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ABSTRACT

We study the problem of crystal material property prediction. A crystal structure
consists of a minimal unit cell that is repeated infinitely in 3D space. How to ac-
curately represent such repetitive structures in machine learning models remains
unresolved. Current methods construct graphs by establishing edges only between
nearby nodes, thereby failing to faithfully capture infinite repeating patterns and
distant interatomic interactions. In this work, we propose several innovations to
overcome these limitations. First, we propose to model physics-principled inter-
atomic potentials directly instead of only using distances as in existing methods.
These potentials include the Coulomb potential, London dispersion potential, and
Pauli repulsion potential. Second, we propose to model the complete set of poten-
tials among all atoms, instead of only between nearby atoms as in prior methods.
This is enabled by our approximations of infinite potential summations with prov-
able error bounds. We further develop efficient algorithms to compute the approx-
imations. Finally, we propose to incorporate our computations of complete inter-
atomic potentials into message passing neural networks for representation learn-
ing. We perform experiments on the JARVIS and Materials Project benchmarks
for evaluation. Results show that the use of complete interatomic potentials leads
to consistent performance improvements with reasonable computational costs.

1 INTRODUCTION

The past decade has witnessed a surge of interests and rapid developments in machine learning for
molecular analysis (Duvenaud et al., 2015). These initial studies mainly focus on the prediction and
generation problems of small molecules. To enable computational analyses, molecules need to be
featurized in an appropriate mathematical representation form. Recently, with the advances of graph
neural networks (GNNs) (Gilmer et al., 2017; Battaglia et al., 2018), molecules are more commonly
represented as graphs in which each node corresponds to an atom, and each edge corresponds to
a chemical bond (Stokes et al., 2020; Wang et al., 2022c). A variety of molecular graph predic-
tion (Stokes et al., 2020; Wang et al., 2022c) and generation (Shi et al., 2019; Jin et al., 2018; Luo
et al., 2021) methods have been developed based on 2D molecular graph representations. A key lim-
itation of the 2D graph representations is that the 3D geometries of molecules are not captured, but
such information may be critical in many molecular property prediction problems (Hu et al., 2021).
To enable the encoding of 3D molecular geometries in GNNs, a series of 3D GNN methods have
been developed for prediction (Schütt et al., 2017; Gasteiger et al., 2019; Liu et al., 2022b; Wang
et al., 2022b) and generation (Liu et al., 2022a; Luo & Ji, 2022; Hoogeboom et al., 2022) problems.
In these 3D graph representations, each node is associated with the corresponding atom’s coordinate
in 3D space. Geometric information, such as distances between nodes and angles between edges,
is used during message passing in GNNs. Recently, these methods have been extended to learn
representations for proteins (Jing et al., 2020; Wang et al., 2022a).

Inspired by the success of GNNs on small molecules, Xie & Grossman (2018) developed the crystal
graph convolutional neural network (CGCNN) for crystal material property prediction. Different
from small molecules and proteins, crystal materials are typically modeled by a minimal unit cell
(similar to a small molecule) that is repeated in 3D space with certain directions and step sizes.
In theory, the unit cell is repeated infinitely in 3D space, but any real-world material has finite size.
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However, given that our modeling is at the atomic level, modeling crystal materials as infinite repeti-
tions of unit cells is approximately accurate. Therefore, a key challenge in crystal material modeling
is how to accurately capture the infinite-range interatomic interactions resulted from the repetitions
of unit cells in 3D space. Current GNN-based crystal property prediction methods construct graphs
by creating edges only between atoms within a pre-specified distance threshold (Xie & Grossman,
2018; Chen et al., 2019; Louis et al., 2020; Schmidt et al., 2021; Choudhary & DeCost, 2021). Thus,
they fail to capture interactions between distant atoms explicitly.

In this work, we propose a new graph deep learning method, PotNet, with several innovations to
significantly advance the field of crystal material modeling. First, we propose to model interatomic
potentials directly as edge features in PotNet, instead of using distance as in prior methods. These
potentials include the Coulomb potential (West, 1988), London dispersion potential (Wagner &
Schreiner, 2015), and Pauli repulsion potential (Krane, 1991). Second, a distinguishing feature of
PotNet is to model the complete set of potentials among all atoms, instead of only between nearby
atoms as in prior methods. This is enabled by our approximations of infinite potential summations
with provable error bounds. We further develop efficient algorithms to compute the approximations.
Finally, we propose to incorporate our computations of complete interatomic potentials into message
passing neural networks for representation learning. We performed comprehensive experiments on
the JARVIS and Materials Project benchmarks to evaluate our methods. Results show that the use of
complete interatomic potentials in our methods leads to consistent performance improvements with
reasonable computational costs.

2 BACKGROUND AND RELATED WORK

2.1 CRYSTAL REPRESENTATION AND PROPERTY PREDICTION

A crystal structure can be represented as periodic repetitions of unit cells in the three-
dimensional (3D) Euclidean space, where the unit cell contains the smallest repeatable structure
of a given crystal. Specifically, let n be the number of atoms in the unit cell, a crystal can be rep-
resented as M = (A,L). Here, A = {ai}ni=1 = {(xi,pi)}ni=1 describes one of the unit cell
structures of M , where xi ∈ Rb and pi ∈ R3 denote the b-dimensional feature vector and the
3D Cartesian coordinates of the i-th atom in the unit cell, respectively. L = [l1, l2, l3] ∈ R3×3 is
the lattice matrix describing how a unit cell repeats itself in the 3D space. In the complete crystal
structure, every atom in a unit cell repeats itself periodically in the 3D space. Specifically, from an
arbitrary integer vector k ∈ Z3 and the unit cell structure A, we can always obtain another repeated
unit cell structure Ak = {ak

i }ni=1 = {(xk
i ,p

k
i )}ni=1, where xk

i = xi, pk
i = pi + Lk. Hence, the

complete crystal structure Ã of M with all unit cells can be described as

Ã =
⋃

k∈Z3

Ak. (1)

In this work, we study the problem of crystal property prediction. Our objective is to learn a property
prediction model f : M → y ∈ R that can predict the property y of the given crystal structure M .
We will focus on predicting the total energy, or other energy-related properties of crystals.

2.2 CRYSTAL PROPERTY PREDICTION WITH INTERATOMIC POTENTIALS

Most of the classical crystal energy prediction methods are based on interatomic potentials. Ac-
cording to the studies in physics (West, 1988; Daw et al., 1993; Brown, 2016), the total energy of
a crystal structure can be approximated by the summation of interatomic potentials in the crystal.
Particularly, the three following categories of interatomic potentials are widely used in crystals, and
they are considered as sufficient for accurate energy approximation.

• Coulomb potential is caused by the electrostatic interaction of two atoms with charges. Coulomb
potentials are closely related to ionic bonding and metallic bonding in crystals (West, 1988). For
any two atoms a and b, let za and zb denote the number of charges in the atom a and b, and let
d(a, b) be the Euclidean distance between the atom a and b. The Coulomb potential V Coulomb is
defined as V Coulomb(a, b) = − zazbe

2

4πϵ0d(a,b)
. Here e is the elementary charge constant, and ϵ0 is the

permittivity constant of free space.
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• London dispersion potential describes the Van der Waals interaction between atoms. London
dispersion potential is often considered in energy estimation because its contribution is cumula-
tive over the volume of crystals (Wagner & Schreiner, 2015) and sometimes very strong in bulk
crystals, such as the crystals containing sulfur and phosphorus. The mathematical form of this
potential can be described as V London(a, b) = −ϵ/d6(a, b), where ϵ is a hyperparameter.

• Pauli repulsion potential is resulted from the Pauli exclusion principle generally exists in all
crystal structures. The Pauli exclusion principle forces any two atoms to be sufficiently far away
from each other so that the electron orbits of them do not overlap. Such exclusion interactions
lead to Pauli repulsion potential with the form of V Pauli(a, b) = e−αd(a,b), where α is a hyperpa-
rameter (Buckingham, 1938; Slater, 1928).

2.3 CRYSTAL PROPERTY PREDICTION WITH DEEP LEARNING

While physics-based methods have been used for predicting the crystal energy for a long time, these
methods are usually crystal-specific, i.e., one method can only achieve accurate approximation for
one specific type of crystals. Recently, thanks to the advances of deep learning, many studies have
been done to develop a general crystal property predictor for a variety of different crystals with pow-
erful deep neural network models. Some studies (Wang et al., 2021; Jha et al., 2018; 2019; Goodall
& Lee, 2020) represent crystals as chemical formulas, and adopt sequence models to predict proper-
ties from these string representations. However, more recent studies consider crystals as 3D graphs
and employ expressive 3D GNNs (Schütt et al., 2017; Klicpera et al., 2020b; Liu et al., 2022b), a
family of deep neural networks specifically designed for 3D graph-structured data, to crystal repre-
sentation learning. CGCNN (Xie & Grossman, 2018) is the first method that proposes to represent
crystals with radius graphs and adopts a graph convolutional network to predict the property from
the graph. Based on the pioneering exploration of CGCNN, a lot of subsequent studies (Schmidt
et al., 2021; Louis et al., 2020; Chen et al., 2019; Choudhary & DeCost, 2021; Batzner et al., 2022)
propose various 3D GNN architectures to achieve more effective crystal representation learning.
Particularly, by enhancing the input features with angle information, ALIGNN (Choudhary & De-
Cost, 2021) develops the currently most powerful 3D GNN architecture for crystals and achieves the
best crystal property prediction performance.

