
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Local Centrality Minimization withQuality Guarantees
Anonymous Author(s)

∗

ABSTRACT
Centrality measures, quantifying the importance of vertices or

edges, play a fundamental role in network analysis. To date, trig-

gered by some positive approximability results, a large body of

work has been devoted to studying centrality maximization, where

the goal is to maximize the centrality score of a target vertex by

manipulating the structure of a given network. On the other hand,

due to the lack of such results, only very little attention has been

paid to centrality minimization, despite its practical usefulness.

In this study, we introduce a novel optimization model for local

centrality minimization, where the manipulation is allowed only

around the target vertex. We prove the NP-hardness of our model

and that the most intuitive greedy algorithm has a quite limited

performance in terms of approximation ratio. Then we design two

effective approximation algorithms: The first algorithm is a highly-

scalable algorithm that has an approximation ratio unachievable

by the greedy algorithm, while the second algorithm is a bicriteria

approximation algorithm that solves a continuous relaxation based

on the Lovász extension, using a projected subgradient method.

To the best of our knowledge, ours are the first polynomial-time

algorithms with provable approximation guarantees for centrality

minimization. Experiments using a variety of real-world networks

demonstrate the effectiveness of our proposed algorithms: Our first

algorithm is applicable to million-scale graphs and obtains much

better solutions than those of scalable baselines, while our second

algorithm is rather strong against adversarial instances.

ACM Reference Format:
Anonymous Author(s). 2018. Local Centrality Minimization with Quality

Guarantees. In Proceedings of Make sure to enter the correct conference title
from your rights confirmation emai (Conference acronym ’XX). ACM, New

York, NY, USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Among the many analytical tools that social network analysis [21]

borrowed from graph theory, centrality measures play a funda-

mental role in a wide variety of analyses [12]. Centrality, which

quantifies the importance of vertices or edges only based on the

graph structure, has found many applications, including, e.g., iden-

tification of important users or connections in social networks,

community detection [34], anomaly detection [28], to name a few.

Local centrality minimization is the problem of removing a few

existing edges around a target vertex, so as to minimize its centrality

score. A direct application can be found in the context of reducing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

the visibility, or influence, of a targeted harmful user in a social

network, without explicitly blocking the user account. The edges to

be removed, identified by local centrality minimization, are themost

important edges for the centrality (i.e., visibility or influence) of the

target vertex. In this regard, another direct application is to keep

satisfying influential users so that they are engaged in the platform.

The degree of satisfaction of such influencers often depends on how

actually influential they are in the platform, i.e., how much their

content is consumed by the network. Local centrality minimization

can be used for revealing the most important connections between

the influencers and their followers, which are key in contributing

to their visibility.

While a large body of work has been devoted to studying cen-
trality maximization [12], much less attention has been paid to

centrality minimization (see Section 2 for a brief literature sur-

vey). Generally speaking, the goal of centrality maximization is

to maximize the centrality score of a target vertex by adding a

limited number of edges to the network. In many reasonable op-

timization models, the objective function becomes monotone and

submodular [14], and thus a simple greedy algorithm admits a

(1 − 1/e)-approximation [33]. This positive result makes the basis

of various studies on centrality maximization [4, 7, 10, 11, 18, 29].

The lack of positive approximation results has instead limited

the attention on the centrality minimization problem, especially in

its local variant. Waniek et al. [41] introduced several optimization

models for local centrality minimization under some specific objec-

tives and constraints, investigated the computational complexity of

their models, and devised some algorithms. Later, Waniek et al. [42]

investigated local centrality minimization from a game-theoretic

point of view. However, the work byWaniek et al. [41, 42] proposed

only (exponential-time) exact algorithms and heuristics.

In this paper, we study the local centrality minimization prob-

lem, adopting the most well-established centrality measures called

the harmonic centrality [12], which quantifies the importance of

vertices based on the level of reachability from the other vertices.

The harmonic centrality is known as an effective alternative to the

closeness centrality [6], which was employed in Waniek et al. [41],

in the sense that unlike the closeness centrality, it is well-defined

even in the case where a graph is not strongly connected.

Boldi and Vigna [6] showed that among all the known centrality

measures, only the harmonic centrality satisfies all the desirable

axioms, namely the size axiom, density axiom, and score mono-

tonicity axiom. Recently, Murai and Yoshida [32] theoretically and

empirically demonstrated that among well-known centrality mea-

sures, the harmonic centrality is most stable (thus reliable) against

the uncertainty of a given graph.

1.1 Paper contributions and roadmap
In this paper, we introduce a novel optimization model for local

centrality minimization, where the harmonic centrality is employed

as an objective function. Specifically, in our model, given a directed

graph 𝐺 = (𝑉 ,𝐴), a target vertex 𝑣 ∈ 𝑉 , and a budget 𝑏 ∈ Z>0,
1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

we aim to find a set of incoming edges of 𝑣 with size (no greater

than) 𝑏 whose removal minimizes the harmonic centrality score of

𝑣 , denoted by ℎ𝐺 (𝑣) (to be defined in Section 3).

For our optimization model, we first analyze the computational

complexity. Specifically, we show that our model is NP-hard even

on a very limited graph class (i.e., acyclic graphs), by constructing

a polynomial-time reduction from the minimum 𝑘-union problem.

Furthermore, we prove that the most intuitive greedy algorithm,

which iteratively removes an incoming edge of 𝑣 that maximally

decreases the objective value, cannot achieve an approximation

ratio of 𝑜 (|𝑉 |), while any reasonable algorithm has an approxima-

tion ratio of 𝑂 (|𝑉 |). This negative result motivates the design of

algorithms that exploit the characteristics of our model.

We design two polynomial-time approximation algorithms. The

first algorithm is a highly-scalable algorithm that has an approxi-

mation ratio of

√︁
2ℎ𝐺 (𝑣). We stress that as

√︁
2ℎ𝐺 (𝑣) = 𝑂 (

√︁
|𝑉 |) =

𝑜 (|𝑉 |), this approximation ratio is unachievable by the above greedy

algorithm. Our algorithm first sorts the incoming neighbors of the

target vertex 𝑣 in the decreasing order of their harmonic centrality

scores on a slightly modified graph, and then removes 𝑏 incom-

ing edges from the top-𝑏 vertices in the sorted list. To prove the

approximation ratio, we scrutinize the relationship between the

harmonic centrality scores of the target vertex and its incoming

neighbors. In the end, we also prove the tightness of our analysis

of the approximation ratio.

The second algorithm is a polynomial-time algorithm that has

a bicriteria approximation ratio of (1𝛼 , (
1

1−𝛼 , 𝜖)) for any 𝛼 ∈ (0, 1)
and 𝜖 > 0. That is, the algorithm finds a subset of incoming edges

of the target vertex 𝑣 with size at most 𝑏/𝛼 but attains the objective

value at most the original optimal value times
1

1−𝛼 plus 𝜖 . There-

fore, the algorithm approximates the original optimal value while

violating the budget constraint to some bounded extent. To design

the algorithm, we first introduce a continuous relaxation of our

model. To this end, we use the well-known extension of set func-

tions, called the Lovász extension [26]. An important fact is that

the objective function of our model is submodular, which guaran-

tees that its Lovász extension is (not necessarily differentiable but)

convex. Therefore, we can solve the relaxation (with an arbitrarily

small error) using a projected subgradient method [3]. Once we get

a fractional solution, we apply a simple probabilistic procedure and

obtain a subset of incoming edges of the target vertex 𝑣 .

Finally, our experiments on a variety of real-world networks

show that our first algorithm is applicable to million-scale graphs

and obtains much better solutions than those of scalable baselines,

while our second algorithm is strong against adversarial instances.

In summary, our contributions are as follows:

• We study the local harmonic centrality minimization problem:

We prove that it is NP-hard even on acyclic graphs, its ob-

jective function is submodular, and the most intuitive greedy

algorithm cannot achieve 𝑜 (|𝑉 |)-approximation (Section 3).

• We devise a highly-scalable algorithm with an approximation

ratio of

√︁
2ℎ𝐺 (𝑣), unachievable by the greedy algorithm.

• We then devise a bicriteria approximation algorithm that solves

a continuous relaxation based on the Lovász extension, using

a projected subgradient method (Sections 5 and 6).

To the best of our knowledge, ours are the first polynomial-time

algorithms with provable approximation guarantees for centrality

minimization.

2 RELATEDWORK
In this section, we review related literature about centrality mini-

mization and maximization, submodular minimization, and other

relevant applications in social networks analysis.

Centrality minimization. The most related to the present paper

is the work on centrality minimization by Waniek et al. [41, 42]

whose goal is to provide a methodology that contributes to hid-

ing individuals in social networks from centrality-based network

analysis algorithms.

More specifically, Waniek et al. [41] introduced the following

optimization model: Given a directed graph 𝐺 = (𝑉 ,𝐴), a target
vertex 𝑣 ∈ 𝑉 , a budget 𝑏 ∈ Z>0, and a set 𝑀 of possible single-

edge modifications, we are asked to select at most 𝑏 actions in𝑀

so as to minimize the centrality score of 𝑣 while satisfying some

constraint on the influence of some vertices in the graph. As a

centrality measure, they considered the degree centrality, closeness

centrality, and betweenness centrality. They showed that except for

the degree centrality case, the above model is NP-hard even when

the constraint on the influence of vertices is ignored, and devised

simple heuristics.

Waniek et al. [42] investigated local centrality minimization from

a game-theoretic point of view. As a tool to analyze their game, they

studied the following optimization model: Given a directed graph

𝐺 = (𝑉 ,𝐴), a target vertex 𝑣 ∈ 𝑉 , a hiding parameter 𝛿 , and a set𝑀

as above, we are asked to find a minimal subset of𝑀 guaranteeing

that there are at least 𝛿 vertices having a centrality score greater

than that of 𝑣 . As a centrality measure, they again considered the

above three. They showed that the model is 2-approximable for

the degree centrality but is inapproximable within any logarithmic

factor for the other two. Note that the above approximation is just

for the size of the output rather than the ranking of the centrality

score of 𝑣 (or the centrality score of 𝑣).

Veremyev et al. [38] studied a global centrality minimization

problem: Given an undirected graph𝐺 = (𝑉 , 𝐸) with cost 𝑐𝑒 ∈ R≥0
for each 𝑒 ∈ 𝐸, a target vertex subset 𝑆 ⊆ 𝑉 , and a budget 𝑏 ∈
Z>0, we are asked to find 𝐹 ⊆ 𝐸 whose removal minimizes the

centrality score of the target vertex subset 𝑆 subject to the budget

constraint

∑
𝑒∈𝐹 𝑐𝑒 ≤ 𝑏. The centrality score of a vertex subset is

defined as a generalization of the centrality score of a vertex. As a

centrality measure, they considered a quite general one, based on

distance between vertices, which includes the harmonic centrality

as a special case. They proved that the above model is NP-hard for

any centrality measure included in the above, and as a by-product

of the analysis, they also mentioned the NP-hardness of its local

variant, which coincides with (the undirected-graph counterpart

of) our proposed model. In the present paper, by focusing on the

harmonic centrality, we prove that our model is NP-hard even

on a very limited graph class (i.e., acyclic graphs). On a positive

side, they presented an exact algorithm based on mathematical

programming and greedy heuristics. Very recently, Liu et al. [25]

addressed another global centrality minimization problem, where

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Local Centrality Minimization withQuality Guarantees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

the objective function is a centrality measure called the information

centrality and the connectivity of the resulting graph is guaranteed.

