit surrogate-specific features and lack mechanisms to regulate perturbation effects on feature
activations, leading to distortions dominated by a few high-activation units while neglecting low-
activation regions. This imbalance narrows the coverage of perturbations and weakens generaliza-
tion across different architectures.

In this paper, we propose LFRD, a transferable adversarial attack framework that integrates two
complementary modules to enhance cross-model generalization. The first module employs Singular
Value Decomposition (SVD) on intermediate features to isolate low-rank components that capture
dominant semantic patterns shared across different architectures. These low-rank features provide
model-free guidance and are fused with the original logits to form a multi-path optimization strategy.
The second module introduces a representation dispersion regularization term based on the Herfind-
ahl–Hirschman Index (HHI), which balances feature activations by suppressing overly dominant
responses and amplifying weaker ones. This design prevents perturbations from being confined to a
small set of high-activation regions and promotes broader utilization of perturbations. As shown in
Figure 1, MI-FGSM, ILPD and RFIA primarily disrupt attention within the source model, but fail
to sufficiently shift the victim model’s focus, which still attends to the original semantic regions.
In contrast, our method consistently redirects attention in both the source and victim models toward
irrelevant regions, demonstrating stronger cross-model misdirection and improved transferability. In
summary, our contributions are as follows:

• We propose LFRD, a transferable adversarial attack that improves transferability by reduc-
ing surrogate-specific overfitting and mitigating imbalanced feature activations.

• LFRD integrates two modules, including SVD-guided features extraction to identify
architecture-invariant directions, and HHI-based regularization to encourage uniformly dis-
tributed feature activations across spatial and channel dimensions.
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• Experiments on both normally and adversarially trained models demonstrate that LFRD,
when combined with gradient stabilization, surpasses existing state-of-the-art transfer-
based attacks in transferability performance.

2 RELATED WORK

Adversarial Attacks and Transferability. Adversarial attacks exploit the vulnerability of deep
neural networks (DNNs) by introducing imperceptible perturbations that induce misclassification.
In black-box settings, where model details are unavailable, transfer-based attacks generate adver-
sarial examples on source models, requiring strong cross-model generalization. Early methods such
as FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2018), MI-FGSM (Dong et al., 2018),
NI-FGSM (Lin et al., 2019), PI-FGSM (Gao et al., 2020), VMI-FGSM (Wang & He, 2021) and
SVRE-MI (Xiong et al., 2022) optimize perturbations at the output layer but often overfit the source
model’s decision boundary, limiting transferability. To overcome this, intermediate-layer attacks like
FDA (Ganeshan et al., 2019), NAA (Zhang et al., 2022), and FIA (Wang et al., 2021b) target more
stable semantic representations shared across architectures. Extending this line of research, Rela-
tive Feature Importance-Aware Attack (RFIA) (Li et al., 2025) introduces a gradient-based strategy
that constructs relative feature importance from clean-image activations, guiding perturbations along
both dominant and non-dominant semantic dimensions.

Singular Value Decomposition in Vision and Attack. Singular Value Decomposition (Golub &
Reinsch, 1971) is a classical tool in computer vision (Sadek, 2012), (Bermeitinger et al., 2019),
(Levinson et al., 2020)that decomposes high-dimensional data into orthogonal components ranked
by importance, enabling the extraction of dominant low-rank semantic patterns. Recent works have
shown that the rank-1 component of intermediate features often encodes architecture-invariant se-
mantics, making it a promising direction for enhancing adversarial transferability. Weng et al. Weng
et al. (2024) introduced the use of SVD to guide perturbations along dominant directions via logit
fusion.

Dispersion Regularization and HHI. In transferable adversarial attacks, ensuring broad spatial and
semantic dispersion of perturbations is crucial for cross-model generalization, as overly concentrated
noise often overfits surrogate-specific patterns. UFAF (Xu et al., 2024) proposes a dispersion loss
and a distance loss to jointly guide transferable adversarial perturbations. Inspired by this, we in-
troduce a regularization term based on the Herfindahl–Hirschman Index (HHI) regulate perturbation
impact by suppressing overly dominant activations and enhancing weaker ones across spatial and
channel dimensions. Originally used in economics to measure market concentration, HHI (Rhoades,
1993) reflects the degree to which activation energy is unevenly distributed.