3 METHOD

Although existing GNN-based methods have achieved impressive performance in crystal property
prediction, they struggle in further boosting the performance due to the approximation of interatomic
interactions using functional expansions based on distances and failing in capturing complete inter-
atomic interactions. In this section, we present PotNet, a novel crystal representation model that can
overcome these limitations of prior methods. Based on the physical modeling of crystal energy, Pot-
Net explicitly uses infinite potential summations as input features to capture complete interatomic
interactions. The infinite potential summations are incorporated into the message passing mecha-
nism of graph neural networks and efficiently approximated by a fast algorithm. To the best of our
knowledge, PotNet is the first work that bridges the classical crystal energy computation methods
based on potentials and the data-driven methods based on deep neural networks.

3.1 APPROXIMATING CRYSTAL ENERGY WITH COMPLETE INTERATOMIC POTENTIALS

According to the density functional theory (DFT) in physics, for any crystal M = (A,L) with the
complete structure Ã defined in Eqn. (1), its total energy E(M) can be accurately approximated by
the embedded atom method (Daw & Baskes, 1984; Daw et al., 1993; Baskes, 1987; Lee et al., 2016;
Riffe et al., 2018) in the form of

E(M) =
1

2

∑
a∈A

∑
b ̸=a,b∈Ã

V (a, b) +
∑
a∈A

F (ρa), (2)

where V (a, b) denotes the interatomic potentials between the atoms a and b, capturing the magni-
tude of interactions; ρa is the local electron density of the atom a, determined by the coordinate and
number of charges of the atom a according to the Hohenberg-Kohn theorem; F (·) is a parametrized
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function to embed the electron density ρa. Actually, existing studies (Jalkanen & Müser, 2015) show
that ρa can be considered as a function of

∑
b ̸=a,b∈Ã V (a, b) mathematically. Hence, Eqn. (2) can

be rewritten in the following form:

E(M) =
∑
a∈A

1
2

∑
b ̸=a,b∈Ã

V (a, b) +G

 ∑
b ̸=a,b∈Ã

V (a, b)

 , (3)

where G(·) is a parametrized function. Eqn. (3) can be considered as a way to compute the energy
from the complete interatomic potential summation

∑
b ̸=a,b∈Ã V (a, b) of every atom a in the unit

cell A. However, in practice, the function G is computationally expensive if not infeasible. Hence,
more and more studies have turned to the powerful learning capability of modern deep neural net-
work models to approximate it effectively.

3.2 LIMITATIONS OF EXISTING DEEP LEARNING METHODS

Currently, most of the existing graph deep learning methods for crystals (Xie & Grossman, 2018;
Chen et al., 2019; Louis et al., 2020; Choudhary & DeCost, 2021) use radius graph representations
and distance-based features as inputs to predict the crystal energy in Eqn. (3). Specifically, for a
crystal M = (A,L), the radius graph is constructed by adding edges between any atom a in the
unit cell A and any other atom b in the complete crystal structure Ã whose distances are smaller
than a pre-specified distance threshold r. In addition, some functional expansions of distances, e.g.,
radial basis functions (RBF), are used to model interatomic interactions and form the input edge
features to 3D GNN models. Hence, let a = (xa,pa), b = (xb,pb), the crystal energy prediction
Ê(M) of these methods can be generally described as

Ê(M) =
∑
a∈A

∑
b∈Nr(a)

H (ϕ (||pa − pb||2)) , (4)

where Nr(a) = {b : b ̸= a, b ∈ Ã, ||pa − pb||2 < r}, ϕ(·) denotes the functional expansions, and
H(·) is a non-linear function based on 3D GNN models.

However, we argue that predicting or approximating the energy with Eqn. (4) is a suboptimal so-
lution. Actually, compared with Eqn. (3), which is physics-principled, there exist non-negligible
approximation errors in Eqn. (4). First, Eqn. (4) captures the interatomic interactions based on
interatomic distances, while the energy can be more accurately approximated by a function of in-
teratomic potentials as in Eqn. (3). Though according to Sec. 2.2, interatomic potentials themselves
are also functions of distances, we argue that directly using functional expansions of distances is not
the best solution to crystal energy prediction. The commonly used functional expansions in existing
methods, such as RBF ϕ(·), have different mathematical forms from potentials defined in Sec. 2.2.
Intuitively, this poses more challenges to 3D GNN models since they need to learn a mapping from
ϕ(·) to the energy E, while the energy E is not a direct function of ϕ(·). Hence, we argue that di-
rectly employing the physics-principled potential functions instead of ϕ(·) as input features is more
suitable for crystal energy prediction.

Second, different from Eqn. (3), Eqn. (4) does not capture the complete set of interatomic inter-
actions because the summation set Nr(a) of atoms b is constrained to be the atoms whose dis-
tances to the atom a are smaller than r. This can lead to a significant approximation error due to
ignoring long-range interatomic potentials, i.e., interatomic potentials between distant atoms. Dif-
ferent from molecules with finite structures, long-range interatomic potentials cannot be ignored
for crystals with infinite structures. By the first principles in physics, interatomic potentials decay
algebraically when pairwise interatomic distances become larger. Hence, for a finite structure like
molecules, the potentials from atoms that are far away from a given atom is limited and can be ig-
nored. However, long-range interatomic potentials have a significant influence on a given atom in
the infinite crystal structure. Taking Coulomb potentials as an example, assuming that we are given
a 1D crystal structure where there is only one atom repeating itself with Euclidean distance of 1,
each atom has only one unit of charge, and the total energy is simply the sum of all interatomic
Coulomb potentials. As defined in Sec. 2.2, Coulomb potential energy V (a, b) between atoms a
and b satisfies V (a, b) ∝ 1/d, where d is the distance between atoms a and b. Considering the
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Coulomb potentials between a given atom and all other atoms, the total potential Ṽ of them sat-
isfies Ṽ ∝

∑∞
n=1 1/n. If only the pairwise atoms within the distance threshold r are considered,

an infinite error of energy calculation is introduced. Specifically, the smallest possible prediction
error ∆V satisfies ∆V ∝

∑∞
n=⌊r+1⌋ 1/n, which is infinite. In other words, ignoring interatomic

Coulomb potentials between atoms with distances larger than r will cause a significant prediction
error of the total energy. We can observe from this example that the failure to capture complete
interatomic potentials due to the use of radius graphs is a key factor that prevents accurate energy
prediction in existing GNN-based methods.

3.3 MESSAGE PASSING WITH COMPLETE INTERATOMIC POTENTIALS

It follows from the analysis in Sec. 3.2 that major limitations of existing deep learning methods for
crystal representation learning lie in (1) not making predictions from physics-principled interatomic
potentials, and (2) not considering complete interatomic interactions. To overcome these limitations,
we propose to explicitly use complete interatomic potential summations in GNN models. Since our
proposed method is tightly related to potentials, we name it PotNet.

By reformulating Eqn. (3), our PotNet incorporates the crystal energy computation with complete
interatomic potentials into the message passing scheme of GNN models. For any material structure
M = (A,L), we can rewrite the definition of its complete structure Ã in Eqn. (1) as

Ã =
⋃

k∈Z3

Ak =
⋃

k∈Z3

⋃
b∈A

{bk} =
⋃
b∈A

⋃
k∈Z3

{bk} =
⋃
b∈A

Ab, (5)

where Ab =
⋃

k∈Z3{bk} denotes the set of atoms containing the atom b from the unit cell A
and all its periodically repeated duplicates in the complete crystal structure. With Eqn. (5), we can
reformulate Eqn. (3) as

E(M) =
∑
a∈A

1
2

∑
b∈A

∑
c̸=a,c∈Ab

V (a, c) +G

∑
b∈A

∑
c̸=a,c∈Ab

V (a, c)


=
∑
a∈A

[
1

2

∑
b∈A

S(a, b) +G

(∑
b∈A

S(a, b)

)]
,

(6)

where the infinite potential summation S(a, b) =
∑

c ̸=a,c∈Ab
V (a, c) denotes the sum of the inter-

atomic potentials from the atom b together with its all periodic duplicates to the atom a. Eqn. (6) can
be integrated into the message passing scheme of GNN models. Specifically, we can create a graph
G for M = (A,L), where each atom in the unit cell A corresponds to a node in the graph. For
any two nodes u,v in the graph, there is an edge connecting them, and every node u in the graph is
also connected to itself by a self-loop edge. If we consider the infinite potential summation S(a, b)
as the feature of the edge from node b to a, we can use the message passing based non-linear neural
network model in GNN to fit the function 1

2

∑
b∈A S(a, b) +G

(∑
b∈A S(a, b)

)
.