Centrality maximization. Centrality maximization has more

actively been studied in the literature (e.g., [4, 7, 10, 11, 18, 29]),

where the most related to ours is due to Crescenzi et al. [10]. They

introduced the harmonic centrality maximization problem, where

given a directed graph 𝐺 = (𝑉 ,𝐴), a target vertex 𝑣 ∈ 𝑉 , and

a budget 𝑏 ∈ Z>0, we are asked to insert at most 𝑏 incoming

edges of 𝑣 so as to maximize the harmonic centrality score of 𝑣 .

Our proposed optimization model can be seen as a minimization

counterpart of their problem. They proved that the problem is

APX-hard, but devised a polynomial-time (1 − 1/e)-approximation

algorithm based on the submodularity of the objective function.

Finally, we note that there is another class of problems also called

centrality maximization, where the goal is to find 𝑆 ⊆ 𝑉 that has

the maximum group centrality score [1, 2, 4, 8, 18, 24, 27, 31, 35, 45],

which is less relevant to the present paper.

Submodular minimization. Submodular minimization is one of

the most well-studied problem classes in combinatorial optimiza-

tion. Among the literature, the most related work is due to Svitkina

and Fleischer [37]. They stated that a polynomial-time (1𝛼 ,
1

1−𝛼)-
bicriteria approximation algorithm for submodular minimization

with a cardinality upper bound (and thus for our proposed model)

is possible for any 𝛼 ∈ (0, 1), using techniques in Hayrapetyan

et al. [17]. However, Hayrapetyan et al. [17] did not consider the

problem: They addressed the problem called the minimum-size

bounded-capacity cut, where the function in the constraint instead

of the objective function is submodular. Therefore, the above state-

ment is not trivial and even our proposed model should be handled

in a formal way. Lovász extension has actively been used for devel-

oping novel network analysis algorithms (e.g., [22, 23, 36]).

Applications. Reducing the visibility or influence of target users

in social networks has been studied in the context of influence

minimization [20, 40, 43]. All of existing studies are based on

some influence diffusion models such as the independent cascade

model [15, 16] and the linear threshold model [19]. Unlike those,

our model does not assume any influence diffusionmodel, but is just

based on the network structure. Very recently, Fabbri et al. [13] and

Coupette et al. [9] addressed the problem of reducing the exposure

to harmful contents in social media networks.

On the other hand, identifying the users and/or connections that

play a key role for user engagement in social networks has also

attracted much attention. Bhawalkar et al. [5] initiated this kind of

study from an optimization perspective. They invented a model that

aims to find a group of users whose permanent use of the service

guarantees user engagement as much as possible, and designed

polynomial-time algorithms for some cases. Later, Zhang et al. [44]

and Zhu et al. [46] introduced variants of the above model, and

devised intuitive heuristics.

3 PROBLEM FORMULATION AND
CHARACTERIZATION

In this section, we mathematically formulate our problem (Problem

1), and prove its NP-hardness (Theorem 1) and the submodularity

of the objective function (Theorem 2). Finally, we show the quite

limited performance of the greedy algorithm (Theorem 3).

Let𝐺 = (𝑉 ,𝐴) be a directed graph (or digraph for short). Through-
out the paper, we assume that digraphs are simple, that is, there

exist neither self-loops nor multiple edges. For 𝐹 ⊆ 𝐴, we define

𝐺 \𝐹 as the subgraph of𝐺 that is constructed by removing all edges

in 𝐹 from 𝐺 , i.e., 𝐺 \ 𝐹 = (𝑉 ,𝐴 \ 𝐹). For 𝑣 ∈ 𝑉 , we denote by 𝜌 (𝑣)
the set of incoming edges of 𝑣 , i.e., 𝜌 (𝑣) = {(𝑢, 𝑣) ∈ 𝐴 | 𝑢 ∈ 𝑉 }. For
𝑣 ∈ 𝑉 , let ℎ𝐺 (𝑣) be the harmonic centrality score of 𝑣 on a digraph

𝐺 , i.e.,

ℎ𝐺 (𝑣) =
∑︁

𝑢∈𝑉 \{𝑣 }

1

𝑑𝐺 (𝑢, 𝑣)
,

where 𝑑𝐺 (𝑢, 𝑣) is the (shortest-path) distance from 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉
on 𝐺 , and by convention, 𝑑𝐺 (𝑢, 𝑣) = ∞ when 𝑣 is not reachable

from 𝑢. Note that, contrarily to other centrality measures, even in

the case where a digraph is not strongly connected, the harmonic

centrality is still well-defined (assuming by convention that 1/∞ =

0). Intuitively, the harmonic centrality quantifies the importance

of a given vertex 𝑣 based on the level of reachability from the

other vertices. The problem we tackle in this paper is formalized as

follows:

Problem 1 (Local harmonic centrality minimization). Given a
digraph 𝐺 = (𝑉 ,𝐴), a target vertex 𝑣 ∈ 𝑉 , and a budget 𝑏 ∈ Z>0, we
are asked to find 𝐹 ⊆ 𝜌 (𝑣) with |𝐹 | ≤ 𝑏 whose removal minimizes
the harmonic centrality of 𝑣 ∈ 𝑉 , i.e., 𝑓(𝐺,𝑣) (𝐹) B ℎ𝐺\𝐹 (𝑣).

By constructing a polynomial-time reduction from the NP-hard

optimization problem called the minimum 𝑘-union, we can prove

the following. The proof can be found in Appendix A.1.

Theorem 1. Problem 1 is NP-hard even on acyclic graphs.

We next show that the objective function 𝑓(𝐺,𝑣) of Problem 1 is

submodular, which helps us design our bicriteria approximation

algorithm in Section 5. Let 𝑆 be a finite set. A set function 𝑓 : 2𝑆 → R
is said to be submodular if for any 𝑋,𝑌 ⊆ 𝑆 , it holds that

𝑓 (𝑋) + 𝑓 (𝑌) ≥ 𝑓 (𝑋 ∪ 𝑌) + 𝑓 (𝑋 ∩ 𝑌).
We prove the following in Appedix A.2:

Theorem 2. For any 𝐺 = (𝑉 ,𝐴) and 𝑣 ∈ 𝑉 , the objective function
𝑓(𝐺,𝑣) of Problem 1 is submodular.

Finally, we prove that the most intuitive greedy algorithm has

a quite limited performance in terms of the approximation ratio.

Specifically, we consider the algorithm that iteratively removes

an incoming edge of the target vertex 𝑣 that maximally decreases

the harmonic centrality score of 𝑣 , until it exhausts the budget.

For reference, the pseudo-code is given in Algorithm 4 in Appen-

dix A.3. This algorithm runs in 𝑂 (𝑏 |𝜌 (𝑣) | (|𝑉 | + |𝐴|)) time. Note

that, unlike many submodular maximization algorithms, the lazy
evaluation technique [30] cannot be used to obtain a practically

efficient implementation. The proof of the following is available in

Appendix A.4.

Theorem 3. The greedy algorithm has no approximation ratio of
𝑜 (|𝑉 |) for Problem 1, while any algorithm that outputs 𝐹 ⊆ 𝜌 (𝑣) with
|𝐹 | = 𝑏 has an approximation ratio of 𝑂 (|𝑉 |).

4 SCALABLE APPROXIMATION ALGORITHM
In this section, we present a highly-scalable

√︁
2ℎ𝐺 (𝑣)-approximation

algorithm for Problem 1.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 1:
√︁
2ℎ𝐺 (𝑣)-approximation algorithm for Prob-

lem 1

Input : 𝐺 = (𝑉 ,𝐴), 𝑣 ∈ 𝑉 , and 𝑏 ∈ Z>0
Output : 𝐹 ⊆ 𝜌 (𝑣) with |𝐹 | ≤ 𝑏

1 Sort the elements of 𝑁in (𝑣) as (𝑤1, . . . ,𝑤 |𝜌 (𝑣) |) so that

ℎ𝐺\𝜌 (𝑣) (𝑤1) ≥ · · · ≥ ℎ𝐺\𝜌 (𝑣) (𝑤 |𝜌 (𝑣) |);
2 return {(𝑤1, 𝑣), . . . , (𝑤𝑏 , 𝑣)};

4.1 Algorithm
Let 𝑁in (𝑣) be the set of incoming neighbors of 𝑣 , i.e., 𝑁in (𝑣) =
{𝑤 ∈ 𝑉 | (𝑤, 𝑣) ∈ 𝜌 (𝑣)}. The intuition behind our algorithm is

quite simple: As long as there exists a vertex𝑤 ∈ 𝑁in (𝑣) that has a
large harmonic centrality score, so does the target vertex 𝑣 . This

means that it is urgent to remove incoming edges of 𝑣 that come

from vertices having large harmonic centrality scores. Note that our

algorithm and analysis consider the harmonic centrality scores on

𝐺 \𝜌 (𝑣) rather than𝐺 ; this is essential to obtain our approximation

ratio. Specifically, our algorithm first sorts the elements of 𝑁in (𝑣)
as (𝑤1, . . . ,𝑤 |𝜌 (𝑣) |) so that ℎ𝐺\𝜌 (𝑣) (𝑤1) ≥ · · · ≥ ℎ𝐺\𝜌 (𝑣) (𝑤 |𝜌 (𝑣) |)
and just returns {(𝑤1, 𝑣), . . . , (𝑤𝑏 , 𝑣)}. For reference, the entire pro-
cedure is described in Algorithm 1.

The algorithm is highly scalable. Indeed, the time complexity

of Algorithm 1 is dominated by the part of computing the har-

monic centrality scores of vertices in 𝑁in (𝑣), which just takes

𝑂 (|𝜌 (𝑣) | (|𝑉 | + |𝐴|)) time. Therefore, the algorithm is asymptot-

ically 𝑏 times faster than the greedy algorithm (Algorithm 4).

4.2 Analysis
From now on, we analyze the approximation ratio of Algorithm 1.

The following lemma demonstrates that the optimal value can be

lower bounded using the maximum harmonic centrality score over

the remaining incoming neighbors of 𝑣 in the resulting graph:

Lemma 1. Let 𝐹 ∗ be an optimal solution to Problem 1 and 𝑁 ∗ the
vertex subset corresponding to 𝐹 ∗, i.e., 𝑁 ∗ = {𝑤 ∈ 𝑉 | (𝑤, 𝑣) ∈ 𝐹 ∗}.
Then it holds that

𝑓(𝐺,𝑣) (𝐹 ∗) ≥
1

2

(
max

𝑤∈𝑁in (𝑣)\𝑁 ∗
ℎ𝐺\𝜌 (𝑣) (𝑤) + 1

)
.

Proof. For any𝑤 ∈ 𝑁in (𝑣) \ 𝑁 ∗, we have

𝑓(𝐺,𝑣) (𝐹 ∗) = ℎ𝐺\𝐹 ∗ (𝑣) =
∑︁

𝑢∈𝑉 \{𝑣 }

1

𝑑𝐺\𝐹 ∗ (𝑢, 𝑣)

≥
∑︁

𝑢∈𝑉 \{𝑣 }

1

𝑑𝐺\𝐹 ∗ (𝑢,𝑤) + 1
= 1 +

∑︁
𝑢∈𝑉 \{𝑤,𝑣 }

1

𝑑𝐺\𝐹 ∗ (𝑢,𝑤) + 1

≥ 1 + 1

2

∑︁
𝑢∈𝑉 \{𝑤,𝑣 }

1

𝑑𝐺\𝐹 ∗ (𝑢,𝑤)
≥ 1

2

+ 1

2

∑︁
𝑢∈𝑉 \{𝑤 }

1

𝑑𝐺\𝐹 ∗ (𝑢,𝑤)

=
1

2

(
ℎ𝐺\𝐹 ∗ (𝑤) + 1

)
≥ 1

2

(
ℎ𝐺\𝜌 (𝑣) (𝑤) + 1

)
,

where the first inequality follows from the triangle inequality of

distance 𝑑𝐺\𝐹 ∗ , the third equality follows from 𝑑𝐺\𝐹 ∗ (𝑤,𝑤) = 0,

and the second inequality follows from the fact that the addition

of 1 to the denominator makes it at most twice the original. The

arbitrariness of the choice of𝑤 ∈ 𝑁in (𝑣) \𝑁 ∗ derives the statement.

