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ABSTRACT

Mixture-of-Experts (MoE) models embody the divide-and-conquer concept and
are a promising approach for increasing model capacity, demonstrating excellent
scalability across multiple domains. In this paper, we integrate the MoE struc-
ture into the classic Vision Transformer (ViT), naming it ViMoE, and explore the
potential of applying MoE to vision through a comprehensive study on image
classification. However, we observe that the performance is sensitive to the con-
figuration of MoE layers, making it challenging to obtain optimal results without
careful design. The underlying cause is that inappropriate MoE layers lead to un-
reliable routing and hinder experts from effectively acquiring helpful knowledge.
To address this, we introduce a shared expert to learn and capture common infor-
mation, serving as an effective way to construct stable ViMoE. Furthermore, we
demonstrate how to analyze expert routing behavior, revealing which MoE layers
are capable of specializing in handling specific information and which are not.
This provides guidance for retaining the critical layers while removing redundan-
cies, thereby advancing ViMoE to be more efficient without sacrificing accuracy.
We aspire for this work to offer new insights into the design of vision MoE models
and provide valuable empirical guidance for future research.

1 INTRODUCTION
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Figure 1: Top-1 accuracy on ImageNet-1K. We
compare ViMoE with other ViT architecture base-
lines. All models are evaluated at 224× 224.

General artificial intelligence is continuously
developing toward larger and stronger mod-
els (Achiam et al., 2023; Yang et al., 2024;
AI@Meta, 2024). However, larger models re-
quire significant computational resources for
training and deployment, and balancing per-
formance with efficiency remains a critical is-
sue, especially in resource-constrained envi-
ronments. A promising approach is to use
the Mixture-of-Experts (MoE) (Jacobs et al.,
1991) layers in neural networks, which de-
couple model size from inference efficiency.
MoE embodies the divide-and-conquer princi-
ple, where feature embeddings are routed to se-
lected experts through a gating mechanism, al-
lowing each expert to specialize in a subsets of
the data. As a result, each input is processed by
only a small portion of the parameters, whereas
traditional dense models activate all parameters
for every input. This approach is becoming
increasingly popular in Natural Language Pro-
cessing (NLP), as it enables parameter scaling
while keeping computational costs at a modest
level (Jiang et al., 2024; Dai et al., 2024).

This work focuses on exploring the simple application of MoE in vision models. We convert the
classic Vision Transformer (ViT) (Dosovitskiy, 2020) into a sparse MoE structure, naming it Vi-
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MoE. Our modification of ViT follows (Riquelme et al., 2021), where the Feed-Forward Networks
(FFNs) in each block is replaced with multiple experts, while keeping the structure of each expert
the same. For simplicity and efficiency, we choose to select experts at the image level rather than
the token level (Daxberger et al., 2023; Liu et al., 2024). Through a comprehensive study on image
classification, we explore strategies for configuring MoE in a stable and efficient manner, while also
observing several interesting phenomena related to expert routing from different perspectives.

An essential consideration in designing ViMoE is determining how many MoE layers to include
and where to position them. A common approach is to insert them into the last L ViT blocks (Wu
et al., 2022; Liu et al., 2024), which receive the largest gradient magnitudes. Alternatively, one
more straightforward approach would be to add MoE layers to all blocks without careful design. We
adopt an exhaustive way of scanning the number of layers to determine which configuration yields
the optimal accuracy for ViMoE. Interestingly, increasing the number of MoE layers does not always
lead to better performance; instead, a downward trend emerges beyond a certain number of layers.
We attribute this to the fact that inappropriate MoE layers, particularly in the shallow ViT blocks, not
only fail to contribute but also complicate optimization. While scanning and observing can reveal
the optimal performance point and the most suitable number of MoE layers, such an approach is
invariably laborious. Inspired by (Xue et al., 2022; Dai et al., 2024), we introduce a shared expert
that absorbs knowledge from the entire dataset, alleviating the inadequacies in individual expert
learning and the burden on the routing mechanism. The shared expert brings more excellent stability
to ViMoE, as it prevents the accuracy degradation observed with an excessive number of MoE layers.
This eliminates the need for constant trial and error to find the optimal point, thereby facilitating a
more streamlined design process.