3 METHODOLOGY

3.1 PRELIMINARY

We consider the standard setting of untargeted adversarial attacks in a black-box transfer scenario.
Given an input image x with ground-truth label y and a source model f , the objective is to generate
an adversarial example xadv such that

argmax f ′(xadv) ̸= y, and ∥xadv − x∥∞ ≤ ϵ (1)

where f ′ denotes the target (black-box) model inaccessible to the attacker, and ϵ > 0 defines the
allowed perturbation budget under the l∞-norm constraint. In this setting, adversarial examples are
generated solely using the source model f , and evaluated for transferability by testing their success
rate on unseen target models f ′. Since output-layer decision boundaries often vary significantly
across architectures, many transfer-based attacks operate not on the final logits, but on internal
feature representations, which tend to encode more stable and semantically meaningful patterns.

3.2 LFRD FRAMEWORK OVERVIEW

To overcome the limited semantic generalization and spatial concentration observed in prior transfer
attacks, we propose LFRD, which introduces two complementary modules to enhance adversarial
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Figure 2: The overall framework of our proposed LFRD method. Based on the RFIA framework,
it integrates a low-rank features guidance via SVD and a representation dispersion regularization
module via HHI.

transferability. As illustrated in Figure 2, LFRD constructs a multi-path optimization framework by
integrating a SVD-guided features path and a representation dispersion regularization. The SVD-
guided feature path extracts a low-rank dominant direction from intermediate features via SVD,
capturing transferable semantics shared across architectures. In parallel, an HHI-based dispersion
regularizer penalizes peaked activation patterns by suppressing overly dominant responses and el-
evating weaker ones to disperse perturbation effects across spatial locations and channels. These
modules steer perturbations toward model-free semantic features while avoiding concentration in a
few regions.

3.3 LOW-RANK FEATURES GUIDANCE VIA SVD

To improve the semantic generalization capability of adversarial examples, LFRD introduces a sec-
ondary optimization path that explicitly models dominant transferable features using Singular Value
Decomposition (SVD). The core idea is that the most semantically meaningful and architecture-
invariant information within intermediate representations is often concentrated in a low-rank sub-
space. Instead of relying solely on gradients from the standard feature stream, which may contain
model-specific or noisy activation patterns, this module extracts the principal semantic direction
from the clean input and leverages it to guide adversarial optimization.

Given an intermediate feature map h(x) ∈ RC×H×W from the source model, we reshape it into a
2D matrix H ∈ RC×(H×W ). We apply SVD to decompose it into:

H = UΣV T (2)

We retain only the leading singular value σ1 and its corresponding vectors u1 ∈ RC , v1 ∈ RH×W ,
to reconstruct a rank-1 approximation:

Z = σ1u1v
T
1 (3)

This component is reshaped back to the original spatial dimensions to form a low-rank feature map
hsvd ∈ RC×H×W , which serves as a parallel semantic representation of the clean input. To integrate
this semantic guidance into the attack process, we compute logits from both the feature h(x) and the
low-rank feature hsvd, denoted as fori and fsvd, respectively. These logits are linearly fused using a
hyperparameter β ∈ [0, 1]:

ffused = βfori + (1− β)fsvd (4)

Finally, the classification loss is computed on the fused logits:

Lcls = LCE(ffused, y) (5)

4
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This design enables dual-path gradient optimization: one that captures fine-grained discriminative
patterns from the original feature maps, and another that follows the global, architecture-agnostic
semantic direction derived via SVD.

3.4 REPRESENTATION DISPERSION REGULARIZATION VIA HHI

While semantic guidance steers perturbations toward transferable features, we observe that the re-
sulting distortions can become concentrated in a few spatial locations or channels, dominating lim-
ited regions of the feature space. Such concentration aligns with surrogate-specific attention patterns
and undermines generalization to architectures with different inductive biases. To mitigate this is-
sue, LFRD introduces a representation dispersion regularization based on the Herfindahl–Hirschman
Index (HHI).

