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ABSTRACT

In this work, we present PFAvatar, a new approach to avatar reconstruction and
editing from multiple in-the-wild images with varying poses, unknown camera
conditions, cropped views, and occlusions. Traditional methods often rely on full-
body images captured with controlled avatar pose, camera settings, lighting, and
background, while struggling to reconstruct under in-the-wild settings. To ad-
dress this issue, we fuse the varying pose priors of avatars in in-the-wild images,
thereby enabling precise control over avatar generation. Specifically, we first in-
ject avatar features (pose, appearance) from input images using a Vision-Language
Model (VLM) and ControlNet. Subsequently, we employ a pose-conditioned 3D-
Consistent Score Distillation Sampling (3D-SDS), which enables reconstructing
a high-quality 3D avatar. Additionally, we propose a Condition Prior Preserva-
tion Loss (CPPL) to mitigate the issues of language and control drift caused by
fine-tuning VLM and ControlNet with few-shot data. Through comprehensive
experiments and evaluation, we demonstrate the effectiveness of our method for
reconstructing avatars from in-the-wild images, supporting further applications
like avatar editing.

PFAvatar Text-Guided

Casual Personal Photo Textured 3D Avatar Textured 3D Avatar Edit

police uniform  Iron Man's suit

armor suit  red caps,Captain Marvel,fifties

Editing

Figure 1: With just a few images of a personal casual photo (left), PFAvatar reconstructs a faithful,
personalized, and textured 3D avatar from a personal photo collection (middle). These images can
vary in body poses, camera angles, framing, lighting, and backgrounds. PFAvatar also supports
downstream tasks, such as customizing avatars and performing virtual try-on via Text-Guided Edit-
ing, while preserving the subject’s identity (right).

1 INTRODUCTION

The creation of 3D human avatars from texts or images has long been a challenging problem in
computer vision and graphics, which is crucial for various applications such as digital humans, the
film industry, and virtual reality. Although text-guided (Liu et al., 2023; Sun et al., 2023; Cao et al.,
2024; Zeng et al., 2024; Poole et al., 2022) digital human generation has made substantial progress in
creating avatars of well-known characters (e.g., Spider-Man), generating avatars with casual capture
setups remains a difficult challenge.

Traditional approaches (Alexander et al., 2010; Guo et al., 2017; Xiong et al., 2024; Shen et al., 2023;
Işık et al., 2023) typically depend on full-body images captured under controlled environments, with
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strict requirements for avatar pose, camera settings, lighting, and background. Additionally, they of-
ten require multi-view images or depth maps, which are impractical for consumer-level applications.
Alternatively, other methods leverage a neural network to predict plausible avatar models from a sin-
gle image or video input (Habermann et al., 2020; Yang et al., 2023; Xiu et al., 2022; Zheng et al.,
2020; Zhang et al., 2024c) but perform poorly under in-the-wild situations, such as unusual body
poses, motion blur, and occlusions, because they rely on accurate human and camera pose estima-
tion from full-body shots. In daily life, we usually only have access to few-shot in-the-wild images
obtained by phone cameras, with varying poses, unknown camera settings, cropped views, and ran-
dom occlusions of individuals. Thus, a method that can accurately reconstruct 3D human avatars
from few-shot in-the-wild images will significantly cut costs and simplify the process of independent
creation.

Reconstructing avatars from in-the-wild images is difficult for two reasons. The first is the absence
of exact pixel-wise correspondence between the input images and the reconstructed avatars. Exist-
ing avatar reconstruction methods require projecting image features onto 3D avatars (Alldieck et al.,
2022; Xiu et al., 2022; Cao et al., 2023b; Corona et al., 2023; Saito et al., 2019; 2020; Yang et al.,
2023) or employing fixed learnable embeddings to generate 3D features (Zhang et al., 2023c). The
absence of 3D correspondences makes directly fusing 3D information from the images a highly
challenging task. The second is caused by the sparse and irregular viewpoint. High-fidelity 3D rep-
resentations require a large number of input images (Zou et al., 2023; Zhang et al., 2021; Goel et al.,
2022; Zhou & Tulsiani, 2023; Long et al., 2022; Cerkezi & Favaro, 2024) and have difficulty in han-
dling sparse viewpoints. Meanwhile, current pose estimation from sparsely sampled views (Wang
et al., 2023c; Zhang et al., 2024b; 2022; Lin et al., 2023a; Wang et al., 2023b) typically requires the
avatar pose to remain fixed. In short, it is still a challenging task to reconstruct a high-quality avatar
from a set of in-the-wild images.

In this paper, in response to these challenges, we introduce a novel method as shown by Figure 2,
dubbed PFAvatar, for avatar reconstruction and editing using multiple in-the-wild images. Our in-
sight is to treat vision-language models (Rombach et al., 2021; Ruiz et al., 2023) and T2I generation
models as personalized priors, which allows us to avoid the need for explicit per-pixel correspon-
dences to a canonical human space while also bypassing camera pose estimation. These Text-to-
Image (T2I) generation methods (Gao et al., 2023; Zhang et al., 2024c; Wu et al., 2023; Yang et al.,
2024; Zhang et al., 2023a) treat reconstruction from partial observations as a process of ”inpainting”
unobserved regions using foundational-model priors, enforcing cross-view consistency. Then, the
Score Distillation Sampling (SDS) (Poole et al., 2022) is further proposed to boost the performance
by distilling the 2D knowledge from a pre-trained diffusion model (Ho et al., 2020; Rombach et al.,
2022; Hong et al., 2022a) to 3D content generation via differentiable rendering. Additionally, we
introduce a Condition Prior Preservation Loss (CPPL) to address the issues of language and con-
trol drift caused by fine-tuning VLM and ControlNet on few-shot data. Our approach leverages
large vision-language models (LVM) in combination with priors from specific input images to gen-
erate avatars that accurately reflect the input’s appearance, while also allowing for editing via text
prompts.

Extensive experimental results, e.g. Figure 4, on the HaveFun, AvatarBooth, and our own datasets
demonstrate that PFAvatar surpasses state-of-the-art methods for avatar reconstruction and editing
using multiple in-the-wild images. Additionally, As shown by Figure 5, we have also shown a strong
generalization ability to the anime characters. We believe our endeavors would enhance the practical
significance of this research area, paving a new way for human avatar reconstruction and real-world
applications.

