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Abstract

Recently, advancements in large language mod-
els have enhanced the ability to perform in-
tricate multi-step reasoning. Reinforcement
learning from human feedback poses a signifi-
cant challenge, particularly in tasks requiring
intricate reasoning over multiple steps. In this
paper, we introduces the Step-wise Reinforce-
ment Learning from Human Feedback (Step-
RLHF) algorithm, designed to address this chal-
lenge. Step-RLHF incorporates a step-wise
reward model, providing feedback at each in-
termediate reasoning step. Additionally, during
Proximal Policy Optimization (PPO) training,
the algorithm applies Generalized Advantage
Estimation (GAE) and policy optimization at
each step. In our investigation, we showcase
the applicability of our approach in mathemat-
ical tasks, illustrating that learning from step-
wise reward functions and updating the policy
step by step significantly improves model per-
formance. This work represents a crucial step
towards enhancing the adaptability and preci-
sion of language models in multi-step reason-
ing tasks through the integration of step-wise
human feedback within the RLHF framework.

1 Introduction

Large language models (LLM) have showed the
ability to tackle complex, multi-step reasoning
tasks by generating solutions in a step-by-step
chain-of-thought format (Wei et al., 2022; Kojima
et al., 2022). However, even state-of-the-art models
are prone to exhibit logical errors, particularly in
moments of uncertainty, leading to hallucinations
(Maynez et al., 2020). These hallucinations can
be especially problematic in domains that require
multi-step reasoning, such as mathematics, as a sin-
gle logical error can derail a much larger solution.
Therefore, detecting and correcting these incorrect
intermediate steps is essential to improve the rea-
soning capabilities of large language models.
Incorporating reinforcement learning from hu-
man feedback (RLHF) (Ziegler et al., 2019) into

the training process of language model has demon-
strated potential in reducing false, toxic and other
undesired model generation outputs. However, cur-
rent RLHF (Ramamurthy et al., 2023; Bai et al.,
2022a,b) always rely on holistic feedback, which
has limitations in identifying specific errors in
multi-step reasoning tasks with long text outputs
(such as mathematics).

Recently, FINE-GRAINED RLHF (Wu et al.,
2023) is proposed to provide fine-grained feed-
back to LMs output, associating categories of un-
desired behavior (e.g., false or irrelevant genera-
tions) and a text span at a density (e.g., sentence or
sub-sentence-level). They integrate multiple fine-
grained reward into Proximal Policy Optimization
(PPO) (Schulman et al., 2017) for training LMs
with preference-based human feedback, which ex-
perimentally shows the efficacy and data efficiency
(of training models with dense reward) compared
to a holistic sequence-level reward on two lan-
guage generation tasks—detoxification (Gehman
et al., 2020) and long-form question answering
(QA) (Stelmakh et al., 2022). Another closely re-
lated work, Process-supervised Reward Models
(PRM) (Lightman et al., 2023), utilized process
supervision training to provide feedback for each
intermediate reasoning step, showing that process
supervision can train much more reliable reward
models than outcome supervision.

Despite these advantages, such works only im-
proved the way of collecting human feedback and
training a more reliable reward models. The re-
ward models are able to provide sentence-level or
step-level reward. While during Proximal Policy
Optimization (PPO) training, the policy model is
still optimized against a sample-level reward, with
one policy update per sample. The generalized ad-
vantage estimation function (GAE) in PPO training
leads to deviation, especially for tasks that require
the generation of long-form text, such as complex
mathematics task. Therefore, it is also important



Step 1: Collect step-wise human feedback and train the reward models

Prompt:

If A is the sum of the positive divisors of 500, what is the sum of the distinct prime divisors of A?

LM output:

I notice that 500=225, so its positive divisors are of the form 20.5, where a E ( 0, 1, 2) and be(0, 1, 2, 3). To find the
sum of these divisors, | can use a formula that involves the geometric series: ... ... Now, 31 is a prime number, so |
have found all the prime factors of A: A=2. 3. 31.The sum of the distinct prime divisors of A is 2+3+31 =36. Answer: 36

Step-wise Human Feedback:

wa

Tdivide by 3 again, getting 31.

AA=z3L
The sum of the ditinct prime divisors of A is 2 +3+31 = 36,
Answer: 36

Step 2: Fine-tune the policy LM against the reward models using RL

Sample Prompt: What is the last digit of the base $6$ representation of the base ten integer $355%? !

