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Abstract
Recently, advancements in large language mod-001
els have enhanced the ability to perform in-002
tricate multi-step reasoning. Reinforcement003
learning from human feedback poses a signifi-004
cant challenge, particularly in tasks requiring005
intricate reasoning over multiple steps. In this006
paper, we introduces the Step-wise Reinforce-007
ment Learning from Human Feedback (Step-008
RLHF) algorithm, designed to address this chal-009
lenge. Step-RLHF incorporates a step-wise010
reward model, providing feedback at each in-011
termediate reasoning step. Additionally, during012
Proximal Policy Optimization (PPO) training,013
the algorithm applies Generalized Advantage014
Estimation (GAE) and policy optimization at015
each step. In our investigation, we showcase016
the applicability of our approach in mathemat-017
ical tasks, illustrating that learning from step-018
wise reward functions and updating the policy019
step by step significantly improves model per-020
formance. This work represents a crucial step021
towards enhancing the adaptability and preci-022
sion of language models in multi-step reason-023
ing tasks through the integration of step-wise024
human feedback within the RLHF framework.025

1 Introduction026

Large language models (LLM) have showed the027

ability to tackle complex, multi-step reasoning028

tasks by generating solutions in a step-by-step029

chain-of-thought format (Wei et al., 2022; Kojima030

et al., 2022). However, even state-of-the-art models031

are prone to exhibit logical errors, particularly in032

moments of uncertainty, leading to hallucinations033

(Maynez et al., 2020). These hallucinations can034

be especially problematic in domains that require035

multi-step reasoning, such as mathematics, as a sin-036

gle logical error can derail a much larger solution.037

Therefore, detecting and correcting these incorrect038

intermediate steps is essential to improve the rea-039

soning capabilities of large language models.040

Incorporating reinforcement learning from hu-041

man feedback (RLHF) (Ziegler et al., 2019) into042

the training process of language model has demon- 043

strated potential in reducing false, toxic and other 044

undesired model generation outputs. However, cur- 045

rent RLHF (Ramamurthy et al., 2023; Bai et al., 046

2022a,b) always rely on holistic feedback, which 047

has limitations in identifying specific errors in 048

multi-step reasoning tasks with long text outputs 049

(such as mathematics). 050

Recently, FINE-GRAINED RLHF (Wu et al., 051

2023) is proposed to provide fine-grained feed- 052

back to LMs output, associating categories of un- 053

desired behavior (e.g., false or irrelevant genera- 054

tions) and a text span at a density (e.g., sentence or 055

sub-sentence-level). They integrate multiple fine- 056

grained reward into Proximal Policy Optimization 057

(PPO) (Schulman et al., 2017) for training LMs 058

with preference-based human feedback, which ex- 059

perimentally shows the efficacy and data efficiency 060

(of training models with dense reward) compared 061

to a holistic sequence-level reward on two lan- 062

guage generation tasks—detoxification (Gehman 063

et al., 2020) and long-form question answering 064

(QA) (Stelmakh et al., 2022). Another closely re- 065

lated work, Process-supervised Reward Models 066

(PRM) (Lightman et al., 2023), utilized process 067

supervision training to provide feedback for each 068

intermediate reasoning step, showing that process 069

supervision can train much more reliable reward 070

models than outcome supervision. 071

Despite these advantages, such works only im- 072

proved the way of collecting human feedback and 073

training a more reliable reward models. The re- 074

ward models are able to provide sentence-level or 075

step-level reward. While during Proximal Policy 076

Optimization (PPO) training, the policy model is 077

still optimized against a sample-level reward, with 078

one policy update per sample. The generalized ad- 079

vantage estimation function (GAE) in PPO training 080

leads to deviation, especially for tasks that require 081

the generation of long-form text, such as complex 082

mathematics task. Therefore, it is also important 083
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Prompt:

LM output:

If A is the sum of the positive divisors of 500, what is the sum of the distinct prime divisors of A?