The above are deductions drawn from the scanning results, but we seek further heuristic exploration.
Building on the stable ViMoE, we attempt to delve deeper into the routing behavior within MoE
layers to uncover what each expert focuses on. Owing to our routing strategy, we can observe how
data from each class are distributed across the experts. For the MoE layers in the deeper ViT blocks,
the gating network effectively allocates samples of the same class to the same expert, with each
expert specializing in processing different data. However, in the shallow blocks, the gating network
struggles to consistently route images of the same class to the same expert or effectively guide
the experts to specialize in different classes. This suggests that the experts have not learned highly
discriminative knowledge; rather, they end up implementing very similar functions, indiscriminately
extracting common features across all classes (Riquelme et al., 2021). These results highlights which
layers truly fulfill the divide-and-conquer role and which do not, corresponding to the accuracy
trends observed through layer scanning.

Furthermore, we aim to inform more thoughtful and efficient ViMoE designs through our observa-
tions of MoE behavior. One attempt we propose is to estimate the necessary number of MoE layers
based on the routing distribution, and then combine this with the number of experts set per layer to
approximate the required expert combinations. This insight allows us to simplify the structure by
removing potentially redundant MoE layers, thereby achieving a more efficient ViMoE. As a result,
our ViMoE based on ViT-S/14 outperforms DINOv2 (Oquab et al., 2023) by 1.1% on ImageNet-
1K (Deng et al., 2009) fine-tuning. With less than one-third of the activated parameters, ViMoE
even surpasses a number of advanced ViT-B/16 models (Bao et al., 2021; Touvron et al., 2021; Zhou
et al., 2021; Zhang et al., 2022; Xinlei et al., 2021; He et al., 2022).

In summary, we believe that as MoE becomes more widely adopted in vision tasks, the observations,
evidence, and analyses presented in this study are worth knowing. We hope that our insights and
experiences will contribute to advancing this frontier.

2 VIMOE

2.1 PRELIMINARY

Mixture-of-Experts (MoE) (Jacobs et al., 1991; Jordan & Jacobs, 1994) is a promising approach
that allows for scaling the number of parameters without increasing computational overhead. For
Transformer-based MoE models, the architecture mainly consists of two key components: (1) Sparse
MoE Layer: A MoE layer contains N experts (denoted as Ei(·), i = 1, 2, . . . , N ), each functioning
as an independent neural network (Shazeer et al., 2017). (2) Gating Network: This component is
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responsible for routing the input token x to the most appropriate top-k experts (Cao et al., 2023).
The gate consists of a learnable linear layer, defined as g(x) = σ(Wx), where W is the gate
parameter, and σ is the softmax function. Let T represent the set of the top-k indices, and output of
the layer is then computed as a linear combination of the outputs from the selected experts weighted
by the corresponding gate values,

y =
∑
i∈T

gi(x) · Ei(x). (1)

Load Balancing Loss. To encourage load balancing among the experts, we incorporate a differen-
tiable load balancing loss (Lepikhin et al., 2020; Zoph et al., 2022) into each MoE layer, promoting
a more balanced distribution of input tokens across the experts. For a batch B containing T tokens,
the auxiliary loss is calculated as a scaled dot product between the vectors f and P ,

Laux = α ·N ·
N∑
i=1

fi · Pi, (2)

where α is the loss coefficient, fi represents the fraction of tokens routed to expert i, and Pi is the
fraction of the router probability assigned to expert i,

fi =
1

T

∑
x∈B

1{argmax g(x) = i}, (3)

Pi =
1

T

∑
x∈B

gi(x). (4)

MoE Transformer. A widely used approach to applying MoE to Transformer models is to replace
the Feed-Forward Networks (FFNs) in some of the standard (non-MoE) Transformer blocks with
MoE layers (Fedus et al., 2022). Specifically, in an MoE layer, the experts retain the same structure
as the original FFNs. The gating function receives the output from the preceding self-attention layer
and routes the token representations to different experts.

2.2 SETTINGS FOR IMAGE CLASSIFICATION

Architecture. We introduce a ViMoE framework to facilitate our study on the application of MoE
for image classification. We choose the Vision Transformer (ViT) (Dosovitskiy, 2020) backbone and
replace the FFNs in the ViT blocks with MoE layers. Instead of training from scratch (Riquelme
et al., 2021), we consider inheriting self-supervised pre-training weights, which reduces training
costs while also benefiting from advanced feature representations. Since the experts in the MoE
layers share the same structure as the FFNs, we simply replicate the pre-trained weights of the FFNs
across each expert for initialization.