!

% The same is true for other bases, since the base divides the place value of each digit to the left of the ones digit.
So the last digit of the base $6$ representation of $355_{10}$ is the remainder when $355$ is divided by $6$.

PPO

The last digit of a base $10$ integer is the remainder when that number is divided by $10%.

$355 = 35 \\cdot 10 + 5%, so the last digit of $355_{10}$ when it is expressed in base $6$ is $\\boxed{5}$.

A Update policy with GAE rewards for each step

D S

Step-wise Reward:

Figure 1: Step-wise RLHF training framework. A diagram illustrating the two steps of our method: (1) =reward
model (RM) training, and (2) reinforcement learning via proximal policy optimization (PPO) on this reward model.
Gray arrows indicate that this data is used to train one of our models.

to perform policy optimization step by step at each
intermediate step, mitigating the estimation error
during PPO training.

In this paper, we propose a step-wise reinforce-
ment learning from human feedback algorithm
(Step-RLHF), that enables the RLHF training pro-
cess to be fine-grained in two aspects: (1) The
reward model provides feedback for each interme-
diate reasoning step. (2) During Proximal Policy
Optimization (PPO) training, Generalized Advan-
tage Estimation (GAE) and the policy updating are
applied at each reasoning step. This framework
leverages step-wise human feedback both in Re-
ward Model(RM) and in Proximal Policy Optimiza-
tion (PPO) to address in-process logical mistakes.
In our investigation, we showcase the applicability
of our approach in mathematical tasks, illustrating
that learning from step-wise reward functions and
updating the policy step by step significantly im-
proves model performance. This work represents
a crucial step towards enhancing the adaptability

and precision of language models in mathematical
tasks through the integration of step-wise human
feedback within the RLHF framework.

Our main contributions are as follows:

* We propose the Step-RLHF framework where
the step-wise reward model provides feedback
for each intermediate reasoning step. And
during step-wise PPO training, GAE and the
policy updating are applied at each step.

* We show that Step-RLHF improves the prob-
lem solving rate by 1.2% on mathematics task
- MATH, compared to the standard RLHF.

2 Related Work

2.1 GAE

(Schulman et al., 2016) introduce the policy gra-
dient estimators Generalized Advantage Estima-
tion (GAE) that significantly reduce variance while
maintaining a tolerable level of bias, defining the
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2.2 PPO

Proximal policy optimization (PPO) (Schulman
et al., 2017) is an actor-critic RL algorithm that
is widely used in previous RLHF work to optimize
the policy model against a reward model of human
feedback. It uses a value model Vi, (s;) to esti-
mate the value of state s¢, and optimizes the policy
model with a PPO clipped surrogate training objec-
tive. The advantage A; at timestep ¢ is estimated
by a generalized advantage estimation function
(Schulman et al., 2016): A; = S27_ (v ) ~H(r +
YWy (sp41) — Vip(sy)) with v as a hyperparame-
ter and A as the discounting factor for rewards. r;
is the reward assigned to a¢, which in our case is
acquired using one or multiple learned reward mod-
els. The value model Vi, (s;) is optimized with an
expected squared-error loss with the value target
as erg(st) = Z:?C;tlvt/_trt/ + ’YT_tiold(ST)’
where V, ;. is the lagging value model. Finally,
PPO is trained to optimize both policy (Fy) and
value (V;,) models with their respective objectives.
No reward model is being optimized during PPO
training.

23 PRM

While much attention has been given to other ar-
eas, the process-supervised reward model (PRM)
and outcome-supervised reward model (ORM)
have seen less exploration. (Uesato et al., 2023)
first introduced PRM, highlighting its advantages
over ORM in several applications, from few-shot
prompting to reward modeling. Expanding on
this, (Lightman et al., 2023) released PRM800K, a
dataset based on MATH annotations, showcasing
the reliability of process supervision over outcome
supervision. This high-quality dataset has been
invaluable to our research. (Luo et al., 2023) intro-
duced "Reinforcement Learning from Evol-Instruct

Feedback (RLEIF)”, using PRM as a reward model
within the PPO framework (Schulman et al., 2017).
While these studies have focused on PRM for math,
there’s a noticeable gap in PRM research for cod-
ing, pointing to a ripe area for further investigation.

