
Predicting Oligomeric states of Fluorescent Proteins using
Mamba

Agney K Rajeev1, Joel Joseph K B1, and Subhankar Mishra∗1

1National Institute of Science Education and Research (an OCC of HBNI), Bhubaneswar, India - 752050
{agneyk.rajeev,joeljoseph.kb,smishra}@niser.ac.in

Abstract

Fluorescent proteins (FPs) are essential tools in
biomedical imaging, known for their ability to ab-
sorb and emit light, thereby allowing visualization of
biological processes. Understanding the oligomeric
state is crucial, as monomeric forms are often pre-
ferred in applications to minimize potential artifacts
and prevent interference with cellular functions. Ex-
perimental methods to find the oligomeric state can
be time-consuming and expensive. Most of the cur-
rent computational model is CPU-based, limiting
their speed and scalability. This paper studies the
effectiveness of GPU-based deep-learning models in
predicting the oligomeric states of fluorescent pro-
teins directly from their amino acid sequences, specif-
ically focusing on the Mamba architecture. Various
protein-specific augmentations were also employed
to enhance the model’s generalizability. Our results
indicate that the mamba-based model achieves accu-
racy and F1 score close to 90% and an MCC value
of 0.8 with in predicting the oligomeric states of
fluorescent proteins directly from its amino acid se-
quence. The code used in this study is available at
GitHub repository.

1 Introduction

Fluorescent proteins are essential tools in biomed-
ical imaging, derived from marine organisms like
the jellyfish Aequorea victoria. They absorb light
at one wavelength and emit it at another, enabling
various applications such as imaging and tracking
in biological research.
In order to effectively utilize fluorescent proteins, it
is important to understand their oligomeric state,
whether they exist as monomers or oligomers. Pro-
tein oligomerization is the process by which two or
more protein monomers non-covalently bind together
to form a larger, multimeric complex known as an
oligomer. These oligomers can range from dimers to
larger structures, and their formation can affect the
protein’s functional properties, stability, and inter-
actions. The oligomeric state can significantly influ-
ence a fluorescent protein’s behavior and suitability
for specific applications. Monomeric fluorescent pro-

∗Corresponding Author.

teins are often preferred for fusion constructs to
avoid potential artifacts caused by protein-protein
interactions that can occur with oligomers. For
instance, research has shown that the tetrameric
structure of DsRed can lead to complications; for ex-
ample, Mizuno et al[1] demonstrated that DsRed ag-
gregation disrupts the normal function of calmodulin
in the cytosol. Similarly, Zacharias[2] highlighted
that the oligomerization of fluorescent proteins can
interfere with the signaling pathways of target pro-
teins when these proteins are used as tagging probes
in fluorescence resonance energy transfer (FRET)
experiments.
This necessitates the development of computational
models to predict the oligomeric state of fluorescent
proteins directly from their protein sequences. Such
predictive capabilities could help in selecting or engi-
neering fluorescent proteins with desired oligomeric
properties. Experimentally, researchers rely on in
vitro techniques like gel filtration, ultracentrifuga-
tion, and electrophoresis or in vivo techniques like
yeast-2-hybrid screens and FRET[3]. All these ex-
perimental techniques consume significant time, cost,
experimental resources, and expertise in protein biol-
ogy. Given these challenges in finding the oligomeric
state analytically, data-driven approaches like ma-
chine learning have gained notable interest. However,
the lack of sufficient data and standard benchmarks
poses significant challenges in developing robust pre-
dictive models and benchmarking them.
In this study, we propose a machine learning algo-
rithm based on the Mamba architecture to predict
the oligomeric state directly from protein sequences.
Mamba has been used across various domains, in-
cluding vision[4], video[5] medical image classifica-
tion[6]. Our contributions include: (1) This paper
presents the first application of the Mamba architec-
ture to protein classification, demonstrating its effec-
tiveness in addressing this problem. (2) The model
is built on the Mamba architecture, enabling scal-
ability using powerful GPUs, which overcomes the
limitations of previous models that predominantly
relied on CPU-based decision trees. (3) Achieved su-
perior performance in sensitivity analyses compared
to RNN and LSTM models while also reducing com-
putational costs and utilizing fewer parameters. (4)
Achieved accuracy of 89.97% and an F1 score of
89.28% in ten-fold cross-validation on a dataset cu-

Proceedings of the 6th Northern Lights Deep Learning Conference (NLDL), PMLR 265, 2025.
LM 2025 Agney K Rajeev, Joel Joseph K B, & Subhankar Mishra. This is an open access article distributed under the terms and
conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/smlab-niser/FluorMamba
http://creativecommons.org/licenses/by/4.0/


Figure 1. Structure of NowGFP[8] and DsRed[9] as an
example for monomeric and tetrameric protein respec-
tively

rated by Simeon et al. [7], performing better than
the model developed by Simeon et al. and all other
known deep learning models for this specific problem,
to the best of our knowledge.