□

On the other hand, the next lemma upper bounds the objective

value of the output of Algorithm 1 using the harmonic centrality

scores of the remaining incoming neighbors of 𝑣 in the resulting

graph:

Lemma 2. Let 𝐹ALG be the output of Algorithm 1 and 𝑁ALG the
vertex subset corresponding to 𝐹ALG, i.e., 𝑁ALG = {𝑤 ∈ 𝑉 | (𝑤, 𝑣) ∈
𝐹ALG}. Then we have

𝑓(𝐺,𝑣) (𝐹ALG) ≤ (|𝜌 (𝑣) | − 𝑏) +
∑︁

𝑤∈𝑁in (𝑣)\𝑁ALG

ℎ𝐺\𝜌 (𝑣) (𝑤) .

Proof. On digraph 𝐺 \ 𝐹ALG, any 𝑢 ∈ 𝑉 \ {𝑣} satisfies either
(i) there exists no (shortest) path from 𝑢 to 𝑣 or (ii) there exists

𝑤 (𝑢) ∈ 𝑁in (𝑣) \ 𝑁ALG that is contained in a shortest path from 𝑢

to 𝑣 , i.e., 𝑑𝐺\𝐹ALG (𝑢, 𝑣) = 𝑑𝐺\𝐹ALG (𝑢,𝑤 (𝑢)) + 1. Let 𝑉 ′ ⊆ 𝑉 \ {𝑣} be
the subset of vertices that satisfy the condition (ii). Then we have

𝑓(𝐺,𝑣) (𝐹ALG) = ℎ𝐺\𝐹ALG (𝑣) =
∑︁

𝑢∈𝑉 \{𝑣 }

1

𝑑𝐺\𝐹ALG (𝑢, 𝑣)

=
∑︁

𝑢∈𝑉 ′\{𝑣 }

1

𝑑𝐺\𝐹ALG (𝑢,𝑤 (𝑢)) + 1
. (1)

We see that the shortest path corresponding to 𝑑𝐺\𝐹ALG (𝑢,𝑤 (𝑢))
does not contain 𝑣 (and thus any edge in 𝜌 (𝑣) \ 𝐹ALG). Other-
wise there would exist 𝑤 ′(𝑢) ∈ 𝑁in (𝑣) \ 𝑁ALG satisfying that

𝑑𝐺\𝐹ALG (𝑢,𝑤 ′(𝑢)) < 𝑑𝐺\𝐹ALG (𝑢,𝑤 (𝑢)), which contradicts the fact

that𝑤 (𝑢) is contained in a shortest path from 𝑢 to 𝑣 on 𝐺 \ 𝐹ALG.
Hence, we have

𝑑𝐺\𝐹ALG (𝑢,𝑤 (𝑢)) = 𝑑𝐺\𝜌 (𝑣) (𝑢,𝑤 (𝑢)) .
Combining this with the equality (1), we have

𝑓(𝐺,𝑣) (𝐹ALG) =
∑︁

𝑢∈𝑉 ′\{𝑣 }

1

𝑑𝐺\𝜌 (𝑣) (𝑢,𝑤 (𝑢)) + 1

= (|𝜌 (𝑣) | − 𝑏) +
∑︁

𝑢∈𝑉 ′\{𝑣 }\(𝑁in (𝑣)\𝑁ALG)

1

𝑑𝐺\𝜌 (𝑣) (𝑢,𝑤 (𝑢)) + 1

< (|𝜌 (𝑣) | − 𝑏) +
∑︁

𝑢∈𝑉 ′\{𝑣 }\(𝑁in (𝑣)\𝑁ALG)

1

𝑑𝐺\𝜌 (𝑣) (𝑢,𝑤 (𝑢))

≤ (|𝜌 (𝑣) | − 𝑏) +
∑︁

𝑤∈𝑁in (𝑣)\𝑁ALG

ℎ𝐺\𝜌 (𝑣) (𝑤),

where the last inequality holds by the fact that any term
1

𝑑𝐺\𝜌 (𝑣) (𝑢,𝑤 (𝑢))
in the summation of the left-hand-side appears as a term inℎ𝐺\𝜌 (𝑣) (𝑤)
for appropriate 𝑤 = 𝑤 (𝑢) in the right-hand-side. Therefore, we

have the lemma. □

We are now ready to prove our main theorem:

Theorem 4. Algorithm 1 is a 2(|𝜌 (𝑣) |−𝑏)-approximation algorithm
for Problem 1.

Proof. Here we use the notation that appeared in Lemmas 1

and 2. By the behavior of Algorithm 1, we have

max

𝑤∈𝑁in (𝑣)\𝑁ALG

ℎ𝐺\𝜌 (𝑣) (𝑤) ≤ max

𝑤∈𝑁in (𝑣)\𝑁 ∗
ℎ𝐺\𝜌 (𝑣) (𝑤) .

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Local Centrality Minimization withQuality Guarantees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Using Lemmas 1 and 2 together with this inequality, we have

𝑓(𝐺,𝑣) (𝐹ALG) ≤ (|𝜌 (𝑣) | − 𝑏) +
∑︁

𝑤∈𝑁in (𝑣)\𝑁ALG

ℎ𝐺\𝜌 (𝑣) (𝑤)

≤ (|𝜌 (𝑣) | − 𝑏)
(
1 + max

𝑤∈𝑁in (𝑣)\𝑁ALG

ℎ𝐺\𝜌 (𝑣) (𝑤)
)

≤ (|𝜌 (𝑣) | − 𝑏)
(
1 + max

𝑤∈𝑁in (𝑣)\𝑁 ∗
ℎ𝐺\𝜌 (𝑣) (𝑤)

)
≤ (|𝜌 (𝑣) | − 𝑏)

(
1 + 2𝑓(𝐺,𝑣) (𝐹 ∗) − 1

)
= 2(|𝜌 (𝑣) | − 𝑏) 𝑓(𝐺,𝑣) (𝐹 ∗),

which completes the proof. □

Based on the theorem, we obtain the desired approximation ratio:

Corollary 1. Algorithm 1 is a
√︁
2ℎ𝐺 (𝑣)-approximation algorithm

for Problem 1.

Proof. For any instance that satisfies 𝑏 = |𝜌 (𝑣) |, Algorithm 1

outputs the trivial optimal solution (i.e., 𝜌 (𝑣)). Therefore, in what

follows, we focus only on the instances with 𝑏 < |𝜌 (𝑣) |. Obviously
the output of any algorithm for Problem 1 has an objective value

at most ℎ𝐺 (𝑣). On the other hand, the optimal value is at least

|𝜌 (𝑣) | −𝑏 because in the resulting digraph, there are still |𝜌 (𝑣) | −𝑏
incoming neighbors of 𝑣 , each of which contributes exactly 1 to the

objective value. Therefore, any algorithm (including Algorithm 1)

for Problem 1 has an approximation ratio of
ℎ𝐺 (𝑣)
|𝜌 (𝑣) |−𝑏 . By combining

this with Theorem 4, the approximation ratio of Algorithm 1 can

be improved to

min

{
2(|𝜌 (𝑣) | − 𝑏), ℎ𝐺 (𝑣)

|𝜌 (𝑣) | − 𝑏

}
≤
√︁
2ℎ𝐺 (𝑣),

which presents the statement. □

It should be remarked that as

√︁
2ℎ𝐺 (𝑣) ≤

√︁
2(|𝑉 | − 1) = 𝑜 (|𝑉 |),

the approximation ratio is unachievable by the greedy algorithm.

Finally, we conclude this section by showing that the analysis of

the approximation ratio is tight up to a constant factor. The proof

is available in Appendix B.1.

Theorem 5. Algorithm 1 has no approximation ratio of 𝑜
(√︁

ℎ𝐺 (𝑣)
)
.

5 BICRITERIA APPROXIMATION
ALGORITHM

In this section, we present a polynomial-time (1𝛼 , (
1

1−𝛼 , 𝜖))-bicriteria
approximation algorithm (𝛼 ∈ (0, 1) and 𝜖 > 0) for Problem 1. Our

algorithm first solves a continuous relaxation of the problem and

then applies a simple probabilistic procedure to the fractional solu-

tion to obtain the output.

5.1 Continuous relaxation
To obtain a continuous relaxation of Problem 1, we consider the

well-known extension of set functions, called the Lovász exten-

sion [26]. For our objective function 𝑓(𝐺,𝑣) , the Lovász extension

𝑓(𝐺,𝑣) : [0, 1]𝜌 (𝑣) → R is defined in the following way: Let 𝜌 (𝑣) =
{𝑒1, . . . , 𝑒 |𝜌 (𝑣) |}. For 𝒙 ∈ [0, 1]𝜌 (𝑣) , we relabel the elements of 𝜌 (𝑣)
so that 𝑥𝑒1 ≥ 𝑥𝑒2 ≥ · · · ≥ 𝑥𝑒 |𝜌 (𝑣) | , and construct a sequence of sub-

sets ∅ = 𝑋0 ⊂ 𝑋1 ⊂ · · · ⊂ 𝑋 |𝜌 (𝑣) | = 𝜌 (𝑣), where 𝑋𝑖 = {𝑒1, . . . , 𝑒𝑖 }

Algorithm 2: (1𝛼 , (
1

1−𝛼 , 𝜖))-bicriteria approximation algo-

rithm for Problem 1

Input : 𝐺 = (𝑉 ,𝐴), 𝑣 ∈ 𝑉 , and 𝑏 ∈ Z>0
Output : 𝐹 ⊆ 𝜌 (𝑣)

1 𝜖 ′ ← (1 − 𝛼)𝜖 ;
2 Solve Relaxation (using Algorithm 3 in Section 6) and obtain

its 𝜖 ′-additive approximate solution 𝒙∗ ∈ [0, 1]𝜌 (𝑣) ;
3 Pick 𝑝 ∈ [𝛼, 1] uniformly at random;

4 return {𝑒 ∈ 𝜌 (𝑣) | 𝑥∗𝑒 ≥ 𝑝};

for 𝑖 = 1, . . . , |𝜌 (𝑣) |. Based on these, we define the value of 𝑓(𝐺,𝑣) (𝒙)
as follows:

𝑓(𝐺,𝑣) (𝒙) = (1 − 𝑥𝑒1) 𝑓(𝐺,𝑣) (∅)

+
|𝜌 (𝑣) |−1∑︁

𝑖=1

(𝑥𝑒𝑖 − 𝑥𝑒𝑖+1) 𝑓(𝐺,𝑣) (𝑋𝑖) + 𝑥𝑒 |𝜌 (𝑣) | 𝑓(𝐺,𝑣) (𝜌 (𝑣)).

Observe that for any 𝐹 ⊆ 𝜌 (𝑣), it holds that 𝑓(𝐺,𝑣) (1𝐹) = 𝑓(𝐺,𝑣) (𝐹),
where 1𝐹 is an indicator vector of 𝐹 , taking 1 if 𝑒 ∈ 𝐹 and 0 other-

wise. Therefore, 𝑓(𝐺,𝑣) is indeed an extension of 𝑓(𝐺,𝑣) .
The Lovász extension can be defined on any (not necessarily

submodular) set function. The Lovász extension is always continu-

ous but not necessarily differentiable. An important fact is that the

Lovász extension is convex if and only if the original set function

is submodular [26]. Therefore, by Theorem 2, the Lovász extension

𝑓(𝐺,𝑣) of 𝑓(𝐺,𝑣) is convex.

