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Abstract

We apply methods of topological analysis to the attention graphs, calculated on1

the attention heads of the BERT model (Devlin et al. (2019)). Our research shows2

that the classifier built upon basic persistent topological features (namely, Betti3

numbers) of the trained neural network can achieve classification results on par with4

the conventional classification method. We show the relevance of such topological5

text representation on three text classification benchmarks. For the best of our6

knowledge, it is the first attempt to analyze the topology of an attention-based7

neural network, widely used for Natural Language Processing.8

1 Introduction9

Modern Neural Networks embed data into a high-dimensional space. Moreover, each layer and even a10

layer part can be considered as separate embedding, where the information about interconnections of11

these separate embeddings is encoded by some weighted directed graph. In particular, one can apply12

various methods to investigate such graphs for attention heads in multi-headed attention models, such13

as BERT.14

Conventionally, the BERT model is used for sentence classification by adding a softmax-based15

classification layer upon the output embedding. Instead, we propose to use a linear classifier built16

solely upon the persistent topological features (namely, the first two Betti numbers) without using any17

information about the order of tokens or to which particular token each weight relates. We have found18

that it provides a classification quality on par with the conventional classification method in numerous19

tasks. Moreover, on some tasks such as linguistic acceptability and spam detection, our topological20

classifiers outperform the usual BERT-based classification. We conclude that the topology of the21

attention graphs of the trained BERT model contains enough information for solving considered22

classification tasks. The second outcome is, that the proposed text representation, based only on the23

first two Betti numbers of the attention graph, can solve the task having lower dimensionality than24

BERT embedding.25

The attention graphs are built as follows. Each attention head in the Transformer architecture26

calculates weights of each token in the sentence with respect to every other token, and the next level27

representation is constructed using these weights. The attention graph for each head is a complete28

digraph (with loops which appear when the token "pays attention" to itself) whose vertices are the29

tokens and the attention weights are the weights of the edges.30

In the classifiers, we use the BERT-based classification model, which is initialized with pre-trained31

BERT weights and then is fine-tuned for a given two-class classification task. After fine-tuning, we32

extract the persistent features of each head of this model for each data sample and then train a logistic33

regression classifier upon these features.34
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Note that our results also confirm that different attention heads contain different amounts of informa-35

tion. These results are well aligned to previous works on BERT (Michel, Levy, and Neubig (2019),36

Clark et al. (2019)).37

2 Related work38

There are several recent insights obtained by topological analysis of the neural representations of39

realistic datasets. The results of Naitzat, Zhitnikov, and Lim (2020) demonstrate that a deep neural40

network with 𝑅𝑒𝐿𝑈 activation function tends to simplify the topology of the data from layer to layer,41

with the smallest Betti numbers on the output representations. Topological features are also shown42

to be efficient for predicting the generalization ability of the network, its efficiency and stability43

to adversarial examples (Corneanu, Escalera, and Martinez (2020), Corneanu et al. (2019), Rieck44

et al. (2018)). An overview of persistent topology methods, both practical and theoretical, with the45

focus on Artificial Neural Networks analysis, can be found in Otter et al. (2017), Chazal and Michel46

(2017). At the same time, while many researchers are focused on applications of topology to modern47

AI algorithms, there are efforts in the mathematical society to further expand the set of applicable48

methods (Bergomi et al. (2019), Chowdhury et al. (2019), Manin and Marcolli (2020)).49

3 Background50

3.1 Topological background51

In our approach, we use the following two numerical attributes of an arbitrary graph 𝐺 = (𝐸, 𝑉 ): the52

number 𝛽0 of connected components and the number 𝛽1 of independent cycles of 𝐺. If one considers53

the graph 𝐺 as a simplicial complex, these numbers are equal to its Betti numbers. Note that the Betti54

numbers 𝛽0 and 𝛽1 of a graph filtration keep the whole information about the persistent homology55

barcodes, see Appendix A for details.56

3.2 BERT model57

BERT (Devlin et al. (2019)) is the pre-trained model, which achieves state of the art results for many58

NLP tasks. The model is based on Transformer architecture, introduced in Vaswani et al. (2017). The59