2 Literature Review

Garian (2001)[10] was the first to predict protein
oligomeric structure directly from its amino acid se-
quence. The author has used a decision tree classifier
(C4.5) and, demonstrated that primary sequences do
contain quaternary structure information, achieving
an accuracy rate of 70% in distinguishing between
homodimers and non-homodimers.
Subsequent research expanded on this idea. Zhang
et al. (2003)[11] used an SVM algorithm for distin-
guishing between homodimers and non-homodimers.
Song (2007)[12] applied a nearest-neighbor algorithm
to discriminate between homo-oligomers. Chou and
Cai (2003)[13] used pseudo amino acid composi-
tion, developed by Chou (2001)[14], to predict the
oligomeric state, improving predictive capabilities
by preserving sequence order. Carugo (2007)[15]
predicted the tendency of protein chains to form
hetero-oligomers with 80% accuracy. Xiao et al.
(2010)[16] introduced “Quat-2L,” a web server using
a fuzzy k-nearest neighbor algorithm to predict the
oligomeric state. Quat-2L’s two-layer model classi-
fied proteins as monomers, homomers, or heteromers
with a success rate of 71.14%, and further cate-
gorized homo-oligomers and hetero-oligomers into
subtypes with success rates of 76.91% and 82.52%,
respectively.
Simeon et al. (2016)[7] introduced “osFP,” a web
server for predicting the oligomeric states of fluo-
rescent proteins (FPs) from amino acid sequences.
The authors curated a comprehensive dataset of 409
FP sequences from the literature, each annotated
with its oligomeric state. Using the J48 decision
tree algorithm, they achieved accuracy, sensitivity,
and specificity over 80%, with a Matthews Cor-
relation Coefficient (MCC) over 0.6. The authors
hosted their predictive model on a web server named
“osFP.” which allows users to input the amino acid
sequences of FPs and receive predictions regarding

their oligomeric state.
Agarwal et al (2020)[17] present a novel approach to
predicting the oligomeric states of fluorescent pro-
teins (FPs) using artificial neural networks, specifi-
cally autoencoders. The authors utilized the same
dataset curated by Simeon et al. They applied au-
toencoders to compress the amino acid sequence
data, transforming 5237 nodes into a more man-
ageable set of 32 nodes. This compression aimed
to retain essential features necessary for predict-
ing oligomeric states. A decision tree was then
incorporated to enhance the predictive power of the
autoencoder by identifying significant amino acids
influencing the oligomeric state. This decision tree
contributed 8 more nodes to already existing 32
nodes from the encoder, resulting in a total of 40
nodes to encode a protein. This encoded protein is
then passed into a neural network consisting of 4
dense layer and a gaussian noise layer for the pre-
diction task. The combined approach achieved a
prediction accuracy of 70%. Since Agarwal et al
(2020) did not specify their evaluation method, it
is not possible to directly compare the performance
of our model with theirs, especially considering the
differences in test-train splits and whether they used
single-run values or cross-validations. In the end,
the study underscores the broader application of
deep learning models in predicting the oligomeric
state of fluorescent proteins.
Tam and Zhang (2021)[18] developed FPredX, a
machine learning-based tool for predicting key prop-
erties of FPs from amino acid sequences. The study
addresses the challenge of accurately predicting FP
properties such as excitation and emission maxima,
brightness, and oligomeric states, which are critical
for various applications in bioimaging and molecular
biology. FPredX utilizes gradient-boosted decision
tree models trained on a dataset curated from FP-
base. They benchmarked their approach against the
dataset curated by Simeon et al. (2016)[7]. FPredX
achieved superior results, with precision, recall, and
F1 scores of 91.3%, 95.5%, and 93.3%, respectively,
performing better than the “osFP” model, which
had 84.1%, 87.9%, and 85.9% in the same evaluation.

3 Methods

In this section, we outline the methods and tech-
niques employed for our study.

3.1 Models

We employ five models for our study.