2 RELATED WORK

2.1 TEXT AND IMAGE-GUIDED 3D AVATAR GENERATION

Numerous studies have investigated methods for reconstructing clothed humans from visual inputs,
such as multi-view images (Lin et al., 2024; Saito et al., 2019; Peng et al., 2021) or full-body monoc-
ular video (Weng et al., 2022; Li et al., 2020). Recently, a growing body of work has focused on gen-
erating human avatars guided by language descriptions. Early research in this area employed CLIP
embeddings (Hong et al., 2022b) to shape rough body outlines. More recent approaches (Wang
et al., 2023a; Liao et al., 2023; Kolotouros et al., 2023; Huang et al., 2023c; Cao et al., 2023a;
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Hong et al., 2022b) have achieved finer geometric detail and texture for clothed individuals, or even
multiple subjects, by leveraging large-scale text-to-image models and Score Distillation Sampling
(SDS) (Wang et al., 2022; Poole et al., 2022).When subject images are available, they are utilized
alongside text to fine-tune pretrained models (Ruiz et al., 2023) and improve accuracy through
the use of re-projection losses (Yang et al., 2024; Huang et al., 2023b;a; Gao et al., 2023). While
standard SDS frameworks typically require several thousand iterations, recent approaches (Chen
et al., 2024) have accelerated the process through one-step generation based on image inputs. How-
ever, all image-based methods rely on precise human pose estimation (Pavlakos et al., 2019)to
establish correspondences between the input image and the generated 3D avatar. Therefore, these
approaches require images with clean backgrounds, standard body poses, and uncropped full-body
views. PFAvatar overcomes the limitations of traditional methods. This makes it ideal for handling
unconstrained, everyday photos from personal photo. By avoiding the need for precise pose esti-
mation and geometric regularizers, ControlAvatar offers greater flexibility and can process a wide
variety of real-world images without the strict constraints seen in other models.

2.2 FINETUNING OF DIFFUSION MODELS

In recent years, with the increasing interest in the text-to-image domain, pioneering researchers have
begun exploring methods for personalizing text-to-image models using photos of specific subjects.
Work on model customization introduces new concepts through fine-tuning (either partial or whole)
of pre-trained networks (Avrahami et al., 2023; Jain et al., 2022; Kumari et al., 2023; Liu et al.,
2024; Ruiz et al., 2023). Other research re-purposes diffusion models for new tasks (Fu et al.,
2024; Ke et al., 2024; Kocsis et al., 2024). One representative work is DreamBooth (Ruiz et al.,
2023), which uses a rare token to represent a specific subject or style, while preventing overfitting
through a prior preservation loss. Another approach, textual inversion (Gal et al., 2022), generates
a new embedding for the input concept and optimizes this embedding vector with a few photos
to enable subject-driven image generation. LoRA (Hu et al., 2021)introduces a method for fine-
tuning large language models by freezing the pre-trained model weights and injecting learnable rank
decomposition matrices into the layers of the Transformer network (Vaswani et al., 2023). Despite
these methods achieving laudable results with common objects, the abundance of prior information
inherent in the human body poses challenges. This hinders the incorporation of such prior control
when fine-tuning on human images. Consequently, consistency may diminish when integrating with
controllers like ControlNet (Zhang et al., 2023b).

2.3 POSE-FREE RECONSTRUCTION IN THE WILD

In our study, ”pose” encompasses both camera positioning and body articulation. The camera pose
is vital for accurate 3D reconstruction because it aligns 3D geometry with 2D imagery (Mildenhall
et al., 2021). However, determining camera pose from in-the-wild images is particularly difficult due
to the uncontrolled nature of these environments. To address errors in camera estimation, some ap-
proaches incorporate joint optimization of both the object and camera parameters (Xia et al., 2022;
Wang et al., 2021; Lin et al., 2021). Other methods rely on precomputed geometric cues (Meule-
man et al., 2023; Fu et al., 2023; Bian et al., 2023) or use learning-based techniques for camera
estimation (Zhang et al., 2024a; Wang et al., 2023c;b). Estimating body pose from in-the-wild
images is particularly difficult due to its much higher dimensionality compared to camera pose.
While some approaches can reconstruct static scenes from such images, even under challenging
lighting and background conditions (Sun et al., 2022; Martin-Brualla et al., 2021), these methods
are not suitable for handling articulated objects like human bodies. Based on our understanding,
the work most pertinent to addressing our issue involves PuzzleAvatar (Xiu et al., 2024),Avatar-
Booth (Zeng et al., 2023) and SIFU (Zhang et al., 2024c). PuzzAvatar and Avatarbooth create
animatable 3D avatars from text descriptions and can also produce customized avatars using just
a few phone photos or character designs generated by diffusion models.Unlike AvatarBooth, we
do not use two diffusion models(Dual Model Fine-tuning), nor do we fine-tune with the original
DreamBooth (Ruiz et al., 2023). In the reconstruction stage, they use the standard Score Distilla-
tion Sampling (Poole et al., 2022). The key difference with PuzzleAvatar is that their PuzzleBooth
method is based on “BreakA-Scene” (Avrahami et al., 2023), which shows that jointly learning mul-
tiple concepts significantly boosts performance, possibly because this facilitates global reasoning
when multiple regions are simultaneously generated. And in the reconstruction stage, they employ
Noise-Free Distillation Sampling (NFDS) Katzir et al. (2023), an improved version of Score Distil-
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Figure 2: Overview of our PFAvatar pipeline. Our pipeline is primarily divided into two stages:
ControlBooth and BoothAvatar. In the ControlBooth stage, we focus on fine-tuning text-to-
image diffusion models and ControlNet for subject-driven generation, based on the collected im-
ages.During the BoothAvatar stage, we utilize the Fine-Tuned model obtained from the previous
phase, employing multi-view 3D-consistent score distillation sampling to create a 3D avatar. For the
network architectures of Latent Diffusion and ControlNet, please refer to Section A.1.

lation Sampling, though this sampling method does not take human-related prior information into
account. While our approach shares similarities with PuzzleAvatar in decomposing the subject in
the image to extract key information, we go further by incorporating human pose information during
the decomposition process. Furthermore, as single-image pose-free reconstruction is a special case
of multi image pose-free reconstruction, we selected the state-of-the-art work, SIFU (Zhang et al.,
2024c), for single-image human reconstruction for comparison. By integrating ControlNet (Zhang
et al., 2023b) to incorporate pose priors, enhances its ability for personalized generation. In the re-
construction stage, we utilize 3D-consistent Score Distillation Sampling(SDS) (Huang et al., 2023c)
based on the Fine-Tuned Latent Diffusion to guide the sampling process, further improving the
reconstruction performance.