Using 𝑓(𝐺,𝑣) , we introduce our continuous relaxation as follows:

Relaxation: minimize 𝑓(𝐺,𝑣) (𝒙)

subject to ∥𝒙 ∥1 ≤ 𝑏, 𝒙 ∈ [0, 1]𝜌 (𝑣) .

For convenience, we denote by𝐶 the feasible region of the problem,

i.e.,

𝐶 B
{
𝒙 ∈ R𝜌 (𝑣) : ∥𝒙 ∥1 ≤ 𝑏 and 𝒙 ∈ [0, 1]𝜌 (𝑣)

}
.

From the above, we see that Relaxation is a non-smooth convex

programming problem. We will present an algorithm for Relaxation
and its convergence result in Section 6. In the remainder of this

section, we assume that for 𝜖 ′ = (1 − 𝛼)𝜖 , we can compute, in poly-

nomial time, an 𝜖 ′-additive approximate solution for Relaxation,
i.e., a feasible solution for Relaxation that has an objective value at

most the optimal value plus 𝜖 ′.

5.2 Algorithm
Let 𝒙∗ ∈ [0, 1]𝜌 (𝑣) be an 𝜖 ′-additive approximate solution for Re-
laxation, where 𝜖 ′ = (1 − 𝛼)𝜖 . Then our algorithm picks 𝑝 ∈ [𝛼, 1]
uniformly at random and just returns {𝑒 ∈ 𝜌 (𝑣) | 𝑥∗𝑒 ≥ 𝑝}. For
reference, the entire procedure is summarized in Algorithm 2.

5.3 Analysis
The following theorem gives the bicriteria approximation ratio of

Algorithm 2:

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 3: Projected subgradient method for Relaxation

Input : 𝒙0 ∈ 𝐶 and some stopping condition

Output : 𝒙 ∈ 𝐶
1 𝑡 ← 0;

2 while the stopping condition is not satisfied do
3 Pick a stepsize [𝑡 > 0 and a subgradient 𝑓 ′(𝐺,𝑣) (𝒙𝑡) of

𝑓(𝐺,𝑣) at 𝒙𝑡 ;

4 𝒙𝑡+1 ← proj𝐶

(
𝒙𝑡 − [𝑡 · 𝑓 ′(𝒙𝑡)

)
and 𝑡 ← 𝑡 + 1;

5 return 𝒙𝑡 ;

Theorem 6. For any 𝛼 ∈ (0, 1) and 𝜖 > 0, Algorithm 2 is a
polynomial-time (1𝛼 , (

1

1−𝛼 , 𝜖))-bicriteria approximation algorithm
for Problem 1.

Proof. Let 𝐹 ⊆ 𝜌 (𝑣) be the output of Algorithm 2. The ap-

proximation ratio with respect to the size of 𝐹 can be evaluated as

follows:

E[|𝐹 |] = 1

𝛼
· E

[∑︁
𝑒∈𝐹

𝛼

]
≤ 1

𝛼
· E

[∑︁
𝑒∈𝐹

𝑥∗𝑒

]
≤ 1

𝛼

∑︁
𝑒∈𝜌 (𝑣)

𝑥∗𝑒 ≤
𝑏

𝛼
,

where the first inequality follows from 𝛼 ≤ 𝑝 ≤ 𝑥∗𝑒 for any 𝑒 ∈ 𝐹 ,
the second inequality follows from the nonnegativity of 𝒙∗, and
the third inequality follows from the first constraint in Relaxation.

Next we analyze the approximation ratio with respect to the

quality of 𝐹 . Let 𝐹 ∗ be an optimal solution to Problem 1. As Relax-
ation is indeed a relaxation of Problem 1 and 𝒙∗ is its 𝜖 ′-additive
approximate solution, we have 𝑓(𝐺,𝑣) (𝒙∗) ≤ 𝑓(𝐺,𝑣) (𝐹 ∗) + 𝜖 ′. For
convenience, we define 𝑥∗𝑒0 = 1 for an imaginary element 𝑒0. Let ℓ

be the maximum number that satisfies 𝑥∗𝑒ℓ ≥ 𝛼 . Then we have

E[𝑓(𝐺,𝑣) (𝐹)] =
∑ℓ−1
𝑖=0 (𝑥∗𝑒𝑖 − 𝑥

∗
𝑒𝑖+1) 𝑓(𝐺,𝑣) (𝑋𝑖) + (𝑥∗𝑒ℓ − 𝛼) 𝑓(𝐺,𝑣) (𝑋ℓ)

1 − 𝛼

≤
∑ |𝜌 (𝑣) |−1
𝑖=0

(𝑥∗𝑒𝑖 − 𝑥
∗
𝑒𝑖+1) 𝑓(𝐺,𝑣) (𝑋𝑖) + 𝑥∗𝑒 |𝜌 (𝑣) | 𝑓(𝐺,𝑣) (𝜌 (𝑣))

1 − 𝛼

=
𝑓(𝐺,𝑣) (𝒙∗)
1 − 𝛼 ≤

𝑓(𝐺,𝑣) (𝐹 ∗) + 𝜖 ′

1 − 𝛼 =
𝑓(𝐺,𝑣) (𝐹 ∗)
1 − 𝛼 + 𝜖,

where the first equality follows from the random choice of 𝑝 and the

first inequality follows from the monotonicity of elements in 𝒙∗ and
the nonnegativity of 𝑓(𝐺,𝑣) . Therefore, we have the theorem. □

6 SOLVING RELAXATION
In this section, we present our algorithm for solving Relaxation.

6.1 Algorithm
Specifically, we design a projected subgradient method for Relax-
ation. The algorithm is an iterative method, where each iteration

consists of two parts, i.e., the subgradient computation part and

the projection computation part. The pseudo-code is given in Algo-

rithm 3. All the details will be given later. The sequence generated

by the algorithm is {𝒙𝑡 }𝑡 ≥0, while the sequence of function values

generated by the algorithm is {𝑓(𝐺,𝑣) (𝒙𝑡)}𝑡 ≥0. As the sequence of
function values is not necessarily monotone, we are also interested

in the sequence of best-achieved function values at or before ℓ-th

iteration, which is defined as

𝑓
(ℓ)
best

= min

𝑡=0,1,...,ℓ
𝑓(𝐺,𝑣) (𝒙𝑡) .

Subgradient computation. From the definition of 𝑓(𝐺,𝑣) , a sub-

gradient 𝑓 ′(𝐺,𝑣) at 𝒙𝑡 ∈ 𝐶 is given by

𝑓 ′(𝐺,𝑣) (𝒙𝑡) =
|𝜌 (𝑣) |∑︁
𝑖=1

(
𝑓(𝐺,𝑣) (𝑋𝑖) − 𝑓(𝐺,𝑣) (𝑋𝑖−1)

)
𝒖𝑒𝑖 , (2)

where 𝒖𝑒𝑖 is the |𝜌 (𝑣) |-dimensional vector that takes 1 in the el-

ement corresponding to 𝑒𝑖 and 0 elsewhere. To compute the sub-

gradient 𝑓 ′(𝐺,𝑣) (𝒙𝑡), we need to sort the entries of 𝒙𝑡 and compute

𝑓(𝐺,𝑣) (𝑋𝑖) for all 𝑖 = 0, 1, . . . , |𝜌 (𝑣) |, which takes 𝑂 (|𝜌 (𝑣) | (|𝑉 | +
|𝐴|)) time.

Projection computation. For a given 𝒙 ∈ R𝜌 (𝑣) , it is not trivial
how to compute the projection of 𝒙 onto 𝐶 because 𝐶 is the inter-

section of the two sets {𝒙 ∈ R𝜌 (𝑣) | ∥𝒙 ∥1 ≤ 𝑏} and {𝒙 ∈ R𝜌 (𝑣) |
𝒙 ∈ [0, 1]𝜌 (𝑣) }. For simplicity, define Box[0, 1] = {𝒙 ∈ R𝜌 (𝑣) | 𝒙 ∈
[0, 1]𝜌 (𝑣) }. Let proj

Box[0,1] (𝒙) be the projection of 𝒙 onto Box[0, 1].
Then by Lemma 6.26 in Beck [3], we have

proj
Box[0,1] (𝒙) = (min{max{𝑥𝑒 , 0}, 1})𝑒∈𝜌 (𝑣) .

Using this projection, we can give the projection of 𝒙 onto 𝐶 as

follows:

Fact 1 (A special case of Example 6.32 in Beck [3]). Let proj𝐶 (𝒙)
be the projection of 𝒙 ∈ R𝜌 (𝑣) onto 𝐶 . Then we have

proj𝐶 (𝒙) =
{
proj

Box[0,1] (𝒙) if ∥ proj
Box[0,1] (𝒙)∥1 ≤ 𝑏,

proj
Box[0,1] (𝒙 − _∗1) otherwise,

where _∗ is any positive root of the nonincreasing function 𝜑 (_) =
∥ proj

Box[0,1] (𝒙 − _1)∥1 − 𝑏.
In practice, we can compute the value of _∗ for 𝒙 B 𝒙𝑡 − [𝑡 ·

𝑓 ′(𝐺,𝑣) (𝒙𝑡) using binary search. Assume that the stepsize [𝑡 > 0 is

no greater than 1 for any iteration 𝑡 = 0, 1, . . . , which is indeed the

case of ours (specified later). As initial lower and upper bounds on

_∗, we can use 0 and max𝑒∈𝜌 (𝑣) 𝑥𝑒 , respectively. From the fact that

𝒙𝑡 is always contained in𝐶 and the definition of the subgradient (2),

we see that

max

𝑒∈𝜌 (𝑣)
𝑥𝑒 ≤ max

𝑒∈𝜌 (𝑣)
𝒙𝑡 (𝑒) + [𝑡 · max

𝑖=1,..., |𝜌 (𝑣) |−1
𝑓(𝐺,𝑣) (𝑋𝑖−1)

≤ 1 + 𝑓(𝐺,𝑣) (∅) ≤ |𝑉 |,
where 𝒙𝑡 (𝑒) is the element of 𝒙𝑡 corresponding to 𝑒 . Therefore, the
binary search finds _∗ in𝑂 (|𝜌 (𝑣) | log(|𝑉 |/𝛿)) time with an additive

error of 𝛿 > 0. Note that any polynomial-time algorithm cannot

recognize an additive error of 𝑜 (2−|𝑉 |𝑐) for constant 𝑐 , due to its

bit complexity. Hence, if we set 𝛿 = 𝑂 (2−|𝑉 |𝑐), we can assume that

the projection is exact, and the time complexity is still polynomial.

6.2 Convergence result
Let 𝐿

𝑓(𝐺,𝑣)
= 𝑓(𝐺,𝑣) (0) (= 𝑓(𝐺,𝑣) (∅)). Based on the convergence

result of the projected subgradient method in Beck [3], which is

reviewed in Appendix C.1, we present the convergence result of

Algorithm 3 as follows:

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Local Centrality Minimization withQuality Guarantees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Real-world graphs used in our experiments.