I notice that 500=225, so its positive divisors are of the form 20.5, where a E ( 0, 1, 2) and be(0, 1, 2, 3). To find the 
sum of these divisors, I can use a formula that involves the geometric series: … … Now, 31 is a prime number, so I 
have found all the prime factors of A: A=2. 3. 31.The sum of the distinct prime divisors of A is 2+3+31 =36. Answer: 36

Step-wise Human Feedback: 

Step 1: Collect step-wise human feedback and train the reward models

Step 2: Fine-tune the policy LM against the reward models using RL

The last digit of a base $10$ integer is the remainder when that number is divided by $10$. 


The same is true for other bases, since the base divides the place value of each digit to the left of the ones digit. 


So the last digit of the base $6$ representation of $355_{10}$ is the remainder when $355$ is divided by $6$. 


$355 = 35 \\cdot 10 + 5$, so the last digit of $355_{10}$ when it is expressed in base $6$ is $\\boxed{5}$.

Sample Prompt: What is the last digit of the base $6$ representation of the base ten integer $355$?

Step-wise RM          

PPO

0.8
0.9
0.8
0.1

Step-wise Reward:

Update policy with GAE rewards for each step

Figure 1: Step-wise RLHF training framework. A diagram illustrating the two steps of our method: (1) =reward
model (RM) training, and (2) reinforcement learning via proximal policy optimization (PPO) on this reward model.
Gray arrows indicate that this data is used to train one of our models.

to perform policy optimization step by step at each084

intermediate step, mitigating the estimation error085

during PPO training.086

In this paper, we propose a step-wise reinforce-087

ment learning from human feedback algorithm088

(Step-RLHF), that enables the RLHF training pro-089

cess to be fine-grained in two aspects: (1) The090

reward model provides feedback for each interme-091

diate reasoning step. (2) During Proximal Policy092

Optimization (PPO) training, Generalized Advan-093

tage Estimation (GAE) and the policy updating are094

applied at each reasoning step. This framework095

leverages step-wise human feedback both in Re-096

ward Model(RM) and in Proximal Policy Optimiza-097

tion (PPO) to address in-process logical mistakes.098

In our investigation, we showcase the applicability099

of our approach in mathematical tasks, illustrating100

that learning from step-wise reward functions and101

updating the policy step by step significantly im-102

proves model performance. This work represents103

a crucial step towards enhancing the adaptability104

and precision of language models in mathematical 105

tasks through the integration of step-wise human 106

feedback within the RLHF framework. 107

Our main contributions are as follows: 108

• We propose the Step-RLHF framework where 109

the step-wise reward model provides feedback 110

for each intermediate reasoning step. And 111

during step-wise PPO training, GAE and the 112

policy updating are applied at each step. 113

• We show that Step-RLHF improves the prob- 114

lem solving rate by 1.2% on mathematics task 115

- MATH, compared to the standard RLHF. 116

2 Related Work 117

2.1 GAE 118

(Schulman et al., 2016) introduce the policy gra- 119

dient estimators Generalized Advantage Estima- 120

tion (GAE) that significantly reduce variance while 121

maintaining a tolerable level of bias, defining the 122
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temporal difference residual δVt = rt+γV (st+1)−123

V (st). The Generalized Advantage Estimator124

Â
GAE(γ,λ)
t is defined as:125

Ât = (1− λ)
(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + · · ·

)
126

= (1− λ)
(
δVt + λ(δVt + γδVt+1) + · · ·

)
127

= (1− λ)
(
δVt (1 + λ+ λ2 + · · · ) + · · ·

)
128

= (1− λ)