3 METHOD

This section introduces the PFAvatar framework, which processes a set of in-the-wild images
{I1, I2, . . . , IN} of a real person or anime character, and reconstructs a 3D avatar that faithfully
captures both geometry and appearance. As shown in Fig. 2, the framework is divided into two
primary stages. In the first stage, namely ControlBooth (Sec. 3.1), we fine-tune a Text-to-Image
(T2I) (Rombach et al., 2021) and ControlNet (Zhang et al., 2023b) model to extract avatar features
(pose, appearance) from the input images. In the second stage, namely BoothAvatar (Sec. 3.2), the
fine-tuned T2I model is used as guidance to optimize the 3D avatar in the form of Neural Radiance
Fields (NeRF) (Mildenhall et al., 2021) via 3D-consistent Score Distillation Sampling (SDS) (Huang
et al., 2023c).
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3.1 CONTROLBOOTH: INJECTING AVATAR PRIOR TO T2I AND CONTROLNET MODEL

3.1.1 DREAMBOOTH FINETUNING ON CONTROLNET

Our first task is to finetune a personalized T2I and ControlNet model that can generate images of this
avatar with varied poses. A T2I diffusion model (Saharia et al., 2022; Rombach et al., 2022; Ramesh
et al., 2022) Dθ(ϵ, c) takes as input an initial noise ϵ ∼ N (0, 1) and a text embedding ct = Θ(T )
for a given prompt T with a text encoder Θ and generates an image that follows the description of
the prompt. However, it is difficult to exert fine-grained control in the generated images. Dream-
Booth (Ruiz et al., 2023) proposes a simple yet effective approach to personalize a T2I diffusion
model by fine-tuning the network on a small set of in-the-wild captures {I1, I2, . . . , IN}. Briefly,
DreamBooth uses the following diffusion loss function L (Eq. 1) to fine-tune the T2I model:

L = Eϵ,t,ct

[
wt ∥Dθ(αtIi + σtϵ, ct)− Ii∥22

]
, (1)

where t ∼ U [0, 1] denotes the time step in the diffusion process and wt, αt, and σt are the corre-
sponding scheduling parameters.

Applying DreamBooth on ControlNet. While this method (Ruiz et al., 2023; Avrahami et al.,
2023) of fine-tuning models has been employed in AvatarBooth (Zeng et al., 2023) and PuzzleA-
vatar (Xiu et al., 2024) for 3D avatar generation, we find that their effectiveness is often compro-
mised due to the significant pose variations of avatars. We aim to harness these diverse priors of
avatar poses {P1,P2, . . . ,PN} to enhance personalization capabilities. ControlNet (Zhang et al.,
2023b) suppose F(·; Θ) is such a trained neural block, with parameters Θ, that transforms an input
feature map x into another feature map y as y = F(x; Θ), where x and y are usually 2D feature
maps, i.e., x ∈ Rh×w×c with {h,w, c} as the height, width, and number of channels in the map,
respectively. Thus, we input the pose Pi as a feature map x into ControlNet, while other data is
fed into T2I diffusion model for simultaneous fine-tuning to enhance personalized control capabili-
ties.After the meticulous setup described above, we can proceed with training using the loss function
Lrec from Eq. 2 as follows:

Lrec = Eϵ,t,cti
,cpi

[
wt ∥Dθ(αtIi + σtϵ, cti , cpi

)− Ii∥22
]
, (2)

where the i-th image-space condition Pi encodes a feature space conditioning vector cpi
, and ci

represents its corresponding text conditioning vector. Numerous existing works (Chen et al., 2023;
Huang et al., 2023b; Liao et al., 2023) indicate that the view prompt aids in reconstruction. There-
fore, we set a corresponding cti for each image to enhance the model’s performance. We provide a
detailed description of the model architecture and implementation of the ControlBooth in A.1.

3.1.2 CONDITION PRIOR PRESERVATION LOSS (CPPL)

Motivation. When fine-tuning with a small set of images, there is a risk of reducing the variability
in the output poses and views of the avatar (e.g., snapping to the few-shot views). In addition, as
shown in Figure 3 row 2, we also observed language drifting and reduced output diversity when
combining ControlNet with DreamBooth fine-tuning.

CPPL. To address these issues, we propose a condition-based prior preservation loss, which pro-
motes diversity, counters language drift, and helps maintain control capabilities. Specifically, we
generate data Ipr = Dθ(zt1 , cprt, cprp) using the ancestral sampler on the frozen pre-trained T2I
diffusion model with random initial noise ϵ ∼ N (0, 1) and conditioning vectors cpr := Γ(ft(Tpr))
and cprp := F(Ppr). Here, ft is used to convert the prompt Tpr into the corresponding text embed-
ding, while Γ represents the text encoder that transforms it into the corresponding text conditioning
vectors. Additionally, F is a neural block that converts the output 2D map Ppr into cprp. The form
of Lcppl is given by Equation 3:

Lcppl = Eϵ,t,cprti
,cprpi

[
λw′

t ∥Dθ(αtIpri + σtϵ, cprti , cprpi)− Ipri∥
2
2

]
, (3)

where Lcppl is the condition prior-preservation term that supervises the model with its own generated
images, and λ controls the relative weight of this term. Figure 2 illustrates the model fine-tuning
with the class-generated samples and the condition prior-preservation loss. Ultimately, our overall
computational loss is shown in Equation 4:

Ltotal = Lrec + Lcppl. (4)
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As shown in Figure 3 row 3, our introduction of Lcppl can effectively overcome the degradation of
control capabilities. Typically, we set λ to 1 during training.For details on data generation related to
CPPL, please refer to Section A.1.

200 400 600 800 1000

DreamBooth

ControlBooth
cppl w=0.0

ControlBooth
cppl w=1.0

Figure 3: Encouraging diversity while maintaining control through condition prior-
preservation loss(CPPL). Utilizing the fine-tuning strategy of Naive DreamBooth (Row 1) to gen-
erate images with new poses may introduce color discrepancies, significantly reducing consistency.
Simply fine-tuning T2I(Row 2) and ControlNet may lead to overfitting on the context of the input
image and the subject’s appearance (e.g., pose). CPPL (Row 3) serves as a regularizer, mitigating
overfitting while promoting diversity and maintaining control.

