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ABSTRACT
In practical scenarios, partial missing of multi-view data is very
common, such as register information missing from social network
analysis, which results in incomplete multi-view clustering (IMVC).
How to fill missing data fast and efficiently plays a vital role in
improving IMVC, carrying a significant challenge. Existing IMVC
methods always use all observed data to fill in missing data, re-
sulting in high complexity and poor imputation quality due to a
lack of guidance from consistent distribution. To break the existing
limitations, we propose a novel Distribution Consistency based
Fast Anchor Imputation for Incomplete Multi-view Cluster-
ing (DCFAI-IMVC) method. Specifically, to eliminate the interfer-
ence of redundant and fraudulent features in the original space,
incomplete data are first projected into a consensus latent space,
where we dynamically learn a small number of anchors to achieve
fast and good imputation. Then, we employ global distribution in-
formation of the observed embedding representations to further
ensure the consistent distribution between the learned anchors
and the observed embedding representations. Ultimately, a tensor
low-rank constraint is imposed on bipartite graphs to investigate
the high-order correlations hidden in data. DCFAI-IMVC enjoys
linear complexity in terms of sample number, which gives it great
potential to handle large-scale IMVC tasks. By performing exten-
sive experiments, our effectiveness, superiority, and efficiency are
all validated on multiple public datasets with recent advances.
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1 INTRODUCTION
Multi-view clustering (MVC) has attracted intensive attention by
optimally integrating heterogeneous and homogeneous properties
to group unlabeled multi-view data into different clusters [3, 13, 44–
46]. By assuming all views are complete, many MVC methods
[1, 4, 8, 15, 16, 21, 32, 39, 41] have been presented due to their
validity of capturing the paired similarity between samples and
views. However, in many practical applications, some view infor-
mation is unavailable, resulting in incomplete multi-view data. For
example, in social network analysis, people may only register in
some social networks, which leads to incompleteness of sample
information among different social networks. Clustering on such
kind of data can be deemed as incomplete multi-view clustering
(IMVC). Missing data not simply results in the loss of view infor-
mation, but also destroys paired similarity, making IMVC become
an intractable problem[7, 17].

In recent years, a series of pioneer work has been developed
to effectively address this challenge. According to the process-
ing methods of missing data, two types of IMVC methods are
mainly included: (1) they only use the observed view data to
perform clustering tasks by discardingmissing view data, so
as to avoid the negative impact of missing data. (2) they fill the
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missing data with all observable view data to boost the clus-
tering performance, simultaneously recovering the missing view
information to some extent. For the first category, some scholars
[11, 27, 33, 35, 37] employ matrix factorization to synergistically
generate a consensus representation across multiple incomplete
views. By this way, observed data from different views can be ag-
gregated into a single representation, making it possible to roughly
describe the information of multiple incomplete views. Then, con-
sensus representation is fed into 𝑘-means to obtain clustering re-
sults. Different from sharing consensus representation, another
scholars employ different graph learning techniques to synergisti-
cally generate a consensus graph across multiple incomplete views
[10, 19, 22, 31, 34]. For example, [10, 19, 31] use self-representation
subspace learning or adaptive neighborhood graph learning to gen-
erate a shared similarity graph for spectral clustering. To this end,
observed data of multiple incomplete views can be semantically
fused into a consensus graph to roughly reflect intact graph struc-
ture of multiple incomplete views. The core idea of these IMVC
methods is to discard missing view data, and only use the observed
view data to perform clustering tasks. Whereas, this kind of meth-
ods reduce sample size to only exchange for formal completeness.
In fact, directly discarding missing data can destroy the original
structural relation hidden in the incomplete multi-view data [38, 42].

Second, different from ignoring the missing data, a spot of IMVC
methods [18, 20, 22, 36, 38] attempt to recover the missing views
via all available data, so as to address the sample missing problem.
For sample, [36] leverages all observed representations to learn a
consensus representation by a unified alignment framework based
on matrix factory. Then, consensus representation is reversely used
to fill the missing data. To this end, missing data imputation and
consensus representation learning iteratively optimize in a mutu-
ally reinforcing manner until convergence. To further capture the
nonlinear relationship in incomplete data, some scholars employ
the predefined incomplete kernel matrices to learn a consensus
kennel to simultaneously perform kernel imputation and IMVC.
Different from learning a consensus representation or consensus
kernel, [18, 19, 38] generate a consensus affinity graph to itera-
tively impute the missing samples by using familiar graph learning
frameworks, such as self-representation learning. Since the graph
learning can effectively characterize the similarity structure of sam-
ple pair, graph-based methods have achieved promising results in
IMVC tasks. Although effective, the above filled IMVC methods
select all observed multi-view samples to fill the missing samples,
resulting in high computational and space complexity; more im-
portantly, in large-scale tasks, the data in the original feature space
usually suffers from the interference of redundant or redundant
information, which inevitably reduces the filled quality.

To address the aforementioned issues, we propose a novel Dis-
tribution Consistency based Fast Anchor Imputation for In-
completeMulti-viewClustering (DCFAI-IMVC) to achieve fast
and high-quality imputation by dynamically learning a small num-
ber of anchors. As mentioned in Fig. 1, we first project the multi-
view data from the original feature space into a latent embedding
space, where we assume that a shared view-consistent anchor ma-
trix can be learned with the help of complementarity between
different views. Meanwhile, the view-specific bipartite graphs are

constructed, since the similarities between each shared anchor point
and the embedding representations of different views should exist
the diversity. Besides, we also share the cluster center between
the observed embedding representations and the learned anchors,
where the global distribution information among the observed em-
bedding representations can be captured to synergistically guide
a high-quality anchor matrix to effectively impute the missing
view data. Finally, to further capture the pair-wise sample correla-
tions and pair-wise view correlations, a tensor low-rank constraint
is imposed on the learned bipartite graphs. After performing a
well-designed iteration algorithm, an averaged bipartite graph is
obtained to perform 𝑘-means clustering. Main contributions are as
follows.

• OurDCFAI-IMVCproposes to a novel and flexible framework
for missing data imputation and IMVC. As far as I know, it
dynamically learns a small number of high-quality anchors
from incomplete data for the first practice to perform fast
and good imputation on large-scale clustering tasks.