The k-Nearest Neighbour (kNN) algorithm
uses pairwise sequence similarity as a distance metric
and classifies a sequence as the label that occurs
most often among the labels of the k sequences

2



most similar to it according to pairwise similarity.
This procedure is motivated by the Basic Local
Alignment Search Tool (BLAST), which is widely
used in biotechnology and bioinformatics.
The S6 state space model Mamba[19] has

emerged as a promising architecture for sequence
modeling due to their linear scaling with sequence
length. Inspired from control engineering, the Struc-
tured State Space Sequence Model(S4) uses the
mathematical model of state-space representation
constituting a set of input, output, and variables con-
nected by first-order differential equations. Mamba
built on the foundations of S4 and uses a time-
varying framework to selectively focus on relevant
information within sequences.

State space models define a sequence-to-sequence
transformations in two stages.

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t)
(1)

We define a MambaBlock according to the ar-
chitecture proposed by Dao and Gu using a State
Space Model (SSM) layer [19] which combines an
H3 layer mentioned in [20] with a gated MLP fol-
lowed by a root mean square normalization layer
(RMSNorm[21]) as shown in fig. 2. Within the
block, we use a convolution layer of kernel size 3,
linear projection layers with a forward expansion of
2 and SiLU(Sigmoid-Weighted Linear Units) activa-
tions[22].
We also experiment with simpler, closely related

models, RNN and LSTM, as well as the state-of-
the-art architecture Transformer (Tfmr) model
used frequently in protein classifications to provide
competitive baselines for comparison.

3.2 Data Augmentation

In an attempt to improve the generalizability of
the model and improve the size of the dataset, we
apply various protein-specific augmentations to our
dataset mentioned by Shen et al[23] and Sun et al[24].
We chose protein-specific augmentations because
traditional methods of augmentations can change the
functional aspect of the protein and may affect the
model’s performance negatively. The augmentations
employed on amino acid sequence S = {Si} were:

Random Substitution(A1): With a probability
of 10%, we randomly substitute an amino acid with
the amino acid most similar to it to maintain its
properties. The substitution mappings used were
those optimized by Shen et al.
Sequence Reversion(A2): The amino acid se-

quence is reversed to read from the C-terminal to
the N-terminal instead of the usual N-terminal to C-
terminal. This changes the protein structurally and
functionally but could improve the model’s recogni-
tion of local features.

Figure 2. Architecture of the MambaBlock (X repre-
sents a multiplication between inputs)

Subsequence Sampling(A3): Randomly select
an amino acid from the sequence and form a sub-
sequence along with the 49 amino acids following
it(if the chosen amino acid is less than 49 amino
acids away from the final amino acid, then select
all amino acids till the final amino acid). Treat the
subsequence as the augmented sequence. This is
another method to try and encourage the model to
recognize local features.
Subsequence Shuffling(A4): Select a subse-

quence from the sequence by a similar procedure
to A3 but of length 20. Shuffle the amino acids of
this subsequence and replace them in the initial se-
quence. This promotes the recognition of properties
such as amino acid counts, which do not depend on
the order of the amino acids in a sequence.
Random Swap(A5): Each amino acid in the

sequence exchanges its position with another amino
acid in the sequence with a probability of 10%.
Random Deletion(A6): Each amino acid in

the sequence is deleted with a probability of 10%.

4 Experiments

4.1 Datasets

We mainly use the dataset curated by Simeon et al.
containing 409 fluorescent protein sequences sepa-
rated into Monomers, Dimers, and Oligomers, which
will be referred to as the OSFP dataset in further
discussions. We combine Dimers and Oligomers of
the original dataset as one class of Oligomers. Thus,
our final dataset consists of 409 protein sequences

3



separated as Monomers and Oligomers. The dataset
is fairly balanced, containing 207 monomers and 202
oligomers.

Additionally, we attempted to reproduce several
test results using a separate dataset, which was inde-
pendently curated from the community-edited open-
source fluorescent protein database, FPBase[25]. We
extracted 656 proteins with annotated oligomeriza-
tion states out of which 381 were monomers (labeled
as ’Monomer’) and the remaining 275 were either
dimers or tetramers (labeled as ’Oligomer’)

4.2 Implementation

The k-Nearest Neighbors (kNN) model was imple-
mented utilizing pairwise sequence similarity from
the Biopython library as the distance metric.

The RNN, LSTM and Transformer models are
implemented using the RNN, LSTM and Trans-
formerEncoder API respectively of the nn module
of PyTorch Library.