3.2 BOOTHAVATAR: RECONSTRUCT AVATAR VIA FINE-TUNED MODEL

3D Representation. We chose NeRF as our 3D representation. Neural Radiance Fields
(NeRF) (Barron et al., 2021; Müller et al., 2022; Mildenhall et al., 2021) are widely used as 3D
representations for text-to-3D generation (Guo et al., 2023; Lin et al., 2023b), and are parameterized
by a trainable multilayer perceptron (MLP). To render an image, rays r(k) = o + kd are sampled,
where o represents the camera position and d is the direction, both done on a per-pixel basis. The
MLP takes these ray samples as input and predicts the density τ and color c. The final pixel color is
computed by approximating the volume rendering integral using numerical quadrature as follows:

Ĉc(r) =

Nc∑
i=1

Ωi · (1− exp(−τiδi)) ci, (5)

where Nc refers to the number of sampled points along each ray, and Ωi = exp
(
−
∑i−1

j=1 τjδj

)
is

the accumulated transmittance, with δi being the distance between consecutive sample points.

SMPL-guided Initialization. To accelerate NeRF optimization and provide a robust initial input
for extracting insightful guidance from the diffusion model, we pre-train NeRF using an SMPL
mesh. The SMPL model can be set in the canonical pose, as utilized in our approach to prevent
self-occlusion, or in any preferred pose for creating posed avatars (Cao et al., 2024). Specifically,
we render the image Is of the SMPL model from a randomly sampled viewpoint and minimize the
mean squared error (MSE) loss between the NeRF-rendered image Ir and the image Is

LMSE =
1

N

N∑
i=1

(Ir(i)− Is(i))
2
. (6)

Empirical evidence reveals that SMPL-guided NeRF initialization significantly enhances both ge-
ometry and convergence speed during avatar generation.

3D-consistent Score Distillation Sampling. To fully leverage our pose fusion capabilities, we in-
corporate additional 3D-aware conditioning images to refine SDS (Huang et al., 2023c) for achieving
3D-consistent NeRF optimization. Specifically, an additional conditioning image c is integrated into

6
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PFAvatar(ours) SIFUAvatarbooth

Figure 4: Qualitative Comparison I: Real Person Dataset. Visual results on three distinct sub-
jects, employing two baseline techniques, AvatarBooth and SIFU alongside our method (PFAvatar),
clearly showcase superior 3D consistency and subject fidelity in our approach compared to either
baseline technique.

Equation 7 for the computation of the SDS gradient:

∇θLSDS(ϕ,x) = Et,ϵ

[
w(t) (ϵϕ (xt; y, t, c)− ϵ)

∂zt
∂x

∂x

∂θ

]
, (7)

where conditioning image c can consist of one or a combination of skeletons, depth maps, etc. w(t)
is a weighting function dependent on the timestep t, and y represents the associated text prompt. In
practice, we choose skeletons as the type of conditioning image due to their provision of minimal
image structure priors, which facilitate complex avatar generation. To ensure 3D-consistent guid-
ance, the viewpoint of the conditioning image must align with that of NeRF’s rendering. For avatar
generation, we employ human SMPL models to generate these conditioning images.

Zoom-in View for Head-Part. To improve the quality of the avatar’s facial structure, we implement
a zoom-in view for the head. Specifically, we perform additional view sampling of the avatar’s head
with a probability that enhances facial clarity. By adopting this importance-based strategy, we can
accelerate our training speed while simultaneously improving the quality of reconstruction.

4 EXPERIMENT

In this section, we perform comprehensive experiments to evaluate our method. We compare the
performance of our method with state-of-the-art related methods and conduct ablation studies to
validate the effectiveness of our designs. For more details on the experimental setup, please refer to
Section A.1.
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PFAvatar(ours) SIFUAvatarbooth

Figure 5: Qualitative Comparison-II: Anime Character Dataset. We compare our method with
AvatarBooth and SIFU for appearance-customized reconstruction. Our method consistently achieves
superior reconstruction quality and more faithful subject fidelity compared to all other approaches.

4.1 OVERVIEW

Dataset Generation. We perform experiments using 3 benchmark datasets: the real person dataset
from Have-Fun (Yang et al., 2024) and the AvatarBooth dataset (Zeng et al., 2023) as well as our
custom-built dataset containing both real people and anime characters. The Have-Fun dataset in-
cludes a variety of scenes with diverse character poses, though these scenarios are generated in
a laboratory setting. The AvatarBooth dataset with varying poses, backgrounds, and camera an-
gles presents significant reconstruction challenges. To demonstrate the efficacy of our approach,
we developed our own dataset comprising real-person and character data. The former evaluates
performance on real-person data, while the latter assesses the effects on character data. For more
experimental results, please refer to Section A.2.

Metrics. We perform a quantitative evaluation on the dataset discussed earlier, focusing on an es-
sential criterion: subject fidelity, which refers to how well the subject details are preserved in the
generated images. Our evaluation leverages the DINO (Caron et al., 2021), CLIP-I, and CLIP-T
metrics. CLIP-I measures the average cosine similarity between the CLIP (Radford et al., 2021)
embeddings of generated and real images. The DINO metric computes the average cosine similarity
between the ViT-S/16 DINO embeddings of the generated and real images. Meanwhile, CLIP-T
assesses prompt fidelity by calculating the average cosine similarity between the text prompt and
the corresponding image CLIP embeddings. As these CLIP metrics can only approximately gauge
the quality and subject fidelity of the generated 3D assets. Specifically, the models generated by our
method and previous works are first rendered into 1000 images from 25 different viewpoints. Sub-
sequently, we compute the average metric. To ensure a more equitable evaluation, we additionally
conduct user studies to compare various outcomes.

Baselines. PuzzleAvatar (Xiu et al., 2024) is the most similar concurrent work. Besides PuzzleA-
vatar, the work most relevant to ours is AvatarBooth (Avrahami et al., 2023), which we have cho-
sen as one of our baselines. Since single image-to-3D is our special case, we have also selected
SIFU (Zhang et al., 2024c) as an alternative baseline.

4.2 QUALITATIVE EVALUATIONS

Figure 4 and 5 show sample results of our approach in comparison to those of AvatarBooth and
SIFU baselines. We demonstrate that our method surpasses all these works due to our designs. For
further experimental comparisons, please refer to Section A.2.