3 Step-RLHF

This section provides a comprehensive introduc-
tion to the Step-RLHF algorithm, detailing its
components and training procedure. We focus
on fine-grained RLHF approaches by leveraging
step-wise reward model and step-wise PPO train-
ing. As shown in Figure 1, we first construct the
step-wise preference data as human feedback from
PRMS8O0OK. The details of data construction are in-
troduced in Section 4.1. We then train a reward
model (RM) on this dataset to predict which step-
wise solution is more likely to be correct. Next, we
use this step-wise RM as a reward function and fine-
tune our supervised learning baseline to maximize
this reward step by step using the PPO algorithm
(Schulman et al., 2017), a commonly used RL al-
gorithm for training LMs with preference-based
human feedback. We call the algorithm Step-wise
RLHF (Step-RLHF).

3.1 Step-wise Reward Model

Our step-wise reward model is trained to output a
score for a pair of (prompt, response step) at each
response step, and the step-level training data is
constructed from PRM-800K which includes the
model’s responses and human assessments for each
step of multiple solutions. The loss function for
training the reward model can be framed as a clas-
sification or regression task, and the goal is to min-
imize the difference between the predicted scores
and the human-assigned scores for the responses.
The reward model is then used to optimize the per-
formance of an artificial intelligence agent through

reinforcement learning.

In (Stiennon et al., 2020), the RM is trained on a
dataset of comparisons between two model outputs
on the same input. They use a cross-entropy loss,
with the comparisons as labels—the difference in
rewards represents the log odds that one response
will be preferred to the other by a human labeler.
While for step-wise RM, our collected preference
data contains K = 2 or K = 3 ranked responses.

This produces (12( ) comparisons for each step of a
solution corresponding to a math problem. Follow-
ing the reward model training methods in (Ouyang

et al., 2022), we train on all (%) comparisons from

each step as a single batch element. This is much
more computationally efficient because it only re-



quires a single forward pass of the RM for each

completion (rather than ([2( ) forward passes for K

completions) and, because it no longer overfits, it
achieves much improved validation accuracy and
log loss. Specifically, the pairwise comparison loss
function for our step-wise reward model is:

L£(0) = —%Em,yw,yl)w[10g(0(7'o(w7 Yyw) —ro(z,31)))]

: M
where 7 (x,y) is the scalar output of the reward
model for prompt x and step-wise completion y
with parameters 6, 1y, is the preferred completion
at the same step out of the pair of y,, and y;, and
D is the dataset of human comparisons. ¢ is a
smooth approximation of the hinge loss, such as
the logistic loss or another differentiable function.
The overall loss is often computed as the sum or
average of these pairwise ranking losses over all
pairs of responses in the dataset. After training a
step-wise reward model to calculate a score for a
response step, we then follow the step-wise PPO
training algorithm to optimize the policy model
step by step.

3.2 Step-wise Proximal Policy Optimization

Proximal Policy Optimization (Schulman et al.,
2017) has become a popular choice in reinforce-
ment learning due to its stability and effectiveness
in training policies for a variety of tasks. The use of
a clipped surrogate objective helps to prevent large
policy updates, contributing to the algorithm’s ro-
bustness. Following (Ouyang et al., 2022) where
they utilize PPO in the fine-tuning approach RLHF
to align language models, we propose a step-wise
PPO (step-PPO) algorithm to fine-tune the SFT
model on our environment by refining the policy
optimization process in PPO. The environment is a
bandit environment which presents a random cus-
tomer prompt and expects a response to the prompt.
Given the prompt and response, it produces rewards
for each step in this response determined by the
step-wise reward model and ends the episode. In
addition, we add a per-token KL penalty from the
SFT model at each token to mitigate over optimiza-
tion of the reward model. The value function is
initialized from the step-RM.