Based on this design of directly using interatomic potentials as edge features, our PotNet employs
a GNN model with multiple message passing layers on the graph G to predict the crystal energy of
M . The computational process of the ℓ-th message passing layer for the node a can be described as

h(ℓ)
a = gφ

(
h(ℓ−1)
a ,

∑
b∈A

fθ

(
h(ℓ−1)
a ,h

(ℓ−1)
b ,

∑
b∈A

S(a, b)

))
, (7)

where h
(ℓ)
a denotes the embedding vector of node a generated from the ℓ-th message passing layer,

h
(0)
a is initialized to the atom feature vector of the atom a, and gφ(·), fθ(·) are both neural net-

work models with trainable parameters φ and θ, respectively. Here, the model fθ plays the role
of capturing information from both atomic features and complete interatomic potentials. Detailed
information about model architectures of fθ and gφ is provided in Appendix D.1. Note that our Pot-
Net is actually a 3D GNN model even though 3D geometric information is not explicitly involved in
Eqn. (7). This is because the edge feature S(a, b) is related to potential functions, and by Sec. 2.2
we know that they are computed from interatomic distances. In other words, PotNet can be consid-
ered to encode 3D geometric information with potential functions, though our direct motivation of
using potential functions comes from the physical modeling of crystal energy.
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Figure 1: Schematic illustrations of how complete interatomic itneractions are captured in PotNet.
Note that PotNet models 3D crystals while we have 2D illustration for simplicity. (a) An example
crystal in which each unit cell contains two atoms u and v. In PotNet, the potentials between all pairs
of atoms are captured. For simplicity, we only show the potentials from all v atoms to a u atom. (b)
The complete set of potentials in (a) can be grouped into four categories, including u → v, v → u,
u → u, and v → v. (c) We propose to compute an approximate summation for each category of
potentials.

Intuitively, the message passing process in Eqn. (7) over the graph G can be considered as a general
case of employing a radius graph where the distance threshold r goes to infinity, i.e., r → +∞. In
this case, as shown in Fig. 1(a), for any atom in the crystal, all the other atoms in the complete crystal
structure have been included to interact with it. If we follow the radius graph construction process
in the previous methods (Xie & Grossman, 2018; Chen et al., 2019; Louis et al., 2020; Choudhary
& DeCost, 2021), we obtain a graph G̃ in which there exist an infinite number of edges between
every pair of nodes. However, PotNet simplifies this complicated graph G̃ to the graph G in which
only one edge exists between every node pair. Specifically, PotNet directly models interatomic
interactions as potentials and for any two nodes in G̃, PotNet aggregates all edges between them
to a single edge by the use of infinite potential summation S(a, b) (see Fig. 1(b)). In other words,
PotNet provides an effective solution that enables GNN models to capture complete interatomic
interactions through the use of infinite potential summations.

3.4 EFFICIENT COMPUTATION OF INFINITE POTENTIAL SUMMATION

Although we have effectively incorporated infinite potential summations into the message passing
based GNN models, the computation of these infinite potential summations is not easy. Basically,
there are two challenges to achieve accurate and efficient computation of the infinite potential sum-
mations. For accuracy, the computation algorithm needs to have provable error bounds. For effi-
ciency, it needs to be fast for scalable GNN training and fast crystal property prediction. To tackle
these two challenges, we derive a fast approximation algorithm for infinite potential summations
based on the Ewald summation method (Ewald, 1921). Specifically, we unify the summations of
three infinite potentials between atom a and all duplicated positions of atom b into an integral
form such that the Ewald summation method can be applied for efficient implementation in Pot-
Net (Fig. 1(c)). The key idea of the Ewald summation is that a slowly converging summation in
the real space is guaranteed to be converted into a quickly converging summation in the Fourier
space (Woodward, 2014). Based on that, the Ewald summation method divides a summation into
two parts. One part has a quicker converging rate in the real space than the original summation. The
other “slower-to-converge” part is transformed into the Fourier space and becomes quickly conver-
gent. In our method, the Ewald summation method is used with the infinite summations by dividing
the integral into two parts, including one part that converges fast in the Fourier space and another
part that converges fast in the real space, to obtain fast approximations with provable error bounds.

To apply the fast approximation algorithm of infinite summations proposed by Ewald (1921), a
unified integral view of infinite potential summations is needed. Following notations in Sec. 2
and 3.3, we denote the positions of the atoms in the set Ab as Pb = {pk

b |pk
b = pb + Lk,k ∈

Z3}. The Euclidean distances between the atom a and all atoms in Ab can be represented as
{d | d = ∥pb + Lk − pa∥,k ∈ Z3}. As described in Sec. 3.3, we simplify the Coulomb potential
function as V Coulomb(a, b) = −ϵ1/d(a, b), where ϵ1 is a hyperparameter scaling the potential. Based
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Table 1: Comparison between PotNet and other baselines in terms of test MAE on the Materials
Project dataset. To make the comparison clear and fair, we retrain baseline methods using the same
dataset settings. We also show results from original papers in parentheses and mark missing results
as -. The best results are shown in bold and the second best results are shown with underlines.

Formation Energy Band Gap Bulk Moduli Shear Moduli

Method eV/atom eV log(GPa) log(GPa)

CGCNN 0.031 (0.039) 0.292 (0.388) 0.047 (0.054) 0.077 (0.087)
SchNet 0.033 (0.035) 0.345 (-) 0.066 (-) 0.099 (-)
MEGNET 0.030 (0.028) 0.307 (0.33) 0.051 (0.050) 0.088 (0.079)
GATGNN 0.033 (0.039) 0.280 (0.31) 0.045 0.075
ALIGNN 0.0221 0.0218 0.051 (-) 0.078 (-)
PotNet 0.0196 0.0204 0.042 0.069

on that, we can represent Coulomb potentials from all atoms in Ab to the atom a as {− ϵ
d | d =

∥pb + Lk − pa∥,k ∈ Z3}. Similarly, London dispersion potentials from all atoms in Ab to the
atom a can be represented as {− ϵ′

d6 | d = ∥pb+Lk−pa∥,k ∈ Z3}. It is worth noting that Coulomb
potentials and London dispersion potentials can be represented in a unified view as { constant

dp | d =

∥vab + Lk∥,vab = pb − pa,k ∈ Z3}, where p is a positive number. And we represent Pauli
potentials from all positions of atom j to atom i as {e−αd | d = ∥pb + Lk − pa∥,k ∈ Z3}. We
provide detailed proofs in Appendix C.1 that the summations of these three potentials can be unified
in an integral form as

S(a, b) = D
∑
k∈Z3

∫ ∞

0

tC−1e−Aπ|Lk+vab|2t−B
t dt, (8)

where A,B,C,D are constants derived from the corresponding specific potential forms. We then
apply the Ewald summation method (Ewald, 1921) to Eqn. (8) and split it into two parts as

S(a, b) =D
∑
k∈Z3

∫ 1

0

tC−1e−Aπ|Lk+vab|2t−B
t dt+D

∑
k∈Z3

∫ ∞

1

tC−1e−Aπ|Lk+vab|2t−B
t dt

=SFourier(a, b) + Sdirect(a, b),

(9)

where Sdirect denotes the part that converges fast in real space, and SFourier denotes the other part
that quickly converges in Fourier space when the total summation converges as shown by Ewald
(1921). Based on this, we further show that Sdirect and SFourier can be expressed as summations of
incomplete Bessel functions Kν(x, y) in Appendix C.2, and the approximation error can be analyzed
and shown to be bounded. Note that for London dispersion potentials and Pauli potentials, the
transformed summations of incomplete Bessel functions can be directly approximated. However,
for Coulomb potentials, the direct summation diverges. Concretely, when p > 3 for potentials of
form { constant

dp | d = ∥vab +Lk∥,vab = pb−pa,k ∈ Z3}, the corresponding potential summation
converges, and when p ≤ 3, the corresponding potential summation diverges. To tackle this problem,
we follow previous mathematical derivations (Harris, 2008; Slevinsky & Safouhi, 2010; Jones, 2007)
and use the analytically continued incomplete Bessel functions to approximate infinite summations
of Coulomb potentials as shown in Appendix C.3. We then provide detailed mathematical proofs
that the summations of incomplete Bessel functions are convergent and can be approximated with
an error bounded by the Gaussian Lattice Sum in Appendix B.2. Detailed implementation of the
proposed summation algorithm can be found in Appendix C.4. It is worth noting that PotNet is
the first method to use the incomplete Bessel function to compute the potential summations and
is able to compute the Pauli potential summation, while previous methods (Crandall, 1998; Lee &
Cai, 2009; Nestler et al., 2015) cannot achieve this. Also, we are able to compute other interatomic
potential summations including Lennard-Jones potential, Morse potential, and screened Coulomb
potential by using our method as shown in Appendix C.5.

7



Under review as a conference paper at ICLR 2023

Table 2: Comparison between PotNet and other baselines in terms of test MAE on JARVIS dataset.
The best results are shown in bold and the second best results are shown with underlines.

Formation Energy Bandgap(OPT) Total energy Bandgap(MBJ) Ehull

Method eV/atom eV eV/atom eV eV

CFID 0.14 0.30 0.24 0.53 0.22
CGCNN 0.063 0.20 0.078 0.41 0.17
SchNet 0.045 0.19 0.047 0.43 0.14
MEGNET 0.047 0.145 0.058 0.34 0.084
GATGNN 0.047 0.17 0.056 0.51 0.12
ALIGNN 0.0331 0.142 0.037 0.31 0.076
PotNet 0.0308 0.136 0.034 0.28 0.050

4 EXPERIMENTAL STUDIES

4.1 EXPERIMENTAL SETUP

We conduct experiments on two material benchmark datasets, including The Materials Project and
JARVIS. Baseline methods include CFID (Choudhary et al., 2018), SchNet (Schütt et al., 2017),
CGCNN (Xie & Grossman, 2018), MEGNET (Chen et al., 2019), GATGNN (Louis et al., 2020),
and ALIGNN (Choudhary & DeCost, 2021). Unless otherwise specified, we report the results re-
ported by referred papers or provided by original authors. All PotNet models are trained using the
Adam (Kingma & Ba, 2014) optimizer with weight decay (Loshchilov & Hutter, 2017) and one
cycle learning rate scheduler (Smith & Topin, 2019) with a learning rate of 0.001, training epoch of
500, and batch size of 64. We use Pytorch to implement our models. For all tasks on two benchmark
datasets, we use one NVIDIA RTX A6000 48G GPU for computing. Other detailed configurations
of PotNet for different tasks are provided in Appendix D.1.