BERT model is pre-trained on the large amount of data with Masked Language Modelling and Next60

Sentence Prediction objectives. For downstream tasks the task-specific classifier is attached to the61

BERT output layer and the model is fine-tuned. In our experiments we use the uncased BERT-base62

version, which consists of 12 layers, with 12 attention heads in each. The input of each attention head63

is a matrix 𝑋 consisting of the 𝑑-dimensional representations (row-wise) of 𝑚 tokens of the sentence,64

so that 𝑋 is of size 𝑚× 𝑑. The output of the head is the updated matrix of the representations 𝑋out,65

that is,66

𝑋out = 𝑊 attn(𝑋𝑊V)

with 𝑊 attn = softmax

(︂
(𝑋𝑊Q)(𝑋𝑊K)T√

𝑑

)︂
,

(1)

where 𝑊Q, 𝑊K, 𝑊V are trained projection matrices of size 𝑑× 𝑑 and 𝑊 attn is the 𝑚×𝑚 matrix67

of attention weights (cf. (Vaswani et al., 2017, Sec. 3.2)). One can interpret each element 𝑤attn
𝑖𝑗 as68

a weight of 𝑗-th input’s influence on 𝑖-th output; larger weights mean stronger connection between69

corresponding tokens.70

4 Our method71

Let us be given some dataset 𝑆 = {𝑠𝑖}𝑁𝑖=1 of 𝑁 natural language texts encoded with 𝑚 tokens each72

and pre-trained attention-based model 𝑀 . First of all, we fix some set of thresholds 𝑇 = {𝑡𝑖}𝑘𝑖=1, 0 <73

𝑡1 < 𝑡2 < ... < 𝑡𝑘 < 1 and chose a subset of heads of the model 𝐻𝑀 , on which we will perform74

calculations.75

Then we feed each text sample 𝑠 = 𝑠𝑖 to the input of the model 𝑀 and obtain the matrix 𝑊 attn =76

(𝑤𝑎𝑡𝑡𝑛
𝑖,𝑗 ) on each head ℎ ∈ 𝐻𝑀 . This matrix defines a weighted complete digraph with loops Γhs with77

𝑚 vertices, where 𝑤attn
𝑖𝑗 is the weight of the edge 𝑗 → 𝑖.78
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After it, for each graph Γhs and for each threshold level 𝑡𝑖 ∈ 𝑇 we build an unweighted directed graph79

Γℎ
𝑠 (𝑡𝑖) as follows. The set of vertices of Γℎ

𝑠 (𝑡𝑖) is the same as the one for the graph Γhs , moreover, an80

edge of Γhs belongs to the new graph Γℎ
𝑠 (𝑡𝑖) if and only of its weight in Γhs is at least 𝑡𝑖. This way we81

assign a sequence of graphs Γℎ
𝑠 (𝑡𝑖), 𝑡𝑖 ∈ 𝑇 to each text sample for each head of the model.82

For each unweighted directed graph Γℎ
𝑠 (𝑡𝑖) we also consider the corresponding undirected graph83

Γℎ
𝑠 (𝑡𝑖) by setting an undirected edge 𝑣1𝑣2 for each pair of vertices 𝑣1 and 𝑣2 which are connected by84

an edge in at least one direction in the graph Γℎ
𝑠 (𝑡𝑖). Then we count 𝛽0, 𝛽1 of undirected graph Γℎ

𝑠 (𝑡𝑖).85

More precisely the process of features calculation for each data sample is described in Algorithm 1.86

Algorithm 1 Topological features calculation

Require: Text sample 𝑠
Require: Set of chosen attention heads 𝐻𝑀 of attention-based model 𝑀
Require: Thresholds array 𝑇