Routing Strategy. Recent large-scale sparse MoE models (Achiam et al., 2023; Jiang et al., 2024;
Dai et al., 2024; Yang et al., 2024) typically employ a token-based routing strategy, where the gating
mechanism assigns each token to selected experts. However, it is worth considering whether this
strategy is necessary for MoE in image classification, where the model focuses more on the overall
features of the image to predict a single class for the image. We suggest that the routing strategy
should align with the specific requirements of the vision task. Routing at the image level (i.e.,
selecting experts for each entire image) (Daxberger et al., 2023; Liu et al., 2024) is simpler and
better suited to the objectives of image classification. In practice, we use the [CLS] token to
represent the image x as the input to the gating network, since it encapsulates the information from
all image tokens and is used for classification prediction. Additionally, unless otherwise specified,
we default to selecting only the top-1 routed expert to simplify the architecture. Therefore, compared
to token-based routing, this strategy reduces the number of experts activated per image.

Shared Expert. There is often some common sense or shared information across input tokens
assigned to different experts. As a result, with a conventional routing strategy, multiple experts
may acquire overlapping knowledge within their respective parameters. By designing the shared
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expert (Xue et al., 2022; Dai et al., 2024) to focus on capturing and consolidating common informa-
tion, other routed experts can specialize in learning unique knowledge, leading to a more parameter-
efficient model composed of a greater number of specialized experts. Consequently, we introduce
the shared expert Es(·) into ViMoE to enable learning common knowledge from all data. In our
implementation, we set the number of shared experts to 1, with a structure identical to that of the
other experts. The output of the shared expert is added to the output of the selected routed expert,
allowing Eq. 1 to be rewritten as,

y = Es(x) +
∑
i∈T

gi(x[CLS]) · Ei(x). (5)

3 EMPIRICAL OBSERVATIONS IN DESIGNING VIMOE

3.1 A STABILITY STRATEGY FOR CONVENIENT DESIGN

Figure 2: Top-1 accuracy on ImageNet-1K under
different values of L. We replace the FFNs with MoE
layers in the last L ViT blocks. L = 0 represents the
non-MoE DINOv2 baseline, and L = 12 indicates
that every block contains the MoE layer.

Scanning the Number of MoE Layers.
When designing ViMoE, an important con-
sideration is determining how many MoE
layers to include and where to place them
within the ViT blocks. Here, we start by
exploring sparse MoE without the shared
expert for simplicity. The most straightfor-
ward approach is to place the MoE layer
in every ViT block or to select the last
L blocks where the gradient magnitudes
are the largest. To explore reasonable
configurations and seek guiding insights,
we scan the number of MoE layers and
evaluate the accuracy of image classifica-
tion. Our experiments are based on the
DINOv2 (Oquab et al., 2023) pre-trained
ViT-S/14 (Dosovitskiy, 2020), modified
into ViMoE and fine-tuned on ImageNet-
1K (Deng et al., 2009) for 200 epochs
(more implementation details are provided
in Sec. 4.1). From Fig. 2, it can be observed
that regardless of the number of experts,
whether N = 2, N = 4, or N = 8, the
accuracy consistently exhibits a trend of initially increasing and then decreasing, with this trend be-
coming more pronounced as N increases. This phenomenon has also been mentioned in (Daxberger
et al., 2023). We hypothesize that introducing multiple experts too early in the shallow ViT blocks
leads to optimization difficulties, and the gating network struggles to achieve precise routing due to
limited information (a more detailed analyze of this is given in Fig. 5). This suggests a potential
instability in the design of ViMoE. Simply adding MoE layers to all ViT blocks without careful con-
sideration may not lead to optimal results. A scan over different values of L is required to determine
the most suitable number of layers, which inevitably increases the design cost.