(
δVt

1

1− λ
+ γδVt+1

λ

1− λ
+ · · ·

)
129

=

∞∑
l=0

(γλ)lδVt+l130

2.2 PPO131

Proximal policy optimization (PPO) (Schulman132

et al., 2017) is an actor-critic RL algorithm that133

is widely used in previous RLHF work to optimize134

the policy model against a reward model of human135

feedback. It uses a value model Vψ(st) to esti-136

mate the value of state st, and optimizes the policy137

model with a PPO clipped surrogate training objec-138

tive. The advantage At at timestep t is estimated139

by a generalized advantage estimation function140

(Schulman et al., 2016): At =
∑T

t′=t(γλ)
t′−t(r +141

γVψ(st′+1) − Vψ(st′)) with γ as a hyperparame-142

ter and λ as the discounting factor for rewards. rt143

is the reward assigned to at, which in our case is144

acquired using one or multiple learned reward mod-145

els. The value model Vψ(st) is optimized with an146

expected squared-error loss with the value target147

as V targ(st) =
∑T−1

t′=t γ
t′−trt′ + γT−tVψold

(sT ),148

where Vψold
is the lagging value model. Finally,149

PPO is trained to optimize both policy (Pθ) and150

value (Vψ) models with their respective objectives.151

No reward model is being optimized during PPO152

training.153

2.3 PRM154

While much attention has been given to other ar-155

eas, the process-supervised reward model (PRM)156

and outcome-supervised reward model (ORM)157

have seen less exploration. (Uesato et al., 2023)158

first introduced PRM, highlighting its advantages159

over ORM in several applications, from few-shot160

prompting to reward modeling. Expanding on161

this, (Lightman et al., 2023) released PRM800K, a162

dataset based on MATH annotations, showcasing163

the reliability of process supervision over outcome164

supervision. This high-quality dataset has been165

invaluable to our research. (Luo et al., 2023) intro-166

duced ”Reinforcement Learning from Evol-Instruct167

Feedback (RLEIF)”, using PRM as a reward model 168

within the PPO framework (Schulman et al., 2017). 169

While these studies have focused on PRM for math, 170

there’s a noticeable gap in PRM research for cod- 171

ing, pointing to a ripe area for further investigation. 172

3 Step-RLHF 173

This section provides a comprehensive introduc- 174

tion to the Step-RLHF algorithm, detailing its 175

components and training procedure. We focus 176

on fine-grained RLHF approaches by leveraging 177

step-wise reward model and step-wise PPO train- 178

ing. As shown in Figure 1, we first construct the 179

step-wise preference data as human feedback from 180

PRM800K. The details of data construction are in- 181

troduced in Section 4.1. We then train a reward 182

model (RM) on this dataset to predict which step- 183

wise solution is more likely to be correct. Next, we 184

use this step-wise RM as a reward function and fine- 185

tune our supervised learning baseline to maximize 186

this reward step by step using the PPO algorithm 187

(Schulman et al., 2017), a commonly used RL al- 188

gorithm for training LMs with preference-based 189

human feedback. We call the algorithm Step-wise 190

RLHF (Step-RLHF). 191

3.1 Step-wise Reward Model 192

Our step-wise reward model is trained to output a 193

score for a pair of (prompt, response step) at each 194

response step, and the step-level training data is 195

constructed from PRM-800K which includes the 196

model’s responses and human assessments for each 197

step of multiple solutions. The loss function for 198

training the reward model can be framed as a clas- 199

sification or regression task, and the goal is to min- 200

imize the difference between the predicted scores 201

and the human-assigned scores for the responses. 202

The reward model is then used to optimize the per- 203

formance of an artificial intelligence agent through 204

reinforcement learning. 205
In (Stiennon et al., 2020), the RM is trained on a 206

dataset of comparisons between two model outputs 207
on the same input. They use a cross-entropy loss, 208
with the comparisons as labels—the difference in 209
rewards represents the log odds that one response 210
will be preferred to the other by a human labeler. 211
While for step-wise RM, our collected preference 212
data contains K = 2 or K = 3 ranked responses. 213

This produces
(
K
2

)
comparisons for each step of a 214

solution corresponding to a math problem. Follow- 215
ing the reward model training methods in (Ouyang 216

et al., 2022), we train on all
(
K
2

)
comparisons from 217

each step as a single batch element. This is much 218
more computationally efficient because it only re- 219
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quires a single forward pass of the RM for each220

completion (rather than
(
K
2

)
forward passes for K221

completions) and, because it no longer overfits, it222
achieves much improved validation accuracy and223
log loss. Specifically, the pairwise comparison loss224
function for our step-wise reward model is:225

L(θ) = − 1(
K
2

)E(x,yw,yl)∼D[log(σ(rθ(x, yw)−rθ(x, yl)))]