Ensure: Features array 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

procedure FEATURES_CALCULATION(𝑠,𝐻𝑀 , 𝑇 )
2: for all ℎ ∈ 𝐻𝑀 do

Calculate attention graph Γhs = (𝑉,𝐸,𝑊 𝑎𝑡𝑡𝑛
ℎ,𝑠 ) on sample 𝑠 on head ℎ

4: for all 𝑡 ∈ 𝑇 do ◁ Filtration:
𝐸ℎ

𝑠 (𝑡)← {𝑒 ∈ 𝐸(Γhs ) : 𝑊 𝑎𝑡𝑡𝑛
ℎ,𝑠 (𝑒) ≥ 𝑡} ◁ Removing edges of weight less than 𝑡

6: Γℎ
𝑠 (𝑡)← (𝑉,𝐸ℎ

𝑠 (𝑡)) ◁ Ignoring weights of remaining edges
𝐸ℎ

𝑠 (𝑡)←
{︀
{𝑖, 𝑗} : (𝑖, 𝑗) ∈ 𝐸ℎ

𝑠 (𝑡)
}︀

◁ Ignoring edges directions
8: Γℎ

𝑠 (𝑡)← (𝑉,𝐸ℎ
𝑠 (𝑡))

Calculate 𝛽0(Γℎ
𝑠 (𝑡)), 𝛽1(Γℎ

𝑠 (𝑡)) ◁ Calculating Betti numbers of undirected graph
10: end for

end for
12: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠←

[︁
𝛽0(Γℎ

𝑠 (𝑡)), 𝛽1(Γℎ
𝑠 (𝑡))

]︁ℎ∈𝐻𝑀

𝑡∈𝑇
return 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

14: end procedure

After this features calculation, we train the logistic regression on features, obtained for each sample of87

the train subset of the dataset and then make predictions on features of samples from the test subset.88

5 Experiments89

5.1 Datasets90

We performed our experiments on the following datasets, labeled for different classification tasks.91

The Corpus of Linguistic Acceptability ("CoLA") dataset (Warstadt, Singh, and Bowman (2018))92

contains 10,657 sentences, labeled by acceptability (grammaticality) and divided into public (open)93

and test (hidden) parts. The public part of dataset contains 9,594 sentences and is divided, in turn,94

into training and development ("CoLA𝑑𝑒𝑣") sets. The test set ("CoLA𝑡𝑒𝑠𝑡") contains 1,063 sentences95

with labels, hidden from the developer.96

Large Movie Review Dataset v1.0 ("IMDB") (Maas et al. (2011)) contains 50,000 movie reviews,97

labeled by sentiment: "positive" or "negative". Labeled reviews are divided into two equal subsets,98

purposed for training and for testing. We applied additional lengths restriction to the samples of this99

dataset to obtain attention graphs of a reasonable size. Namely, we kept all reviews of size less than100

128 tokens after tokenization with standard BERT uncased tokenizer ("Imdb≤128"), and pruned away101

all others. After it, 5505 reviews remained in total. Then we divided the subset, suggested for testing102

purposes, into equal development and test sets.103

The SMS Spam Collection v.1 ("SPAM") (Almeida, Hidalgo, and Yamakami (2011)) is a public set104

of SMS (text) labeled messages that have been collected for mobile phone spam research. It contains105
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5,574 real and non-encoded messages, tagged as legitimate (ham) or spam. For our purposes, we106

divided it into train, development and test ("SPAM𝑡𝑒𝑠𝑡") sets randomly in proportion 80 : 10 : 10.107

We used "development" subsets for tuning logistic regression hyperparameters: maximum amount of108

iterations and 𝑙2-regularization coefficient. "Test" subsets were used for final validation.109

5.2 Results110

CoLA𝑑𝑒𝑣 CoLA𝑡𝑒𝑠𝑡 Imdb≤128
𝑡𝑒𝑠𝑡 SPAM𝑡𝑒𝑠𝑡

BERT 0.559 (82.0%) 0.492 0.833 (91.7%) 0.941 (98.7 %)
𝛽0, 𝛽1, 144 heads 0.549 (81.1 %) 0.508 0.812 (90.6 %) 0.950 (98.9 %)
𝛽0, 𝛽1, 12 best heads 0.532 (80.7 %) 0.463 0.805 (90.3 %) 0.878 (97.3 %)
𝛽0, 𝛽1, 3 best heads 0.452 (77.1 %) 0.456 0.799 (90.0 %) 0.809 (96.1 %)
𝛽0, 𝛽1, 1 best head 0.427 (76.4 %) 0.385 0.735 (86.9%) 0.606 (92.3 %)
Test examples amount 1043 1033 1415 556

Table 1: The comparison of our classification methods with the conventional BERT-based classifier
by Matthew score and accuracy (in brackets, %).