In the context of adversarial learning, we reinterpret HHI as a differentiable indicator of how
activation energy is distributed across a feature tensor. Given an intermediate activation map
h(xadv) ∈ RC×H×W , we treat its absolute values as an unnormalized energy distribution over all
spatial and channel dimensions. We first flatten and normalize the tensor into a probability vector:

E = softmax
(∣∣h(xadv)

∣∣) ∈ RC×H×W (6)

Each row of E represents a normalized energy distribution over the feature dimensions for a single
image.

The Herfindahl-Hirschman Index is then computed for each sample as:

HHI(E) =

D∑
i=1

E2
i (7)

Higher HHI indicates a peaked (dominated) activation distribution, whereas lower HHI indicates a
more dispersed influence across elements. We therefore define the dispersion loss as the mean HHI
and minimize it:

LHHI = 1− (HHI(E)) (8)
Minimizing LHHI penalizes overly dominant activations and relatively elevates weaker ones, dis-
persing the perturbation’s effect over spatial and channel dimensions and disrupting feature repre-
sentations more broadly.

Finally, LFRD integrates the classification loss and the representation dispersion regularization into
a unified objective:

LLFRD = λLcls + LHHI (9)
where λ is a tunable coefficient that controls the relative strength of semantic guidance in the opti-
mization. The dispersion term is assigned a fixed weight to consistently enforce perturbation spread
across feature space. On top of MI-FGSM, we generate the final adversarial examples by iteratively
ascending the gradient of LLFRD.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Dataset. Following recent works, we construct the attack dataset by randomly sampling 1000 im-
ages from the ILSVRC 2012 validation set (Russakovsky et al., 2015), ensuring that each image
is correctly classified by all target models. This design aligns with prior studies and enables a fair
comparison with state-of-the-art transfer-based adversarial attacks.

Models. For generating adversarial examples, we select five commonly used source models with
diverse architectures: ResNet-50(Res-50) (He et al., 2016), ResNet-152 (Res-152) (He et al., 2016),
Vgg19 (Simonyan & Zisserman, 2014) , Inception-v3(Inc-v3) (Szegedy et al., 2016), and Inception-
v4(Inc-v4) (Szegedy et al., 2017). To evaluate the black-box transferability, we test the generated
adversarial examples on both normally trained and adversarially trained models:

Normally trained models: ResNet-50, ResNet-152, DenseNet-121 (Huang et al., 2017), Inception-
v3, Inception-v4, Vgg19, MLP-Mixer-b (Tolstikhin et al., 2021), ConvNeXt-T (Liu et al., 2022),
ViT-B (Dosovitskiy et al., 2020), DeiT-B (Touvron et al., 2021), and Swin-B (Liu et al., 2021).
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Table 1: Attack success rate (%) on 11 normally trained models for different attack methods.

Source
model Methods Res

-50
Res
-152

Inc
-v3

Inc
-v4

Vgg
-19

Mix
er-b

Conv
next-T

ViT
-b

DeiT
-b

Swin
-b

Dense
-121 Avg

Res-50

MIM 100 88.7 64.9 64.8 75.4 46.0 36.9 27.2 28.0 20.9 84.8 57.96
VMI 99.9 98.3 86.8 83.4 88.6 64.7 62.9 46.3 48.9 39.5 97.0 74.21
ILPD 99.8 94.9 75.2 76.5 82.7 49.5 56.0 30.8 33.5 32.9 90.6 65.67

RFIA-AB 100 97.4 89.0 88.1 90.8 66.5 70.0 49.9 52.1 47.0 96.4 77.01
LFRD-AB 100 97.3 92.2 91.6 93.4 69.2 71.9 52.8 51.7 48.8 97.3 78.74

Res-152

MIM 92.7 100 65.2 63.4 74.3 46.1 39.8 27.6 30.2 23.0 85.7 58.90
VMI 98.4 100 86.2 82.6 86.2 64.8 69.8 50.2 54.9 45.5 96.8 75.94
ILPD 95.2 99.9 74.7 74.5 76.7 49.5 57.3 32.0 37.4 37.1 91.4 65.97