To capture the global infinite-range interactions without losing details of local interactions, PotNet
uses both local and infinite crystal graphs. Specifically, for the local crystal graph, we use the radius
crystal graph proposed by CGCNN but replace Euclidean distances with interatomic potentials for
edge features. To be concrete, because the influences of London dispersion potentials and Pauli
potentials are limited and can be ignored when only considering nearby regions, we only use the
Coulomb potentials in the radius crystal graph. The infinite crystal graph is constructed as described
in Sec. 3.3, where Coulomb potentials, London dispersion potentials and Pauli potentials are used.

4.2 EXPERIMENTAL RESULTS

The Materials Project. We first evaluate PotNet on The Materials Project-2018.6.1, which is a
widely used large-scale material benchmark with 69239 crystals. We follow previous works (Xie &
Grossman, 2018; Chen et al., 2019; Choudhary & DeCost, 2021; Louis et al., 2020) and use four
crystal properties including formation energy, band gap, bulk moduli, and shear moduli. We notice
that previous works (Xie & Grossman, 2018; Chen et al., 2019; Choudhary & DeCost, 2021; Louis
et al., 2020; Schütt et al., 2017) compare with each other using different versions of splitting train-
ing, evaluation, and testing datasets with different random seeds. For instance, the original CGCNN
paper only uses 28046 training samples for formation energy prediction, resulting in the original
result of 0.039 as shown in Table 1. To make the comparisons fair, we follow the settings of the pre-
vious state-of-the-art (SOTA) ALIGNN (Choudhary & DeCost, 2021) for tasks including formation
energy and band gap prediction, and retrain all other baselines using the same dataset setting for
these two tasks. For bulk and shear moduli, we follow the dataset setting of GATGNN (Louis et al.,
2020) which has the best prediction performances for these two tasks and retrained all other base-
lines. Detailed configurations are also shown in Appendix D.2. We present our results in Table 1,
where PotNet consistently outperforms other SOTA methods on all four tasks by large margins.

JARVIS Dataset. We then evaluate PotNet on JARVIS, a newly released benchmark dataset pro-
posed by Choudhary et al. (2020) with 55722 crystals. We evaluate PotNet on five crystal prop-
erty prediction tasks including formation energy, bandgap (OPT), bandgap (MBJ), total energy, and
Ehull. We follow ALIGNN and use the same training, validation, and test sets for these tasks. Since
there are missing results for baseline methods, we retrain corresponding baseline methods follow-
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ing the same settings with ALIGNN as discussed in Appendix D.2. As shown in Table 2, PotNet
achieves the best performances on all five tasks consistently by significant margins.

Table 3: Model complexity and runtime compared with
ALIGNN on JARVIS formation energy.

Method #Params Time/Epoch Total Training Time Total Testing Time

ALIGNN 15.4 MB 327 s 27.3 h 156 s
PotNet 7.9MB 48 s 6.7 h 41 s

Efficiency of PotNet. Beyond the superior
modeling capacity for crystals, our PotNet
is faster and more efficient than ALIGNN.
To demonstrate the efficiency of PotNet,
we compare PotNet with ALIGNN in
terms of training time per epoch, total training time, and inference time for the task of JARVIS
formation energy prediction. From Table 3, PotNet is four times faster in terms of total training time
and inference time compared with ALIGNN.

Table 4: Preprocessing time compared with ALIGNN on
the JARVIS dataset. The first and second columns show the
preprocessing time on the whole JARVIS dataset with 55722
crystals. The third column denotes the mean inference time
considering both preprocessing and model time.

Method Preprocessing Time/Crystal Total Preprocessing Time Inference/Crystal

ALIGNN 2.7 ms 152 s 30 ms
PotNet 10.8 ms 603 s 18 ms

We also analyze the time cost of infi-
nite summations as shown in Table 4.
We calculate the infinite summations
during preprocessing. Unlike previ-
ous methods including ALIGNN, we
need to calculate the complete poten-
tial set besides constructing graphs.
Therefore, we do require more com-
puting time for preprocessing. However, for a single material, the preprocessing time of our method
is at the level of milliseconds. Even if we additionally compute the infinite potential summations,
the preprocessing time of our method and ALIGNN is still within the same order of magnitude.
If considering both preprocessing time and model inference time for single material screening, we
have a faster inference speed than ALIGNN as illustrated in the table. Overall, the computational
cost of our method is reasonable.

4.3 ABLATION STUDIES

In this section, we demonstrate the importance of two core components of PotNet, including in-
teraction modeling using potentials and infinite summation of potentials for crystal prediction. We
conduct experiments on the JARVIS formation energy task, and use test MAE as the evaluation
metric.

Table 5: Ablation studies for the effects of adding
Coulomb potentials and infinite summation.

Method JARVIS Formation Energy

Base + Euclidean 0.0363
Base + Potential 0.0318
Base + Potential + Infinite 0.0308

Interaction Modeling using Potentials. We
demonstrate the importance of interaction mod-
eling using potentials by replacing potentials
with Euclidean distances used by previous
works in our PotNet with exactly the same
model architecture. Specifically, we denote
PotNet with only local crystal graph as the base model. We use ‘Base + Euclidean’ to represent
the base model with Euclidean distances as edge features and ‘Base + Potential’ to represent the
base model using Coulomb potentials as edge features. As shown in Table 5, by replacing Eu-
clidean distances with Coulomb potentials, PotNet without considering infinite potential summation
already obtains a significant performance gain from 0.0363 to 0.0318, revealing the importance of
interaction modeling using potentials in PotNet.

Infinite Summation of Potentials. The importance of infinite summation of potentials is demon-
strated by comparing the previous base models with ‘Base + Potential + Infinite’, denoting the full
PotNet model with infinite summation in infinite crystal graph. It can be seen from Table 5 that by
using infinite crystal graphs introduced in Sec. 3.3, the global repeating patterns of crystal structures
are captured, resulting in a performance gain from 0.0318 to 0.0308 for formation energy prediction.

5 CONCLUSION

We study the problem of how to capture infinite-range interatomic potentials in crystal property
prediction directly. As a radical departure from prior methods that only consider nearby atoms, we
develop a new GNN, PotNet, with the message passing scheme that takes efficient approximations
to capture the complete set of potentials among all atoms. Experiments show that the use of com-
plete potentials leads to consistent performance improvements. Altogether, our work provides a
theoretically principled and practically effective framework for crystal modeling.

9



Under review as a conference paper at ICLR 2023

REFERENCES

MI Baskes. Application of the embedded-atom method to covalent materials: a semiempirical
potential for silicon. Physical review letters, 59(23):2666, 1987.

Harry Bateman. Tables of integral transforms [volumes I & II], volume 1. McGraw-Hill Book
Company, 1954.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Ko-
rnbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural
networks for data-efficient and accurate interatomic potentials. Nature communications, 13(1):
1–11, 2022.
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A GAUSSIAN LATTICE SUM

The Gaussian Lattice Sum (Bétermin et al., 2021) computes the summation of Gaussian functions
centered at the points given by a shifted lattice, formally defined as

GΩ(L,v, c) =
∑
k∈Zd

e−c|Lk+v|2 , (10)

where L ∈ Rd×d is the lattice matrix, v ∈ Rd is a vector inside a unit cell and c ∈ R+ is a prefixed
constant. One of the characteristics of the Gaussian Lattice Sum is that the term e−c|Lk+v|2 rapidly
decays as k becomes large, resulting fast convergence of GΩ(L,v, c). As shown by Deconinck et al.
(2004), for R ∈ R+, we have∑

k∈Zd,
√
c|Lk+v|≥R

e−c|Lk+v|2 ≤ d

2
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ρ
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where Γ(z, x) =
∫∞
x

tz−1e−tdt is the incomplete Gamma function and ρ = min{
√
c|Lk| |k ∈

Zd,k ̸= 0}. We can obtain the upper bound of the Gaussian Lattice Sum by setting R = 0 such that∑
k∈Zd
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B INCOMPLETE BESSEL FUNCTION

The incomplete Bessel function (Harris, 2008) is defined as

Kν(x, y) =

∫ ∞

1

t−ν−1e−xt−y/tdt, (13)

where x, y ∈ R, x ≥ 0, y ≥ 0, and ν > 0. In existing studies (Harris, 2008; Slevinsky & Safouhi,
2010; Jones, 2007), Kν(x, y) can be analytically continued to ν ∈ R. In this work, we follow these
studies and also use the analytic continuation for our calculations, i.e., we also consider ν ∈ R.