The Mamba model was implemented from the
open-sourced codebase provided by Gu et al.

For the deep learning models, the sequences are
tokenized and padded with each amino acid as a sin-
gle token, resulting in a total of 21 tokens (20 amino
acid tokens + 1 padding token). The tokenized
sequences are fed into an embedding layer, which
converts each amino acid into a vector representation
with 512 components. Each vector representation
passes through the models. To reduce overfitting, a
dropout layer with a 30% rate is applied. Afterward,
a dense layer is used to generate a 2-dimensional out-
put vector. All hyperparameters used in the model
were finalized after optimization. The input-output
behaviour of our models are highlighted in figure. 3

Sequences Tokenizer Embedding Layer Models

Input 512-VectorDropout LayerDense Layer

Output 2-Vector ArgMax Output Label

1

Figure 3. Schematic representation of the input-output
behaviours of our models. The argmax function here
takes in a vector as input and outputs the label corre-
sponding to the highest valued component.

4.3 Experimental setup

Two testing methods used in the study are:

1. 10-fold Cross-Validation test(10CV) where
the dataset is partitioned into 10 near equal
subsets. The models are tested on one subset

after training on the remaining 9 subsets. This
is repeated for all subsets and averaged.

2. Independent dataset test(ID) where 70
data points are randomly selected from the
whole dataset on which the model will be tested
after training on the remaining data points.
This process is repeated and averaged over 100
random seeds.

The models were evaluated on the metrics of
Accuracy, F1 score(F1) and Matthews Correlation
Coefficient(MCC).

MCC is evaluated by equation.2

MCC = TP×TN−FP×FN
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

(2)
The MCC metric is found to handle data imbal-

ances better than both Accuracy and F1 score as well
as provide symmetrical importance to both positive
and negative predictions.The metrics we employed
were to obtain direct comparisons with Simeon et
al (2016).

Sensitivity to hyperparameters such as state size
for Mamba, Hidden size for RNN, LSTM, and
Transformer, and number of blocks in Mamba were
also studied. The computation cost in GMACs
(1GMAC= 109MACs) and total Parameter Count
for each model were also monitored throughout.
A MAC(Multiply-Accumulate) operation consti-

tutes computing a multiplication of two floating
point numbers followed by an addition of the prod-
uct to an accumulator. During the forward pass,
MAC operations are used to compute the weighted
sums in neurons, which are then passed through
activation functions and during backpropagation,
MAC operation is involving in computing gradients.
A singular MAC operation is given by the equation
3 where a,b and c are floating point variables.

a← a+ (b× c) (3)

All experiments were executed on a Linux server
equipped with Intel(R) Xeon(R) Gold 6138 CPU @
2.00GHz, 512 GB RAM, and 4 NVIDIA GeForce
RTX 2080 Ti with 11GB VRAM each.

5 Results

The results for the tests mentioned in 3 are provided.
First, we compare the effects of data augmentations
with the baseline Mamba model on the 10CV test.
Then, we compare the results of all the models with
the best augmentation from the previous results in
10CV and the independent dataset, along with their
computation cost and parameter size. A misclassifi-
cation of 1 sequence results in a 0.24% decrease in

4



accuracy on 10x cross-validation, and a misclassifi-
cation of 1 sequence results in a 0.014% decrease in
accuracy on a 100x averaged independent dataset
evaluation. Finally, we try to optimize the hyper-
parameters to find the model with the lowest compu-
tation cost without compromising on performance
metrics.

5.1 Data augmentations

The effects of various data augmentation techniques
provided in sec.3.2 are documented in table.1. All
six mentioned augmentations were applied individu-
ally and the three augmentations with an accuracy
greater than or equal to the baseline model were
combined and tested. A combination of random
substitution and sequence reversion proved to be
the most effective, performs better than other aug-
mentations in all metrics, and achieves an accuracy
close to 90% and an MCC greater than 0.8. The
ID test results for the kNN, baseline Mamba as
well as Mamba running on the dataset augmented
by random substitution and sequence reversion are
provided in table 2.

5.2 Benchmarking the performance

The models were benchmarked with 10CV test and
ID test with the dataset provided by Simeon et al[7].
The models were also benchmarked in self curated
dataset from FPbase through 10CV. All the results
are provided in tables 3, 4, 6.