Comparison on real images. We conducted a detailed qualitative comparison of each type of
method using our chosen three categories of datasets of real persons. As depicted in Fig 4, Our
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w/o ControlNet w/o Detailed Prompt w/o CPPL

w/o Zoom-in View Fullw/o Head-part

Figure 6: Qualitative results of the ablation study.

Table 1: Quantitative comparisons using DINO, CLIP-I, and CLIP-T on AvatarBooth, SIFU, and
ControlAvatar generations demonstrate that renderings from our 3D model outputs more precisely
capture the text prompts and image subjects.

Method CLIP-I↑ DINO↑ CLIP-T↑
body head body head body head

PFAvatar(Our) 0.8922 0.9152 0.7772 0.8517 0.3136 0.2823
Avatarbooth 0.8533 0.8837 0.6778 0.7869 0.2907 0.2588
SIFU 0.8404 0.8970 0.7174 0.8371 0.2879 0.2748

method has various advantages over SIFU and AvatarBooth. SIFU works reasonably well in the
front view (such as the person in the first row). It frequently introduces inconsistencies between the
reconstructed front view and the hallucinated back view. In contrast, by handling all views with iden-
tity consistency, we enhance the coherence across different perspectives. Although AvatarBooth and
our approach both utilize similar 3D representations, AvatarBooth employs two separate diffusion
models to control the face and body. However, it relies on a single prompt for injection across all
views and uses only vanilla SDS for guidance during reconstruction, resulting in lower-quality 3D
avatars. In contrast, we individually process each view, injecting features independently into each
image. By incorporating ControlNet to leverage avatar pose priors, we enhance identity consistency.
During the reconstruction phase, our 3D-SDS further exploits pose priors to achieve superior results.

Comparison on anime characters. In this experiment, we qualitatively validate our ability to
generate characters from anime character styles of data, conducting specific tests on anime-style
datasets. As depicted in Figure 5, ControlAvatar has various advantages over SIFU and AvatarBooth.
We find that even for the challenging anime character dataset—featuring complex clothing, unusual
poses, and incomplete bodies—our method consistently achieved superior reconstruction quality
and more faithful subject fidelity compared to all other approaches.
4.3 QUANTITATIVE EVALUATION

Metric Evaluation. Table 1 shows DINO, CLIP-I, and CLIP-T metrics for SIFU, AvatarBooth,
and our PFAvatar Reconstruction. Results clearly demonstrate significantly higher scores for the
PFAvatar results, indicating better 3D consistency, image subject fidelity, and text prompt alignment.

User Study. We carry out user studies to compare with the aforementioned state-of-the-art methods.
Twenty-five volunteers are presented with 20 examples to assess these methods across four dimen-
sions: (1) 3D Consistency, (2) Subject Fidelity, (3) Prompt Fidelity, and (4) Face Fidelity. They are
asked to select the option that performs best among the given methods. The final ratings in 2 clearly
demonstrate that PFAvatar is significantly favored over the baselines regarding 3D consistency, sub-
ject fidelity, face fidelity, and prompt fidelity.
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Table 2: User Study. Users display a marked preference for our PFAvatar over AvatarBooth and
SIFU in terms of 3D consistency, subject fidelity, face fidelity, and prompt fidelity.

Method 3D Consistency Subject Fidelity Prompt Fidelity Head Fidelity

PFAvatar (ours) 93.1% 88.3% 90.5% 92.6%
Avatarbooth 1.4% 2.2% 1.1% 1.2%
SIFU 7.5% 10.5% 9.4% 7.2%

Table 3: Quantitative comparisons of ablation study. Subject fidelity (DINO, CLIP-I) and prompt
fidelity (CLIP-T, CLIP-T-L) ablation comparison.

Method CLIP-I ↑ DINO ↑ CLIP-T ↑
full-body head full-body head full-body head

Full 0.8922 0.9152 0.7772 0.8517 0.3136 0.2823
w/o ControlNet 0.8741 0.8703 0.7259 0.8022 0.2807 0.2529
w/o Detailed Prompt 0.8457 0.9054 0.7391 0.8081 0.2414 0.2613
w/o CPPL 0.8820 0.8909 0.7593 0.8532 0.2680 0.2632
w/o Zoom-in View 0.8812 0.8531 0.7359 0.7620 0.2654 0.2484
w/o head-part 0.8631 0.8612 0.7486 0.8574 0.2792 0.2434

Ablation Study. In this section, we further conduct a set of experiments to evaluate the effectiveness
of our designs. The comparison of metrics among these methods is illustrated in Table 3, while
their qualitative comparison is shown in Figure 6. By introducing ControlNet, we have mitigated
color bias. Compared to the coarse prompt description strategy of DreamBooth, providing detailed
descriptions (Section A.1) for avatars has improved subject fidelity. Without CPPL, the character’s
skeleton can easily lose control, resulting in poorer generation quality, particularly in areas like the
arms. By incorporating a zoom-in view for the head int BoothAvatar stage and introducing head-part
data in the ControlBooth stage, we have enhanced the quality of the head region.

5 CONCULUSION

Limitations.

Figure 7: Faliure Case.For avatars with
complex clothing and poses, relying
solely on the SDS method may lead to
the generation of hallucinations.

PFAvatar still has many limitations. As it builds on
ControlBooth and SDS without incorporating reprojec-
tion terms, certain hallucinations are inevitable as shown
in Figure 7, where the poses are too challenging for the
avatar reconstruction. This could be improved by using
improved pre-trained models and the adoption of image-
based reprojection techniques.

Conclusion. In this paper, we introduce PFAvatar, a novel
approach for reconstructing and editing avatars from mul-
tiple in-the-wild images. First, we extract avatar features
such as pose and appearance using a Vision-Language
Model (VLM) and ControlNet. Then, to capitalize on
the pose-fusion prior, we utilize pose-conditioned 3D-
Consistent Score Distillation Sampling (3D-SDS) to re-
construct a high-quality 3D avatar. To address the issues of language and control drift that may
arise from fine-tuning VLM and ControlNet with few-shot data, we propose the Condition Prior
Preservation Loss (CPPL). Experiments demonstrate the effectiveness of our method.
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Mustafa Işık, Martin Rünz, Markos Georgopoulos, Taras Khakhulin, Jonathan Starck, Lourdes
Agapito, and Matthias Nießner. Humanrf: High-fidelity neural radiance fields for humans
in motion. ACM Transactions on Graphics, 42(4):1–12, July 2023. ISSN 1557-7368. doi:
10.1145/3592415. URL http://dx.doi.org/10.1145/3592415.

Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter Abbeel, and Ben Poole. Zero-shot text-guided
object generation with dream fields, 2022. URL https://arxiv.org/abs/2112.01455.

Oren Katzir, Or Patashnik, Daniel Cohen-Or, and Dani Lischinski. Noise-free score distillation,
2023. URL https://arxiv.org/abs/2310.17590.

Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Konrad
Schindler. Repurposing diffusion-based image generators for monocular depth estimation, 2024.
URL https://arxiv.org/abs/2312.02145.

Peter Kocsis, Vincent Sitzmann, and Matthias Nießner. Intrinsic image diffusion for indoor single-
view material estimation, 2024. URL https://arxiv.org/abs/2312.12274.

12

https://arxiv.org/abs/2110.05472
https://arxiv.org/abs/2110.05472
https://doi.org/10.1145/3072959.3083722
https://doi.org/10.1145/3072959.3083722
https://github.com/threestudio-project/threestudio
https://github.com/threestudio-project/threestudio
https://arxiv.org/abs/2003.08325
https://arxiv.org/abs/2003.08325
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2205.08535
https://arxiv.org/abs/2205.08535
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2212.02469
https://arxiv.org/abs/2308.08545
https://arxiv.org/abs/2308.08545
https://arxiv.org/abs/2305.12529
https://arxiv.org/abs/2305.12529
http://dx.doi.org/10.1145/3592415
https://arxiv.org/abs/2112.01455
https://arxiv.org/abs/2310.17590
https://arxiv.org/abs/2312.02145
https://arxiv.org/abs/2312.12274


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Nikos Kolotouros, Thiemo Alldieck, Andrei Zanfir, Eduard Gabriel Bazavan, Mihai Fieraru, and
Cristian Sminchisescu. Dreamhuman: Animatable 3d avatars from text, 2023. URL https:
//arxiv.org/abs/2306.09329.

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
customization of text-to-image diffusion, 2023. URL https://arxiv.org/abs/2212.
04488.

Ruilong Li, Yuliang Xiu, Shunsuke Saito, Zeng Huang, Kyle Olszewski, and Hao Li. Monocular
real-time volumetric performance capture, 2020. URL https://arxiv.org/abs/2007.
13988.

Tingting Liao, Hongwei Yi, Yuliang Xiu, Jiaxaing Tang, Yangyi Huang, Justus Thies, and Michael J.
Black. Tada! text to animatable digital avatars, 2023. URL https://arxiv.org/abs/
2308.10899.

Amy Lin, Jason Y. Zhang, Deva Ramanan, and Shubham Tulsiani. Relpose++: Recovering 6d poses
from sparse-view observations, 2023a. URL https://arxiv.org/abs/2305.04926.

Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. Barf: Bundle-adjusting neural
radiance fields. In IEEE International Conference on Computer Vision (ICCV), 2021.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content
creation, 2023b. URL https://arxiv.org/abs/2211.10440.

Lixiang Lin, Songyou Peng, Qijun Gan, and Jianke Zhu. Fasthuman: Reconstructing high-quality
clothed human in minutes. In International Conference on 3D Vision, 3DV, 2024.

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bern-
hard Schölkopf. Parameter-efficient orthogonal finetuning via butterfly factorization, 2024. URL
https://arxiv.org/abs/2311.06243.

Xian Liu, Xiaohang Zhan, Jiaxiang Tang, Ying Shan, Gang Zeng, Dahua Lin, Xihui Liu, and Ziwei
Liu. Humangaussian: Text-driven 3d human generation with gaussian splatting. arXiv preprint
arXiv:2311.17061, 2023.

Xiaoxiao Long, Cheng Lin, Peng Wang, Taku Komura, and Wenping Wang. Sparseneus: Fast
generalizable neural surface reconstruction from sparse views, 2022. URL https://arxiv.
org/abs/2206.05737.

Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovit-
skiy, and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo
collections, 2021. URL https://arxiv.org/abs/2008.02268.

Andreas Meuleman, Yu-Lun Liu, Chen Gao, Jia-Bin Huang, Changil Kim, Min H. Kim, and Jo-
hannes Kopf. Progressively optimized local radiance fields for robust view synthesis. In CVPR,
2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics, 41(4):1–15, July
2022. ISSN 1557-7368. doi: 10.1145/3528223.3530127. URL http://dx.doi.org/10.
1145/3528223.3530127.

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dim-
itrios Tzionas, and Michael J. Black. Expressive body capture: 3d hands, face, and body from a
single image, 2019. URL https://arxiv.org/abs/1904.05866.

13

https://arxiv.org/abs/2306.09329
https://arxiv.org/abs/2306.09329
https://arxiv.org/abs/2212.04488
https://arxiv.org/abs/2212.04488
https://arxiv.org/abs/2007.13988
https://arxiv.org/abs/2007.13988
https://arxiv.org/abs/2308.10899
https://arxiv.org/abs/2308.10899
https://arxiv.org/abs/2305.04926
https://arxiv.org/abs/2211.10440
https://arxiv.org/abs/2311.06243
https://arxiv.org/abs/2206.05737
https://arxiv.org/abs/2206.05737
https://arxiv.org/abs/2008.02268
http://dx.doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3528223.3530127
https://arxiv.org/abs/1904.05866


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, and Xiaowei
Zhou. Neural body: Implicit neural representations with structured latent codes for novel view
synthesis of dynamic humans, 2021. URL https://arxiv.org/abs/2012.15838.

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion, 2022. URL https://arxiv.org/abs/2209.14988.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022. URL https://arxiv.org/abs/
2204.06125.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation, 2023.
URL https://arxiv.org/abs/2208.12242.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Sal-
imans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image dif-
fusion models with deep language understanding, 2022. URL https://arxiv.org/abs/
2205.11487.

Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and Hao Li.
Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization, 2019. URL
https://arxiv.org/abs/1905.05172.

Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul Joo. Pifuhd: Multi-level pixel-aligned
implicit function for high-resolution 3d human digitization, 2020. URL https://arxiv.
org/abs/2004.00452.