B.1 FAST APPROXIMATION OF THE INCOMPLETE BESSEL FUNCTION

Computing the incomplete Bessel function is extremely challenging as there does not exist any
explicit closed-form solution. In this work, we investigate a fast approximation of the incomplete
Bessel function. Specifically, we adopt the algorithm in the work by Slevinsky & Safouhi (2010),
where the incomplete Bessel function Kν(x, y) is approximated by the G

(m)
n transformation with

the linear time complexity of O(n), and n is the number of iterations. As shown by Levin & Sidi
(1981), the approximation G

(m)
n to

∫∞
0

f(t)dt is given as the solution of

dl

dxl

{
G(m)

n −
∫ x

0

f(t)dt−
m−1∑
k=0

xσkf (k)(x)

n−1∑
i=0

βi,k

xi

}
= 0, (14)

where βi,k and G
(m)
n are unknowns, dl

dxlG
(m)
n = 0,∀l > 0, σk = min(sk, k + 1), and sk is the

largest of s ∈ Z such that limx→∞ xsf (k)(x) = 0 for k = 0, 1, · · · ,m − 1. Slevinsky & Safouhi
(2010) proved that the incomplete Bessel function satisfies Eqn. (14) with m = 1, through which
we can obtain

G(1)
n −

∫ x

0

f(t)dt = xσ0f(x)

n−1∑
i=0

βi,k

xi
. (15)
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To eliminate all the unknowns βi,k, Slevinsky & Safouhi (2010) applied the (x2 d
dx ) operator n times

such that

(x2 d

dx
)n

[
G

(1)
n −

∫ x

0
f(t)dt

xσ0f(x)

]
= 0. (16)

By doing this, we obtain

G(1)
n =

(x2 d
dx )

n(
∫ x
0

f(t)dt

xσ0f(x) )

(x2 d
dx )

n( 1
xσ0f(x) )

=
Nn(x)

Dn(x)
, (17)

in which we can have

Nn(x) = (x2 d

dx
)Nn−1(x) and Dn(x) = (x2 d

dx
)Gn−1(x) (18)

with

N0(x) =

∫ x

0
f(t)dt

xσ0f(x)
and D0(x) =

1

xσ0f(x)
. (19)

This leads to a recursive algorithm to approximate G(1)
n . To compute the incomplete Bessel function

Kν(x, y), Slevinsky & Safouhi (2010) investigated the following property

Kν(x, y) + xν

∫ x

0

t−ν−1e−t− xy
t dt = xν

∫ ∞

0

t−ν−1e−t− xy
t dt, (20)

in which the term
∫∞
0

t−ν−1e−t− xy
t dt can be approximated by G

(1)
n . Therefore, to approximate

Kν(x, y) we have

G̃(1)
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t dt)
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t dt
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.

(21)

As a result, we obtain the approximation G̃
(1)
n to Kν(x, y) by recursively solving Ñn(x) and

Dn(x) (Gaudreau et al., 2012). The detailed expressions of Ñn(x) andDn(x) are given in Slevinsky
& Safouhi (2010). In addition, we follow Nestler et al. (2015) to further optimize the approximation
of the incomplete Bessel function when ν = 0 and x, y are both small, e.g. x2+y2 < 1. In this case,
the remaining part of the Taylor expansion of K0(x, y) is small and we can approximate K0(x, y)
by the first m terms of Taylor series such that

K0(x, y) ≈
m∑

n=0

(−1)n

n!
xnynΓ(−n, x). (22)

The detailed error bound by this expansion is shown in Nestler et al. (2015).

B.2 CONVERGENCE OF INCOMPLETE BESSEL FUNCTION SUMMATION

We define the summation of incomplete Bessel functions on a lattice as∑
k∈Zd

Kν(α|Lk + v|2 + γ, β), (23)

where ν, α, β, γ ∈ R are constants, α > 0, β ≥ 0, γ ≥ 0, v ∈ Rd is a vector inside a unit cell and
L ∈ Rd×d is the lattice matrix. We aim to prove the summation of incomplete Bessel functions is
convergent and can be approximated with an error bounded by the Gaussian Lattice Sum introduced
in Appendix A.
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Proof. The incomplete Bessel function has an upper bound such that∣∣Kν(x, y)
∣∣ = ∣∣∣ ∫ ∞

1

t−ν−1e−xt−y/tdt
∣∣∣ ≤ ∣∣∣ ∫ ∞

1

t−ν−1e−xtdt
∣∣∣ = ∣∣x−νΓ(−ν, x)

∣∣, (24)

where x > 0 and Γ is the incomplete Gamma function described in Appendix A. Based on this, we
obtain ∣∣Kν(α|Lk + v|2 + γ, β)

∣∣ ≤ ∣∣∣Γ(−ν, α|Lk + v|2 + γ)

(α|Lk + v|2 + γ)ν

∣∣∣, (25)

where α|Lk + v|2 + γ > 0. As shown by Borwein & Chan (2009), |Γ(z,x)xz | has an upper bound
such that ∣∣∣Γ(z, x)

xz

∣∣∣ = ∣∣∣e−x

∫ ∞

0

e−xs(1 + s)z−1ds
∣∣∣

≤

{
e−x

x−z+1 , z > 1
e−x

x , z ≤ 1
,

(26)

where z ∈ R, x ∈ R and x > 0. For a prefixed value R ∈ R, R2 > −ν, R2 > 1 and R2 > γ, we
have

ϵ(R) =
∑

k∈Zd,α|Lk+v|2+γ≥R2

Kν(α|Lk + v|2 + γ, β)

≤
∑

k∈Zd,α|Lk+v|2+γ≥R2

|Kν(α|Lk + v|2 + γ, β)|

≤
∑

k∈Zd,α|Lk+v|2+γ≥R2

e−α|Lk+v|2−γ

≤ e−γGΩ(L,v, α),

(27)

where GΩ(L,v, α) is the Gaussian Lattice Sum as described in Appendix A. Therefore, the incom-
plete Bessel function summation can be divided into two parts such that∑

k∈Zd

Kν(α|Lk + v|2 + γ, β) =
∑

k∈Zd,α|Lk+v|2+γ≤R2

Kν(α|Lk + v|2 + γ, β) + ϵ(R), (28)

where the first part is a finite part inside an ellipsoid with a size of
√
R2/α− γ/α, and the second

part ϵ(R) is bounded by the Gaussian Lattice Sum GΩ(L,v, α) which is convergent. Thus, the
incomplete Bessel function summation is convergent. Consequently, to approximate the incomplete
Bessel function summation, we choose to evaluate the summation inside an ellipsoid with the size
of
√
R2/α− γ/α for a prefixed R ∈ R, such that R2 > −ν, R2 > 1 and R2 > γ. Then the

error ϵ(R) is bounded by Gaussian Lattice Sum GΩ(L,v, α). We can further bound the error by the
inequality (11) of Gaussian Lattice Sum as introduced in Appendix A such that

ϵ(R) ≤
∑

k∈Zd,
√
α|Lk+v|≥

√
R2−γ

e−α|Lk+v|2 ≤ d

2
(
2

ρ
)dΓ(

d

2
, (
√

R2 − γ − ρ

2
)2), (29)

where ρ = min{
√
α|Lk| |k ∈ Zd,k ̸= 0}. This completes the proof.

C FAST ALGORITHM OF POTENTIAL SUMMATION

C.1 INTEGRAL TRANSFORMATION

We denote G(L,v) as the potential summation and U(L,v) as the potential function with a lattice
matrix L ∈ Rd×d and a vector v ∈ Rd between two atoms inside a unit cell. For a potential
summation S(a, b) of a crystal with lattice matrix L, we have S(a, b) = G(L,vab). Based on
these notations, we prove that the summation of the three introduced potentials can be transformed
into an integral form as

G(L,v) = D
∑
k∈Zd

∫ ∞

0

tC−1e−Aπ|Lk+v|2t−B
t dt, (30)

where A,B,C,D are constants derived from the corresponding specific potential forms.
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Proof. We first prove that both the potential forms U(L,v) = 1/|Lk + v|2p and U(L,v) =
e−α|Lk+v| can be written in the following integral form

U(L,v) = D

∫ ∞

0

tC−1e−Aπ|Lk+v|2t−B
t dt. (31)

1). For the potentials in the form of U(L,v) = 1/|Lk + v|2p, we apply the Mellin transform such
that

M{U}(L,v) =

∫ ∞

0

tp−1e−t|Ln+v|2dt

=
Γ(p)

|Ln+ v|2p
.

(32)

Thus, we obtain

U(L,v) =
1

|Lk + v|2p
=

1

Γ(p)

∫ ∞

0

tp−1e−t|Ln+v|2dt. (33)

Apparently, we can obtain A = 1/π, B = 0, C = p and D = 1/Γ(p) for the integral form of
U(L,v) = 1/|Lk + v|2p.

2). For the potentials in the form of U(L,v) = e−α|Lk+v|, we consider the inverse Laplace trans-
form on e−α

√
s as shown by Bateman (1954), such that

L−1{e−α
√
s} = a

2
√
π
t−

3
2 e−

α2

4t . (34)

Therefore, we can apply the Laplace transform in Eqn. (34) to derive the integral form of e−α|Lk+v|:

U(L,v) = e−α|Lk+v|

=
a

2
√
π

∫ ∞

0

t−
3
2 e−|Lk+v|2t−α2

4t dt

=
α

2π

∫ ∞

0

t−
3
2 e−πt|Lk+v|2− α2

4πt dt (t← πt) .

(35)

Apparently, we can obtain A = 1, B = α2

4π , C = − 1
2 and D = α

2π for the integral form of
U(L,v) = e−α|Lk+v|.

Finally, we conduct a summation for these two types of potentials U(L,v) in the space k ∈ Zd as

G(L,v) =
∑
k∈Zd

U(L,v). (36)

This completes the proof.