• Unlike the existing IMVC methods that employs all the ob-
served data to fill the missing data for clustering in the origi-
nal feature space, DCFAI-IMVC only requires to learn a spot
of anchors to perform fast and good imputation for improv-
ing clustering in a latent space. DCFAI-IMVC is a pioneering
work to dynamically learn anchors from incomplete data.

• Comprehensive experimental results on eight benchmark
datasets verify the advantages of our DCFAI-IMVC compared
to existing IMVC competitors.

2 RELATEDWORK
In this section, we introduce the existing work most related to our
proposed method, including bipartite graph clustering and graph
learning for IMVC.

2.1 Bipartite Graph Clustering
Bipartite graph is deemed as a very effective strategy to handle large-
scale data by selecting a relative small proportion of representative
anchors to establish connection with original samples [2, 14]. This
idea of multi-view framework can be traditionally expressed as

min
Z𝑝 ,Z

Y𝑝 − L𝑝Z𝑝
2
F + 𝛼Ω

(
Z𝑝 ,Z

)
s.t. Z𝑝 ≥ 0,Z⊺𝑝 1 = 1 (1)

where Y𝑝 ∈ R𝑑𝑖×𝑛 and L𝑝 ∈ R𝑑𝑖×𝑚 represent complete data and
its𝑚 selected or sampled landmarks corresponding to 𝑝-th view.
Ω(·, ·) represents certain kind of graph fusion techniques [12, 24].
Eq. (1) can reduce both computational and space complexity since
the size of traditional 𝑛 × 𝑛 similarity graph is decreased to𝑚 × 𝑛

bipartite graph Z. Meanwhile, comparable clustering performance
can be also achieved. Based on the high efficiency of this bipartite
graph framework, we first try to fill missing views with anchors for
further improving the clustering performance in the next section.

2.2 Graph Learning for IMVC
Recently, IMVC has attracted intensive attention since multimodal
data collected from real applications tend to be inherently incom-
plete. For sample, a person cannot be registered on all social net-
working platforms, resulting in incomplete information about that
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Figure 1: Overview of the proposedDCFAI-IMVCmethod. Two views are employed for ease of understanding. The red cross and
the blue dashed line represent themissing sample and the line connecting themissing sample to the anchor point, respectively.

person on some platforms. Consequently, how to cluster with multi-
view partial data becomes a challenging and valuable issue. Fortu-
nately, graph learning has powerful representation ability and can
capture the relevant information between data to perform IMVC
[5, 6, 43]. For one hand, some graph-based IMVC methods discard
missing view data to avoid the negative impact of missing data.
Given incomplete multi-view data {X𝑝 ∈ R𝑑𝑝×𝑛}𝑉

𝑝=1 and the indi-
cator matrices {G𝑝 ∈ R𝑛×𝑛𝑝 }𝑉

𝑝=1, graph-based IMVC framework
can be written as

min
S𝑝

X𝑝G𝑝 − X𝑝G𝑝S𝑝
2
𝐹
+ Φ

(
S𝑝

)
, s.t. S𝑝 ≥ 0, S⊤𝑝 1 = 1, (2)

where 𝑛𝑝 and S𝑝 ∈ R𝑛𝑝×𝑛𝑝 are the number of observed data and
subgraph in the 𝑝-th view, respectively. Φ(·) denotes the regulariza-
tion of S𝑝 . Indicator matrix G𝑝 ∈ {0, 1} can eliminate the missing
samples in X𝑝 to form X𝑝G𝑝 ∈ R𝑑𝑝×𝑛𝑝 , which is all the observed
samples of X𝑝 . Then, the complete graph can be sketched with
G𝑝S𝑝G

⊺
𝑝 to perform subsequent clustering tasks. By following this

scheme, many methods [10, 11, 19, 31, 33] have only employed
observed data to perform IMVC. Whereas, discarding missing data
directly can ignore the hidden information of the missing views and
destroy the original structure of data [38]. For another, different
from ignoring the missing parts, a spot of IMVC methods recover
the missing views via all observed view data to further explore
the hidden information of the missing views. To this end, original
data structure information can be inferred to boost the clustering
performance. This kind of IMVC framework can be expressed as

min
S

Ψ({X𝑝 }𝑉𝑝=1, S) + Φ (S) (3)

where Ψ denotes different graph fusion techniques [33, 34]. In Eq.
(3), consensus affinity graph S can be constructed from all the ob-
served samples in {X𝑝 }𝑉𝑝=1. Then, S reversely fills missing parts of
{X𝑝 }𝑉𝑝=1. Different from Eq. (3), recent proposed [18, 38] attempt
to use the low-rank tensor constraint to explore high-order rela-
tionship of data to improve the quality of imputation. Although
these IMVC methods [18, 20, 22, 36, 38] have made some achieve-
ments, they select all observed data to fill the missing data, which
leads to high time and space complexities. Meanwhile, redundant

features or fraudulent features in original feature space can cause
the low-quality imputation.

3 FOMULATION
Given 𝑑𝑝 dimensions and 𝑛 samples of complete multi-view data
{X𝑝 ∈ R𝑑𝑝×𝑛}𝑉

𝑝=1, we can define 𝑉 incomplete multi-view data as

X𝑝 = [X𝑜
𝑝 ;X𝑚

𝑝 ],X𝑜
𝑝 ∈ R𝑑𝑝×𝑛𝑝 ,X𝑚

𝑝 ∈ R𝑑𝑝×(𝑛−𝑛𝑝 ) (4)

where X𝑜
𝑝 denote the fixed observed data, and X𝑚

𝑝 denote the miss-
ing data required to be imputed. [·; ·] is the horizontal concatena-
tion operation, and 𝑛𝑝 is the number of the observed samples. To
simultaneously perform missing data imputation and IMVC, all
the existing IMVC methods employ all the observed data to im-
pute the missing data in the original space, which always leads to
low-quality imputation owe to the interference of redundant and
fraudulent features or low-quality samples. Meanwhile, redundant
samples or features can also cause high time complexity and space
complexity. Instead of filling missing data X𝑚

𝑝 with all observed
data, we first attempt to merely learn a small number of anchors
from incomplete data, which are used to perform fast and good
imputation for X𝑚