Name |𝑉 | |𝐴| Stat. of in-degrees of targets

moreno-blogs 1,224 19,022 (337, 158.80, 101)
dimacs10-polblogs 1,224 33,430 (274, 143.45, 104)
librec-ciaodvd-trust 4,658 40,133 (361, 152.50, 100)
munmun-twitter-social 465,017 834,797 (174, 123.65, 100)
citeseer 384,054 1,744,590 (495, 190.70, 106)
youtube-links 1,138,494 4,942,297 (1311, 273.40, 100)
higgs-twitter-social 456,626 14,855,819 (1049, 280.20, 111)
soc-pokec-relationships 1,632,803 30,622,564 (316, 157.35, 101)

Theorem 7. Let Θ be an upper bound on the half-squared diameter
of 𝐶 , i.e., Θ ≥ max𝒙,𝒚∈𝐶

1

2
∥𝒙 −𝒚∥2. Determine the stepsize [𝑡 (𝑡 =

0, 1, . . .) as[𝑡 =
√
2Θ

𝐿
𝑓(𝐺,𝑣)

√
𝑡+1

. Let 𝑓 ∗ be the optimal value of Relaxation.

Then for all 𝑡 ≥ 2, it holds that

𝑓
(𝑡)
best
− 𝑓 ∗ ≤

2(1 + log 3)𝐿
𝑓(𝐺,𝑣)

√
2Θ

√
𝑡 + 2

.

The proof can be found in Appendix C.2. By this theorem and

the above discussion of the time complexity, the following is almost

straightforward:

Corollary 2. Let 𝜖 ′ > 0. Set the stopping condition of Algorithm 3
as follows:

𝑡 ≥ ©«
2(1 + log 3)𝐿

𝑓(𝐺,𝑣)

√
2Θ

𝜖 ′
ª®¬
2

− 2.

Then, Algorithm 3 outputs, in polynomial time, an 𝜖 ′-additive ap-
proximate solution for Relaxation.

7 EXPERIMENTAL EVALUATION
In this section, we thoroughly evaluate the performance of our

proposed algorithms (i.e., Algorithms 1 and 2) using various real-

world networks.

7.1 Setup
Instances. Table 1 lists real-world digraphs on which our experi-

ments were conducted. All graphs were collected from the webpage

of The KONECT Project
1
. Note that self-loops and multiple edges

were removed so that the graphs are made simple. For each graph,

we randomly chose 20 vertices as target vertices among those hav-

ing the in-degree at least 100. The last column of Table 1 gives the

statistics of the in-degrees of the target vertices, i.e., the maximum,

average, and minimum in-degrees. For each graph and each target

vertex 𝑣 , we vary the budget 𝑏 in

{
⌊ 1
4
|𝜌 (𝑣) |⌋, ⌊ 1

2
|𝜌 (𝑣) |⌋, ⌊ 3

4
|𝜌 (𝑣) |⌋

}
.

Baselines.We employ the following baseline methods:

• Empty: This algorithm just outputs the empty set, thus

presenting an upper bound on the objective function value

(i.e., ℎ𝐺 (𝑣)) of any feasible solution.

• Random: This algorithm randomly chooses 𝑏 edges from

𝜌 (𝑣). For each instance, this algorithm is run 100 times and

the average objective value is reported.

1
http://konect.cc/

Table 2: Computation time (seconds) of the algorithms tested.

Name 𝑏 Greedy Algorithm 1 Algorithm 2

⌊ 1
4
|𝜌 (𝑣) |⌋ 4.53 0.10 326.55

moreno-blogs ⌊ 1
2
|𝜌 (𝑣) |⌋ 7.79 0.10 333.48

⌊ 3
4
|𝜌 (𝑣) |⌋ 9.75 0.10 332.48

⌊ 1
4
|𝜌 (𝑣) |⌋ 4.40 0.12 393.72

dimacs10-polblogs ⌊ 1
2
|𝜌 (𝑣) |⌋ 7.59 0.13 416.21

⌊ 3
4
|𝜌 (𝑣) |⌋ 9.55 0.13 404.52

⌊ 1
4
|𝜌 (𝑣) |⌋ 6.17 0.15 482.83

librec-ciaodvd-trust ⌊ 1
2
|𝜌 (𝑣) |⌋ 10.59 0.15 502.63

⌊ 3
4
|𝜌 (𝑣) |⌋ 13.33 0.15 489.92

⌊ 1
4
|𝜌 (𝑣) |⌋ 4.05 0.14 —

munmun-twitter-social ⌊ 1
2
|𝜌 (𝑣) |⌋ 7.03 0.14 —

⌊ 3
4
|𝜌 (𝑣) |⌋ 8.90 0.14 —

⌊ 1
4
|𝜌 (𝑣) |⌋ — 4.58 —

citeseer ⌊ 1
2
|𝜌 (𝑣) |⌋ — 4.57 —

⌊ 3
4
|𝜌 (𝑣) |⌋ — 4.57 —

⌊ 1
4
|𝜌 (𝑣) |⌋ — 130.56 —

youtube-links ⌊ 1
2
|𝜌 (𝑣) |⌋ — 130.54 —

⌊ 3
4
|𝜌 (𝑣) |⌋ — 132.19 —

⌊ 1
4
|𝜌 (𝑣) |⌋ — 188.84 —

higgs-twitter-social ⌊ 1
2
|𝜌 (𝑣) |⌋ — 187.92 —

⌊ 3
4
|𝜌 (𝑣) |⌋ — 187.68 —

⌊ 1
4
|𝜌 (𝑣) |⌋ — 402.24 —

soc-pokec-relationships ⌊ 1
2
|𝜌 (𝑣) |⌋ — 392.63 —

⌊ 3
4
|𝜌 (𝑣) |⌋ — 512.05 —

• Degree: This algorithm sorts the elements of 𝑁in (𝑣) as
(𝑤1, . . .𝑤 |𝜌 (𝑣) |) so that |𝜌 (𝑤1) | ≥ · · · ≥ |𝜌 (𝑤 |𝜌 (𝑣) |) | and
just returns {(𝑤1, 𝑣), . . . , (𝑤𝑏 , 𝑣)}.

• Greedy: Execute the greedy algorithm (Algorithm 4).

Machine specs and code. All experiments were conducted on

Mac mini with Apple M1 Chip and 16 GB RAM. All codes were

written in Python 3.9.

7.2 Performance of algorithms
Here we evaluate the performance of our algorithms. To this end,

we run the algorithms together with the baselines for all graphs and

budgets. For each graph and each budget, if the algorithm tested

does not terminate within 1,200 seconds for the target vertex having

the largest in-degree, we do no longer run the algorithm for the

graph and the other budgets. Note that Algorithm 3 (in Algorithm 2)

is run with stopping condition 𝑡 ≥ 1000 for scalability and initial

solution 𝒙0 = 0.
The quality of solutions of the algorithms except for Algorithm 2

is illustrated in Figure 1. Due to space limitations, only the re-

sults for the budget 𝑏 = ⌊ 1
2
|𝜌 (𝑣) |⌋ are presented here. Although

the trend is similar, the results for the other budget settings 𝑏 =

⌊ 1
4
|𝜌 (𝑣) |⌋, ⌊ 3

4
|𝜌 (𝑣) |⌋ are given in Appendix D.1. As the solutions

of Algorithm 2 may violate the budget constraint, it is unfair to

compare those with the others in the same plots; thus, the solutions

are evaluated later. In the plots in Figure 1, once we fix a value in the

vertical axis, we can observe the cumulative number of solutions

(i.e., targets) that attain the harmonic centrality score at most the

fixed value. Therefore, we can say that an algorithm drawing a

lower line has a better performance.

7

http://konect.cc/

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

100

200

300

400

500

600

f (G
,v

)(F
)

moreno_blogs

Empty
Random
Degree
Greedy
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

100

200

300

400

500

600

700

f (G
,v

)(F
)

dimacs10-polblogs

Empty
Random
Degree
Greedy
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

100

200

300

400

500

600

700

800

f (G
,v

)(F
)

librec-ciaodvd-trust

Empty
Random
Degree
Greedy
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

100

200

300

400

500

600

f (G
,v

)(F
)

munmun_twitter_social

Empty
Random
Degree
Greedy
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

5000

10000

15000

20000

25000

f (G
,v

)(F
)

citeseer

Empty
Random
Degree
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

20000

40000

60000

80000

100000

120000

140000

160000
f (G

,v
)(F

)
youtube-links

Empty
Random
Degree
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

20000

40000

60000

80000

100000

120000

140000

f (G
,v

)(F
)

higgs-twitter-social

Empty
Random
Degree
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

50000

100000

150000

200000

250000

300000

350000

f (G
,v

)(F
)

soc-pokec-relationships

Empty
Random
Degree
Algorithm 1 (Ours)

Figure 1: Quality of solutions of the algorithms (except for Algorithm 2) with 𝑏 = ⌊ 1
2
|𝜌 (𝑣) |⌋.

Table 3: Quality of solutions of Algorithm 2 with 𝛼 = 1

3
, 1
2

compared with those of Algorithm 1 with 𝑏 = ⌊ 1
4
|𝜌 (𝑣) |⌋.

Name 𝛼 = 1

3
𝛼 = 1

2

Obj. val. Size Obj. val. Size

moreno-blogs 1.12 0.14 1.13 0.12

dimacs10-polblogs 1.09 0.10 1.09 0.07

librec-ciaodvd-trust 1.09 0.06 1.09 0.03

As can be seen, Algorithm 1 outperforms the baselines. Indeed,

Algorithm 1 is applicable to all graphs tested, thanks to its high

scalability, and the quality of solutions is much better than that of

the scalable baselines, i.e., Random and Degree. Most interestingly,

for the graph citeseer, Algorithm 1 succeeds in reducing the har-

monic centrality scores of all target vertices to the values relatively

close to 0, although Degree fails to have centrality scores less than

9,000 for five target vertices. Note that this result does not contradict

the fact that even an optimal solution has the harmonic centrality

score no less than |𝜌 (𝑣) | −𝑏: The minimum objective value attained

by Algorithm 1 is 54, rather than 0. For small graphs, Greedy per-

forms slightly better than Algorithm 1; however, due to its heavy

computation burden, Greedy is not applicable to citeseer and the

larger graphs.

The detailed report of the computation time is found in Table 2,

where the average computation time over all target vertices is

reported. Note that the results for Random and Degree are omitted

because Random is obviously quite fast and Degree records 0.00
seconds for all graphs and budgets. We remark that the computation

time of Greedy grows roughly proportionally to the budget 𝑏, but

that of Algorithm 1 remains almost the same for all settings of 𝑏.

Finally, the quality of solutions of Algorithm 2 (with 𝛼 = 1

3
, 1
2
),

averaged over the target vertices, is reported in Table 3, where

each of the objective value and the size of the solutions is a relative

value compared with that of the solutions of Algorithm 1. As the

rounding procedure of the algorithm contains randomness, we run

the procedure 100 times and report the average value. As can be

seen, Algorithm 2 returns very small solutions that even do not

exhaust the budget. However, this result does not contradict the

guarantee given in Theorem 6; the objective value is not much

worse than that of Algorithm 1 and the (expected) size of solutions

is just upper bounded in Theorem 6.

To further examine the performance of Algorithm 2, we run it

on the instance that appeared in the proof of Theorem 5, where we

set 𝑘 = 50 (and 𝑏 = 50). Note that it is thoretically guaranteed that

Algorithm 1 outputs a poor solution to the instance. On the other

hand, Algorithm 2 with 𝛼 = 3

4
always obtains the optimal solution

among 100 rouding trials. Hence, we see that the algorithm is rather

strong against adversarial instances, verifying the effectiveness of

the theoretical approximation guarantee of Algorithm 2.

8 CONCLUSION
In this study, we have introduced a novel optimization model for

local centrality minimization and designed two effective approxi-

mation algorithms. The first algorithm (Algorithm 1) is a highly-

scalable

√︁
2ℎ𝐺 (𝑣)-approximation algorithm. We stress that this

approximation ratio is unachievable by the most intuitive greedy

algorithm (Algorithm 4). The second algorithm (Algorithm 2) is a

polynomial-time (1𝛼 , (
1

1−𝛼 , 𝜖))-bicriteria approximation algorithm.