(1)226

where rθ(x, y) is the scalar output of the reward227

model for prompt x and step-wise completion y228

with parameters θ, yw is the preferred completion229

at the same step out of the pair of yw and yl, and230

D is the dataset of human comparisons. σ is a231

smooth approximation of the hinge loss, such as232

the logistic loss or another differentiable function.233

The overall loss is often computed as the sum or234

average of these pairwise ranking losses over all235

pairs of responses in the dataset. After training a236

step-wise reward model to calculate a score for a237

response step, we then follow the step-wise PPO238

training algorithm to optimize the policy model239

step by step.240

3.2 Step-wise Proximal Policy Optimization241

Proximal Policy Optimization (Schulman et al.,242

2017) has become a popular choice in reinforce-243

ment learning due to its stability and effectiveness244

in training policies for a variety of tasks. The use of245

a clipped surrogate objective helps to prevent large246

policy updates, contributing to the algorithm’s ro-247

bustness. Following (Ouyang et al., 2022) where248

they utilize PPO in the fine-tuning approach RLHF249

to align language models, we propose a step-wise250

PPO (step-PPO) algorithm to fine-tune the SFT251

model on our environment by refining the policy252

optimization process in PPO. The environment is a253

bandit environment which presents a random cus-254

tomer prompt and expects a response to the prompt.255

Given the prompt and response, it produces rewards256

for each step in this response determined by the257

step-wise reward model and ends the episode. In258

addition, we add a per-token KL penalty from the259

SFT model at each token to mitigate over optimiza-260

tion of the reward model. The value function is261

initialized from the step-RM.262

Specifically, the policy πθ is initialized by a fine-263

tuned base language model. Output sequences264

yn ∼ πθ(·|xn) are generated step by step for each265

prompt xn ∈ Db by the policy πθ. Using step-PPO266

methods, we then split generated sequences yn to267

the step-wise sequence set Sn, where yni ∈ Sn.268

(Step-RLHF allows us to define customized split269

function for specific tasks.) After that, step-PPO 270

uses a value model Vψ(st) initialized from the pre- 271

trained step-RM to estimate the value of state st, 272

and optimizes the policy model with a PPO clipped 273

surrogate training objective. For each step-wise 274

sequence yni ∈ Sn in a completion yn, we then 275

compute rewards rni with the pre-trained step-wise 276

RM R. rni is the reward assigned to yni , which in 277

our case is acquired using a step-level learned re- 278

ward models. For each step-wise sequence yni , the 279

value targets {V targ(st)}
|yni |
t=1 at timestep t is com- 280

puted with 281

{V targ(st)}
|yni |
t=1 = rni + γVϕ(st) (2) 282

where Vϕ is the lagging value model. And the ad- 283

vantage {At}
|yni |
t=1 at timestep t is estimated by a 284

generalized advantage estimation function (Schul- 285

man et al., 2016): 286

At = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT (3) 287

with γ as a hyperparameter, λ as the discounting 288

factor for rewards, and δt = V targ(st)− Vϕ(st). 289

In step-PPO, the objective function for policy 290

π(θ) is designed to maximize the expected cumu- 291

lative reward while maintaining the policy change 292

within a certain range. Step-PPO update the pol- 293

icy progressively for each step by optimizing the 294

clipped surrogate objective. The objective function 295

is given by: 296

L(θ) = Êtmin (υtAt, clip (1− ϵ, 1 + ϵ, υt)At)
(4) 297

where L(θ) is the clipped surrogate objective. θ 298

represents the policy parameters. Êt is the empiri- 299

cal expectation over a batch of experiences which 300

is made by step-level sequences. υt is the proba- 301

bility ratio of the new policy to the old policy with 302

υt =
πθ(at|st)
πθold (at|st)

. At is the advantage function, rep- 303

resenting the advantage of taking action a in state s 304

at time t, ϵ is a hyperparameter controlling the size 305

of the policy update. The clipping term ensures 306

that the policy update does not deviate significantly 307

from the previous policy, adding a stability con- 308

straint to the optimization process. 309

Step-PPO also incorporates a value function to 310

estimate the expected cumulative reward. The 311

value function helps in reducing variance and sta- 312

bilizing the training process. In step-PPO, the 313

value model Vϕ(st) is optimized with an expected 314

squared-error loss: 315

L(ϕ) = Êt(Vϕ(st)− V targ(st))
2 (5) 316
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Algorithm 1 Step-wise Reinforcement Learning from Human Feedback(Step-RLHF)