Shared Expert for Stabilising ViMoE. As previously discussed, the shared expert learns and con-
solidates knowledge from all the data, making it more effective in capturing common information.
We consider this structure effective in alleviating challenges of gating decisions and the limitations
of individual expert learning in sparse structures. Therefore, we attempt to incorporate the shared
expert into ViMoE to mitigate the potential instability in training MoE layers. In Fig. 3 we present a
comparison between models with and without shared expert. Incorporating the shared expert allows
ViMoE to achieve stable results, eliminating the need for an exhaustive search to determine the op-
timal number of layers L. Even the naive approach of adding MoE layers to all ViT blocks yields
good accuracy, preventing performance degradation caused by inappropriate MoE configurations.
Additionally, with the inclusion of shared expert, ViMoE achieves a 0.4% improvement in accuracy
(84.3% vs. 83.9%), and a 1.2% increase compared to the DINOv2 baseline (83.1%).
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Figure 3: Top-1 accuracy with and without the shared expert at different values of L.

Figure 4: Convergence curves for training ViMoE
under different configurations.

Convergence Advantage. Taking N = 8
and L = 12 as an example, Fig. 4 shows
the training curves with and without shared
expert, along with the DINOv2 baseline for
reference. It is evident that simply adding
sparse MoE layers slows down convergence
in the early training epochs, and the final per-
formance is nearly indistinguishable from the
baseline, supporting the hypothesis that an
improper MoE setting can even hinder op-
timization. In contrast, when shared expert
is introduced, training becomes more stable,
convergence is faster, and accuracy improves
significantly. It is worth mentioning that, with
the introduction of shared expert, the MoE
layers contain a total of 9 experts (1 shared
expert and 8 routed experts), and the forward pass activates both the shared expert and one selected
routed expert. To ensure a fairer comparison, we conducted an ablation study by selecting the top-2
experts from the 9 routed experts. On one hand, selecting 2 out of 9 can be seen as a denser setup
compared to selecting 1 out of 8, which partially mitigates the negative effects of being overly sparse.
On the other hand, even with the same number of experts and activated experts, shared expert still
demonstrates the advantage with faster convergence and higher accuracy.

3.2 EFFICIENT EXPLORATION BASED ON STABILITY

After constructing the stable ViMoE, we further analyze Fig. 3 and observe the presence of a perfor-
mance plateau. Interestingly, the turning point differs for each N . For N = 2, N = 4, and N = 8,
accuracy already surpasses 84.2% at L = 5, L = 3, and L = 2, respectively. Beyond these number
of layers, no significant improvement is observed by adding more MoE. We attempt to explain these
phenomena and propose strategies for designing a more efficient ViMoE.

Routing Heatmap. Taking N = 8 as an example, we plot the routing heatmaps of several MoE
layers in Fig. 5. These heatmaps illustrate the distribution of class samples across different experts,
helping us observe whether the experts are capable of capturing distinctive information. It can be
observed that for the MoE layers in the shallow ViT blocks (e.g., l = 12), the gating network strug-
gles to consistently route images of the same class to the same expert or effectively distinguish the
classes each expert should focus on. This indicates that the experts fail to learn highly discrimi-
native knowledge; instead, they are likely performing similar functions, indiscriminately extracting
common features. We then focus on the layer where the accuracy plateau occurs for N = 8, corre-
sponding to L = 2. It is evident that in the last two MoE layers, the gating network can effectively
assign the appropriate expert to each class, and the multiple experts can specialize in handling the
corresponding data. Therefore, we conclude that the deep layers are where MoE truly achieves
its divide-and-conquer objective, with different experts specializing in handling class-specific con-
tent. This observation validates the empirical approach of placing MoE layers in the last few ViT
blocks (Wu et al., 2022; Liu et al., 2024) as a reasonable strategy. In contrast, MoE struggles to
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Figure 5: Routing heatmap for the l-th MoE layer, where l = 1 represents the deepest (last) layer
and l = 12 denotes the shallowest (first) layer. The x-axis is the class ID from ImageNet-1K, and
the y-axis is the expert ID. The label order in each figure is adjusted for better readability. Darker
colors indicate a higher proportion of images from the corresponding class routed to the expert.

demonstrate its advantages in the shallow ViT blocks, as the use of multiple experts seems unnec-
essary for capturing basic visual features. The sparse structure may instead introduce optimization
difficulties, making the original dense FFN structure a simpler and more suitable choice.