RFIA-AB 97.7 100 87.7 84.6 85.2 67.3 68.0 52.2 53.3 47.4 94.7 76.19
LFRD-AB 97.7 100 91.3 89.5 88.6 70.9 72.1 55.7 56.4 51.7 96.8 79.15

Inc-v3

MIM 49.6 42.5 99.4 60.7 65.4 36.6 20.8 20.2 17.6 10.5 45.6 42.62
VMI 68.8 63.7 99.6 75.3 74.6 48.0 38.7 31.0 30.2 24.6 64.9 56.30
ILPD 52.8 49.7 95.8 65.6 63.5 33.3 30.5 18.8 19.3 17.7 49.9 45.17

RFIA-ABC 78.9 75.2 99.8 85.2 81.9 54.9 52.8 36.8 32.7 30.9 76.8 64.17
LFRD-ABC 80.1 76.6 99.0 86.9 83.3 55.8 53.7 36.6 33.2 32.3 79.0 65.13

Inc-v4

MIM 45.9 38.8 62.1 97.7 64.8 36.2 27.3 19.4 17.2 14.3 41.4 42.28
VMI 65.9 61.4 77.8 97.9 75.3 47.4 48.6 31.9 33.2 29.2 62.0 57.32
ILPD 43.7 42.1 57.6 90.7 63.5 32.7 35.4 18.8 19.8 20.3 41.9 42.40

RFIA-ABC 74.0 69.1 83.2 99.1 80.1 52.6 55.4 35.4 33.7 34.6 69.5 62.42
LFRD-ABC 74.8 70.2 84.1 98.6 81.2 53.7 57.4 34.9 32.7 34.1 72.1 63.07

Vgg19

MIM 74.4 60.8 67.8 73.1 99.8 44.2 44.6 23.4 24.0 20.8 68.2 54.64
VMI 89.3 78.3 81.1 85.7 100 55.9 62.7 36.3 37.2 34.6 81.7 67.52
ILPD 86.6 76.0 76.9 84.7 99.9 44.6 67.6 25.1 25.1 33.9 80.3 63.70

RFIA-AB 91.5 85.1 89.7 93.9 100 61.8 74.6 41.6 40.8 46.0 89.6 74.05
LFRD-AB 92.9 86.5 91.2 95.2 100 61.8 76.0 42.0 41.4 44.4 90.8 74.74

Adversarially trained robust models: Inc-v3adv (Madry et al., 2017), Inc-v3ens3, Inc-v3ens4,
IncRes-v2adv, IncRes-v2ens3 (Tramèr et al., 2017), EfficientNet-b0(robust), NFNet-l0(robust), PVT-
v2-b0(robust), and Sequencer2d-s(robust).

Baseline Methods. We choose MI-FGSM(MIM) as the basic gradient-based baseline, and include
several advanced variant such as VMI. To highlight the advantage of semantic-guided feature per-
turbation, we also compare LFRD with leading intermediate-level perturbation methods , including
FIA, NAA, ILPD, and RFIA.

Parameters. Following the experimental setup in prior works, we adopt consistent parameter set-
tings to ensure fair comparison and reproducibility. The maximum perturbationϵ is set to 16/255,
with an iteration step size of 1.6/255 and a total of 10 iterations across all attacks. Momentum is
applied uniformly to stabilize updates, using a decay factor of µ = 1.0. VMI uses N = 10 gradient
samples per iteration, with the neighborhood radius bounded at β = 1.5 × ϵ. For all intermediate-
layer-based methods including FIA, NAA, ILPD, RFIA and our LFRD which we select specific
layers from each source model as target feature blocks. Specifically, we use layer2.4 for ResNet-50,
layer3.6 for ResNet-152, Mixed-6b for Inception-v3, Reduction-A for Inception-v4, and Conv3-4
for Vgg-19. In methods requiring gradient aggregation , Gaussian noise with zero mean and a vari-
ance of 0.1 is added to the input at each iteration to promote robustness. The dropout probability in
FIA is fixed at 0.1. Finally, the number of aggregations in FIA, NAA, ILPD, RFIA, and our LFRD
method is uniformly set to 10, ensuring equal computational complexity across all approaches com-
pared. In ffused, the hyperparameter β is set to 0.5.