Specifically, the policy 7y is initialized by a fine-
tuned base language model. Output sequences
y™ ~ mp(-|z™) are generated step by step for each
prompt ™ € Dy, by the policy my. Using step-PPO
methods, we then split generated sequences y" to
the step-wise sequence set S™, where y;' € S".
(Step-RLHF allows us to define customized split

function for specific tasks.) After that, step-PPO
uses a value model Vi, (s;) initialized from the pre-
trained step-RM to estimate the value of state sy,
and optimizes the policy model with a PPO clipped
surrogate training objective. For each step-wise
sequence y;' € S™ in a completion y", we then
compute rewards r;* with the pre-trained step-wise
RM R. r" is the reward assigned to y;', which in
our case is acquired using a step-level learned re-
ward models. For each step-wise sequence y;', the
value targets {V““g(st)}!}51| at timestep ¢ is com-
puted with

{Vtarg(st) Ly:znll =71 +7Vp(s¢) ()

where Vj is the lagging value model. And the ad-
vantage {A; szl‘ at timestep t is estimated by a
generalized advantage estimation function (Schul-

man et al., 2016):
Ap =8+ (AN)01 + -+ ()T (3)

with v as a hyperparameter, A as the discounting
factor for rewards, and §; = V"8 (ss;) — V().

In step-PPO, the objective function for policy
m(0) is designed to maximize the expected cumu-
lative reward while maintaining the policy change
within a certain range. Step-PPO update the pol-
icy progressively for each step by optimizing the
clipped surrogate objective. The objective function
is given by:

L(0) = E, min (v Ay, clip (1 — €, 1 + €, v;) Ay)
“)
where £(0) is the clipped surrogate objective. 6
represents the policy parameters. [, is the empiri-
cal expectation over a batch of experiences which
is made by step-level sequences. v, is the proba-
bility ratio of the new policy to the old policy with

mo(at|st)
Moy (@t]st)
resenting the advantage of taking action a in state s

at time ¢, € is a hyperparameter controlling the size
of the policy update. The clipping term ensures
that the policy update does not deviate significantly
from the previous policy, adding a stability con-
straint to the optimization process.

Step-PPO also incorporates a value function to
estimate the expected cumulative reward. The
value function helps in reducing variance and sta-
bilizing the training process. In step-PPO, the
value model V(s;) is optimized with an expected
squared-error loss:

L(¢) =Ee(Vi(se) — V¥E(se))2 (5

vy = . A; is the advantage function, rep-



Algorithm 1 Step-wise Reinforcement Learning from Human Feedback(Step-RLHF)

1: Initialize policy 7y with parameters ¢ and value function V,, with parameters ¢
2: Set hyperparameters: discount factor v, GAE parameter A, clip parameter e

3: for Training step = 1 to M do
4: Sample a batch Dy, from D

Compute value targets {V'*"¢(s;)}, i

ly7|

A R A

Generate output sequence y" ~ my(-|z™) step by step for each prompt 2" € Dy, by 7y
Construct the step-wise sequence set S™ by splitting y", where y;' € S"

Compute rewards r]* for each step y;* € S" with the pre-trained step-RM R
=1+ Va(se)

Compute advantages {A;},”; using GAE for each step-wise sequence "

> Eq.3

10: for PPO iteration = 1, .. K do
11: Update policy progressively by optimizing the clipped surrogate objective:
Dy IS™] ly7|
0 + argmax Z Z me (v Ag,clip (1 —€,1 + €,vp) Ay)
|Db| |Sn ’yz
12: Update value function progressively by minimizing the square-error objective:
Dy IS™| lyi'|

P argmln

13: end for
14: end for

Z

Z Viy(s) — V(s,))?

!yz

Finally, step-PPO is trained to optimize both
policy (mg ) and value (V) models with their re-
spective objectives for several iteration. No reward
model is being optimized during step-PPO training.

3.3 Algorithm Overview

The Step-RLHF algorithm is outlined in Algorithm
1, encompassing a series of training steps, each
involving the generation of output sequences for
given prompts. A crucial aspect is the utilization
of a step-wise reward model for intermediate rea-
soning steps. During step-PPO training, GAE is
computed, and policy updating is performed at each
step, contributing to the algorithm’s effectiveness.
The algorithm begins by initializing the policy
and value function, setting crucial hyperparame-
ters such as learning rate, discount factor, and the
number of training epochs. Notably, Step-RLHF
introduces the concept of a step-wise sequence set,
dividing the learning process into distinct steps for
each prompt. This innovation provides a granular
understanding of the agent’s decision-making at
different stages, fostering improved learning.
During each training step, Step-RLHF samples
batches from the dataset and generates output se-
quences step by step for each prompt. The algo-

rithm then constructs the step-wise sequence set
by splitting the generated sequence. For each in-
termediate step, rewards are computed using a pre-
trained step-wise reward model. These rewards
are utilized to calculate value targets and advan-
tages, leveraging the power of GAE for nuanced
and adaptive learning.