5.3 Sensitivity tests

In order to find a set of optimum hyperparameters
to minimize the computational cost and parameter
count while still maintaining high-performance met-
rics, hyperparameters such as state size for Mamba
and Transformer, Hidden size for RNN and LSTM
were also studied and are given in Fig. 4. Smallest
Mamba model achieves performance of an accuracy
of about 88.5% with a computation cost of 2.15
GMACs and a Parameter count of 578562 which is
significantly lower than other models with similar
performance metrics.

Additionally, we compared the runtime of our
deep learning model(Mamba) with the currently
available CPU-based models by Simeon et al.(osFP)
and Lambert et al.(FPredX). Sample sequences of
length from 12 to 500 amino acids were curated
from the Uniprot Reviewed database[26] as FASTA
files and runtime were compared using the hardware
mention in 4.3. Results are presented in table.7

Augmentation Accuracy F1 MCC

Baseline 0.8875 0.8831 0.7760
A1 0.8899 0.8845 0.7775
A2 0.8875 0.8851 0.7721
A3 0.8801 0.8757 0.7623
A4 0.8851 0.8823 0.7714
A5 0.8825 0.8772 0.7648
A6 0.8899 0.8863 0.7784

A1+A2 0.8997 0.8928 0.8001
A2+A6 0.8801 0.8723 0.7567
A1+A6 0.8851 0.8769 0.7672

A1+A2+A6 0.8900 0.8832 0.7798

Table 1. Comparison between various augmentations
and combinations of augmentations for the 10CV test

Model Accuracy F1 MCC

kNN 0.8571 0.8572 0.7131
Baseline 0.8751 0.874 0.7527
A1+A2 0.8770 0.8759 0.7570

Table 2. Comparison kNN, Baseline Mamba, and the
best augmented Mamba on the ID test

Model Accuracy F1 MCC

RNN 0.8748 ± 0.0432 0.8673 ± 0.0909 0.7531 ± 0.0909
LSTM 0.8938 ± 0.0443 0.8913 ± 0.0601 0.7892 ± 0.0601
Tfmr 0.8082 ± 0.0663 0.8065 ± 0.0984 0.6280 ± 0.1308

Mamba 0.8768 ± 0.0267 0.8785 ± 0.0745 0.7608 ± 0.0596

Table 3. Comparison of RNN, LSTM Transformer and
Mamba on the 10CV test on OSFP

Model Accuracy F1 MCC

RNN 0.7794 ± 0.0756 0.6278 ± 0.2214 0.4429 ± 0.2214
LSTM 0.7713 ± 0.0688 0.6197 ± 0.2082 0.4201 ± 0.2049
Tfmr 0.7352 ± 0.0978 0.5558 ± 0.1888 0.3741 ± 0.1998

Mamba 0.7720 ± 0.0807 0.6353 ± 0.2386 0.4197 ± 0.1926

Table 4. Comparison of RNN, LSTM Transformer and
Mamba on the 10CV test on the FPBase dataset

Model Accuracy F1 MCC

RNN 0.8589 ± 0.0406 0.8557 ± 0.0804 0.7223 ± 0.0804
LSTM 0.8775 ± 0.0388 0.8754 ± 0.0811 0.7593 ± 0.0747
Tfmr 0.7901 ± 0.0463 0.7861 ± 0.0945 0.5892 ± 0.0912

Mamba 0.8781 ± 0.0389 0.8768 ± 0.0734 0.7590 ± 0.0734

Table 5. Comparison of RNN, Transformer and Mamba
on the ID test on OSFP dataset

6 Conclusion

In this study, we have developed a Mamba-based
model to predict the oligomeric state of fluorescent
protein directly from its amino acid sequence. The
ability to distinguish if a fluorescent protein is a
monomer or an oligomer is important for biologists
to design novel fluorescent proteins with a desired

5



Model Accuracy F1 MCC

RNN 0.8289 ± 0.0455 0.7951 ± 0.0883 0.6625 ± 0.0883
LSTM 0.8387 ± 0.0443 0.8063 ± 0.0874 0.6806 ± 0.0874
Tfmr 0.7391 ± 0.0548 0.6825 ± 0.0911 0.5011 ± 0.1019

Mamba 0.8560 ± 0.0423 0.8260 ± 0.0869 0.7104 ± 0.0869

Table 6. Comparison of RNN, Transformer and Mamba
on the ID test on FPBase dataset