𝑝 . This idea can be mathematically expressed as

min
X𝑚
𝑝 ,P,

W𝑝 ,Z𝑝 ,𝜽𝑝

𝑉∑
𝑝=1

𝜃2𝑝 ∥W⊺𝑝X𝑝 − PZ𝑝 ∥2𝐹

s.t. Z𝑝 ≥ 0,Z⊺𝑝 1 = 1,W⊺𝑝W𝑝 = I𝑘 , P
⊺P = I𝑚, 𝜽⊺1 = 1, 𝜽 ≥ 0

(5)

where 𝑝-th projection matrix W𝑝 ∈ R𝑑𝑝×𝑘 projects the original in-
complete dataX𝑝 into a shared latent space. Then, a view-consistent
anchor matrix P and 𝑝 view-specific bipartite graphs Z𝑝 can be
learned from X𝑝 corresponding to 𝑝 views. Orthogonal constraint
on P ∈ R𝑘×𝑚 can enhance its discrimination. The view-consistent
anchor matrix P and view-specific bipartite graphs are constructed
due to the complementarity and the diversity of different views,
respectively. 𝜽 is the weight vector. From Eq. (5), we aim to dynami-
cally learn a view-consistent anchor matrix to essentially represent
the whole incomplete multi-view data. However, the learned an-
chors from Eq. (5) would deviate far from the distribution of the
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original real data due to the disturb of missing data, further de-
grading the subsequent clustering task. To ensure the validity of
the learned anchor matrix, as mentioned in Fig. 2, we first use the
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Figure 2: Consensus cluster center of the observed embed-
ding representations guides the learning of anchors.

global distribution information of the observed embedded repre-
sentationsW⊺𝑝X𝑝G𝑝 to guide the learning of anchors by sharing
the consensus cluster center between the anchors and the observed
representations, i.e.,

min
W𝑝 ,P,A𝑝 ,B,F

𝑉∑
𝑝=1

∥W⊺𝑝X𝑝G𝑝 − BA𝑝G𝑝 ∥2𝐹 + ∥P − BF∥2𝐹

W⊺𝑝W𝑝 = I𝑘 , P
⊺P = I𝑚,A⊺𝑝A𝑝 = I𝑐 ,B⊺B = I𝑐 , F⊺F = I𝑐

(6)

where orthogonal constraints are imposed on F ∈ R𝑐×𝑛 and A𝑝 ∈
R𝑐×𝑛 since F and A𝑝 are encode matrices. Orthogonal constraint
on B ∈ R𝑘×𝑐 is used to select representative cluster centers.

Meanwhile, a 𝑡-SVD based tensor low-rank constraint is imposed
on bipartite graphs to deeply investigate the high-order correlations
of data, i.e., the pair-wise sample correlations and pair-wise view
correlations. By this way, we propose DCFAI-IMVC to learn only a
small amount of high-quality anchor points from incomplete data
to perform fast and good imputation for large-scale IMVC tasks.
This ultimate idea can be mathematically fulfilled as

min
X𝑚
𝑝 ,P,B,A𝑝 ,F

W𝑝 ,Z𝑝 ,𝜽𝑝 ,Z

𝑉∑
𝑝=1

𝜃2𝑝 ∥W⊺𝑝X𝑝 − PZ𝑝 ∥2𝐹 + 𝛽 ∥Z∥⊛

+ 𝛼 (∥W⊺𝑝X𝑝G𝑝 − BA𝑝G𝑝 ∥2𝐹 + ∥P − BF∥2𝐹 )
s.t. Z𝑝 ≥ 0,Z⊺𝑝 1 = 1,W⊺𝑝W𝑝 = I𝑘 , P

⊺P = I𝑚,

𝜽⊺1 = 1, 𝜽 ≥ 0,A⊺𝑝A𝑝 = I𝑐 ,B⊺B = I𝑐 , F⊺F = I𝑐

(7)

3.1 Optimization
In this subsection, we can observe that the alternating direction
method of multipliers (ADMM) can be used to solve Eq. (7) since
it is convex. We first introduce an auxiliary variable J to make
Eq. (7) separable according to the principle of ADMM [25, 30].
Further, we find that X𝑝G𝑝G𝑝

⊺ = X𝑝 ⊗ H𝑝 , where H𝑝 = 1𝑑𝑝 g𝑝
and g𝑝 =

[
𝑔𝑝,1, . . . , 𝑔𝑝,𝑛

]⊺ with 𝑔𝑝,𝑗 =∑𝑛𝑝

𝑙=1 G𝑝,𝑗,𝑙 , which can make
O (

𝑣𝑛2
)
space complexity reduce to O(𝑑𝑛). Finally, the augmented

Lagrangian function of Eq. (7) can be obtained as

min
X𝑚
𝑝 ,P,B,A𝑝 ,F

W𝑝 ,Z𝑝 ,𝜽𝑝 ,J

𝑉∑
𝑝=1

𝜃2𝑝 ∥W⊺𝑝X𝑝 − PZ𝑝 ∥2𝐹 + 𝜇

2 ∥Z −J + Y
𝜇
∥2𝐹

+ 𝛼 (∥W⊺𝑝X𝑝G𝑝 − BA𝑝G𝑝 ∥2𝐹 + ∥P − BF∥2𝐹 ) + 𝛽 ∥J∥⊛
s.t. Z𝑝 ≥ 0,Z⊺𝑝 1 = 1,W⊺𝑝W𝑝 = I𝑘 , P

⊺P = I𝑚,

𝜽⊺1 = 1, 𝜽 ≥ 0,A⊺𝑝A𝑝 = I𝑐 ,B⊺B = I𝑐 , F⊺F = I𝑐

(8)

which can be solved separately as follows.
▶ Step-1 update Z: Fixing the J, W𝑝 , X𝑚

𝑝 , P, 𝜽 , A𝑝 , B, and F, the
Z-subproblem can be simplified as

min
Z𝑝

∥Z𝑝 − Ẑ𝑝 ∥2𝐹 s.t. Z𝑝 ≥ 0,Z⊺𝑝 1 = 1, (9)

where Ẑ𝑝 =
(𝜃 2

𝑝X
⊺
𝑝W𝑝 )P+ 𝜇

2 (J
⊺
𝑝−

Y⊺𝑝
𝜇
)

(∑𝑉
𝑝=1 𝜃

2
𝑝 I+ 𝜇

2 I)
, whose 𝑗-th column vector of

𝑝-th view is defined as Ẑ𝑝,:, 𝑗 , and its 𝑖-th element is 𝑧𝑝,𝑖, 𝑗 .