Subsequently, the step-PPO iteration comes into
play, progressively updating the policy and value
function. The clipped surrogate objective ensures
stability and mitigates the challenges associated
with policy updates. This iterative process, re-
peated for a predefined number of epochs, refines
the agent’s policy incrementally.

4 Experiment

This section provides a comprehensive overview of
the experimental settings in our experiments. Sub-
sequently, we mainly elucidate the performance
metrics of our models on the mathematical bench-
marks MATH (Hendrycks et al., 2021).

4.1 Dataset

RM To collect training data for step-wise RM,
we construct the step-wise preference data from
PRMB800K (Lightman et al., 2023). PRM80OK pro-



vides the multiple step-by-step solutions to MATH
problems sampled by the large-scale generator.
Each step in the solution is assigned with a label of
positive, negative, or neutral, representing correct,
incorrect, ambiguous respectively. According to
this step-level labeled dataset, we construct a pair
of preference data by comparing the different step-
level solutions with different labels whenever there
are different labels in the same step. A pair of pref-
erence data might be constructed from 4 possible
combination: [positive step, neutral step, negative
step], [positive step, neutral step], [positive step,
negative step], [neutral step, negative step].

We refer to the entire dataset of step-level pref-
erence pairs from PRM80OK as SRM50K. The
SRMS50K training set contains 54K step-level pref-
erence pairs to 12K problems. To minimize overfit-
ting, we create development dataset and test dataset
split from the constructed preference data, with
4.8K pairs respectively. Overall, we have 54K train-
ing, 4.8K development and 4.8K test examples for
step-wise reward model. For PPO training, we ran-
domly sample S5k problems from original MATH
training set as the prompts .

4.2 SFT Baselines

Massive open-source LLLMs have been accessi-
ble to the Al community. We leverage the Su-
pervised Fine-Tuned (SFT) model Qwen-chat-14b
(Bai et al., 2023) as our base language model. It is
recently published, which is effectively fine-tuned
with human alignment techniques. We use Qwen-
chat-14b as the initial model to train our step-wise
RM, and also, we use Qwen-chat-14b to produce
solutions step-by-step as actor in step-wise PPO.

4.3 Evaluate Benchmarks

We mainly evaluate models trained by Step-RLHF
on mathematical benchmark MATH (Hendrycks
et al., 2021). The MATH dataset collects math
problems from prestigious math competitions such
as AMC 10, AMC 12, and AIME. It contains 7500
training data and 5,000 challenging test data in
seven academic areas: Prealgebra, Algebra, Num-
ber Theory, Counting and Probability, Geometry,
Intermediate Algebra, and Precalculus. Further-
more, these problems are divided into five levels
of difficulty, with 1’ denoting the relatively lower
difficulty level and ’5’ indicating the highest level.

Models | Wizard-Math-13B | Qwen-14B-Chat
SFT | 13.04 | 18.38
RLHF | 13.19 | 19.26
Step-RLHF | 14.30 | 20.40

Table 1: Results on MATH test set

4.4 Experimental Settings

For step-PPO training, we initialize the policy
model with the open-source supervised fine-tuning
model Qwen-chat-14B (Bai et al., 2023). We name
this initial policy model as SFT. For the traditional
preference RLHF training, we first train a sample-
level reward model which is used in sample-level
PPO. The sample-level reward model is also initial-
ized with Qwen-chat-14B (Bai et al., 2023), and
optimized by the pairwise comparison loss function
using holistic feedback collected from PRM800k
(Lightman et al., 2023). Then we train a policy
model by PPO, which updates the policy sample
by sample. We name this policy model as RLHF.

We compare our proposed method step-RLHF
with the initial SFT policy model and RLHF with
holistic preference-based rewards. The sample-
level reward models used in RLHF are trained on
1w examples with annotated feedback. Our pol-
icy model is based on Qwen-chat-14B. During RL
exploration, we use greedy (top-k = 0) sampling
decoding with temperature = 0.5, which is set the
same for preference RLHF and step-RLHF. The
value model used during RL training is initialized
with corresponding reward model which is also
trained based on Qwen-chat-14B. During inference,
we use greedy decoding to generate responses.