Routing Degree. Another interesting observation is that the number of MoE layers L required varies
with the number of experts N . We suggest this is related to the routing degree, which represents
the number of possible expert combinations and can be simply defined as D = (Ck

N )L. Since we
fix the gating selection to top-1 (i.e., k = 1), we obtain D = (C1

2 )
5 = 32 for N = 2, D =

(C1
4 )

3 = 64 for N = 4, and D = (C1
8 )

2 = 64 for N = 8. This implies that approximately
32 to 64 routing combinations are sufficient for effectively partitioning and processing the data.
Fewer combinations may affect performance, while more do not yield further significant gains.
From another perspective, if we view the gating network allocating experts to data as a clustering
process, the routing degree essentially reflects the number of clusters formed from the dataset. Each
expert combination can then specialize in learning from the samples of its corresponding cluster,
facilitating the model in reaching optimal effectiveness. Our results validate that end-to-end training
can effectively achieve this clustering effect, without the need for additional clustering strategies to
provide prior information for the gating mechanism (Liu et al., 2024).

Efficient ViMoE. The above conclusions are drawn from scanning the number of MoE layers. From
another perspective, we can approximately predict the routing degree by observing the expert allo-
cation in each layer. As illustrated in Fig. 5, the routing heatmap provides evidence of which MoE
layers play a critical role, potentially indicating the necessary expert combinations that impact the
results. These insights guide us in refining the structural design, retaining the essential MoE layers
while removing the unnecessary ones, thereby developing a more efficient ViMoE. Moreover, we
expect these findings are not limited to the ImageNet-1K dataset. In Sec. 4.2, we further explore the
transfer of these insights to CIFAR100 (Wang et al., 2017) to validate their generality.

In Table 1, we present various ViMoE configurations and compare their parameter counts. Although
sparse MoE layers increase the total number of parameters, since we set the gate to route each image
to the top-1 expert, it achieves higher accuracy without increasing the activated parameter counts
or the inference burden. With the inclusion of the shared expert, we further improve accuracy at
relatively low extra cost. For example, when N = 8 and L = 2, only 2.4M additional activated
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Table 1: Model efficiency. The model sizes, in-
ference burden, and ImageNet-1K accuracy of
ViMoE. All models are based on ViT-S/14. L =
0 refers to the DINOv2 baseline. FLOPs metric
is evaluated using 224× 224 image resolution.

N L
w/ Shared

Expert
Total

Param.
Activate
Param. FLOPs Acc.

- 0 - 22.0M 22.0M 5.53G 83.1
2 5 27.9M 22.0M 5.53G 83.6
2 5 ✓ 33.8M 27.9M 7.04G 84.3
2 12 ✓ 50.4M 36.2M 9.17G 84.2
4 3 32.7M 22.0M 5.53G 83.9
4 3 ✓ 36.2M 25.6M 6.44G 84.2
4 12 ✓ 78.8M 36.2M 9.17G 84.2
8 2 38.6M 22.0M 5.53G 83.9
8 2 ✓ 40.9M 24.4M 6.13G 84.2
8 12 ✓ 135.5M 36.2M 9.17G 84.3

Table 2: Top-1 accuracy on ImageNet-1K. All
models are evaluated at resolutions 224 × 224.
We select N = 8, L = 2 as a representative
configuration to report. ⋆ indicates the inclusion
of the shared expert.

Method Arch. Activate
Param. FLOPs Acc.

DINO ViT-S/16 22.1M 4.25G 81.5
BEiT ViT-S/16 22.1M 4.25G 81.7
iBOT ViT-S/16 22.1M 4.25G 82.3
DINOv2 ViT-S/14 22.0M 5.53G 83.1
DINO ViT-B/16 86.6M 17.58G 82.8
MoCov3 ViT-B/16 86.6M 17.58G 83.2
BEiT ViT-B/16 86.6M 17.58G 83.4
MAE ViT-B/16 86.6M 17.58G 83.6
iBOT ViT-B/16 86.6M 17.58G 84.0
ViMoE ViT-S/14 22.0M 5.53G 83.9
ViMoE⋆ ViT-S/14 24.4M 6.13G 84.2

Table 3: Comparison between dense structure
and sparse MoE. For dense structures, L indicates
that each of the last L layers contains two FFNs.

Arch. L N Activate Param. FLOPs Acc.
Dense 0 - 22.0M 5.53G 83.1
Dense 2 - 24.4M 6.13G 83.6
Dense 3 - 25.6M 6.44G 83.8
Dense 5 - 27.9M 7.04G 83.8
Dense 12 - 36.2M 9.17G 83.9
Sparse 2 8 24.4M 6.13G 84.2
Sparse 3 4 25.6M 6.44G 84.2
Sparse 5 2 27.9M 7.04G 84.3

Table 4: Ablation studies of different routing
strategies. We calculate the average number
of routed experts and activated parameters per
image, with the total number of experts being
(N + 1)× L (including the shared expert).