min
z𝑗

z𝑗 − ẑ𝑗
2
F , s.t. z

⊺
𝑗
1 = 1, z𝑖 𝑗 ≥ 0 (10)

where ẑ𝑗 =
(𝜃 2

𝑝X
⊺
𝑝W𝑝 )P+ 𝜇

2 (J
⊺
𝑝−

Y⊺𝑝
𝜇
)

(∑𝑉
𝑝=1 𝜃

2
𝑝+ 𝜇

2 )I
. Such subproblem can be solved

by the following Theorem 1.
Theorem 1. For any 𝑟 vectors {ẑ}𝑟

𝑗=1, a closed-form solution z∗
𝑗
can

be achieved as

z∗ = arg min
z

∥z − ẑ∥2𝐹 , s.t. z⊺1 = 1, z ≥ 0 (11)

which can be solved by Theorem 2 of [26]. The time complexity of
optimizing Z is O(𝑛𝑚𝑑) with the close-form solution.
▶ Step-2 update P: Fixing theJ,W𝑝 , X𝑚

𝑝 , Z𝑝 , 𝜽 , A𝑝 , B, and F, the
P-subproblem changes to

max
P

Tr(P⊺C), P⊺P = I𝑚, (12)

C =
∑𝑉
𝑝=1 𝜽

2
𝑝W
⊺
𝑝X𝑝Z

⊺
𝑝 +𝛼BF. The optimal solution of optimizing P

can be effectively obtained via singular value decomposition (SVD)
[28, 29] on C with complexity O(𝑘𝑚2).
▶ Step-3 updateW: Fixing the J, P, X𝑚

𝑝 , Z𝑝 , 𝜽 , A𝑝 , B, and F, the
W-subproblem becomes to

max
W𝑝

Tr(W⊺𝑝D𝑝 ),W⊺𝑝W𝑝 = I𝑘 , (13)

where D𝑝 = 𝜽 2𝑝W
⊺
𝑝X𝑝Z

⊺
𝑝 + 𝛽 (X𝑝 ⊗ H𝑝 )A⊺𝑝 B. Similar to update P,

the W-subproblem can be effectively solved via SVD on D𝑝 . The
complexity of optimizing W is O(𝑉𝑑𝑘2), where 𝑑 =

∑𝑉
𝑝=1 𝑑𝑝 .

▶ Step-4 update X𝑚
𝑝 : Fixing the irrelevant variables, and updating

X𝑚
𝑝 can be written as

X𝑚
𝑝 = E𝑝 (:,𝝊𝑚𝑝 ) (14)

where E𝑝 (:,𝝊𝑚𝑝 ) =
∑𝑉
𝑝=1 𝜃

2
𝑝W𝑝PZ𝑝 (:,𝝊𝑚𝑝 ), and 𝝊𝑚𝑝 denotes the

missing index of 𝑝-th view. The complexity isO(𝑑𝑘𝑚+𝑘𝑚∑𝑉
𝑝=1 𝑛𝑝 ).

▶ Step-5 update 𝜽 : Optimizing 𝜽 with the irrelevant variables
fixed is equivalent to the following optimization problem

min
𝜃𝑝

𝑉∑
𝑝=1

𝜃𝑝
2𝛿2𝑝 , s.t. 𝜽⊺1 = 1, 𝜽 ≥ 0 (15)
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where 𝛿𝑝 = ∥W⊺𝑝X𝑝 − PZ𝑝 ∥2𝐹 . According to Cauchy-Schwarz in-
equality, 𝜽 can be optimally solved via

𝜽 =
𝜺∑𝑉

𝑝=1 𝜀𝑝
(16)

where 𝜺 = [𝜀1, 𝜀2, . . . , 𝜀𝑉 ] and 𝜀𝑝 = 1
𝛿𝑝

. The complexity of optimiz-
ing 𝛽 is O(𝑛𝑚𝑑).
▶ Step-6 update B: Fixing J, W𝑝 , P, X𝑚

𝑝 , Z𝑝 , 𝜽 , A𝑝 , and F, B-
subproblem of (8) changes to

max
B

Tr(B⊺T) s.t. B⊺B = I𝑘 . (17)

where T = F⊺P + ∑𝑉
𝑝=1W

⊺
𝑝 (X𝑝 ⊗ H𝑝 )A⊺𝑝 . The optimal solution

of optimizing B can be effectively obtained via singular value de-
composition (SVD) on T𝑝 with complexity O(𝑑𝑚2 + 𝑛𝑚𝑑), where
𝑑 =

∑𝑉
𝑝=1 𝑑𝑝 .

▶ Step-7 update F: Fixing J, W𝑝 , P, X𝑚
𝑝 , Z𝑝 , 𝜽 , A𝑝 , and B, F-

subproblem of (8) can be rewritten as

max
F

Tr(F⊺PB⊺) s.t. F⊺F = I𝑘 , (18)

which can be solved with via SVD operator with complexityO(𝑛𝑐2).
▶ Step-8 update A: Fixing J, W𝑝 , P, X𝑚

𝑝 , Z𝑝 , 𝜽 , B, and F, A-
subproblem of (8) can be reformulated as

max
A𝑝

Tr(A⊺𝑝 ((X𝑝 ⊗ H𝑝 )W𝑝B⊺)) s.t. A⊺𝑝A𝑝 = I𝑘 . (19)

Similar to Eq. (13), Eq. (19) can be availably solved via SVD with
complexity O(𝑛𝑐2).
▶ Step-9 updateJ: Ignoring the irrelevant itemsw.r.t.J, updating
J can be rewritten as

min
J

𝛽 ∥J∥⊛ + 𝜇

2 ∥J − (Z + Y
𝜇
)∥2𝐹 (20)

Denoting M = Z + Y
𝜇 , J can be solved via the tensor tubal-

shrinkage of the below Theorem 2 [40].
Theorem 2 Give two 3-order tensor J ∈ R𝑛1×𝑛2×𝑛3 and M ∈
R𝑛1×𝑛2×𝑛3 with a scalar, the global optimal solution to the following
problem

min
J

𝜌 ∥J∥⊛ + 1
2 ∥J −M∥2𝐹 (21)

is given by the tensor tubal-shrinkage operator.