In fact, the summation of U(L,v) = 1/|Lk + v|2p is a special case of multidimensional zeta func-
tion (Crandall & Buhler, 1987; Terras, 1973; Crandall, 1998), which is a generalization of Riemann
zeta function. The multidimensional zeta function (Crandall & Buhler, 1987) is defined as

ZL(s;u,v) =
∑
k∈Zd

e2πiu·Lk

|Lk − v|s
, (37)

where s ∈ C, L ∈ Rd×d and u,v ∈ Rd. It is not hard to show summation of U(L,v) =

1/|Lk + v|2p can be expressed as ZL(2p;0,−v), and therefore functional properties of the mul-
tidimensional zeta function also hold for summation of U(L,v) = 1/|Lk + v|2p. For instance,
ZL(s;u,v) has an analytic continuation to the entire complex plane, except for simple poles at
s = 0 and s = d (Crandall & Buhler, 1987). As a result, summation of U(L,v) = 1/|Lk + v|2p
are all convergent for p ∈ C except p = 0 and p = d/2 by analytic continuation. Moreover, the
multidimensional zeta function can be written in the form of an integral summation by Eqn. 33 as

ZL(s;u,v) =
∑
k∈Zd

e2πiu·Lk

|Lk − v|s
=
∑
k∈Zd

1

Γ(s/2)

∫ ∞

0

ts/2−1e2πiu·Lk−t|Lk−v|2dt. (38)
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Based on this, we can also split the integral and apply Poisson summation Eqn. 41 to obtain two
summations of incomplete Bessel functions to evaluate this series. For more details on the multi-
dimensional zeta function, we refer readers to Crandall & Buhler (1987); Terras (1973); Crandall
(1998); Kirsten (1994); Selberg & Chowla (1967).

C.2 CALCULATING INTEGRAL SUMMATION

As shown in Sec. 3.4, G(L,v) can be written as the summations in the Euclidean space directly and
then Fourier space:

G(L,v) = D
∑
k∈Zd

∫ ∞

0

tC−1e−Aπ|Lk+v|2t−B
t dt

= D
∑
k∈Zd

∫ 1

0

tC−1e−Aπ|Lk+v|2t−B
t dt+D

∑
k∈Zd

∫ ∞

1

tC−1e−Aπ|Lk+v|2t−B
t dt

= GFourier(L,v) +Gdirect(L,v),

(39)

where GFourier(L,v) = D
∑

k∈Zd

∫ 1

0
tC−1e−Aπ|Lk+v|2t−B

t dt denotes the summation in Fourier
space, and Gdirect(L,v) = D

∑
k∈Zd

∫∞
1

tC−1e−Aπ|Lk+v|2t−B
t dt denotes the summation in direct

space. Apparently, Gdirect(L,v) is already the form of the incomplete Bessel function summation.
We apply the analytic continuation to Gdirect(L,v) to expand the domain of C in Gdirect(L,v) as
detailed in Appendix C.3 and we have

Gdirect(L,v) = D
∑
k∈Zd

K−C(Aπ|Lk + v|2, B) (40)

for all constant C ∈ R. Below, we prove that GFourier(L,v) can be deduced into the incomplete
Bessel function summation.

Proof. Inspired by the Ewald summation (Ewald, 1921; Crandall, 1998), we consider GFourier(L,v)
on the reciprocal lattice using the Poisson summation (Crandall, 1998):∑

k∈Zd

e2πiw·Lk−πt|Lk+v|2 =
t−

d
2 e2πiw·v

detL

∑
k∈Zd

e2πiL
′k·v−π

t |L′k+w|2 , (41)

where w ∈ Rd is a vector and w = 0 in our case, and L′ = L(LTL)−1 is the lattice matrix for the
reciprocal lattice. As a result, We obtain

GFourier(L,v) = D
∑
k∈Zd

∫ 1

0

tC−1e−Aπ|Lk+v|2t−B
t dt

=
D

AC

∑
k∈Zd

∫ A

0

tC−1e−π|Lk+v|2t−AB
t dt(t← t

A
)

=
1

detL

D

AC

∑
k∈Zd

∫ A

0

tC− d
2−1e2πiL

′n·v−π
t |L′k|2−AB

t dt (Eqn. (41))

=
1

detL

D

A
d
2

∑
k∈Zd

∫ 1

0

tC− d
2−1e2πiL

′k·v− π
At |L′k|2−B

t dt(t← At)

=
1

detL

D

A
d
2

∑
k∈Zd

∫ ∞

1

t
d
2−C−1e2πiL

′n·v−πt
A |L′k|2−Btdt(t← 1

t
)

=
1

detL

D

A
d
2

∑
k∈Zd

e2πiL
′k·vKC− d

2
(
π |L′k|2

A
+B, 0).

(42)

We also apply the analytic continuation to GFourier(L,v) in the last step. Apparently, GFourier(L,v)
is deduced into the incomplete Bessel function summation, and this completes the proof.
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Therefore, both GFourier(L,v) and Gdirect(L,v) can be expressed by the incomplete Bessel function
summation forms:

G(L,v) = Gdirect(L,v) +GFourier(L,v)

=D
∑
k∈Zd

K−C(Aπ|Lk + v|2, B)

+
1

detL

D

A
d
2

∑
k∈Zd

e2πiL
′k·vKC− d

2
(
π |L′k|2

A
+B, 0).

(43)

As shown in Appendix B.2, the incomplete Bessel function summation
∑

k∈Zd Kν(α|Lk + v|2 +
γ, β) is convergent and can be approximated. Therefore, G(L,v) can also be approximated.

C.3 ANALYTIC CONTINUATION OF POTENTIAL SUMMATIONS

To represent the series that is not convergent, including the inverse summation
∑

k∈Zd
1

|Lk+v| as
shown in Sec. 3.4, we need to investigate the analytic continuation of potential summation. As
shown in Appendix C.2, the potential summation can be written as

G(L,v) = D
∑
k∈Zd

∫ ∞

0

tC−1e−Aπ|Lk+v|2t−B
t dt

= D
∑
k∈Zd

∫ 1

0

tC−1e−Aπ|Lk+v|2t−B
t dt+D

∑
k∈Zd

∫ ∞

1

tC−1e−Aπ|Lk+v|2t−B
t dt.

(44)

These two parts can be deduced into two incomplete Bessel function summations by analytic con-
tinuation. Analytic continuation is a technique to extend the domain P of a given analytic function
f(x). Consequently, we denote f̂(x) as an analytic continuation of f(x) to Q, where we denote
the domain Q containing P , and denote a function f̂(x) that is analytic on Q, and f̂(x) = f(x)
holds for all x in P . As shown by Kung & Yang (2003), the analytic continuation is unique and
satisfies the permanence of functional relationships, i.e., the equations holding for f(x) will also
hold for f̂(x). In our case, we can expand the domain of constant C in G(L,v) to C ∈ R such that
G(L,v) is well-defined for any C ∈ R. For example, for summation of the potentials in the form of∑

k∈Zd 1/|Lk+ v|2p, we have C = p as shown in Appendix C.1. Analytic continuation enables us
to compute the summation when p = 0.5, which is initially divergent. Formally, we assume that C
is originally defined in the domain P ⊂ R. As derived in Appendix C.1, for C ∈ P , we have

G(L,v) = D
∑
k∈Zd

∫ 1

0

tC−1e−Aπ|Lk+v|2t−B
t dt+D

∑
k∈Zd

∫ ∞

1

tC−1e−Aπ|Lk+v|2t−B
t dt

=D
∑
k∈Zd

K−C(Aπ|Lk + v|2, B)

+
1

detL

D

A
d
2

∑
k∈Zd

e2πiL
′k·vKC− d

2
(
π |L′k|2

A
+B, 0).

(45)

Furthermore, we have ν = −C and ν = C − d
2 in the incomplete Bessel function, which is analyt-

ically continued to ν ∈ R (Jones, 2007). That is, P is contained by ν’s domain R. Therefore, the
incomplete Bessel function summations are the analytic continuation of the corresponding potential
summations.

Our approach is ultimately to capture the total contribution of the potential in the crystal system.
Based on this, to explain the advantage of analytic continuation, we consider the total infinite poten-
tial summation inside a unit cell such that

S =
∑
a∈A

∑
b∈A

S(a, b) =
∑
a∈A

∑
b ̸=a,b∈Ã

V (a, b). (46)

where A and Ã are described in Sec. 2.1. If we use an analytically continued function to approxi-
mate convergent summation S(a, b), we can directly approximate S by

S =
∑
a∈A

∑
b∈A

S(a, b). (47)
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As for a non-convergent summation S(a, b), due to the permanence of functional relationships of
analytic continuation, we still obtain

S =
∑
a∈A

∑
b∈A

S(a, b). (48)

This implies that we can use analytically continued summations to approximate the total contribution
of potentials where individual potential summations are initially divergent. In addition, for a non-
convergent summation S(a, b), analytic continuation will result in an unusual value such as negative
energy instead of infinity. This is useful in practice since the infinity will cause a numerical explosion
in training. A famous example of using analytic continuation for crystal energy prediction is the
Madelung constant of NaCl, which is derived by the summation of Coulomb potentials among Na
and Cl ions and calculated by analytic continuation of an absolutely convergent series (Borwein
et al., 1985). We further show energy calculation of NaCl by analytic continuation in Appendix E.