1: Initialize policy πθ with parameters θ and value function Vϕ with parameters ϕ
2: Set hyperparameters: discount factor γ, GAE parameter λ, clip parameter ϵ
3: for Training step = 1 to M do
4: Sample a batch Db from D
5: Generate output sequence yn ∼ πθ(·|xn) step by step for each prompt xn ∈ Db by πθ
6: Construct the step-wise sequence set Sn by splitting yn, where yni ∈ Sn
7: Compute rewards rni for each step yni ∈ Sn with the pre-trained step-RM R

8: Compute value targets {V targ(st)}
|yni |
t=1 = rni + γVϕ(st)

9: Compute advantages {At}
|yni |
t=1 using GAE for each step-wise sequence yni ▷ Eq.3

10: for PPO iteration = 1, ...,K do
11: Update policy progressively by optimizing the clipped surrogate objective:

θ ← argmax
θ

1

|Db|

|Db|∑
n=1

1

|Sn|

|Sn|∑
i=1

1

|yni |

|yni |∑
t=1

min (υtAt, clip (1− ϵ, 1 + ϵ, υt)At)

12: Update value function progressively by minimizing the square-error objective:

ϕ← argmin
ϕ

1

|Db|

|Db|∑
n=1

1

|Sn|

|Sn|∑
i=1

1

|yni |

|yni |∑
t=1

(Vϕ(st)− V targ(st))
2

13: end for
14: end for

Finally, step-PPO is trained to optimize both317

policy (πθ ) and value (Vϕ) models with their re-318

spective objectives for several iteration. No reward319

model is being optimized during step-PPO training.320

3.3 Algorithm Overview321

The Step-RLHF algorithm is outlined in Algorithm322

1, encompassing a series of training steps, each323

involving the generation of output sequences for324

given prompts. A crucial aspect is the utilization325

of a step-wise reward model for intermediate rea-326

soning steps. During step-PPO training, GAE is327

computed, and policy updating is performed at each328

step, contributing to the algorithm’s effectiveness.329

The algorithm begins by initializing the policy330

and value function, setting crucial hyperparame-331

ters such as learning rate, discount factor, and the332

number of training epochs. Notably, Step-RLHF333

introduces the concept of a step-wise sequence set,334

dividing the learning process into distinct steps for335

each prompt. This innovation provides a granular336

understanding of the agent’s decision-making at337

different stages, fostering improved learning.338

During each training step, Step-RLHF samples339

batches from the dataset and generates output se-340

quences step by step for each prompt. The algo-341

rithm then constructs the step-wise sequence set 342

by splitting the generated sequence. For each in- 343

termediate step, rewards are computed using a pre- 344

trained step-wise reward model. These rewards 345

are utilized to calculate value targets and advan- 346

tages, leveraging the power of GAE for nuanced 347

and adaptive learning. 348

Subsequently, the step-PPO iteration comes into 349

play, progressively updating the policy and value 350

function. The clipped surrogate objective ensures 351

stability and mitigates the challenges associated 352

with policy updates. This iterative process, re- 353

peated for a predefined number of epochs, refines 354

the agent’s policy incrementally. 355

4 Experiment 356

This section provides a comprehensive overview of 357

the experimental settings in our experiments. Sub- 358

sequently, we mainly elucidate the performance 359

metrics of our models on the mathematical bench- 360

marks MATH (Hendrycks et al., 2021). 361

4.1 Dataset 362

RM To collect training data for step-wise RM, 363

we construct the step-wise preference data from 364

PRM800K (Lightman et al., 2023). PRM800K pro- 365
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vides the multiple step-by-step solutions to MATH366