Robust Gradient Stabilization Strategies. To ensure stable and transferable gradient signals dur-
ing adversarial optimization, we follow RFIA and apply three widely used robust gradient strategies:
Integrated Gradient (IG) (Sundararajan et al., 2017), SmoothGrad (SG) (Smilkov et al., 2017), and
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Table 2: Attack success rate (%) on 9 adversarially trained models for different attack methods.

Source
model Methods Adv-I

nc-v3
Adv-Inc
res-v2

Ens3-Adv
Inc-v3

Ens4-Adv
Inc-v3

Ens-Inc
res-v2

Effici
entnet-b0

Nfnet
-10

pvt
-v2

Sequencer
-2d Avg

Res-50

MIM 42.4 37.2 41.7 38.6 29.8 66.6 46.7 66.2 37.0 45.13
VMI 73.5 69.7 72.2 70.0 61.6 90.3 72.4 85.9 64.5 73.34
ILPD 59.1 50.4 56.6 53.1 40.7 82.2 63.6 79.0 56.3 60.11

RFIA-AB 77.4 73.3 75.8 74.6 65,1 92.4 76.7 88.0 69.0 76.91
LFRD-AB 82.1 77.5 78.6 75.1 68.2 92.4 78.2 88.2 70.6 79.21

Res-152

MIM 45.3 43.5 43.4 43.7 32.6 69.7 45.8 63.4 40.4 47.53
VMI 78.8 76.6 77.8 76.4 70.1 89.3 76.3 84.8 68.7 77.65
ILPD 62.2 56.1 58.8 54.5 45.1 78.6 66.0 75.0 57.5 61.54

RFIA-AB 77.0 75.4 74.3 72.1 63.6 88.4 74.2 83.6 67.4 75.11
LFRD-AB 83.4 81.2 78.9 75.8 69.5 93.0 78.0 87.4 71.1 79.81

Inc-v3

MIM 26.7 23.9 22.4 21.9 10.1 44.9 26.8 46.2 21.8 27.66
VMI 45.5 45.1 42.2 42.6 24.6 66.2 46.4 62.5 40.6 46.74
ILPD 30.6 30.4 29.2 30.3 16.8 49.5 35.9 51.5 28.1 33.59

RFIA-ABC 54.2 56.8 43.1 42.8 25.3 78.6 58.4 74.6 50.0 53.76
LFRD-ABC 54.6 57.6 42.3 42.0 25.2 79.6 59.0 76.2 50.7 54.13

Inc-v4

MIM 23.1 21.3 18.1 18.2 11.4 46.6 32.1 43.1 22.7 26.29
VMI 42.8 44.4 41.2 40.6 27.7 65.8 55.3 61.4 44.7 47.65
ILPD 24.0 26.2 26.3 26.4 16.3 43.9 41.5 44.2 31.4 31.13

RFIA-ABC 46.8 50.6 43.0 41.3 24.7 74.0 63.6 68.7 51.1 51.54
LFRD-ABC 48.1 53.9 44.1 40.9 25.5 75.1 65.6 71.1 52.4 52.96

Vgg19

MIM 38.7 32.5 35.4 33.8 23.0 71.1 54.5 73.3 41.7 44.89
VMI 60.9 53.4 56.7 54.3 40.7 83.6 72.1 87.4 59.6 63.41
ILPD 53.2 38.3 46.2 41.7 27.7 82.6 74.1 83.4 60.2 56.37

RFIA-AB 72.6 64.9 67.8 62.7 51.0 90.6 82.1 90.3 70.4 72.60
LFRD-AB 75.7 65.3 69.2 63.3 51.3 91.4 81.6 90.9 69.5 73.13

Gradient Accumulation (GA) (Wang et al., 2021b), which respectively aim to alleviate gradient sat-
uration, suppress noisy gradients, and reduce model-specific information. These strategies enhance
the computation of relative feature importance and consistently improve cross-model transferability.
For clarity in comparison, we append suffixes to each attack method to indicate the stabilization
strategies used: -A corresponds to IG, -B to SG, and -C to GA, with -AB, -AC, -BC, and -ABC
denoting their respective combinations. For example, LFRD-ABC refers to the variant where all
three strategies are applied, while LFRD-B indicates that only SmoothGrad is used.