Strategy L N
Avg. #
Experts

Activate
Param. Acc.

Token 2 8 16.3 38.9M 84.1
Token 3 4 14.4 35.5M 84.2
Token 5 2 14.8 33.6M 84.1
Image 2 8 4 24.4M 84.2
Image 3 4 6 25.6M 84.2
Image 5 2 10 27.9M 84.3

parameters are required to surpass the baseline by 1.1% in accuracy. Furthermore, a comparison
with L = 12 highlights the efficiency of our structural design for ViMoE, significantly reducing
parameter count without sacrificing accuracy.

4 EXPERIMENTS

4.1 IMAGE CLASSIFICATION ON IMAGENET-1K

Implementation Details. All experiments are conducted on the DINOv2 (Oquab et al., 2023) pre-
trained ViT-S/14 (Dosovitskiy, 2020) and fine-tuned on ImageNet-1K (Deng et al., 2009) with 224×
224 image resolution for 200 epochs. By default, we use the AdamW (Sun et al., 2021) optimizer
with a batch size of 1024, a weight decay of 0.05, and a layer-wise learning rate decay of 0.65. The
peak learning rate is set to 1e−4 with a warm-up of 20 epochs. For the MoE layers, we configure
three different numbers of experts (N = 2, N = 4, and N = 8), selecting the top-1 expert, with the
load balancing loss coefficient α set to 0.01.

Results. Most of the empirical results on the ImageNet-1K benchmark have already been presented
earlier. Here, we compare ViMoE against various self-supervised models (Bao et al., 2021; Zhang
et al., 2022; Zhou et al., 2021; Oquab et al., 2023; Xinlei et al., 2021; He et al., 2022). As shown
in Table 2, ViMoE achieves an 83.9% top-1 accuracy, which is 0.8% higher than DINOv2 without
increasing activated parameters. With shared expert, the accuracy further improves to 84.2%, outper-
forming DINOv2 by 1.1%. Notably, we achieve this performance using only ViT-S/14, surpassing
other methods based on ViT-B/16, while activating less than one-third of their parameters.
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Comparison with Dense Structures. Previous results validate the advantage of the MoE structure
over dense models. However, when we introduce the shared expert, the number of activated pa-
rameters increases. To ensure fairness, we attempt to modify the DINOv2 baseline by aligning the
number of activated parameters while maintaining a dense architecture. One feasible approach is to
mimic the MoE by setting two experts and selecting the top-2, which allows for the addition of an
extra FFN in the ViT block.

In Table 3, we present the results of dense structure with different layer counts and compare them
with sparse MoE. While increasing the number of parameters provides accuracy gains, the sparse
structures are obviously more efficient and have a higher upper bound. For instance, at L = 2 with
24.4M activated parameters, sparse MoE outperforms the dense one by 0.6%.

N = 2
l = 1, 2, 3, 4, 5

N = 4
l = 1, 2, 3

N = 8
l = 1, 2

Figure 6: Distribution of expert
loadings. Different colors repre-
sent different experts.

Routing Distribution. In Sec. 2.1, we introduce the load bal-
ancing loss to assist in training sparse MoE models. Its purpose
is to ensure that multiple experts receive inputs more evenly,
preventing the majority of data from being routed to a single
expert and thus avoiding the model from degrading into a dense
structure. We calculate the proportion of data allocated to each
expert in the MoE layers, as shown in Fig. 6. It is evident that
the gating network distributes the data relatively evenly across
multiple experts. Combined with the observations from Fig. 5,
this validates the expectation that MoE layers enable different
experts to handle specific information.

Routing Strategy. In Sec. 2.2, we introduce the routing strat-
egy, where experts are selected for the entire image rather than
for each token. In Table 4, we conduct an ablation study com-
paring these two strategies, showing no significant difference
in accuracy. This indicates that the image-level strategy, while
simpler, is effective because it aligns with the task objective of
image classification. Additionally, we calculate the average number of routed experts and activated
parameters per image, further confirming that our choice is more efficient.