No of Sequences OSFP FPredX Mamba
10 0.03 ± 0.03 38.48 ± 0.58 1.90 ± 0.04
100 0.06 ± 0.00 39.69 ± 0.48 1.53 ± 0.02
1000 0.48 ± 0.01 55.82 ± 0.49 2.07 ± 0.02
10000 4.80 ± 0.16 472.72 ± 1.70 13.31 ± 0.12
100000 54.66 ± 4.24 61989.49±2.01 126.09 ± 0.20

Table 7. Comparison of Runtime of CPU-based models
and Mamba model

Figure 4. log plot of accuracy sensitivity of all models
with hidden/state size

Figure 5. log plot of GMACs of all models with hid-
den/state size

Figure 6. log plot of Parameter Count (in units of 107)
of all models with hidden/state size

oligomeric state, as a fluorescent protein’s oligomeric
state is crucial for bio-medical imaging and FRET
experiments. Research has shown oligomeric pro-

Hyperparameter Optimal Value

batch size 8
n layers 2

dim model 512
hidden size(RNN,LSTM) 1024
hidden size(Tfmr,Mamba) 128

n head(Tfmr) 8
d conv(Mamba) 3

Table 8. Optimized hyperparameters for all models

teins tend to form unwanted artifacts that need to
be avoided for proper experimental results.

We observe that our Mamba model performs bet-
ter than all other models in terms of performance
metrics while still maintaining the lowest compu-
tation cost and parameter count. Mamba demon-
strates a significantly better runtime compared to
the FPredX model by Lambert et al.[25] while also
achieving superior performance metrics than those
reported for the model by Simeon et al.[7], albeit
with a slightly longer runtime. Regarding data aug-
mentations, a combination of random substitution
and sequence reversion augmentation techniques pro-
vided the best results on the 10CV test. This may
be because random substitution with amino acids
of same class would help to preserve the functional
characteristics and sequence reversal would encour-
age the model to learn more short-range relations
thus improving the model’s generalizability. The
data augmentation techniques did not provide any
drastic improvements on the ID test but neverthe-
less improved the model to achieve an MCC > 0.8
and an accuracy and F1 score close to 90% in the
10CV test.

Additionally, considering the linear scaling of the
Mamba model w.r.t sequence length, our model
could perform well on the prediction of oligomeric
states and other properties of general protein se-
quences. Furthermore, new and improved protein-
specific augmentations could be experimented on
the dataset to possibly enhance the results further.

Acknowledgments

We would like to express our gratitude to Sagar
Prakash Barad for their invaluable insights and sug-
gestions that greatly contributed to the development
of the ideas presented in this article.

References

[1] H. Mizuno, A. Sawano, P. Eli, H. Hama, and
A. Miyawaki. “Red Fluorescent Protein from
Discosoma as a Fusion Tag and a Partner
for Fluorescence Resonance Energy Transfer”.

6



In: Biochemistry 40.8 (Feb. 2001), pp. 2502–
2510. doi: 10.1021/bi002263b. url: https:
//pubmed.ncbi.nlm.nih.gov/11327872/.

[2] D. A. Zacharias. “Sticky caveats in an oth-
erwise glowing report: Oligomerizing fluores-
cent proteins and their use in cell biology”.
In: Science’s signal transduction knowledge
environment 2002.131 (May 2002). doi: 10.
1126 / stke . 2002 . 131 . pe23. url: https :
//pubmed.ncbi.nlm.nih.gov/11997581/.

[3] L. M. Costantini, M. Fossati, M. Francolini,
and E. L. Snapp. “Assessing the tendency of
fluorescent proteins to oligomerize under physi-
ologic conditions”. In: Traffic 13.5 (Feb. 2012),
pp. 643–649. doi: 10.1111/j.1600- 0854.
2012.01336.x. url: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC3324619/.

[4] L. Zhu, B. Liao, Q. Zhang, X. Wang, W. Liu,
and X. Wang. “Vision Mamba: Efficient Visual
Representation Learning with Bidirectional
State Space Model”. In: Forty-first Interna-
tional Conference on Machine Learning. 2024.
url: https://openreview.net/forum?id=
YbHCqn4qF4.

[5] W. Li, X. Hong, R. Xiong, and X. Fan.
SpikeMba: Multi-Modal Spiking Saliency
Mamba for Temporal Video Grounding. 2024.
arXiv: 2404.01174 [cs.CV]. url: https://
arxiv.org/abs/2404.01174.

[6] Y. Yue and Z. Li. “MedMamba: Vision Mamba
for Medical Image Classification”. In: arXiv
preprint arXiv:2403.03849 (2024).