problems sampled by the large-scale generator.367

Each step in the solution is assigned with a label of368

positive, negative, or neutral, representing correct,369

incorrect, ambiguous respectively. According to370

this step-level labeled dataset, we construct a pair371

of preference data by comparing the different step-372

level solutions with different labels whenever there373

are different labels in the same step. A pair of pref-374

erence data might be constructed from 4 possible375

combination: [positive step, neutral step, negative376

step], [positive step, neutral step], [positive step,377

negative step], [neutral step, negative step].378

We refer to the entire dataset of step-level pref-379

erence pairs from PRM800K as SRM50K. The380

SRM50K training set contains 54K step-level pref-381

erence pairs to 12K problems. To minimize overfit-382

ting, we create development dataset and test dataset383

split from the constructed preference data, with384

4.8K pairs respectively. Overall, we have 54K train-385

ing, 4.8K development and 4.8K test examples for386

step-wise reward model. For PPO training, we ran-387

domly sample 5k problems from original MATH388

training set as the prompts .389

4.2 SFT Baselines390

Massive open-source LLMs have been accessi-391

ble to the AI community. We leverage the Su-392

pervised Fine-Tuned (SFT) model Qwen-chat-14b393

(Bai et al., 2023) as our base language model. It is394

recently published, which is effectively fine-tuned395

with human alignment techniques. We use Qwen-396

chat-14b as the initial model to train our step-wise397

RM, and also, we use Qwen-chat-14b to produce398

solutions step-by-step as actor in step-wise PPO.399

4.3 Evaluate Benchmarks400

We mainly evaluate models trained by Step-RLHF401

on mathematical benchmark MATH (Hendrycks402

et al., 2021). The MATH dataset collects math403

problems from prestigious math competitions such404

as AMC 10, AMC 12, and AIME. It contains 7500405

training data and 5,000 challenging test data in406

seven academic areas: Prealgebra, Algebra, Num-407

ber Theory, Counting and Probability, Geometry,408

Intermediate Algebra, and Precalculus. Further-409

more, these problems are divided into five levels410

of difficulty, with ’1’ denoting the relatively lower411

difficulty level and ’5’ indicating the highest level.412

Models Wizard-Math-13B Qwen-14B-Chat

SFT 13.04 18.38

RLHF 13.19 19.26

Step-RLHF 14.30 20.40

Table 1: Results on MATH test set

4.4 Experimental Settings 413

For step-PPO training, we initialize the policy 414

model with the open-source supervised fine-tuning 415

model Qwen-chat-14B (Bai et al., 2023). We name 416

this initial policy model as SFT. For the traditional 417

preference RLHF training, we first train a sample- 418

level reward model which is used in sample-level 419

PPO. The sample-level reward model is also initial- 420

ized with Qwen-chat-14B (Bai et al., 2023), and 421

optimized by the pairwise comparison loss function 422

using holistic feedback collected from PRM800k 423

(Lightman et al., 2023). Then we train a policy 424

model by PPO, which updates the policy sample 425

by sample. We name this policy model as RLHF. 426

We compare our proposed method step-RLHF 427

with the initial SFT policy model and RLHF with 428

holistic preference-based rewards. The sample- 429

level reward models used in RLHF are trained on 430

1w examples with annotated feedback. Our pol- 431

icy model is based on Qwen-chat-14B. During RL 432

exploration, we use greedy (top-k = 0) sampling 433

decoding with temperature = 0.5, which is set the 434

same for preference RLHF and step-RLHF. The 435

value model used during RL training is initialized 436

with corresponding reward model which is also 437

trained based on Qwen-chat-14B. During inference, 438

we use greedy decoding to generate responses. 439

4.5 Main results 440

Step-RM We first analyze the performance of each 441

reward model in predicting the score of the gener- 442

ated solutions. We train two types of reward model 443

(step-level and sample-level) adequately in order to 444

provide a accurate reward for comparing different 445

PPO training method fairly. Our proposed step- 446

wise reward model has an accuracy of 84.7 in pair- 447

wise comparison on the test set. The sample-level 448

preference-based reward model reaches an accu- 449

racy of 83.2. We also investigate the discrimination 450

between average scores of correct and incorrect 451

solutions, which is −0.25 and −0.4 respectively. 452

In this case, the test result shows that our step-RM 453

has a excellent ability to distinguish between better 454
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Wizard-Math Qwen-chat