Kaiyue Shen, Chen Guo, Manuel Kaufmann, Juan Jose Zarate, Julien Valentin, Jie Song, and Ot-
mar Hilliges. X-avatar: Expressive human avatars, 2023. URL https://arxiv.org/abs/
2303.04805.

Jiaming Sun, Xi Chen, Qianqian Wang, Zhengqi Li, Hadar Averbuch-Elor, Xiaowei Zhou, and Noah
Snavely. Neural 3d reconstruction in the wild. In Special Interest Group on Computer Graphics
and Interactive Techniques Conference Proceedings, SIGGRAPH ’22. ACM, August 2022. doi:
10.1145/3528233.3530718. URL http://dx.doi.org/10.1145/3528233.3530718.

Jingxiang Sun, Bo Zhang, Ruizhi Shao, Lizhen Wang, Wen Liu, Zhenda Xie, and Yebin Liu.
Dreamcraft3d: Hierarchical 3d generation with bootstrapped diffusion prior. arXiv preprint
arXiv:2310.16818, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Ra-
sul, Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and
Thomas Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/
huggingface/diffusers, 2022.

14

https://arxiv.org/abs/2012.15838
https://arxiv.org/abs/2209.14988
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/1905.05172
https://arxiv.org/abs/2004.00452
https://arxiv.org/abs/2004.00452
https://arxiv.org/abs/2303.04805
https://arxiv.org/abs/2303.04805
http://dx.doi.org/10.1145/3528233.3530718
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh, and Greg Shakhnarovich. Score jacobian
chaining: Lifting pretrained 2d diffusion models for 3d generation, 2022. URL https://
arxiv.org/abs/2212.00774.

Jionghao Wang, Yuan Liu, Zhiyang Dou, Zhengming Yu, Yongqing Liang, Xin Li, Wenping Wang,
Rong Xie, and Li Song. Disentangled clothed avatar generation from text descriptions, 2023a.
URL https://arxiv.org/abs/2312.05295.

Peng Wang, Hao Tan, Sai Bi, Yinghao Xu, Fujun Luan, Kalyan Sunkavalli, Wenping Wang, Zexi-
ang Xu, and Kai Zhang. Pf-lrm: Pose-free large reconstruction model for joint pose and shape
prediction, 2023b. URL https://arxiv.org/abs/2311.12024.

Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Ge-
ometric 3d vision made easy, 2023c. URL https://arxiv.org/abs/2312.14132.

Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. NeRF−−: Neural
radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064, 2021.

Chung-Yi Weng, Brian Curless, Pratul P. Srinivasan, Jonathan T. Barron, and Ira Kemelmacher-
Shlizerman. HumanNeRF: Free-viewpoint rendering of moving people from monocular video. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 16210–16220, June 2022.

Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong Park, Ruiqi Gao, Daniel Watson, Pratul P.
Srinivasan, Dor Verbin, Jonathan T. Barron, Ben Poole, and Aleksander Holynski. Reconfu-
sion: 3d reconstruction with diffusion priors, 2023. URL https://arxiv.org/abs/2312.
02981.

Yitong Xia, Hao Tang, Radu Timofte, and Luc Van Gool. Sinerf: Sinusoidal neural radiance fields
for joint pose estimation and scene reconstruction. In 33rd British Machine Vision Conference
2022, BMVC 2022, London, UK, November 21-24, 2022. BMVA Press, 2022. URL https:
//bmvc2022.mpi-inf.mpg.de/0131.pdf.

Zhangyang Xiong, Chenghong Li, Kenkun Liu, Hongjie Liao, Jianqiao Hu, Junyi Zhu, Shuliang
Ning, Lingteng Qiu, Chongjie Wang, Shijie Wang, et al. Mvhumannet: A large-scale dataset
of multi-view daily dressing human captures. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 19801–19811, 2024.

Yuliang Xiu, Jinlong Yang, Dimitrios Tzionas, and Michael J. Black. Icon: Implicit clothed humans
obtained from normals, 2022. URL https://arxiv.org/abs/2112.09127.

Yuliang Xiu, Yufei Ye, Zhen Liu, Dimitrios Tzionas, and Michael J. Black. Puzzleavatar: As-
sembling 3d avatars from personal albums, 2024. URL https://arxiv.org/abs/2405.
14869.

Xihe Yang, Xingyu Chen, Daiheng Gao, Shaohui Wang, Xiaoguang Han, and Baoyuan Wang. Have-
fun: Human avatar reconstruction from few-shot unconstrained images, 2024. URL https:
//arxiv.org/abs/2311.15672.

Xueting Yang, Yihao Luo, Yuliang Xiu, Wei Wang, Hao Xu, and Zhaoxin Fan. D-if: Uncertainty-
aware human digitization via implicit distribution field, 2023. URL https://arxiv.org/
abs/2308.08857.

Bohan Zeng, Shanglin Li, Yutang Feng, Ling Yang, Hong Li, Sicheng Gao, Jiaming Liu, Con-
ghui He, Wentao Zhang, Jianzhuang Liu, Baochang Zhang, and Shuicheng Yan. Ipdreamer:
Appearance-controllable 3d object generation with complex image prompts, 2024. URL https:
//arxiv.org/abs/2310.05375.

Yifei Zeng, Yuanxun Lu, Xinya Ji, Yao Yao, Hao Zhu, and Xun Cao. Avatarbooth: High-quality and
customizable 3d human avatar generation, 2023. URL https://arxiv.org/abs/2306.
09864.

15

https://arxiv.org/abs/2212.00774
https://arxiv.org/abs/2212.00774
https://arxiv.org/abs/2312.05295
https://arxiv.org/abs/2311.12024
https://arxiv.org/abs/2312.14132
https://arxiv.org/abs/2312.02981
https://arxiv.org/abs/2312.02981
https://bmvc2022.mpi-inf.mpg.de/0131.pdf
https://bmvc2022.mpi-inf.mpg.de/0131.pdf
https://arxiv.org/abs/2112.09127
https://arxiv.org/abs/2405.14869
https://arxiv.org/abs/2405.14869
https://arxiv.org/abs/2311.15672
https://arxiv.org/abs/2311.15672
https://arxiv.org/abs/2308.08857
https://arxiv.org/abs/2308.08857
https://arxiv.org/abs/2310.05375
https://arxiv.org/abs/2310.05375
https://arxiv.org/abs/2306.09864
https://arxiv.org/abs/2306.09864


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Jason Y. Zhang, Gengshan Yang, Shubham Tulsiani, and Deva Ramanan. Ners: Neural reflectance
surfaces for sparse-view 3d reconstruction in the wild, 2021. URL https://arxiv.org/
abs/2110.07604.