[7] S. Simeon, W. Shoombuatong, N. Anu-
wongcharoen, L. Preeyanon, V. Prachayasit-
tikul, J. E. S. Wikberg, and C. Nantasena-
mat. “osFP: a web server for predicting the
oligomeric states of fluorescent proteins”. In:
Journal of cheminformatics 8.1 (Dec. 2016).
doi: 10.1186/s13321- 016- 0185- 8. url:
https://doi.org/10.1186/s13321-016-

0185-8.

[8] Image from the RCSB PDB (RCSB.org) of
PDB ID 4RTC (Pletnev, V.Z., Pletneva, N.V.,
Pletnev, S.V., Structure of the green fluo-
rescent protein NowGFP with an anionic
tryptophan-based chromophore. (2015) Acta
Crystallogr D Biol Crystallogr 71: 1699-1707).

[9] Image from the RCSB PDB (RCSB.org) of
PDB ID 1G7K (Yarbrough, D., Wachter,
R.M., Kallio, K., Matz, M.V., Remington,
S.J., Refined crystal structure of DsRed, a red
fluorescent protein from coral, at 2.0-A res-
olution. (2001) Proc.Natl.Acad.Sci.USA 98:
462-467).

[10] R. Garian. “Prediction of quaternary structure
from primary structure”. In: Bioinformatics
17.6 (June 2001), pp. 551–556. doi: 10.1093/
bioinformatics/17.6.551. url: https://
pubmed.ncbi.nlm.nih.gov/11395433/.

[11] S.-W. Zhang, Q. Pan, H.-C. Zhang, Y.-L.
Zhang, and H.-Y. Wang. “Classification of
protein quaternary structure with support
vector machine”. In: Bioinformatics 19.18
(Dec. 2003), pp. 2390–2396. doi: 10.1093/
bioinformatics / btg331. url: https : / /

academic . oup . com / bioinformatics /

article/19/18/2390/194405?login=true.

[12] J. Song. “Prediction of homo-oligomeric pro-
teins based on nearest neighbour algorithm”.
In: Computers in biology and medicine 37.12
(Dec. 2007), pp. 1759–1764. doi: 10.1016/
j.compbiomed.2007.05.002. url: https:
/ / www . sciencedirect . com / science /

article/abs/pii/S0010482507000959.

[13] K.-C. Chou and Y.-D. Cai. “Predicting protein
quaternary structure by pseudo amino acid
composition”. In: Proteins 53.2 (Sept. 2003),
pp. 282–289. doi: 10.1002/prot.10500. url:
https://doi.org/10.1002/prot.10500.

[14] K.-C. Chou. “Prediction of protein cellular
attributes using pseudo-amino acid composi-
tion”. In: Proteins 43.3 (Mar. 2001), pp. 246–
255. doi: 10.1002/prot.1035. url: https:
//doi.org/10.1002/prot.1035.

[15] O. Carugo. “A structural proteomics filter:
prediction of the quaternary structural type
of hetero-oligomeric proteins on the basis of
their sequences”. In: Journal of applied crystal-
lography 40.6 (Nov. 2007), pp. 986–989. doi:
10.1107/s0021889807041076. url: https:
//journals.iucr.org/paper?he5376.

[16] X. Xiao, P. Wang, and K.-C. Chou. “Quat-2L:
a web-server for predicting protein quaternary
structural attributes”. In: Molecular diversity
15.1 (Feb. 2010), pp. 149–155. doi: 10.1007/
s11030-010-9227-8. url: https://pubmed.
ncbi.nlm.nih.gov/20148364/.

[17] V. Agarwal, J. Scripcaru, and L. Ladame. “Us-
ing Artificial Neural Networks to Predict the
Oligomeric State of Fluorescent Proteins with
Autoencoders”. In: (July 2020). url: https:
//papers.ssrn.com/sol3/papers.cfm?

abstract_id=4044780.

[18] C. Tam and K. Y. J. Zhang. “FPredX: Inter-
pretable models for the prediction of spectral
maxima, brightness, and oligomeric states of
fluorescent proteins”. In: Proteins 90.3 (Nov.
2021), pp. 732–746. doi: 10 . 1002 / prot .

26270. url: https://pubmed.ncbi.nlm.nih.
gov/34676905/.