To the best of our knowledge, ours are the first polynomial-time

algorithms with provable approximation guarantees for centrality

minimization. Experiments using a variety of real-world networks

demonstrate the effectiveness of our proposed algorithms.

Our work opens up several interesting problems. Can we design

a polynomial-time algorithm that has an approximation ratio better

than that of Algorithm 1 or a bicriteria approximation ratio better

than that of Algorithm 2? Another interesting direction is to study

Problem 1 with a more capable setting. For example, it would be

valuable to have a target vertex subset (rather than a single target

vertex) and aim to minimize its group harmonic centrality score, as

in the literature on global centrality minimization [38].

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Local Centrality Minimization withQuality Guarantees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] E. Angriman, R. Becker, G. D’Angelo, H. Gilbert, A. van der Grinten, and H. Mey-

erhenke. Group-harmonic and group-closeness maximization – Approximation

and engineering. In Proceedings of ALENEX ’21, pages 154–168, 2021.
[2] E. Angriman, A. van der Grinten, A. Bojchevski, D. Zügner, S. Günnemann,

and H. Meyerhenke. Group centrality maximization for large-scale graphs. In

Proceedings of ALENEX ’20, pages 56–69, 2020.
[3] A. Beck. First-Order Methods in Optimization. MOS–SIAM Series on Optimization.

SIAM, 2017.

[4] E. Bergamini, P. Crescenzi, G. D’angelo, H. Meyerhenke, L. Severini, and Y. Velaj.

Improving the betweenness centrality of a node by adding links. ACM Journal
of Experimental Algorithmics, 23:1–32, 2018.

[5] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma. Preventing

unraveling in social networks: The anchored 𝑘-core problem. SIAM Journal on
Discrete Mathematics, 29(3):1452–1475, 2015.

[6] P. Boldi and S. Vigna. Axioms for centrality. Internet Mathematics, 10(3–4):222–
262, 2014.

[7] M. Castaldo, C. Catalano, G. Como, and F. Fagnani. On a centrality maximization

game. IFAC-PapersOnLine, 53(2):2844–2849, 2020.
[8] C. Chen, W. Wang, and X. Wang. Efficient maximum closeness centrality group

identification. In Proceedings of the 27th Australasian Database Conference, pages
43–55, 2016.

[9] C. Coupette, S. Neumann, and A. Gionis. Reducing exposure to harmful content

via graph rewiring. In Proceedings of KDD ’23, pages 323–334, 2023.
[10] P. Crescenzi, G. D’angelo, L. Severini, and Y. Velaj. Greedily improving our own

closeness centrality in a network. ACM Transactions on Knowledge Discovery
from Data, 11(1):1–32, 2016.

[11] G. D’Angelo, M. Olsen, and L. Severini. Coverage centrality maximization in

undirected networks. In Proceedings of AAAI ’19, pages 501–508, 2019.
[12] K. Das, S. Samanta, and M. Pal. Study on centrality measures in social networks:

A survey. Social Network Analysis and Mining, 8:1–11, 2018.
[13] F. Fabbri, Y. Wang, F. Bonchi, C. Castillo, and M. Mathioudakis. Rewiring what-to-

watch-next recommendations to reduce radicalization pathways. In Proceedings
of The Web Conference ’22, page 2719–2728, 2022.

[14] S. Fujishige. Submodular Functions and Optimization, volume 58 of Annals of
Discrete Mathematics. Elsevier, 2005.

[15] J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems

look at the underlying process of word-of-mouth. Marketing Letters, 12:211–223,
2001.

[16] J. Goldenberg, B. Libai, and E. Muller. Using complex systems analysis to advance

marketing theory development: Modeling heterogeneity effects on new product

growth through stochastic cellular automata. Academy of Marketing Science
Review, 9(3):1–18, 2001.

[17] A. Hayrapetyan, D. Kempe, M. Pál, and Z. Svitkina. Unbalanced graph cuts. In

Proceedings of ESA ’05, pages 191–202, 2005.
[18] V. Ishakian, D. Erdös, E. Terzi, and A. Bestavros. A framework for the evaluation

and management of network centrality. In Proceedings of SDM ’12, pages 427–438,
2012.

[19] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence

through a social network. In Proceedings of KDD ’03, pages 137–146, 2003.
[20] E. Khalil, B. Dilkina, and L. Song. Cuttingedge: Influence minimization in net-

works. In Proceedings of Workshop on Frontiers of Network Analysis: Methods,
Models, and Applications, pages 1–13, 2013.

[21] D. Knoke and S. Yang. Social Network Analysis, volume 154 of Quantitative
Applications in the Social Sciences. SAGE Publications, 2020.

[22] A. Konar and N. D. Sidiropoulos. Exploring the subgraph density-size trade-off

via the Lovaśz extension. In Proceedings of WSDM ’21, pages 743–751, 2021.
[23] A. Konar and N. D. Sidiropoulos. The triangle-densest-𝑘-subgraph problem:

Hardness, Lovász extension, and application to document summarization. In

Proceedings of AAAI ’22, pages 4075–4082, 2022.
[24] H. Li, R. Peng, L. Shan, Y. Yi, and Z. Zhang. Current flow group closeness

centrality for complex networks? In Proceedings of The Web Conference ’19, pages
961–971, 2019.

[25] C. Liu, X. Zhou, A. N. Zehmakan, and Z. Zhang. A fast algorithm for moderating

critical nodes via edge removal. IEEE Transactions on Knowledge and Data
Engineering, pages 1–14, 2023. In press.

[26] L. Lovász. Submodular functions and convexity. In A. Bachem, B. Korte, and

M. Grötschel, editors, Mathematical Programming: The State of the Art, pages
235–257. Springer, 1983.

[27] A. Mahmoody, C. E. Tsourakakis, and E. Upfal. Scalable betweenness centrality

maximization via sampling. In Proceedings of KDD ’16, pages 1765–1773, 2016.
[28] A. Maulana and M. Atzmueller. Many-objective optimization for anomaly detec-

tion on multi-layer complex interaction networks. Applied Sciences, 11(9):4005,
2021.

[29] S. Medya, A. Silva, A. Singh, P. Basu, and A. Swami. Group centrality maximiza-

tion via network design. In Proceedings of SDM ’18, pages 126–134, 2018.

[30] M. Minoux. Accelerated greedy algorithms for maximizing submodular set

functions. In Proceedings of the 8th IFIP Conference on Optimization Techniques,
pages 234–243, 2005.

[31] S. Mumtaz and X. Wang. Identifying top-k influential nodes in networks. In

Proceedings of CIKM ’17, pages 2219–2222, 2017.
[32] S. Murai and Y. Yoshida. Sensitivity analysis of centralities on unweighted

networks. In Proceedings of The Web Conference ’19, pages 1332–1342, 2019.
[33] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the

maximum of a submodular set function. Mathematics of Operations Research,
3(3):177–188, 1978.

[34] M. E. J. Newman and M. Girvan. Finding and evaluating community structure

in networks. Physical Review E, 69:026113, 2004.
[35] L. Pellegrina. Efficient centrality maximization with Rademacher averages. In

Proceedings of KDD ’23, pages 1872–1884, 2023.
[36] S. S. Rangapuram, T. Bühler, and M. Hein. Towards realistic team formation in

social networks based on densest subgraphs. In Proceedings of WWW ’13, pages
1077–1088, 2013.

[37] Z. Svitkina and L. Fleischer. Submodular approximation: Sampling-based algo-

rithms and lower bounds. SIAM Journal on Computing, 40(6):1715–1737, 2011.
[38] A. Veremyev, O. A. Prokopyev, and E. L. Pasiliao. Finding critical links for

closeness centrality. INFORMS Journal on Computing, 31(2):367–389, 2019.
[39] S. A. Vinterbo. Privacy: Amachine learning view. IEEE Transactions on Knowledge

and Data Engineering, 16(8):939–948, 2004.
[40] X. Wang, K. Deng, J. Li, J. X. Yu, C. S. Jensen, and X. Yang. Efficient targeted

influence minimization in big social networks. World Wide Web, 23(4):2323–2340,
2020.

[41] M. Waniek, T. P. Michalak, M. J. Wooldridge, and T. Rahwan. Hiding individuals

and communities in a social network. Nature Human Behaviour, 2(2):139, 2018.
[42] M. Waniek, J. Woźnica, K. Zhou, Y. Vorobeychik, T. P. Michalak, and T. Rah-

wan. Hiding from centrality measures: A Stackelberg game perspective. IEEE
Transactions on Knowledge and Data Engineering, 2023. In press.

[43] L. Yang, Z. Li, and A. Giua. Influence minimization in linear threshold networks.

Automatica, 100:10–16, 2019.
[44] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. Finding critical users for social

network engagement: The collapsed k-core problem. In Proceedings of AAAI ’17,
2017.

[45] P. Zhao, Y. Li, H. Xie, Z. Wu, Y. Xu, and J. C. Lui. Measuring and maximizing influ-

ence via random walk in social activity networks. In Proceedings of DASFAA ’17,
pages 323–338, 2017.

[46] W. Zhu, C. Chen, X. Wang, and X. Lin. K-core minimization: An edge manipula-

tion approach. In Proceedings of CIKM ’18, pages 1667–1670, 2018.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A OMITTED CONTENTS FROM SECTION 3
A.1 Proof of Theorem 1
To prove the theorem, we formally introduce the following problem:

Problem2 (Minimum𝑘-union). Given a ground set𝑈 = {𝑒1, . . . , 𝑒𝑛},
a set system S = {𝑆1, . . . , 𝑆𝑚} ⊆ 2

𝑈 , and 𝑘 ∈ Z>0, we are asked to
find 𝐽 ⊆ {1, . . . ,𝑚} with |𝐽 | = 𝑘 that minimizes

��⋃
𝑗 ∈𝐽 𝑆 𝑗

��. Without
loss of generality, it can be assumed that

⋃
𝑗 ∈{1,...,𝑚} 𝑆 𝑗 = 𝑈 .

Fact 2 (Theorem 1 in Vinterbo [39]). Problem 2 is NP-hard.

Proof of Theorem 1. We construct a polynomial-time reduc-

tion from Problem 2 to Problem 1. Take an arbitrary instance of

Problem 2: 𝑈 = {𝑒1, . . . , 𝑒𝑛}, S = {𝑆1, . . . , 𝑆𝑚} ⊆ 2
𝑈
, and 𝑘 ∈ Z>0.

We make an instance (i.e., a gadget) of Problem 1, i.e.,𝐺 = (𝑉 ,𝐴),
𝑣 ∈ 𝑉 , and 𝑏 ∈ Z>0, as follows:

• 𝐺 = (𝑉 ,𝐴) such that

– 𝑉 = {𝑣0, 𝑣𝑆1 , . . . , 𝑣𝑆𝑚 , 𝑣𝑒1 , . . . , 𝑣𝑒𝑛 },
– 𝐴 = {(𝑣𝑆 𝑗

, 𝑣0) | 𝑗 = 1, . . . ,𝑚} ∪ {(𝑣𝑒𝑖 , 𝑣𝑆 𝑗
) | 𝑒𝑖 ∈

𝑆 𝑗 , 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . ,𝑚};
• 𝑣 = 𝑣0;

• 𝑏 =𝑚 − 𝑘 .
Clearly, 𝐺 is acyclic. Let 𝐹 ∗ ⊆ 𝜌 (𝑣0) (= {(𝑣𝑆 𝑗

, 𝑣0) | 𝑗 = 1, . . . ,𝑚})
be an optimal solution to this gadget, and let 𝐽 ∗ ⊆ {1, . . . ,𝑚} be the
index set that satisfies 𝐹 ∗ = {(𝑣𝑆 𝑗

, 𝑣0) | 𝑗 ∈ 𝐽 ∗}. We see that |𝐽 ∗ | = 𝑏.