Jason Y. Zhang, Deva Ramanan, and Shubham Tulsiani. Relpose: Predicting probabilistic rela-
tive rotation for single objects in the wild, 2022. URL https://arxiv.org/abs/2208.
05963.

Jason Y. Zhang, Amy Lin, Moneish Kumar, Tzu-Hsuan Yang, Deva Ramanan, and Shubham Tul-
siani. Cameras as rays: Pose estimation via ray diffusion, 2024a. URL https://arxiv.
org/abs/2402.14817.

Jason Y Zhang, Amy Lin, Moneish Kumar, Tzu-Hsuan Yang, Deva Ramanan, and Shubham Tul-
siani. Cameras as rays: Pose estimation via ray diffusion. In International Conference on Learn-
ing Representations (ICLR), 2024b.

Jingbo Zhang, Xiaoyu Li, Qi Zhang, Yanpei Cao, Ying Shan, and Jing Liao. Humanref: Single
image to 3d human generation via reference-guided diffusion, 2023a. URL https://arxiv.
org/abs/2311.16961.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models, 2023b. URL https://arxiv.org/abs/2302.05543.

Zechuan Zhang, Li Sun, Zongxin Yang, Ling Chen, and Yi Yang. Global-correlated 3d-decoupling
transformer for clothed avatar reconstruction. In Advances in Neural Information Processing
Systems (NeurIPS), 2023c.

Zechuan Zhang, Zongxin Yang, and Yi Yang. Sifu: Side-view conditioned implicit function for
real-world usable clothed human reconstruction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 9936–9947, June 2024c.

Zerong Zheng, Tao Yu, Yebin Liu, and Qionghai Dai. Pamir: Parametric model-conditioned implicit
representation for image-based human reconstruction, 2020. URL https://arxiv.org/
abs/2007.03858.

Zhizhuo Zhou and Shubham Tulsiani. Sparsefusion: Distilling view-conditioned diffusion for 3d
reconstruction, 2023. URL https://arxiv.org/abs/2212.00792.

Zi-Xin Zou, Weihao Cheng, Yan-Pei Cao, Shi-Sheng Huang, Ying Shan, and Song-Hai Zhang.
Sparse3d: Distilling multiview-consistent diffusion for object reconstruction from sparse views,
2023. URL https://arxiv.org/abs/2308.14078.

A APPENDIX

A.1 DEATILS OF THE PFAVATAR

Model architecture of the ControlBooth. This section presents the model architecture and im-
plementation of the pre-trained model used during the ControlBooth phase. The structure of the
network we train is derived from ControlNet, which includes the Latent Diffusion Model and Con-
trolNet. Unlike the training method employed in ControlNet, we perform fine-tuning on the text
encoder, U-Net, and ControlNet simultaneously. For the Latent Diffusion Model, we choose the
Stable Diffusion Model V1.5 (Rombach et al., 2021). For ControlNet (Zhang et al., 2023b), we
selected control v11p sd15 openpose as our pre-trained model.

Dataset collection. All the collected images undergo the following preprocessing step. The Ihead
images are provided by the user or extracted from the Ibody images. To obtain a detailed description
of each image, we will employ GPT-4V to analyze each one and extract the various features of the
human body, such as upper clothing, lower clothing, etc, as well as the general direction the person
is facing at that moment. Specifically, we will ask GPT-4V (GPT, 2023) to determine whether the
person in the image is real, whether they are a known figure, the person’s gender, accessories, hair
(length, color, and other attributes), upper clothing (length, color, and other attributes), and lower
clothing (length, color, and other attributes).
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Designing Detailed Prompts for Few-Shot Personalization. During the training process, we dis-
covered that detailed prompts for few-shot personalization significantly enhance the quality of hu-
man few-shot personalization. Specifically, rather than labeling all input images of the subject as
“a [identifier] [class noun],” where [identifier] is a unique identifier linked to the subject and [class
noun] is a coarse class descriptor of the subject (e.g., person,anime character, etc.), we instead use
GPT-4V in advance to obtain detailed descriptions for each image. Ours queried Prompt as fellows:

Analyze the provided all images, analyze the character’s posture and facial expression at this time.
If the person’s demeanor cannot be analyzed at this time, only the facial expression at that time is
given. Describe the gender of the character, and if it is a famous anime character or person, give
the name of the anime character or person at the same time. The features that need to be identified
are facial features (if there are facial ornaments, such as glasses, etc. on the face, corresponding
descriptions need to be given), hairstyle, shoes, and clothing. For these features, you need to de-
scribe their specific length, color, style, etc. At the same time, the character’s orientation at this time
is given, which can be one of the following four situations: side view, front view, overhead view, or
back view. Note that because you need to specify a character, you must add [identifier] to indicate a
specific character. If there is only the head of the character in the picture at this time, please mark
”Head,” and please give some corresponding descriptions of the characteristics of the head.

Extensive experimental evaluation, detailed text descriptions lead to higher quality during the train-
ing process.

Data Augmentation for CPPL. We perform random sampling of an SMPL human avatar to obtain
the corresponding 2D openpose map Ppr. In our experiments, we randomly sampled 250 different
poses. Based on the azimuth angle at each pose, we also derived the direction d for the prompt
Tpr. Using the pre-trained LDM and ControlNet models, we then generated 1,000 images for data
augmentation.

Implementation Details. We implemented PFAvatar using the PyTorch framework with Dif-
fusers (von Platen et al., 2022) and Threestudio (Guo et al., 2023). In the ControlBooth stage, we
developed the algorithm for a fine-tuned diffusion model using the Diffusers library. In the BoothA-
vatar stage, we utilized Threestudio to create 3D avatars. Our training and inference were conducted
on a single NVIDIA RTX 4090 GPU for all our results. The entire training process for both stages
takes approximately 1 hour, with the ControlBooth stage taking 10 minutes and the BoothAvatar
stage 50 minutes.

A.2 MORE RESULT

Full yellow plaid shirt face as the joker

face with black mask face as a terracotta warrior green-colored hair

Figure 8: More results on text-guided editing.
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PFAvatar(ours) Avatarbooth SIFU

Figure 9: More qualitative results of our self-collected datasets with both real human and
anime characters. 18
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