J = C𝑛3𝜌 (M) = U ∗ C𝑛3𝜌 (Z) ∗V⊺ (22)

where M = U ∗Z ∗V⊺ and C𝑛3𝜌 (Z) = Z ∗Q. Q ∈ R𝑛1×𝑛2×𝑛3

denotes a f-diagonal tensor and each diagonal element ofQ is defined
as Q𝑓 (𝑖, 𝑖, 𝑗) = (1 − 𝑛3𝜌

Z ( 𝑗) (𝑖,𝑖) )+. The complexity of updating J is
O (

𝑛𝑚 log(𝑛) +𝑚2𝑛
)
.

Updating ADMM variables are written as

Y = Y + 𝜇 (Z −J), 𝜇 =𝑚𝑖𝑛(𝜌𝜇, 𝜇𝑚𝑎𝑥 ) (23)

where 𝜇 = 1𝑒−4 and 𝜇𝑚𝑎𝑥 = 1010, and the complexity is O(𝑛). The
whole optimization procedure of Eq. (7) is outlined in Algorithm 1,
where convergence criterion is checked by computing the objective
value 𝑜𝑏 𝑗𝑡 at the 𝑡-th iteration.

Algorithm 1 The algorithm of DCFAI-IMVC

Input: 𝑉 incomplete multi-view data {X𝑝 }𝑉𝑝=1, number of clusters
𝑐 , dimension of consensus proxy 𝑙 , and parameter 𝛼 .
Initialize 𝜽𝑝 = 1/𝑉 ,W𝑝 = I𝑘 , and the others matrices as 0.

1: repeat
2: Update Z𝑝 by using Eq. (9);
3: Update P,W𝑝 ,X𝑚

𝑝 and 𝜽 by using Eqs (12)-(15), respectively;
4: Update B, F, A𝑝 , and J by using Eqs. (17)-(20), respectively;
5: until Satisfy (𝑜𝑏 𝑗 (𝑡 ) − 𝑜𝑏 𝑗 (𝑡−1) )/𝑜𝑏 𝑗 (𝑡 ) ≤ 1𝑒 − 4.
6: Perform SVD on the averaged bipartite graph Z∗ =

∑𝑉
𝑝=1 Z𝑝/𝑉

to obtain left singular value matrix UZ∗ ∈ R𝑚×𝑛 .
Output: Perform 𝑘-means on UZ∗ to obtain the clustering results.

Table 1: Complexity analysis of SOTA competitors.
Method Space Cost Time Complexity
BSV [23] 𝑉𝑛2 O(𝑛3)
MIC [27] 𝑉𝑛2 + 𝑛𝑑 + 𝑛𝑉𝑘 +𝑉𝑑𝑘 O(𝑛3 + 𝑛2𝑑𝑘)
DAIMC [11] 𝑉𝑛2 + 𝑛𝑑 + 𝑛𝑘 + 𝑑𝑘 O(𝑛𝑑3 + 𝑛𝑑𝑘)
APMC [9] 𝑛𝑑 +𝑉𝑛𝑚 + 𝑛𝑘 O(𝑛3 + 𝑛𝑚𝑑 +𝑚3)
UEAF[36] 𝑉𝑛2 + 𝑑𝑛 + 𝑛𝑉𝑘 + 𝑑𝑘 O(𝑛3 + 𝑑𝑘2)
MKKM-IK [22] 𝑉𝑛2 +𝑉𝑛𝑘 O(𝑉𝑛3)
EEIMVC [20] 𝑉𝑛2 +𝑉𝑛𝑘 +𝑉𝑘2 O(𝑛𝑘2 +𝑉𝑘3)
FLSD [37] 𝑉𝑛2 + 𝑑𝑛𝑘 + 𝑛𝑘 O(𝑛𝑑2)
UTF [38] 𝑉𝑛2 +𝑉 (𝑛 − 𝑛𝑝 )𝑑 O(𝑉𝑛3 +𝑉𝑛2𝑙𝑜𝑔 (𝑛) +𝑉 2𝑛2)
IMVC-CBG[31] 𝑚𝑛 + (𝑑 +𝑚)𝑘 O(𝑛𝑑𝑘 + 𝑛𝑚𝑑 +𝑚𝑑𝑘)
HCP-IMSC[18] 𝑉𝑛2 +𝑉 (𝑛 − 𝑛𝑝 )𝑑 + 𝑑𝑘 O(𝑉𝑛3 +𝑉 (𝑛 − 𝑛𝑝 )3 + 𝑘𝑛2𝑉 )
Ours 𝑚𝑛 + (𝑑 +𝑚)𝑘 3O (𝑛𝑚𝑑) + O (𝑚𝑛 log(𝑛))

3.2 Complexity Analysis
From Step-1 to Step-9, the computational complexity of Algorithm
1 is 3O(𝑛𝑚𝑑) + O(𝑘𝑚2) + O(𝑉𝑑𝑘2) + O(𝑑𝑘𝑚 + 𝑘𝑚

∑𝑉
𝑝=1 𝑛𝑝 ) +

O(𝑑𝑚2) +O(𝑛𝑐2) +O(𝑚𝑛 log(𝑛) +𝑚2𝑛) at each iteration, where 𝑛,
𝑛𝑝 , 𝑐 and𝑚 denote number of complete samples, missing samples,
cluster number and anchors, respectively. 𝑘 is the dimension of
latent space. After obtaining Z∗, it costs O(𝑛𝑚2) complexity to
perform 𝑘 . For another, space complexity of Algorithm 1 mainly
involves four matrices W𝑝 ∈ R𝑑𝑝×𝑚 , X𝑝 ∈ R𝑑𝑝×𝑛 , P ∈ R𝑚×𝑘 ,
and Z𝑝 ∈ R𝑚×𝑛 . Therefore, space complexity of DCFAI-IMVC
is (𝑛 + 𝑘) (𝑑 + 𝑚). Due to 𝑘 ≪ 𝑐 , 𝑘 ≪ 𝑛, 𝑚 ≪ 𝑛, and 𝑑 ≪ 𝑛,
Algorithm 1 inherits linear time and space complexities with respect
to the number of samples. Table 1 reports the main time and space
complexity of all compared methods.

4 EXPERIMENTS
4.1 Datasets and Experimental Setting

Table 2: Detailed information of the used datasets.