4.5 Main results

Step-RM We first analyze the performance of each
reward model in predicting the score of the gener-
ated solutions. We train two types of reward model
(step-level and sample-level) adequately in order to
provide a accurate reward for comparing different
PPO training method fairly. Our proposed step-
wise reward model has an accuracy of 84.7 in pair-
wise comparison on the test set. The sample-level
preference-based reward model reaches an accu-
racy of 83.2. We also investigate the discrimination
between average scores of correct and incorrect
solutions, which is —0.25 and —0.4 respectively.
In this case, the test result shows that our step-RM
has a excellent ability to distinguish between better



‘ Wizard-Math ‘ Qwen-chat

SFT | 1319 | 1838

RLHF | 1304 | 1926

SPPO +sample-RM | 1357 | 1944
SPPO +step-RM | 1430 | 20.40

Table 2: Comparison SPPO with sample-RM and step-
RM on MATH

Wizard-Math ‘ Qwen-chat

|
SFT | 1319 | 1838
RLHF | 1304 | 1926
StepRM+PPO | 1357 | 1888
Step-RM + Step-PPO | 14.30 |  20.40

Table 3: Comparison RLHF with/without step-PPO on
MATH

and worse step-wise solutions.

Step-RLHF Step-RLHF outperforms SFT and
preference RLHF on all error types. Table 1 show
that our step-RLHF leads to 2% problem-solving
accuracy increment, compared to the SFT model.
Step-RLHF also increases the accuracy by 1.2% on
MATH test set, compared to traditional preference
RLHF which is trained by PPO with sample-RM.
Obviously, step-RLHF showcases its applicabil-
ity in mathematical tasks, illustrating that learning
from step-wise reward functions and updating the
policy step by step significantly improves model
performance. This work represents a crucial step
towards enhancing the adaptability and precision
of language models in mathematical tasks through
the integration of step-wise human feedback within
the RLHF framework.

4.6 Ablation study

Table 2 compares different reward models used dur-
ing step-PPO training. The sample-RM is trained
by the sample-level preference data, which means
the preference data contains a pair of complete
solutions combined by [correct solution, wrong
solution]. While the step-RM is trained by the step-
wise preference data SRMS50k which is detailed
in Section 3.1 and Section 4.1. We observe that
step-PPO training with sample-RM outperforms
the traditional RLHF which is trained by PPO with
sample-RM. It shows the step-PPO training is also
effective with sample-RM, and even improves the

accuracy for MATH compared to traditional RLHF.
In addition, when using step-RM during step-PPO,
the accuracy are improved more than sample-RM,
illustrating the effectiveness of step-RLHF with
both step-wise RM and step-wise PPO training.
Furthermore, another ablation experiment is con-
ducted to explore the effect of step-PPO and tra-
ditional PPO when using the same reward model.
Table 3 shows the accuracy of step-wise PPO out-
performs the traditional PPO with the step-wise re-
ward as the human feedback. It illustrates this tech-
nology that step-PPO training utilizes step-wise re-
ward model to predict reward for each solution step
and updates the policy step by step stimulates the
potential of the policy for multi-step reasoning task
in RLHE. Another results in Table 3 shows using
step-RM for sample-level PPO training decreases
the problem-solving accuracy compared to tradi-
tional RLHF. It is obvious that the pre-trained step-
wise reward model provides the step-level feedback
for each step in the solution. As for the traditional
PPO training with sample-level solution, step-RM
is not able to provide a holistic feedback accurately.

5 Limitations and Future Work

One limitation of our framework comes from the
additional compute cost of getting step-wise re-
ward, which need human to annotate answers step
by step for providing step-wise feedback, compared
to RLHF with a holistic reward. Another limitation
is that different tasks may have different definitions
of fine-grained feedback in terms of the density
level of step. Therefore, defining the step split
function that is well-suited for a task requires non-
trivial manual effort. In this work, we leverage the
open-source step-wise dataset PRM800K, show-
ing the effectiveness of step-RLHF on MATH. Our
method also generalizes to other multi-step reason-
ing task with step-wise annotation providing.

6 Conclusion

In conclusion, Step-RLHF presents a novel ap-
proach to reinforcement learning from human feed-
back. The incorporation of a step-wise reward
model, coupled with step-wise policy updating
during PPO training, sets the algorithm apart in
terms of efficiency and performance. Experi-
mental results underscore the potential of Step-
RLHF as a promising method for addressing the
challenges posed by complex sequential decision-
making tasks.
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