C.4 IMPLEMENTATION AND NUMERICAL EXAMPLES OF APPROXIMATION

Here we describe the implementation of our algorithm as in Eqn. (43). Considering the fact that
solving the inverse of the incomplete Gamma function is complicated, instead, we provide a proper
value R and then calculate its corresponding error bound ϵ based on Eqn. (29). Given a lattice
matrix L ∈ Rd×d, a vector v ∈ Rd inside a unit cell, and the constants A,B,C,D derived
from specific potential functions as described in Appendix C.1, we aim to evaluate these two parts

D
∑

k∈Zd K−C(Aπ|Lk + v|2, B) and 1
detL

D

A
d
2

∑
k∈Zd e2πiL

′k·vKC− d
2
(
π|L′k|2

A +B, 0).

To evaluate Gdirect(L,v) = D
∑

k∈Zd K−C(Aπ|Lk + v|2, B), we derive the following steps.

Step 1: Determine the value R such that R2 > C, R2 > 1, and calculate the error bound ϵ =
d
2 (

2
ρ )

dΓ(d2 , (R−
ρ
2 )

2), where ρ = min{
√
Aπ|Lk| |k ∈ Zd,k ̸= 0}.

Step 2: Select points inside an ellipsoid such that P = {k| |Lk + v| ≤ R/
√
Aπ}.

Step 3: Evaluate the incomplete Bessel function summation Gdirect(L,v) by calculating the every
term DK−C(Aπ|Lk + v|2, B) based on Appendix B.1.

To evaluate GFourier(L,v) = 1
detL

D

A
d
2

∑
k∈Zd e2πiL

′k·vKC− d
2
(
π|L′k|2

A + B, 0), we derive the fol-
lowing steps.

Step 1: Determine the value R such that R2 > d
2 − C, R2 > 1, R2 > B, and calculate the error

bound ϵ > d
2 (

2
ρ )

dΓ(d2 , (
√
R2 −B − ρ

2 )
2), where ρ = min{

√
π
A |L

′k| |k ∈ Zd,k ̸= 0}.

Step 2: Select points inside an ellipsoid such that P = {k| |Lk + v| ≤
√

A(R2 −B)/π}.
Step 3: Evaluate the incomplete Bessel function summation GFourier(L,v) by calculating every term

1
detL

D

A
d
2
e2πiL

′k·vKC− d
2
(
π|L′k|2

A +B, 0) based on Appendix B.1.

Our implementation is based on Cython and GNU Scientific Library (Galassi et al., 2002), in which
the native incomplete Gamma function and Bessel function are used to implement the incomplete
Bessel function. We conduct numerical experiments on Intel Xeon Gold 6258R CPU. We show the
evaluation examples in Table 6 with the corresponding error bound and evaluation time. The running
time is at the scale of milliseconds.

C.5 POTENTIAL SUMMATION EXTENSIONS

To highlight the generality of our potential summation method, in this section, we introduce addi-
tional potentials that can be converted to our general integral form in Eqn. 31, including Lennard-
Jones potential, Morse potential, and screened Coulomb potential. These potentials are only used
for some specific types of materials, such as gas and fluid materials.

Lennard-Jones Potential (Lennard-Jones & Dent, 1928) is an intermolecular pair potential that is
usually used for gas or organic materials. The commonly used expression for the Lennard-Jones
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Table 6: Numerical examples of our algorithm. Here, ζ(x) =
∑∞

n=1 1/n
x. Implementation details

can be found in Appendix C.4.

Ground Truth Evaluation Estimated Error Real Error Time

2 ∗ ζ(2) = 3.28986813 3.28068288 8e-1 9e-3 0.002 s
2 ∗ ζ(2) = 3.28986813 3.28984070 6e-2 3e-5 0.003 s
2 ∗ ζ(2) = 3.28986813 3.28986812 7e-4 1e-8 0.003 s
2 ∗ ζ(2) = 3.28986813 3.28986813 1e-6 < 1e-8 0.003 s
2 ∗ ζ(3) = 2.40411381 2.40411381 1e-6 < 1e-8 0.003 s
2 ∗ ζ(4) = 2.16464647 2.16464647 1e-6 < 1e-8 0.003 s∑

n∈Z2,n ̸=0
1

|n|4 = 6.02681204 5.99068949 3 4e-2 0.003 s∑
n∈Z2,n ̸=0

1
|n|4 = 6.02681204 6.02670959 2e-1 1e-4 0.003 s∑

n∈Z2,n ̸=0
1

|n|4 = 6.02681204 6.02681199 3e-3 5e-8 0.003 s∑
n∈Z2,n ̸=0

1
|n|4 = 6.02681204 6.02681204 5e-6 < 1e-8 0.003 s∑

n∈Z e
−|n| = 2.16395341 2.16395326 4e-1 2e-7 0.002 s∑

n∈Z e
−|n| = 2.16395341 2.16395341 3e-4 < 1e-8 0.004 s∑

n∈Z3 e−|n| = 25.39268269 25.39268214 2.5 5e-7 0.003 s∑
n∈Z3 e−|n| = 25.39268269 25.39268269 1e-2 < 1e-8 0.003 s

potential is

ULJ(L,v) = 4ϵ

[(
σ

|Lk + v|

)12

−
(

σ

|Lk + v|

)6
]
, (49)

where ϵ and σ are hyperparameters. And the summation of ULJ(L,v) can be converted to two
potential summations of type 1/|Lk + v|2p with p = 3 and p = 6, such that

GLJ(L,v) =
∑
k∈Zd

ULJ(L,v) = 4ϵ

σ12

∑
k∈Zd

1

|Lk + v|12

− σ6

∑
k∈Zd

1

|Lk + v|6

 ,

(50)
where we show the calculation of the potential summation of type 1/|Lk + v|2p in Appendix C.1.

Morse Potential (Morse, 1929) is an interatomic potential of a diatomic molecule and can be used
for simple molecular materials. The Morse potential has a mathematical form of

UMorse(L,v) = De

(
e−2a(|Lk+v|−re) − 2e−a(|Lk+v|−re)

)
, (51)

where De and re are hyperparameters. Similarly, the summation of UMorse(L,v) can be converted
to two potential summations of type e−α|Lk+v| with α = a and α = 2a, such that

GMorse(L,v) =
∑
k∈Zd

UMorse(L,v) = De

e2are
∑
k∈Zd

e−2a|Lk+v| − 2eare
∑
k∈Zd

e−a|Lk+v|

 ,

(52)
where we show the calculation of the potential summation of type e−α|Lk+v| in Appendix C.1.

Screened Coulomb Potential or Yukawa potential (Yukawa, 1935) represents the Coulomb in-
teractions with damping of electric fields. It is an important potential reflecting the behaviors of
charge-carrying fluids or particles in semiconductors. The screened Coulomb potential has an ana-
lytic form of V (a, b) = zazbe

2

d(a,b) exp(−αd(a, b)) where d(a, b) is the distance between atom a and
b, za, zb are charges of atom a and b, e is elementary charge constant and α is a scaling hyperpa-
rameter. Since za, zb, e are constants and can be extracted outside the summation, we can obtain the
simplified screened Coulomb potential

Uscreened(L,v) =
e−α|Lk+v|

|Lk + v|
. (53)
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Figure 2: The developed network architecture for PotNet.

Consider the inverse Laplace transform on e−α
√
s/
√
s, by using Bromwich contour with branch

points, we obtain

L−1{e−α
√
s/
√
s} = 1√

πt
e−

α2

4t . (54)

Therefore, we can apply the Laplace transform in Eqn. 53 such that

Uscreened(L,v) =
e−α|Lk+v|

|Lk + v|
=

1√
π

∫ ∞

0

t−
1
2 e−|Lk+v|2t−α2

4t dt. (55)

Then we can obtain A = 1/π, B = α2, C = 1
2 and D = 1/

√
π in Eqn. 30 to fit screened Coulomb

potential into our potential summation method.

D MODEL IMPLEMENTATION

D.1 POTNET IMPLEMENTATION

The employed network architecture is shown in Fig. 2. Since our major contribution is to consider
infinite interatomic potentials, we simply design our network architecture following the commonly
used settings. Specifically, existing methods for 3D graphs (Xie & Grossman, 2018; Schütt et al.,
2017; Klicpera et al., 2020b;a; Liu et al., 2022b; Gasteiger et al., 2021; Schütt et al., 2021) share
a similar architecture, which usually contains an input block, an interaction block, and an output
block. Without loss of generality, we take the updating process for node i as an example to illustrate
the network.

The Inputs contain atomic features and potentials. zi is the 92-dimensional atomic feature for any
atom i following CGCNN (Xie & Grossman, 2018). Below we denote d as the interatomic distances
and show our potential features. For our implementation of infinite potential summations S(a, b) in
Eqn. (7), we add up the infinite summations of three potentials, including the Coulomb potentials,
London dispersion potentials, and Pauli repulsion potentials described in Sec. 2.2. We simplify
the mathematical form of Coulomb potentials V Coulomb(a, b) = − zazbe

2

4πϵ0d(a,b)
to V Coulomb(a, b) =

−ϵ1/d(a, b) where ϵ1 is a hyperparameter, because e, π, ϵ0 are all known constants, and za, zb can
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be learned from atomic features. As explained in Sec. 4.1, ec = −ϵ′1/d denotes the Coulomb
potentials for the local crystal graph. sc = −

∑
d ϵ1/d, s

l = −
∑

d ϵ/d
6, sp =

∑
d e

−αd denote
the summations of Coulomb potentials, London dispersion potentials, and Pauli potentials for the
infinite crystal graph, and we set ϵ′1 = 4.0 for ec, ϵ1 = −1.0 for sc, ϵ = 4.0 for sl and α = 3.0
for sp, respectively. For simplicity, we apply them to the RBF embeddings with the same cutoff.
Since ec and sl are negative values and have values exceeding the RBF cutoff, we use an exponential
function to make their absolute values smaller.