4.2 VALIDATION ON CIFAR100

The above-mentioned observations and conclusions are based on ImageNet-1K (Deng et al., 2009).
To demonstrate generalizability, we conduct validation on CIFAR100 (Wang et al., 2017) and aim
to identify the most suitable ViMoE configuration.

Implementation Details. All models are fine-tuned on CIFAR100 for 100 epochs with a weight
decay of 0.3. The peak learning rate is set to 3e−4 with a warm-up of 3 epochs, while all other
settings remain consistent with those adopted on ImageNet-1K.

Baseline and Stable ViMoE. First, we use the DINOv2 (Oquab et al., 2023) self-supervised pre-
trained ViT-S/14 (Dosovitskiy, 2020) and fine-tune it on CIFAR100 as the baseline, which achieves a
top-1 accuracy of 91.3%. Next, we convert the ViT blocks into the ViMoE framework. Considering
that CIFAR100 has fewer classes and samples than ImageNet-1K, we set the number of experts to
N = 4 in our experiments. Based on prior experience, ViMoE with the shared expert tends to yield
stable results, allowing us more flexibility in setting the number of MoE layers. We opt for the most
straightforward approach by adding MoE layers to every block, i.e., L = 12. Under this setting,
ViMoE achieved a top-1 accuracy of 91.6%, surpassing the baseline by 0.3%. Additionally, we
compare the model without the shared expert, which yields an accuracy of only 78.4%, falling far
short of the baseline. This demonstrates that MoE is not a simple design that guarantees stable gains.
In fact, the optimization complexity introduced by sparse structures in certain ViT blocks may have
significant negative impacts, further highlighting the necessity of designing a stable ViMoE.

Efficient Structures Derived from Observations. We observe the behavior of MoE within the
stable ViMoE and further analyze which layers play a critical role. Following the approach outlined
in Sec. 3.2, we generate the routing heatmaps, as shown in Fig. 7. It is evident that in the last two
layers, i.e., l = 1 and l = 2, the gating network clusters data classes effectively, allowing each
expert to specialize in handling specific classes. In contrast, the shallower layers do not exhibit
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Figure 7: Routing heatmap for the l-th MoE layer on CIFAR100. The x-axis is the class ID, and
the y-axis is the expert ID. The label order in each figure is adjusted for better readability. Darker
colors indicate a higher proportion of images from the corresponding class routed to the expert.

Table 5: Top-1 accuracy on CIFAR100 under different configurations.

L = 1 L = 2 L = 4 L = 6 L = 9 L = 12

w/o Shared Expert
N = 2 91.4 91.5 91.5 91.5 91.3 91.2
N = 4 91.4 91.5 91.3 90.7 89.2 78.4
N = 8 91.5 91.3 90.8 89.9 80.9 52.9
w/ Shared Expert
N = 2 91.5 91.6 91.7 91.7 91.6 91.6
N = 4 91.6 91.7 91.7 91.7 91.7 91.6
N = 8 91.6 91.6 91.7 91.7 91.7 91.5

clear expert specialization, suggesting that these MoE layers may not be necessary and that a single
FFN can replace the role of multiple sparse experts. Based on this, we estimate the routing degree
for CIFAR100 to be around 4 to 16. To validate this hypothesis, we experiment with the L = 2
configuration, achieving an accuracy of 91.7%. This setup maintains good results while reducing
parameters and improving efficiency.

Layer Scanning. We further validate the results by layer scanning, as shown in Table 5. When no
shared experts are employed, an unreasonable configuration of the number of MoE layers leads to
significantly lower accuracy, which is even more pronounced than what we observed in ImageNet-
1K. We attribute this to the fact that on datasets with smaller data volumes and fewer classes, overly
sparse architectures hinder each expert from being sufficiently optimized. These results reinforce the
necessity of incorporating shared experts to stabilize model convergence. Moreover, for the efficient
ViMoE, the required routing degree (i.e., the number of expert combinations) is indeed smaller when
the dataset contains fewer classes. It can be observed that incorporating MoE only in the deepest
one or two layers is sufficient to achieve considerable accuracy.