Let 𝐽 ∗ = {1, . . . ,𝑚} \ 𝐽 ∗. Then, the objective value of 𝐹 ∗, i.e., the
harmonic centrality of 𝑣0 after the removal of 𝐹 ∗, can be evaluated

as (𝑚 − 𝑏) + 1

2

���⋃
𝑗 ∈𝐽 ∗ 𝑆 𝑗

���. Therefore, as 𝐹 ∗ is optimal,

���⋃
𝑗 ∈𝐽 ∗ 𝑆 𝑗

��� is
minimized. Noticing that |𝐽 ∗ | =𝑚 − 𝑏 =𝑚 − (𝑚 − 𝑘) = 𝑘 , we see

that 𝐽 ∗ is an optimal solution to the instance of Problem 2. □

A.2 Proof of Theorem 2
Before proving the theorem, we mention a fundamental fact of the

submodularity. It is well known that the submodularity is equivalent

to the diminishing marginal return property [14], which can be

written as follows: For any 𝑋 ⊂ 𝑌 ⊆ 𝑆 and any 𝑝 ∈ 𝑆 \ 𝑌 , it holds
that

𝑓 (𝑋 ∪ {𝑝}) − 𝑓 (𝑋) ≥ 𝑓 (𝑌 ∪ {𝑝}) − 𝑓 (𝑌).

Proof of Theorem 2. Let𝐺 = (𝑉 ,𝐴) be any digraph and 𝑣 ∈ 𝑉
be any vertex. From the above fact, it suffices to show that for any

𝐸 ⊂ 𝐹 ⊆ 𝜌 (𝑣) and 𝑒 ∈ 𝜌 (𝑣) \ 𝐹 ,
𝑓(𝐺,𝑣) (𝐸 ∪ {𝑒}) − 𝑓(𝐺,𝑣) (𝐸) ≥ 𝑓(𝐺,𝑣) (𝐹 ∪ {𝑒}) − 𝑓(𝐺,𝑣) (𝐹)

holds. From the definition of 𝑓(𝐺,𝑣) , we have

𝑓(𝐺,𝑣) (𝐸 ∪ {𝑒}) − 𝑓(𝐺,𝑣) (𝐸)
= ℎ𝐺\(𝐸∪{𝑒 }) (𝑣) − ℎ𝐺\𝐸 (𝑣)

=
∑︁

𝑢∈𝑉 \{𝑣 }

(
1

𝑑𝐺\(𝐸∪{𝑒 }) (𝑢, 𝑣)
− 1

𝑑𝐺\𝐸 (𝑢, 𝑣)

)
.

For each 𝑒 ∈ 𝜌 (𝑣), we define
𝑈𝐺 (𝑣, 𝑒) = {𝑢 ∈ 𝑉 \ {𝑣} |

there exists a path from 𝑢 to 𝑣 on 𝐺 and

all shortest paths from 𝑢 to 𝑣 on 𝐺 contain 𝑒}.

Noticing that𝑑𝐺\(𝐸∪{𝑒 }) (𝑢, 𝑣) = 𝑑𝐺\𝐸 (𝑢, 𝑣) for all𝑢 ∈ 𝑉 \𝑈𝐺\𝐸 (𝑣, 𝑒),
we have ∑︁

𝑢∈𝑉 \{𝑣 }

(
1

𝑑𝐺\(𝐸∪{𝑒 }) (𝑢, 𝑣)
− 1

𝑑𝐺\𝐸 (𝑢, 𝑣)

)
=

∑︁
𝑢∈𝑈𝐺\𝐸 (𝑣,𝑒)

(
1

𝑑𝐺\(𝐸∪{𝑒 }) (𝑢, 𝑣)
− 1

𝑑𝐺\𝐸 (𝑢, 𝑣)

)
.

Applying a similar argument, we also have

𝑓(𝐺,𝑣) (𝐹 ∪ {𝑒}) − 𝑓(𝐺,𝑣) (𝐹)

=
∑︁

𝑢∈𝑈𝐺\𝐹 (𝑣,𝑒)

(
1

𝑑𝐺\(𝐹∪{𝑒 }) (𝑢, 𝑣)
− 1

𝑑𝐺\𝐹 (𝑢, 𝑣)

)
.

Combining the above two equalities, we have(
𝑓(𝐺,𝑣) (𝐸 ∪ {𝑒}) − 𝑓(𝐺,𝑣) (𝐸)

)
−
(
𝑓(𝐺,𝑣) (𝐹 ∪ {𝑒}) − 𝑓(𝐺,𝑣) (𝐹)

)
=

∑︁
𝑢∈𝑈𝐺\𝐸 (𝑣,𝑒)

(
1

𝑑𝐺\(𝐸∪{𝑒 }) (𝑢, 𝑣)
− 1

𝑑𝐺\𝐸 (𝑢, 𝑣)

)
−

∑︁
𝑢∈𝑈𝐺\𝐹 (𝑣,𝑒)

(
1

𝑑𝐺\(𝐹∪{𝑒 }) (𝑢, 𝑣)
− 1

𝑑𝐺\𝐹 (𝑢, 𝑣)

)
≥

∑︁
𝑢∈𝑈𝐺\𝐸 (𝑣,𝑒)

((
1

𝑑𝐺\(𝐸∪{𝑒 }) (𝑢, 𝑣)
− 1

𝑑𝐺\𝐸 (𝑢, 𝑣)

)
−
(

1

𝑑𝐺\(𝐹∪{𝑒 }) (𝑢, 𝑣)
− 1

𝑑𝐺\𝐹 (𝑢, 𝑣)

))
=

∑︁
𝑢∈𝑈𝐺\𝐸 (𝑣,𝑒)

(
1

𝑑𝐺\(𝐸∪{𝑒 }) (𝑢, 𝑣)
− 1

𝑑𝐺\(𝐹∪{𝑒 }) (𝑢, 𝑣)

)
≥ 0,

where the first inequality follows from𝑈𝐺\𝐸 (𝑣, 𝑒) ⊆ 𝑈𝐺\𝐹 (𝑣, 𝑒) and
𝑑𝐺\(𝐹∪{𝑒 }) (𝑢, 𝑣) ≥ 𝑑𝐺\𝐹 (𝑢, 𝑣) for any 𝑢 ∈ 𝑉 , and the second equal-

ity follows from 𝑑𝐺\𝐸 (𝑢, 𝑣) = 𝑑𝐺\𝐹 (𝑢, 𝑣) for any 𝑢 ∈ 𝑈𝐺\𝐸 (𝑣, 𝑒).
Therefore, we have the theorem. □

We wish to remark that the above theorem can also be proved

using the fact that the objective function of the harmonic centrality

maximization problem introduced in Crescenzi et al. [10] is sub-

modular. However, if we employed such an approach, the notation

would be more complex. Therefore, we proved it from scratch, based

on the definition of the submodularity.

A.3 Pseudo-code of the greedy algorithm
See Algorithm 4.

Algorithm 4: Greedy algorithm for Problem 1

Input : 𝐺 = (𝑉 ,𝐴), 𝑣 ∈ 𝑉 , and 𝑏 ∈ Z>0
Output : 𝐹 ⊆ 𝜌 (𝑣) with |𝐹 | ≤ 𝑏

1 𝐹 ← ∅;
2 while |𝐹 | < 𝑏 do
3 Find 𝑒 ∈ argmin{𝑓(𝐺,𝑣) (𝑒) | 𝑒 ∈ 𝜌 (𝑣)};
4 𝐹 ← 𝐹 ∪ {𝑒} and 𝐺 ← 𝐺 \ {𝑒};
5 return 𝐹 ;

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Local Centrality Minimization withQuality Guarantees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A.4 Proof of Theorem 3
Proof. We first show that any algorithm that outputs 𝐹 ⊆ 𝜌 (𝑣)

with |𝐹 | = 𝑏 has an approximation ratio of 𝑂 (|𝑉 |). Let 𝐺 = (𝑉 ,𝐴),
𝑣 ∈ 𝑉 , 𝑏 ∈ Z>0 be an arbitrary instance of Problem 1. If the optimal

value is equal to 0, then 𝑏 = |𝜌 (𝑣) | holds, which means that the

above algorithm can also achieve the optimal value. If the optimal

value is greater than 0, then it is at least 1, while any algorithm can

achieve the objective value at most ℎ𝐺 (𝑣) ≤ |𝑉 | − 1. Therefore, the
above algorithm has an approximation ratio of 𝑂 (|𝑉 |).

Next we show that the greedy algorithm has no approximation

ratio of 𝑜 (|𝑉 |). To this end, for any integer 𝑘 ≥ 2, we construct

an instance of Problem 1 as follows: Let 𝐺 = (𝑉 ,𝐴) be a digraph.
The vertex set 𝑉 consists of two vertices 𝑛𝐿, 𝑜𝐿 , and size-𝑘 subsets

𝑁𝑅 = {𝑛1
𝑅
, . . . , 𝑛𝑘

𝑅
} and𝑂𝑅 = {𝑜1

𝑅
, . . . , 𝑜𝑘

𝑅
}, in addition to one vertex

𝑣 ′. The edge set 𝐴 is defined as the union of the following three

sets:

{(𝑛𝐿, 𝑣 ′), (𝑛𝑖𝑅, 𝑣
′) | 𝑖 = 1, . . . , 𝑘},

{(𝑜𝐿, 𝑛𝐿)},

{(𝑜𝑖𝑅, 𝑛
𝑗

𝑅
) | 𝑖 = 1, . . . , 𝑘, 𝑗 = 1, . . . , 𝑘}.

Then we employ 𝑣 ′ as target vertex 𝑣 and 𝑘 as budget 𝑏.

From now on, we analyze the performance of Algorithm 4 for

this instance. In the first iteration, the removal of (𝑛𝐿, 𝑣) decreases
the objective value by 3/2, while the removal of any incoming

edge from 𝑁𝑅 decreases the objective value by 1. Therefore, the

algorithm removes (𝑛𝐿, 𝑣). In the later iterations, the removal of

any edge decreases the objective value by 1, and thus the algorithm

removes 𝑘 − 1 edges from 𝑁𝑅 to 𝑣 and then terminates. We see

that the objective value of the output is 1 + 𝑘/2. On the other hand,

consider the following feasible (actually optimal) solution to the

instance, i.e., all 𝑘 edges from 𝑁𝑅 to 𝑣 . Then the objective value

of this solution is 1 + 1/2. Thus, the approximation ratio of the

algorithm is lower bounded by

1 + 𝑘/2
1 + 1/2 = Ω(|𝑉 |),

meaning that Algorithm 4 has no approximation ratio of 𝑜 (|𝑉 |) for
Problem 1. □

B OMITTED CONTENTS FROM SECTION 4
B.1 Proof of Theorem 5

Proof. For any integer 𝑘 ≥ 2, we construct an instance of Prob-

lem 1 as follows: Let𝐺 = (𝑉 ,𝐴) be a digraph. The vertex set𝑉 con-

sists of size-𝑘 subsets 𝑁𝐿 = {𝑛1
𝐿
, . . . , 𝑛𝑘

𝐿
}, 𝑁𝑅 = {𝑛1

𝑅
, . . . , 𝑛𝑘

𝑅
}, 𝑂𝑅 =

{𝑜1
𝑅
, . . . , 𝑜𝑘

𝑅
} and size-(𝑘 (𝑘 − 1)) subset 𝑂𝐿 = {𝑜1

𝐿
, . . . , 𝑜

𝑘 (𝑘−1)
𝐿

}, in
addition to one vertex 𝑣 ′. The edge set 𝐴 is defined as the union of

the following three sets:

{(𝑛𝑖𝐿, 𝑣
′), (𝑛𝑖𝑅, 𝑣

′) | 𝑖 = 1, . . . , 𝑘},

{(𝑜𝑖𝐿, 𝑛
𝑗

𝐿
) | 𝑖 = 1, . . . , 𝑘 (𝑘 − 1), 𝑗 = 1, . . . , 𝑘, ⌈𝑖/(𝑘 − 1)⌉ = 𝑗},

{(𝑜𝑖𝑅, 𝑛
𝑗

𝑅
) | 𝑖 = 1, . . . , 𝑘, 𝑗 = 1, . . . , 𝑘}.