The input block contains a Linear layer and an Embedding layer. For each node i, the Linear layer
is employed to generate a 256-dimensional vector as the input node features to the first interac-
tion layer. For each edge, the Embedding layer is employed to map the Coulomb potentials and
summations of Coulomb potentials, London dispersion potentials, and Pauli repulsion potentials to
256-dimensional embeddings by using 256 RBF kernels with centers from -4.0 to 4.0.

The Interaction block contains several Interaction layers. Each layer updates the feature vector of
node i based on features of the neighboring nodes and potential embeddings of the connected edges.
Particularly, for any of the neighboring node j of node i, the corresponding potential embeddings
ecij , scij , slij , and spij for edge ij are all produced by the Embedding layer.

The Readout block contains an AvgPooling layer and another Linear layer. We first use the Avg-
Pooling layer to aggregate features from all nodes in a graph and then use the Linear layer that maps
the hidden dimension of 256 to the final output which is a scalar.

D.2 CONFIGURATIONS OF RETRAINED MODELS

In this section, we show detailed configurations of retrained models of CGCNN (Xie & Grossman,
2018), SchNet (Schütt et al., 2017), MEGNET (Chen et al., 2019), GATGNN (Louis et al., 2020)
and ALIGNN (Choudhary & DeCost, 2021). If not specified, models are trained with a radius cutoff
of 8.0 using the Adam (Kingma & Ba, 2014) optimizer with weight decay (Loshchilov & Hutter,
2017) and one cycle learning rate scheduler (Smith & Topin, 2019).

CGCNN (Xie & Grossman, 2018). We directly use the publicly available code from Xie & Gross-
man (2018) to build and train the CGCNN model. We build the model with 128 hidden dimensions
and three message-passing layers and train the model for 1000 epochs with a batch size of 256 and
an initial learning rate of 1e-2.

SchNet (Schütt et al., 2017). We directly adopt the SchNet model from PyTorch Geometric (Fey &
Lenssen, 2019) with 128 hidden dimensions and six message-passing layers following the original
paper. We train SchNet with an initial learning rate of 5e-4 and batch size of 64 for 500 epochs.

GATGNN (Louis et al., 2020). We directly use the publicly available code from Louis et al. (2020)
to build and train the GATGNN model. We build the model with 128 hidden dimensions and three
message-passing layers following the original default settings. We train the model with an initial
learning rate of 5e-3 and batch size of 64 for 500 epochs.

MEGNET (Chen et al., 2019). We directly adopt the MEGNET model from the publicly available
code from Chen et al. (2019). Following the original paper, we use three message-passing layers with
the same feature dimensions as mentioned in the original paper and use Set2Set readout function.
We train MEGNET with an initial learning rate of 1e-3 and batch size of 128 for 1000 epochs
following the configuration settings mentioned in the original paper.

ALIGNN (Choudhary & DeCost, 2021). We directly use the publicly available code from Choud-
hary & DeCost (2021). We use the official best model configurations of ALIGNN to train ALIGNN
models with an initial learning rate of 1e-3 and batch size of 64 for 500 epochs.

E LINEAR ENERGY MODELING USING INFINITE POTENTIAL SUMMATION

In this section, we provide examples of calculations where the true energies of these materials can
be directly approximated by linear combinations of our infinite potential sums. These are special
cases of Eqn. 6 with a linear embedded function G. Specifically, we evaluate the total energy per
atom of NaCl and two other materials (MgO, LiF ) whose crystal structures are similar to NaCl.
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Figure 3: Crystal structure of NaCl.

Since they are pure ionic crystals and Coulomb
interactions dominate the system, we first con-
sider the total electrostatic energy and Coulomb
potential summations. For a neutral system, the
electrostatic energy is convergent because the
Coulomb potentials cancel each other. To cal-
culate the energy of a crystal, we cannot derive
it directly due to its complexity. Instead, we
divide it into many individual infinite potential
summations. Although these individual sum-
mations might be originally divergent, they will
all be well-defined under analytic continuation
and the total energy will also be convergent.

As shown in Appendix C.3, analytic continuation allows us to compute potential summations that
are initially divergent, and also allows us to compute the convergent summations by analytically
continued potential summations. For example, we can calculate

∑
n∈Z,n̸=0

(−1)n

n by analytic con-
tinuation such that ∑

n∈Z,n̸=0

(−1)n

n
=

∞∑
n=1

1

n
−

∞∑
n=0

1

n+ 1
2

= ζ(1, 1)− ζ(1,
1

2
), (56)

where ζ(s, a) is Hurwitz zeta function and ζ(s, a) =
∑∞

n=0
1

(n+a)s when s > 1, a ̸= 0,−1,−2, ...,
and its analytic continuation elsewhere. That is, we can use the analytically continued zeta function
ζ(s, a) to precisely approximate a convergent series.

Inspired by analytic continuation, we can approximate the total energy per atom of crystals of NaCl
by analytically continued infinite potential summations. Due to the symmetry of the NaCl cell, we
only involve atoms a, b, c, d in our calculation. Specifically, as shown in Fig. 3, atom a represents
the body center Na+, atom b represents the face center Cl−, atom c represents the edge center Na+

and atom d represents the corner Cl−. Based on this, assuming that the side length of the unit cell is
1, the total energy of Na+ is approximated by the total Coulomb interactions with atom a such that

ENa = −NA

[
1 · zNazNae

2

4πϵ0

∑
u∈Aa,u̸=a

1

d(a,u)
+

1

2
6 · zNazCle

2

4πϵ0

∑
u∈Ab

1

d(a,u)

+
1

4
12 · zNazNae

2

4πϵ0

∑
u∈Ac

1

d(a,u)
+

1

8
8 · zNazCle

2

4πϵ0

∑
u∈Ad

1

d(a,u)

]

= −NA

[
zNazNae

2

4πϵ0r0

∑
u∈Aa,u̸=a

1

d̃(a,u)
+ 3 · zNazCle

2

4πϵ0r0

∑
u∈Ab

1

d̃(a,u)

+ 3 · zNazNae
2

4πϵ0r0

∑
u∈Ac

1

d̃(a,u)
+

zNazCle
2

4πϵ0r0

∑
u∈Ad

1

d̃(a,u)

]

= −NA|zNa||zCl|e2

4πϵ0r0

[
S̃(a,a)− 3 · S̃(a, b) + 3 · S̃(a, c)− S̃(a,d)

]
≈ −NA|zNa||zCl|e2

4πϵ0r0

[
− 1.41864874− 3 · (−0.04796615) + 3 · (−0.29126077)

− (−0.40096799)
]

≈ −NA|zNa||zCl|e2

4πϵ0r0
· (−1.7475646)

≈ 8.81eV,

(57)

where NA is Avogadro constant, d(a,u) is the distance between atom a and u, r0 is the minimum
distance between Na and Cl, d̃ = d/r0 is the normalized distance, Aa denotes the set of atoms
containing atom a and all its repetitions, S̃ is the infinite potential summation, approximated by
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our infinite potential summation method in Sec. 3.4, zNa, zCl are charges of Na+ and Cl−, e is
the elementary charge constant, ϵ0 is the permittivity constant of free space, and the coefficients
1, 1

26,
1
412,

1
88 denote the fraction of atoms in a unit cell. We finally obtain a constant −1.7475646

from our infinite potential summations. In fact, this constant is exactly the famous Madelung con-
stant M (Borwein et al., 1985). Also, by considering an additional repulsion term, we can derive the
calculation result in Eqn. 57 to the famous Born-Landé equation (Born, 1921)

E = −NA|z+||z−|e2M
4πϵ0r0

(1− 1

n
), (58)

Table 7: Total energy per atom approxi-
mation of NaCl, MgO and LiF .

Formula r0 n Ground Truth Eqn. 58

NaCl 282 pm 9 8.15 eV 7.84 eV
MgO 210 pm 6 39.33 eV 39.45 eV
LiF 201 pm 7 10.67 eV 10.60 eV

where z+, z− are the charges of cation and anion, M is
the Madelung constant computed from infinite Coulomb
potential summations, and n is the Born exponent mea-
suring the effect of repulsion. By choosing n = 9, we
can derive an approximation for the total energy of NaCl
of 7.84 eV. Similarly, we can apply Eqn. 58 to MgO and
LiF . We further show these approximations in Table. 7 and it can be noticed that these approxima-
tions already give rough results compared to the ground truth energy. This implies that our features
can serve as a good starting point for machine learning models to learn the ground truth energy.
Apparently, previous methods cannot achieve this due to the lack of such informative features. It
is worth noting that the Madelung constant is typically unknown because those coefficients for the
infinite potential summations depend on the charge distribution in the system, which we do not know
at the beginning. Also, these crystals are special cases of Eqn. 6 with a linear embedded function G,
while G is typically a nonlinear function (Daw & Baskes, 1984). Therefore, the network serves the
purpose of learning those coefficients to learn the Madelung constant and providing nonlinearity.
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