Dataset Sample Classes Views Dimensionality
ORL 400 40 3 4096 /3304 / 6750
NGs 500 5 3 500 / 500 / 500
Handwritten 2000 10 6 240 / 76/ 216/ 47 / 64 / 6
Caltech101-20 2386 20 6 48 / 40 / 254 / 198 / 512 / 928
SUNRGBD 10335 45 2 4096/4096
NUSWIDE 30000 31 5 65/226/145/74/129
Cifar10 50000 10 3 2048 / 512 / 1024
Cifar100 50000 100 3 2048 / 512 / 1024
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Following the approach in [31], we generate incomplete datasets
by setting missing ratio 𝜓 from 0.1 to 0.9 with step of 0.1, i.e.,
𝜓 =

𝑛𝑝
𝑛 ∈ [0.1 : 0.1 : 0.9]. Seven widely used benchmark datasets

are employed, including: Cifar10, Cifar100, NUSWIDE, SUNRGBD,
Handwritten, Caltech101-20, NGs, andORL. Detailed information of
these datasets is provided in Table 2. Concretely, Cifar100, Cifar10,
NUSWIDE, SUNRGBD, Handwitten, Caltech101-20, and ORL are
the image datasets. NGs is the web page dataset. Note that the
number of samples in these datasets ranges from 400 to 50,000. This
span is already relatively large in existing IMVC.

Eleven IMVC methods are employed for comparison. These com-
petitors can be divided into two categories, (1) Deleting Miss-
ing Data (DMD): First category directly deletes missing data, and
then the remaining observable data is used for clustering, includ-
ing MIC [27], APMC [9], FLSD [37], and IMVC-CBG [31]. (2)
Filling Missing Data (FMD): The second category imputes the
missing views and clustering, including BSV [23] (the optimal
value with single view mean imputation), DAIMC [11], UEAF
[36], IMKKM-IK [22], EEIMVC [20], UTF [38],HCP-IMSC [18],
and our DCFAI-IMVC. Note that all the experiments are imple-
mented from their publicly released codes in corresponding papers.
Computing platform is an Intel Core i9 CPU and 64GB RAM.

4.2 Experiment Results
The superiority of our method are validated by comparing to 11
state-of-the-art methods on four common metrics [20] (i.e., accu-
racy (ACC), normalized mutual information (NMI), Purity (PUR)
and Fscore (FSC). The average clustering performance and stan-
dard deviations (Each experiment is repeated 20 times.) on the all
evaluated datasets are reported in Table 3. The best and second
best averages are marked in bold and underline, respectively. Mean-
while, Figs. 3-4 present the variation for our method with different
missing ratios on all evaluated metrics. "-" denotes the unavailable
results of corresponding competitors due to the long execution time
or out of space in this paper. From these tables and figures, we can
observed that:

Effectiveness. As shown in Table 1 and Figs. 3-4, some IMVC
methods are worse than single-view method BSV, while our DCFAI-
IMVCnot only consistently outperforms the single-view incomplete
clustering, but outperforms all the recent proposed IMVC methods.
This demonstrates effectiveness of our method in IMVC.

Superiority over DMD based methods. Our method consis-
tently outperformsDMDbasedmethods, i.e., MIC, APMC, and FLSD,
and the recent proposed IMVC-CBG. Even compared to IMVC-CBG,
the proposed DCFAI-IMVC is consistently superior to IMVC-CBG
on the all evaluated datasets. Meanwhile, the performance of our
method also falls more slowly than IMVC-CBG with the increasing
of the missing ratio even on two large-scale datasets, Cifar10 and
Cifar100 (It is more obvious when missing ratio equals to 0.8 or
0.9.). The main reasons are that, firstly, IMVC-CBG directly discards
missing samples to destroy the original structural relation hidden
in the incomplete multi-view data. Secondly, more importantly,
discarding missing samples can greatly affect the objectivity of data
and the correctness of results, especially when the missing propor-
tion is relatively large. This proves the superiority of imputation
missing data for our DCFAI-IMVC.

Superiority over FMD based methods. Compared to FMD
based methods, i.e., DAIMC, UEAF, IMKKM-IK, EEIMVC, UTF, and
HCP-IMSC, the proposed DCFAI-IMVC simultaneously have the
optimal clustering performance, the lowest time and space complex-
ity as shown in Table 3, Table 1, and Figs. 3-4. UTF and HCP-IMSC
have been regarded as very competitive FMD based IMVC methods.
By taking their results for example, from Table 3, UTF and HCP-
IMSC outperform the optimal DMD based method IMVC-CBG in
most cases. But UTF and HCP-IMSC are lower than IMVC-CBG in
the ACC of the Caltech-20 dataset. Inversely, DCFAI-IMVC is supe-
rior to the most recent methods by a large margin, achieving the
SOTA clustering performance. More importantly, Table 1 indicates
that most of FMD based methods have O(𝑛3) computational com-
plexity and O(𝑛2) space complexity. While DCFAI-IMVC enjoys a
linear time and space complexity in large-scale tasks, which is very
rare as a FMD based method to simultaneously achieve the SOTA
performance, the lowest time complexity, and space complexity.

For another, Fig. 5 (a)-(c) compare the quality of the filled View
#1 data for three competitors, i.e., UTF, HCP-IMSC, and our DCFAI-
IMVC. We can observe that our DCFAI-IMVC has clearer cluster
discriminability and tighter cluster structure than UTF and HCP-
IMSC, which indicates that the quality of our filled data is superior
to these two competitors. Compared to the original incomplete data
on Handwritten in Fig. 6 (a), intuitively, both Fig. 5 (a) and (b) have
many wrong imputation values, while almost all of the filled data
of our DCFAI-IMVC in Fig. 5 (c) is filled correctly. The main reason
is that UTF and HCP-IMSC use all the observed data to fill in the
missing data in the original space, rather than learning the high-
quality anchors to perform imputation in the latent space. Then,
the redundant information or fraud features in observed data leads
to poor imputation quality. In addition, Fig. 5 (d)-(f) also show that
affinity graph learned by our DCFAI-IMVC has the more compact
cluster structure than the graphs of UTF and HCP-IMSC. By this
way, the superiority of the proposed method is proved once again.