Then we employ 𝑣 ′ as target vertex 𝑣 and 𝑘 as budget 𝑏.

From now on, we analyze the performance of Algorithm 1 for

this instance. For any𝑛𝑖
𝐿
∈ 𝑁𝐿 (𝑖 = 1, . . . , 𝑘), we haveℎ𝐺\𝜌 (𝑣) (𝑛𝑖𝐿) =

Algorithm 5: Projected subgradient method

Input : 𝒙0 ∈ 𝐶 and some stopping condition

Output : 𝒙 ∈ 𝐶
1 while the stopping condition is not satisfied do
2 Pick stepsize [𝑡 > 0 and subgradient 𝑓 ′(𝒙𝑡) of 𝑓 ′ at 𝒙𝑡 ;
3 𝒙𝑡+1 ← proj𝐶 (𝒙𝑡 − [𝑡 · 𝑓 ′(𝒙𝑡)) and 𝑡 ← 𝑡 + 1;
4 return 𝒙𝑡 ;

𝑘 − 1. For any 𝑛𝑖
𝑅
∈ 𝑁𝑅 (𝑖 = 1, . . . , 𝑘), we have ℎ𝐺\𝜌 (𝑣) (𝑛𝑖𝑅) = 𝑘 .

Therefore, the output of Algorithm 1 is the set of all 𝑘 edges from

𝑁𝑅 to 𝑣 , which has an objective value of 𝑘 +𝑘 (𝑘−1)/2. On the other

hand, consider the following feasible (actually optimal) solution

to the instance, i.e., the set of all 𝑘 edges from 𝑁𝐿 to 𝑣 . Then the

objective value of this solution is 𝑘 + 𝑘/2. Thus, the approximation

ratio of the algorithm is lower bounded by

𝑘 + 𝑘 (𝑘 − 1)/2
𝑘 + 𝑘/2 =

1 + (𝑘 − 1)/2
1 + 1/2 = Ω

(√︁
|𝑉 |

)
,

meaning that Algorithm 1 has no approximation ratio of 𝑜

(√︁
|𝑉 |

)
for Problem 1. Noticing that ℎ𝐺 (𝑣) ≤ |𝑉 | −1, we have the statement.

□

C OMITTED CONTENTS FROM SECTION 6
C.1 Convergence result in Beck [3]
For self-containedness, we review the convergence result of the

projected subgradient method in Beck [3], on which the conver-

gence result of Algorithm 3 is based. Note that for simplicity, the

description is appropriately specialized to our setting: For example,

we consider the objective function 𝑓 on R𝑛 rather than a general

vector space.

Let 𝑓 : R𝑛 → (−∞,∞] and 𝐶 ⊆ R𝑛 . Consider the following

problem:

(P) : minimize 𝑓 (𝒙)
subject to 𝒙 ∈ 𝐶.

Assumption 1 (Assumption 8.7 in Beck [3]). The following hold:
(1) 𝑓 : R𝑛 → (−∞,∞] is proper closed and convex;
(2) 𝐶 ⊆ R𝑛 is nonempty closed and convex;
(3) The interior of the (effective) domain of 𝑓 contains 𝐶 ;
(4) The set of optimal solutions is nonempty, and the optimal

value is denoted by 𝑓 ∗.

We consider the projected subgradient method for (P), which is

summarized in Algorithm 5. Note that we denote by proj𝐶 (𝒙) the
projection of 𝒙 ∈ R𝑛 onto 𝐶 . The sequence generated by the algo-

rithm is {𝒙𝑡 }𝑡 ≥0, while the sequence of function values generated

by the algorithm is {𝑓 (𝒙𝑡)}𝑡 ≥0. As the sequence of function values

is not necessarily monotone, we are also interested in the sequence

of best-achieved function values at or before ℓ-th iteration, which

is defined as

𝑓 ℓ
best

= min

𝑡=0,1,...,ℓ
𝑓 (𝒙𝑡) .

If 𝐶 is compact, then there exists a constant 𝐿𝑓 > 0 for which

∥ 𝑓 ′(𝒙)∥ ≤ 𝐿𝑓 for all 𝑓 ′(𝒙) ∈ 𝜕𝑓 (𝒙) and 𝒙 ∈ 𝐶 , where 𝜕𝑓 (𝒙) is
11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

the subdifferential of 𝑓 at 𝒙 . Based on this, we have the following

convergence result of Algorithm 5:

Fact 3 (A special case of Theorem 8.30 in Beck [3]). Suppose that
Assumption 1 holds and assume that𝐶 is compact. Let Θ be an upper
bound on the half-squared diameter of 𝐶 , i.e., Θ ≥ max𝒙,𝒚∈𝐶

1

2
∥𝒙 −

𝒚∥2. Determine the stepsize [𝑡 (𝑡 = 0, 1, . . .) as [𝑡 =

√
2Θ

𝐿𝑓
√
𝑡+1

. Then

for all 𝑡 ≥ 2, it holds that

𝑓 𝑡
best
− 𝑓 ∗ ≤

2(1 + log 3)𝐿𝑓
√
2Θ

√
𝑡 + 2

.

C.2 Proof of Theorem 7
Proof. The proof is almost straightforward from Fact 3 in Ap-

pendix C.1. By defining 𝑓(𝐺,𝑣) (𝒙) = ∞ for any 𝒙 ∈ R𝜌 (𝑣) \𝐶 , we
have an extended real-valued function 𝑓(𝐺,𝑣) : R

𝜌 (𝑣) → (−∞,∞].
Then Relaxation becomes a special case of (P) in Appendix C.1.

Let us confirm the validity of Assumption 1 in Appendix C.1 for

Relaxation:
(1) From the definition of 𝑓(𝐺,𝑣) (and 𝑓(𝐺,𝑣)), 𝑓(𝐺,𝑣) does not

attain −∞ and 𝑓 (𝒙) < ∞ for any 𝒙 ∈ 𝐶 ≠ ∅, which means

that 𝑓(𝐺,𝑣) is proper. As 𝑓(𝐺,𝑣) is continuous over𝐶 and the

(effective) domain of 𝑓(𝐺,𝑣) (i.e.,𝐶) is closed, by Theorem 2.8

in Beck [3], 𝑓(𝐺,𝑣) is closed. As mentioned above, 𝑓(𝐺,𝑣) is
convex by the submodularity of 𝑓(𝐺,𝑣) .

(2) This is trivial.

(3) As the boundary of𝐶 is not contained in the interior of the

(effective) domain of 𝑓(𝐺,𝑣) , this does not hold. However,
according to the analysis in Beck [3], this assumption is

used only for guaranteeing the subdifferentiability of the

objective function over the feasible region (i.e., the subdif-

ferentiability of 𝑓(𝐺,𝑣) over 𝐶 in our case), which is clearly

valid.

(4) From the boundedness of 𝐶 and the piecewise-linearity of

𝑓(𝐺,𝑣) , we see that the set of optimal solutions to Relaxation
is nonempty.

Finally, 𝐶 is obviously compact. Therefore, we have the theorem.

□

D OMITTED CONTENTS FROM SECTION 7
D.1 Counterparts of Figure 1
See Figures 2 and 3.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Local Centrality Minimization withQuality Guarantees Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

100

200

300

400

500

600

f (G
,v

)(F
)

moreno_blogs

Empty
Random
Degree
Greedy
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

100

200

300

400

500

600

700

f (G
,v

)(F
)

dimacs10-polblogs

Empty
Random
Degree
Greedy
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

100

200

300

400

500

600

700

800

f (G
,v

)(F
)

librec-ciaodvd-trust

Empty
Random
Degree
Greedy
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

100

200

300

400

500

600

f (G
,v

)(F
)

munmun_twitter_social

Empty
Random
Degree
Greedy
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

5000

10000

15000

20000

25000

f (G
,v

)(F
)

citeseer

Empty
Random
Degree
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

20000

40000

60000

80000

100000

120000

140000

160000
f (G

,v
)(F

)
youtube-links

Empty
Random
Degree
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

20000

40000

60000

80000

100000

120000

140000

f (G
,v

)(F
)

higgs-twitter-social

Empty
Random
Degree
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

50000

100000

150000

200000

250000

300000

350000

f (G
,v

)(F
)

soc-pokec-relationships

Empty
Random
Degree
Algorithm 1 (Ours)

Figure 2: Quality of solutions of the algorithms (except for Algorithm 2) with 𝑏 = ⌊ 1
4
|𝜌 (𝑣) |⌋.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

100

200

300

400

500

600

f (G
,v

)(F
)

moreno_blogs

Empty
Random
Degree
Greedy
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

100

200

300

400

500

600

700

f (G
,v

)(F
)

dimacs10-polblogs

Empty
Random
Degree
Greedy
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

100

200

300

400

500

600

700

800
f (G

,v
)(F

)
librec-ciaodvd-trust

Empty
Random
Degree
Greedy
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

100

200

300

400

500

600

f (G
,v

)(F
)

munmun_twitter_social

Empty
Random
Degree
Greedy
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

5000

10000

15000

20000

25000

f (G
,v

)(F
)

citeseer

Empty
Random
Degree
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

20000

40000

60000

80000

100000

120000

140000

160000

f (G
,v

)(F
)

youtube-links

Empty
Random
Degree
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

20000

40000

60000

80000

100000

120000

140000

f (G
,v

)(F
)

higgs-twitter-social

Empty
Random
Degree
Algorithm 1 (Ours)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
of observations

0

50000

100000

150000

200000

250000

300000

350000

f (G
,v

)(F
)

soc-pokec-relationships

Empty
Random
Degree
Algorithm 1 (Ours)

Figure 3: Quality of solutions of the algorithms (except for Algorithm 2) with 𝑏 = ⌊ 3
4
|𝜌 (𝑣) |⌋.

13

	Abstract
	1 Introduction
	1.1 Paper contributions and roadmap

	2 Related Work
	3 Problem Formulation and Characterization
	4 Scalable Approximation Algorithm
	4.1 Algorithm
	4.2 Analysis

	5 Bicriteria Approximation Algorithm
	5.1 Continuous relaxation
	5.2 Algorithm
	5.3 Analysis

	6 Solving Relaxation
	6.1 Algorithm
	6.2 Convergence result

	7 Experimental Evaluation
	7.1 Setup
	7.2 Performance of algorithms

	8 Conclusion
	References
	A Omitted Contents from Section 3
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Pseudo-code of the greedy algorithm
	A.4 Proof of Theorem 3

	B Omitted Contents from Section 4
	B.1 Proof of Theorem 5

	C Omitted Contents from Section 6
	C.1 Convergence result in Beck Beck17
	C.2 Proof of Theorem 7

	D Omitted Contents from Section 7
	D.1 Counterparts of Figure 1