As an efficiency measure of a linear classifier, we use Matthew score (Matthew coefficient), which is
calculated by formula

MCC =
TP × TN − FP × FN√︀

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
,

where we denote by 𝐹𝑃 , 𝐹𝑁 , 𝑇𝑁 , and 𝑇𝑃 the amount of false positive, false negative, true negative,111

and true positive predictions of our classifier, respectively. We also note classifications accuracy in112

brackets for those datasets, where test labels are available in open access.113

For these experiments we fine-tuned BERT on each of datasets separately and used the set of six114

weight thresholds for calculating Betti numbers. In Table 1 we emphasized in bold the results which115

surpassed the result of the fine-tuned BERT classifier.116

For the first experiment we used the features calculated on all 144 heads. For consequent experiments,117

we checked Matthew score of classification upon features, built from the graph on each head on the118

train set, and ranged heads in descending order according to it. Then we picked 12, 3 or 1 heads with119

the best Matthew score and used them for calculation of classification features (Betti numbers) on120

development and test sets.121

It’s noticeable that topological features of attention graphs on particular heads have different linear122

separability. For more information about this see Appendix B.123

6 Conclusion and further research124

We have shown that the topology of attention graphs contains enough information for classifying125

texts by three different attributes: linguistic acceptability, sentiment, and being SPAM or not. Thus,126

we see here some degree of universality for distinguishing different text properties.127

Moreover, the result of our linear classifier, trained on topological features, surpassed the result128

of the conventional BERT-based classifier on the hidden test subset of the Corpus of Linguistic129

Acceptability dataset and is a little better on the SMS Spam Collection v. 1 dataset. This allows us to130

suppose that these features may contain even more generalized task-relevant information than the131

BERT output embedding. Plans of our future research include checking this daring statement with132

other topological features and other threshold collections. Particularly, in our current work we didn’t133

use the information about directions of graph edges, which could be utilized with directed graph134

invariants, such as number of simple directed cycles and number of strongly connected components135

of a digraph.136

Another possible direction for future work is to use the information about differences between linear137

separability scores on different heads to determine which heads are more or less important for each138

particular task. Which can potentially be used as a base for new strategies of efficiently decreasing139

the model size.140
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Appendix A. Persistent homology and Betti numbers187

Recall that a simplicial complex 𝐾 is a finite collection of finite sets called simplices such that each188

subset of any element of 𝐾 also is an element of 𝐾; such subsets of a simplex are called faces. In189

particular, an undirected graph is a simplicial complex where all edges and vertices are its faces.190

The set of all formal Z-linear combinations of the 𝑝-dimensional simplices (that is, (𝑝− 1)-element191

simplices) of 𝐾 is denoted C𝑝(𝐾). These linear combinations 𝑐 =
∑︀

𝑗 𝛾𝑗𝜎𝑗 are called 𝑝-chains,192

where the 𝛾𝑗 ∈ Z and the 𝜎𝑗 are 𝑝-simplices in 𝐾.193

The boundary, 𝜕(𝜎𝑗), is the formal sum of the (𝑝− 1)-dimensional faces of 𝜎𝑗 and the boundary of194

the chain is obtained by extending 𝜕 linearly,195

𝜕(𝑐) =
∑︁
𝑗

𝛾𝑗𝜕(𝜎𝑗),

with integer coefficients 𝛾𝑗 .196

The 𝑝-chains that have boundary 0 are called 𝑝-cycles, they form a subgroup Z𝑝(𝐾) of C𝑝(𝐾). The197

𝑝-chains that are the boundary of (𝑝 + 1)-chains are called 𝑝-boundaries and form a subgroup B𝑝(𝐾)198

of C𝑝(𝐾). The quotient group H𝑝(𝐾) = C𝑝(𝐾)/B𝑝(𝐾) is called the 𝑝-th homology of 𝐾. Their199

ranks 𝛽𝑝 = rankH𝑝(𝐾) of these abelian groups are called Betti numbers. The homologies and the200