SFT 13.19 18.38

RLHF 13.04 19.26

SPPO + sample-RM 13.57 19.44

SPPO + step-RM 14.30 20.40

Table 2: Comparison SPPO with sample-RM and step-
RM on MATH

Wizard-Math Qwen-chat

SFT 13.19 18.38

RLHF 13.04 19.26

Step-RM + PPO 13.57 18.88

Step-RM + Step-PPO 14.30 20.40

Table 3: Comparison RLHF with/without step-PPO on
MATH

and worse step-wise solutions.455

Step-RLHF Step-RLHF outperforms SFT and456

preference RLHF on all error types. Table 1 show457

that our step-RLHF leads to 2% problem-solving458

accuracy increment, compared to the SFT model.459

Step-RLHF also increases the accuracy by 1.2% on460

MATH test set, compared to traditional preference461

RLHF which is trained by PPO with sample-RM.462

Obviously, step-RLHF showcases its applicabil-463

ity in mathematical tasks, illustrating that learning464

from step-wise reward functions and updating the465

policy step by step significantly improves model466

performance. This work represents a crucial step467

towards enhancing the adaptability and precision468

of language models in mathematical tasks through469

the integration of step-wise human feedback within470

the RLHF framework.471

4.6 Ablation study472

Table 2 compares different reward models used dur-473

ing step-PPO training. The sample-RM is trained474

by the sample-level preference data, which means475

the preference data contains a pair of complete476

solutions combined by [correct solution, wrong477

solution]. While the step-RM is trained by the step-478

wise preference data SRM50k which is detailed479

in Section 3.1 and Section 4.1. We observe that480

step-PPO training with sample-RM outperforms481

the traditional RLHF which is trained by PPO with482

sample-RM. It shows the step-PPO training is also483

effective with sample-RM, and even improves the484

accuracy for MATH compared to traditional RLHF. 485

In addition, when using step-RM during step-PPO, 486

the accuracy are improved more than sample-RM, 487

illustrating the effectiveness of step-RLHF with 488

both step-wise RM and step-wise PPO training. 489

Furthermore, another ablation experiment is con- 490

ducted to explore the effect of step-PPO and tra- 491

ditional PPO when using the same reward model. 492

Table 3 shows the accuracy of step-wise PPO out- 493

performs the traditional PPO with the step-wise re- 494

ward as the human feedback. It illustrates this tech- 495

nology that step-PPO training utilizes step-wise re- 496

ward model to predict reward for each solution step 497

and updates the policy step by step stimulates the 498

potential of the policy for multi-step reasoning task 499

in RLHF. Another results in Table 3 shows using 500

step-RM for sample-level PPO training decreases 501

the problem-solving accuracy compared to tradi- 502

tional RLHF. It is obvious that the pre-trained step- 503

wise reward model provides the step-level feedback 504

for each step in the solution. As for the traditional 505

PPO training with sample-level solution, step-RM 506

is not able to provide a holistic feedback accurately. 507

5 Limitations and Future Work 508

One limitation of our framework comes from the 509

additional compute cost of getting step-wise re- 510

ward, which need human to annotate answers step 511

by step for providing step-wise feedback, compared 512

to RLHF with a holistic reward. Another limitation 513

is that different tasks may have different definitions 514

of fine-grained feedback in terms of the density 515

level of step. Therefore, defining the step split 516

function that is well-suited for a task requires non- 517

trivial manual effort. In this work, we leverage the 518

open-source step-wise dataset PRM800K, show- 519

ing the effectiveness of step-RLHF on MATH. Our 520

method also generalizes to other multi-step reason- 521

ing task with step-wise annotation providing. 522

6 Conclusion 523

In conclusion, Step-RLHF presents a novel ap- 524

proach to reinforcement learning from human feed- 525

back. The incorporation of a step-wise reward 526

model, coupled with step-wise policy updating 527

during PPO training, sets the algorithm apart in 528

terms of efficiency and performance. Experi- 529

mental results underscore the potential of Step- 530

RLHF as a promising method for addressing the 531

challenges posed by complex sequential decision- 532

making tasks. 533
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