Validation on the imputation data. Firstly, Fig. 5 have shown
the superiority of our DCFAI-IMVC in imputation the missing data
compared to the most recent UTF and HCP-IMSC. Furthermore,
Fig. 6 has reported the filled results of the incomplete data, the
filled data and the learned latent data of our DCFAI-IMVC on View
#1 of Handwriten dataset (𝜓=0.9). Compare with Fig. 6 (a) and (b),
the observed data of black ellipses doesn’t change before and after
imputation, while red ellipses represents the change from zeros
imputation of (a) to the imputation values learned by our DCFAI-
IMVC. As can be seen, the filled data (i.e., red ellipses of (b)) by our
DCFAI-IMVC is almost exactly right one-to-one correspondence
between clusters. In addition, compare (a) with (c), the learned latent
data accurately recover the cluster structure of (a), which indicates
that the learned latent data can be well used to characterize the
data of (a). The above analyses forcefully prove the effectiveness of
imputation missing data in latent space rather than original space.

4.3 Parameter Settings and Validity
Algorithm 1 involves three parameters to be set properly, i.e., param-
eters 𝛼 , 𝛽 , and anchor number𝑚. As shown in Fig. 7, by performing
grid search on the large-scale Cifar10 dataset, we first vary param-
eter 𝛼 and 𝛽 in 2[−5:5] with the fixed 𝑚 = 3𝑘 . Then, we tune 𝑚
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Figure 3: The averaged ACC w.r.t. missing ratios from 0.1 to 0.9 on six benchmark datasets are reported. Due to space limit, the
clustering results of other metrics are omitted.

Table 3: Average performance comparison w.r.t. different missing ratios. Best/second best results are marked in bold and
underline, respectively.

Dataset Metrics BSV MIC DAIMC APMC UEAF IMKKM-IK EEIMVC FLSD UTF IMVC-CBG HCP-IMSC Our

ORL

ACC 25.18±0.73 44.94 ±1.50 69.45 ±2.16 65.80 ±1.75 61.49 ±2.34 60.41 ±2.73 74.36 ±2.38 50.33 ±1.69 85.57 ±0.16 71.65 ±2.53 81.88 ±0.03 93.32 ±0.02
NMI 48.92±0.75 57.44 ±0.84 82.44 ±0.9 81.10 ±0.66 77.58 ±1.09 79.60 ±1.10 85.93 ±1.16 68.07 ±1.12 92.98 ±0.08 80.61 ±1.46 90.85 ±0.02 97.24 ±0.01
PUR 26.34±0.76 41.17±1.24 73.83 ±1.63 70.18 ±1.32 64.05 ±1.75 61.56 ±2.47 76.82 ±2.03 51.49 ±1.56 88.13 ±0.12 71.65 ±2.02 84.44 ±0.03 94.52 ±0.01
FSC 9.86±0.53 18.80 ±1.02 56.97 ±2.71 50.73 ±2.39 40.23 ±2.58 45.20 ±2.91 64.52 ±2.69 31.91 ±1.84 79.10 ±0.06 47.05 ±3.83 75.42 ±0.01 91.42 ±0.02

NGs

ACC 42.37±1.83 24.86±0.26 73.31±9.07 89.89±0.01 89.89±0.03 50.36±0.13 78.37±0.12 85.47±0.03 91.13±0.09 89.26±0.02 89.11±0.00 99.26±0.00
NMI 22.79±1.17 9.28±0.29 58.93±6.28 73.73±0.03 73.73±0.08 33.49±0.11 58.92±0.18 66.48±0.03 75.92±0.15 73.90±0.06 72.90±0.00 97.59±0.01
PUR 44.37±1.31 25.79±0.22 73.31±9.07 89.89±0.01 89.89±0.03 51.23±0.10 78.37±0.12 85.47±0.03 91.13±0.09 89.26±0.02 89.11±0.00 99.26±0.00
FSC 32.97±0.88 33.27±0.13 74.11±7.29 81.29±0.02 81.29±0.06 42.84±0.09 64.00±0.14 72.02±0.03 80.04±0.11 81.23±0.03 80.04±0.00 98.51±0.00

Caltech-20

ACC 39.91±0.23 26.69±1.68 45.72±1.93 - 39.71±1.38 32.21±1.66 41.33±1.29 43.45±1.82 49.48±2.09 50.56±1.32 50.05±0.46 52.62±0.03
NMI 25.58±0.83 30.66±1.13 55.70±1.36 - 50.90±0.92 40.09±0.98 54.74±0.61 52.33±0.90 72.31±1.32 52.86±1.61 60.37±0.53 77.50±0.01
PUR 48.70±0.69 55.89±1.13 74.89±0.88 - 70.90±0.74 60.14±1.38 72.28±0.79 73.37±0.53 82.22±1.76 71.04±0.93 76.55±0.45 86.70±0.01
FSC 32.74±0.29 24.46±1.26 40.46±2.19 - 33.34±1.49 29.18±1.65 40.70±1.43 41.50±1.56 43.56±2.62 44.59±2.32 44.81±0.68 44.82±0.02

Handwritten

ACC 55.85±1.41 68.96±0.53 90.08±0.52 88.96±0.07 90.18±0.12 88.45±0.15 89.88±0.22 91.14±0.08 95.57±0.98 96.96±0.06 92.56±0.84 99.27±0.00
NMI 52.17±1.55 65.28±0.46 86.40±3.31 85.28±0.05 86.50±0.07 84.83±0.14 86.20±0.16 87.46±0.07 94.54±0.93 95.93±0.02 91.36±1.42 98.28±0.01
PUR 55.85±1.12 68.96±0.23 90.08±1.53 88.96±0.06 90.18±0.10 88.45±0.13 89.88±0.18 91.14±0.09 95.57±1.17 96.96±0.03 92.56±0.96 99.27±0.00
FSC 52.34±1.08 65.45±0.19 86.57±1.49 85.45±0.02 86.67±0.06 84.83±0.09 86.37±0.14 87.63±0.05 94.80±0.76 96.19±0.03 91.09±0.61 98.54±0.00

SUNRGBD

ACC 8.49±0.06 13.84±0.48 17.01±0.76 17.93±0.55 15.80±0.39 17.06±0.36 16.97±0.46 14.82±0.39 22.04±1.67 18.05±0.18 20.76±0.06 23.69±0.01
NMI 6.31±0.06 21.02±0.28 21.34±0.35 21.83±0.22 21.21±0.28 20.95±0.28 20.86±0.24 20.86±0.19 35.00±1.32 23.92±0.16 33.72±0.08 37.65±0.01
PUR 13.22±0.18 32.58±0.64 34.90±0.81 34.99±0.39 34.78±0.62 34.51±0.86 34.42±0.37 32.66±0.34 42.55±1.64 33.55±0.28 41.27±0.03 46.20±0.01
FSC 7.18±0.02 9.53±0.18 10.66±0.32 10.98±0.28 9.50±0.14 10.11±0.19 10.02±0.22 11.45±0.01 16.16±1.19 10.51±0.38 14.88±0.05 16.81±0.01