4.2 ATTACK RESULTS

In this section, we evaluate the proposed LFRD framework across a comprehensive set of normally
and adversarially trained models to validate its effectiveness in enhancing adversarial transferabil-
ity. It is necessary to explain how the three robust strategies ought to be applied when integrated
with LFRD (for instance, LFRD-ABC). Actually, no special attention is paid to the order in which
these strategies are applied. For example, regarding LFRD-ABC, strategies A, B, and C are merely
implemented in sequence.

We compare our proposed method (LFRD) with MIM and its variant (VMI), as well as with ILPD
and RFIA, as shown in Table 1 and Table 2, which present the average attack success rates across
11 normally trained models and 9 adversarially trained models. It can be clearly observed that our
method consistently outperforms the others in most cases, and the average results are always supe-
rior. The - notation indicates the best-performing combination of robust gradient stabilization strate-
gies for each method on each source model. It can be observed that the optimal strategy selection
for RFIA and our LFRD method remains consistent across different source models. Specifically, the
ABC combination demonstrates better adaptability on Inc-v3 and Inc-v4, while the AB combination
proves to be more effective on Res-50, Res-152, and Vgg19. These results suggest that selecting
appropriate gradient stabilization strategies tailored to the characteristics of each source model is
crucial for enhancing attack transferability.
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Table 3: Attack success rates (%) of ILPD, FIA, NAA, RFIA and our LFRD with different combina-
tions (A, B, C, AB, AC, BC, ABC), averaged on 11 normally trained models (□) and 9 adversarially
trained models (△). Adversarial examples are crafted using Inc-v3 as the source model.

Gradient
Strategies

Target
Models ILPD FIA NAA RFIA LFRD

A
□ 52.20 51.65 56.59 58.14 60.33
△ 40.62 40.02 45.32 47.66 48.26

B
□ 57.83 53.68 57.36 58.72 59.89
△ 44.70 44.68 48.86 49.31 50.80

C
□ 58.44 57.20 60.59 61.58 62.38
△ 47.66 47.16 50.22 50.75 51.66

AB
□ 58.93 56.85 60.51 61.54 62.77
△ 47.65 46.92 49.72 51.36 52.44

AC
□ 57.68 60.19 62.55 63.75 64.76
△ 47.96 49.38 51.46 52.98 53.68

BC
□ 57.81 59.71 62.53 63.39 63.78
△ 48.52 49.11 52.11 52.98 53.86

ABC
□ 59.58 61.28 63.03 64.89 65.13
△ 48.52 50.90 52.47 53.43 54.13

To eliminate the influence of robust gradient stabilization strategies and their combinations on the
experimental results, we conducted a comprehensive evaluation of ILPD, FIA, NAA, RFIA and our
LFRD by integrating them with the three individual strategies (A, B, C) and all possible combina-
tions (AB, AC, BC, ABC). The corresponding attack success rates averaged on 11 normally trained
models and 9 adversarially trained models are reported in Table 3. The results show that, regardless
of the specific strategy or combination used, our LFRD consistently achieves higher average attack
success rates than the other baseline methods, demonstrating superior transferability.

Extensive experiments demonstrate that the proposed LFRD framework achieves superior adversar-
ial transferability across both standard and adversarially trained models. This performance stems
from the integration of SVD-guided low-rank features and HHI-based dispersion, which together
steer perturbations toward model-free shared features and disperse their impact across spatial and
channel dimensions by suppressing overly dominant activations and elevating weaker ones. Com-
bined with robust gradient strategies, these components enhance optimization stability and cross-
model generalization, making LFRD a highly effective approach for transferable adversarial attacks.