Discussion. Comparing the CIFAR100 results with those from ImageNet-1K, we observe that fewer
experts are required when there are fewer classes. This aligns with the intuition that having numerous
experts handle simpler tasks does not provide additional benefits and may even introduce drawbacks.
Therefore, training a smaller number of experts to be specialized and efficient is sufficient.
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5 RELATED WORK

Mixture-of-Experts (MoE) model is first introduced in (Jacobs et al., 1991) and has been widely
studied for its ability to modularize learning and reduce interference across data domains (Zhou
et al., 2022; Rajbhandari et al., 2022). MoE uses a gating network to assign which experts should
handle each data sample. Early MoE models were densely activated, meaning every input triggered
all experts, which, while functional, was computationally expensive due to the significant resources
required to process each input through all experts (Masoudnia & Ebrahimpour, 2014). Modern
mainstream MoE models can be regarded as an application of dynamic neural networks (Han et al.,
2021), using sparse activation selecting only a subset of experts to handle each input, which greatly
reduces computational costs while preserving model expressiveness and performance (Hwang et al.,
2023; Hazimeh et al., 2021). This approach has become increasingly important in large language
models, where efficiency and scalability are paramount. Notable works in NLP, such as Switch
Transformers (Fedus et al., 2022), GShard (Lepikhin et al., 2020), and GLaM (Du et al., 2022), have
successfully applied sparse MoE, demonstrating significant advancements in handling large-scale
tasks while optimizing resource usage.

MoE for Vision Tasks. In recent years, the high efficiency of MoE in NLP tasks has motivated
researchers to explore their applications in the visual domain. Works such as V-MoE (Riquelme
et al., 2021) and M3vit (Fan et al., 2022) integrate sparse MoE architectures into Vision Trans-
formers. By replacing certain dense feedforward layers with sparse MoE layers, these models
achieve efficient modeling in image classification tasks, enhancing computational efficiency and
performance. Simultaneously, pMoE (Chowdhury et al., 2023) and DiT-MoE (Fei et al., 2024) in-
troduce sparse conditional computation mechanisms. Specifically, pMoE employs CNNs as experts,
dynamically selecting image patches for each expert, thereby reducing computational costs while
maintaining generalization performance. DiT-MoE optimizes input-dependent sparsity in large dif-
fusion transformer models, improving the efficiency and performance of image generation. Addi-
tionally, AdaMV-MoE (Chen et al., 2023) and the work by (Wu et al., 2022) focus on multi-task
visual recognition and efficient training of large MoE vision transformers.

Transformer for Vision. Transformer models initially achieved remarkable success in natural lan-
guage processing and was later introduced into computer vision, leading to the development of
Vision Transformers (ViT). Vision Transformers (ViT) (Dosovitskiy, 2020) introduced a new ap-
proach to image processing by dividing images into patches and treating them like words in text,
allowing for global feature extraction across the entire image. Unlike convolutional neural net-
works (CNNs) that rely on local receptive fields, ViT’s Transformer-based architecture captures
broader context, achieving performance on par with, or exceeding, that of CNNs. In the realm of
self-supervised learning, MoCov3 (Xinlei et al., 2021) extended the momentum contrastive learning
approach to ViT, successfully training high-quality visual features from unlabeled data. Inspired
by BERT’s (Kenton & Toutanova, 2019) masked language modeling, methods such as BEiT (Bao
et al., 2021), MAE (He et al., 2022), and iBOT (Zhou et al., 2021) pre-train ViTs through masked
image modeling to enhance the model’s generalization ability and representation learning. DI-
NOv2 (Oquab et al., 2023) employed self-supervised learning methods based on knowledge distil-
lation, utilizing larger datasets and longer training periods, allowing it to learn robust visual features
in an unsupervised manner, further advancing self-supervised ViT.

6 CONCLUSION

In this work, we integrate the sparse Mixture-of-Experts (MoE) architecture into the classic Vision
Transformer (ViT), termed ViMoE, to explore its potential application in image classification. We
report the challenges encountered in designing ViMoE, particularly in determining the configuration
of MoE layers without prior guidance, as inappropriate expert arrangements can negatively impact
convergence. To mitigate this, we introduce the shared expert to stabilize the training process, thus
streamlining the design by eliminating the need for repeated trials to find the optimal configuration.
Furthermore, by observing the routing behavior and the distribution of samples across experts, we
identify the MoE layers that are crucial for the divide-and-conquer processing of data. These insights
allow us to refine the ViMoE architecture, achieving both efficiency and competitive performance.
We hope this work provides new insights into the design of MoE models for vision tasks and offers
valuable empirical guidance for future research.
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