Betti numbers are classical topological invariants of 𝐾.201

In particular, a graph 𝐺 = (𝐸, 𝑉 ) contains only 0-dimensional and 1-dimensional faces. It follows202

that its topological form is essentially described by the numbers 𝛽0 and 𝛽1 which are the only nonzero203

Betti numbers. Here 𝛽0 is the number of connected components of 𝐺, and 𝛽1 is the number of204

independent cycles of the graph (which is equal to |𝐸| − |𝑉 |+ 𝛽0).205

A subcomplex of 𝐾 is a subset of simplices that is closed under the face relation. A filtration of 𝐾 is206

a nested sequence of subcomplexes that starts with the empty complex and ends with the complete207

complex,208

∅ ⊂ 𝐾1 ⊂ 𝐾2 ⊂ 𝐾3 ⊂ · · · ⊂ 𝐾𝑚 = 𝐾.

In particular, to any weighted undirected graph 𝐺 = (𝑉,𝐸) and an increasing sequence 0 = 𝑡0 ≤209

𝑡1 ≤ · · · ≤ 𝑡𝑚 such that 𝑡𝑚 is greater or equal to the maximal edge weight in 𝐺, one can associate a210

filtration211

∅ ⊂ 𝐺𝑡0 ⊂ · · · ⊂ 𝐺𝑡𝑚 = 𝐺, (2)
where 𝐺𝑡𝑖 = (𝑉,𝐸𝑡𝑖) and 𝐸𝑡𝑖 consists of all edges of 𝐸 with weight more or equal to 𝑡𝑖.212

The 𝑝-th persistent homology of 𝐾 is the pair of sets of vector spaces {H𝑝(𝐾𝑖)|0 ≤ 𝑖 ≤ 𝑙} and213

maps {𝑓𝑖,𝑗 : H𝑝(𝐾𝑖)→ H𝑝(𝐾𝑖)|1 ≤ 𝑖 < 𝑗 ≤ 𝑙}, where the maps are induced by the inclusion maps214

𝐾𝑖 → 𝐾𝑗 .215

Each persistent homology class 𝛼 in this sequence is “born” at some 𝐾𝑖 and “dies” at some 𝐾𝑗 . One216

can visualize this as an interval [𝑖, 𝑗]. The collection of all such intervals is called the barcode of the217

filtration. It is the most useful invariant of the filtration. Note that the information about the persistent218

homology classes is generally essential to calculate the barcode, whereas the information about the219

Betti numbers only is insufficient.220

Still, in the case of the filtration associated to a weighted graph (2), the basis of 𝐻0 (respectively,221

𝐻1) gives the intervals of the form [0, 𝑡𝑖] (resp., [𝑡𝑖, 𝑡𝑚]) only. Given a number 𝑙 = 𝑡𝑘, the number of222

intervals of length at most 𝑙 for 𝐻0 (respectively, the number of intervals of of length at least 𝑡𝑚 − 𝑙223

for 𝐻1) is therefore equal to the the Betti number 𝛽0(𝐾𝑙) (resp., 𝛽1(𝐾𝑙)). We see that in this case the224

collection of the Betti numbers 𝛽𝑖(𝐾𝑡𝑗 ) is sufficient to recover the barcode. Thus, we use just Betti225

numbers of the subgraphs 𝐾𝑡𝑗 as the only topological invariants of our graphs.226
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Appendix B. Classifiers built by a single head227

Figure 1: Matthew scores of predictions of linear classifiers, built upon particular attention heads.
The number of the layer is displayed on the vertical axis. The number of the head inside the layer is
displayed on the horizontal axis.

Figure 1 illustrates that the relevance of features, calculated on different heads, varies greatly from228

head to head on each task. It also shows that the same head can be more relevant for solving one task229

but less relevant for solving other ones. On the other hand, we can see similar patterns on the train230

and test/development sets for each task separately (in each column of Figure 1). This means that the231

head importance, derived from this score, is generalized to unseen examples and therefore can be232

used for feature selection.233
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