4.3 ABLATION STUDY

Component Effectiveness. To further investigate the effectiveness of each proposed component
in LFRD, we conduct an ablation study using three representative source models: ResNet-50,
Inception-v4, and Vgg19. As shown in Table 4, adding either the SVD-guided features path or
the HHI-based representation dispersion regularization to the baseline (RFIA) results in a consistent
improvement in attack success rates. Specifically, applying only SVD enhances features guidance
and yields notable gains on Vgg19, while using HHI alone promotes spatial and channel disper-
sion, leading to higher performance on ResNet-50. When both components are combined in the full
LFRD framework, a cumulative effect is observed, achieving the best results across all source mod-
els. These findings confirm the complementary strengths of the two modules in boosting adversarial
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(a) Target Layer (b) Parameter

Figure 3: Ablation study on target layer and parameter. (a) Attack success rates using different target
layers. Adversarial examples are crafted using Res-50 as the source model. (b) Attack success rates
on Inc-v3 (red) and attack success rates averaged on 11 normally trained models (green) under
different λ values. Adversarial examples are crafted using Inc-v3 as the source model.

Table 4: Ablation results of low-rank features guidance (SVD) and representation dispersion regular-
ization (HHI) on three source models. Results are Attack success rate (%) averaged on 11 normally
trained models.

Methods Res-50 Inc-v4 Vgg19

Baseline (RFIA) 78.02 61.94 72.84

+SVD only 78.26 62.76 74.67

+HHI only 78.55 62.82 73.51

LFRD (Ours) 78.74 63.07 74.74

transferability. During evaluation, we adopt the best-performing gradient stabilization configuration
(AB or ABC) for each variant to ensure fair and consistent comparison.

Target Layer. Considering that the choice of target layer can affect the adversarial examples gen-
erated by our method, it is necessary to determine which layer of the source model yields the most
effective attacks. As shown in the Figure 3a , selecting mid-level layers consistently results in higher
attack success rates compared to shallow or deep layers. This suggests that mid-level features ex-
hibit greater semantic consistency across different architectures, while both shallow and deep layers
contain more model-specific information.

Parameter. To evaluate the sensitivity of LFRD to the weighting factor λ, we conduct experiments
by varying λ in the Equation 9. As shown in Figure 3b, setting λ = 1.0 achieves a better balance
between semantic guidance and representation dispersion regularization. A too-small λ underuti-
lizes semantic supervision and unsaturated white-box performance, while a too-large value weakens
dispersion and reduce transferability. This demonstrates the necessity of jointly optimizing both
components for robust transferability.

5 CONCLUSION

In this paper, we propose LFRD, a novel adversarial attack method that enhances transferability by
integrating SVD-based low-rank features guidance and HHI-based representation dispersion regu-
larization. These components together steer perturbations toward model-shared features while dis-
persing activation influence across space and channels. LFRD yields adversarial examples with
improved representation-level generalization. Extensive experiments on both standard and robust
models confirm that LFRD outperforms existing transfer-based attacks, demonstrating strong gener-
alization and stability across architectures. In the future work, we will focus on multi-layer selection
and alternative dispersion penalties beyond HHI to further improve transferability.
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ETHICS STATEMENT

This research investigates transfer-based adversarial attacks to better understand and benchmark
the robustness of deep neural networks. No human subjects or animal experiments were involved.
We use publicly available datasets (ILSVRC 2012 ImageNet validation set) under their licenses
and do not process personally identifiable information. We acknowledge the dual-use nature of
adversarial attack. All experiments are conducted for scientific evaluation, and our releases are
intended to support robustness research. We will refrain from deploying or encouraging use in real-
world systems and will follow community norms for responsible disclosure and dissemination.
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APPENDIX

A LLM USAGE

We used a Large Language Model only for language polishing. It did not contribute to ideas, meth-
ods, analyses, experiments, or results. All scientific content is the authors’ own. We take full
responsibility for the manuscript and ensured any LLM-edited text follows ethical guidelines and
avoids plagiarism or misconduct.
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