NUSWIDEOBJ

ACC 10.76±0.20 - 13.89±0.18 - - - 12.86±0.26 - - 12.56±0.13 - 15.38±1.21
NMI 3.39±0.06 - 11.34±0.39 - - - 10.52±0.09 - - 10.40±0.03 - 13.17±0.03
PUR 14.75±0.08 - 23.69±0.32 - - - 21.88±0.23 - - 21.01±0.15 - 22.88±0.12
FSC 10.75±0.05 - 8.62±0.59 - - - 8.01±0.06 - - 7.91±0.03 - 8.28±0.03

Cifar10

ACC - - 90.81±0.45 - - - - - - 96.19±0.13 - 99.99±0.00
NMI - - 90.47±0.55 - - - - - - 90.89±0.27 - 99.95±0.00
PUR - - 95.81±0.45 - - - - - - 96.19±0.26 - 99.99±0.00
FSC - - 92.16±0.68 - - - - - - 92.67±0.13 - 99.98±0.00

Cifar100

ACC - - 89.71±1.00 - - - - - - 93.09±1.18 - 98.74±0.00
NMI - - 98.26±0.16 - - - - - - 98.63±0.29 - 99.72±0.00
PUR - - 92.60±0.54 - - - - - - 94.98±0.82 - 98.78±0.00
FSC - - 90.82±0.94 - - - - - - 90.87±2.97 - 98.72±0.00
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Figure 4: The averaged NMI w.r.t. missing ratios from 0.1 to 0.9 on six benchmark datasets are reported. Due to space limit, the
clustering results of other metrics are omitted.
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(a) UTF: X1 (b) HCP-IMSC: X1 (c) Our: X1

(d) UTF: Z∗ (e) HCP-IMSC: Z∗ (f) Our: Z∗

Figure 5: The filled View #1 data and the learned graphs of
UTF, HCP-IMSC, and our DCFAI-IMVC are visualized with
𝑡-SNE on Handwritten and NGs datasets (𝜓=0.9).

(a) Incomplete data X1 (b) Filled data X1
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(c) Latent dataW1X1

Figure 6: Visualization of incomplete View #1 data, the filled
View #1 data and the learned latent View #1 data with 𝑡-SNE
on Handwriten dataset (𝜓=0.9). Note that black and red el-
lipses in (a) represent the observed dataX𝑜

1 andmissing data
X𝑚
1 with zeros imputation. And black and red ellipses in (b)

denote the observed data X𝑜
1 and filled missing data X𝑚
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Figure 7: Cifar10: ACC w.r.t. 𝛼 , 𝛽 , and𝑚 (𝜓=0.2).

in [𝑘, 2𝑘, 3𝑘, 5𝑘, 7𝑘] with the fixed 𝛼 = 2−1 and 𝛽 = 24. Fig. 7 (a)
indicates that our DCFAI-IMVC can achieve the satisfying perfor-
mance in a wide scope for 𝛼 , 𝛽 . Thus, Algorithm 1 is insensitive to
𝛼 and 𝛽 . And Fig. 7 (b) shows that even a small number of anchors
can achieve the excellent and stable clustering performance. This
demonstrates that our method only requires a small number of an-
chors to fill the missing data, achieving the promising performance.

Table 4 reports the running time of all competitors on all bench-
mark datasets, and demonstrates that our DCFAI-IMVC can achieve
very competitive computational efficiency over all evaluated datasets
and competitors. Especially on the datasets Cifar10 and Cifar100 of
50,000 samples, our DCFAI-IMVC has the lowest time cost. Mean-
while, many existing IMVC methods fail due to out of space or the
long execution time. Additionally, Fig. 8 reports the convergence
curve of Cifar10, Cifar100, and ORL, where the objective value is
monotonically and fast reducing close to a stable point. Overall,
DCFAI-IMVC achieves the lower time cost and space complexity.
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Figure 8: Objection function value over the Cifar10, Ci-
far100, and ORL datasets (𝜓=0.2).

Table 4: Computational cost (In Seconds). Handwritten and
NUSWIDEOBJ are respectively simplifies as HWandNUS in
this table.

Method ORL NGs Caltech-20 HW SUNRGBD NUS Cifar10 Cifar100
BSV 0.97 0.29 2.32 2.79 2361.05 9624.38 - -
MIC 418.37 143.94 2847.45 3106.34 6107.6 - - -
DAIMC 1205.6 42.61 69.88 78.8 184.06 1667.67 29948.48 26349.92
APMC 0.58 0.61 - 98.23 156.37 - - -
UEAF 14.3 2.36 26.63 36.24 89.61 - - -
IMKKM-IK 0.58 1.47 126.15 168.92 309.29 - - -
EE-R-IMVC 0.73 0.57 3.96 4.31 5.68 1872.44 - -
FLSD 87.44 3.41 54.04 68.92 130.79 - - -
UTF 10.72 6.32 60.38 70.64 209.34 - - -
IMVC-CBG 1.63 1.42 5.39 7.24 8.61 22.54 69.18 155.62
HCP-IMSC 8.37 6.32 157.38 80.58 358.34 - - -
Our 2.34 3.29 6.43 4.95 10.68 34.49 48.23 86.31

Meanwhile, it also has very competitive clustering performance for
IMVC. Therefore, DCFAI-IMVC enjoys more potential to handle
large-scale incomplete tasks in practical application.

4.4 Conclusion
In this paper, we propose a novel and highly-efficient IMVCmethod
to fast and good missing data imputation for improving cluster-
ing termed DCFAI-IMVC. Different from employing all the original
observed data of existing IMVCmethods to fill missing data, DCFAI-
IMVC can efficiently and flexibly learn a small number of anchors
to large-scale missing data imputation. DCFAI-IMVC is the first
practice to integrate anchor learning and missing data imputation
into a unified model to address large-scale IMVC tasks. Compre-
hensive experiments and analysis have proved the effectiveness,
superiority, and efficiency of our method.
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