7

https://doi.org/10.1021/bi002263b
https://pubmed.ncbi.nlm.nih.gov/11327872/
https://pubmed.ncbi.nlm.nih.gov/11327872/
https://doi.org/10.1126/stke.2002.131.pe23
https://doi.org/10.1126/stke.2002.131.pe23
https://pubmed.ncbi.nlm.nih.gov/11997581/
https://pubmed.ncbi.nlm.nih.gov/11997581/
https://doi.org/10.1111/j.1600-0854.2012.01336.x
https://doi.org/10.1111/j.1600-0854.2012.01336.x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324619/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324619/
https://openreview.net/forum?id=YbHCqn4qF4
https://openreview.net/forum?id=YbHCqn4qF4
https://arxiv.org/abs/2404.01174
https://arxiv.org/abs/2404.01174
https://arxiv.org/abs/2404.01174
https://doi.org/10.1186/s13321-016-0185-8
https://doi.org/10.1186/s13321-016-0185-8
https://doi.org/10.1186/s13321-016-0185-8
https://doi.org/10.1093/bioinformatics/17.6.551
https://doi.org/10.1093/bioinformatics/17.6.551
https://pubmed.ncbi.nlm.nih.gov/11395433/
https://pubmed.ncbi.nlm.nih.gov/11395433/
https://doi.org/10.1093/bioinformatics/btg331
https://doi.org/10.1093/bioinformatics/btg331
https://academic.oup.com/bioinformatics/article/19/18/2390/194405?login=true
https://academic.oup.com/bioinformatics/article/19/18/2390/194405?login=true
https://academic.oup.com/bioinformatics/article/19/18/2390/194405?login=true
https://doi.org/10.1016/j.compbiomed.2007.05.002
https://doi.org/10.1016/j.compbiomed.2007.05.002
https://www.sciencedirect.com/science/article/abs/pii/S0010482507000959
https://www.sciencedirect.com/science/article/abs/pii/S0010482507000959
https://www.sciencedirect.com/science/article/abs/pii/S0010482507000959
https://doi.org/10.1002/prot.10500
https://doi.org/10.1002/prot.10500
https://doi.org/10.1002/prot.1035
https://doi.org/10.1002/prot.1035
https://doi.org/10.1002/prot.1035
https://doi.org/10.1107/s0021889807041076
https://journals.iucr.org/paper?he5376
https://journals.iucr.org/paper?he5376
https://doi.org/10.1007/s11030-010-9227-8
https://doi.org/10.1007/s11030-010-9227-8
https://pubmed.ncbi.nlm.nih.gov/20148364/
https://pubmed.ncbi.nlm.nih.gov/20148364/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4044780
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4044780
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4044780
https://doi.org/10.1002/prot.26270
https://doi.org/10.1002/prot.26270
https://pubmed.ncbi.nlm.nih.gov/34676905/
https://pubmed.ncbi.nlm.nih.gov/34676905/


[19] A. Gu and T. Dao. “Mamba: Linear-Time Se-
quence Modeling with Selective State Spaces”.
In: First Conference on Language Modeling.
2024. url: https : / / openreview . net /

forum?id=tEYskw1VY2.

[20] D. Y. Fu, T. Dao, K. K. Saab, A. W. Thomas,
A. Rudra, and C. Re. “Hungry Hungry Hip-
pos: Towards Language Modeling with State
Space Models”. In: The Eleventh International
Conference on Learning Representations. 2023.
url: https://openreview.net/forum?id=
COZDy0WYGg.

[21] B. Zhang and R. Sennrich. “Root mean square
layer normalization”. In: Proceedings of the
33rd International Conference on Neural In-
formation Processing Systems. Red Hook,
NY, USA: Curran Associates Inc., 2019. url:
https://dl.acm.org/doi/pdf/10.5555/

3454287.3455397.

[22] S. Elfwing, E. Uchibe, and K. Doya. “Sigmoid-
weighted linear units for neural network func-
tion approximation in reinforcement learning”.
In: Neural Networks 107 (2018). Special is-
sue on deep reinforcement learning, pp. 3–
11. issn: 0893-6080. doi: https : / / doi .

org / 10 . 1016 / j . neunet . 2017 . 12 . 012.
url: https : / / www . sciencedirect . com /

science/article/pii/S0893608017302976.

[23] H. Shen, L. C. Price, M. T. Bahadori,
and F. Seeger. “Improving generaliz-
ability of protein sequence models with
data augmentations - Amazon Science”.
In: (2020). url: https : / / www . amazon .

science / publications / improving -

generalizability-of-protein-sequence-

models-with-data-augmentations.

[24] R. Sun, L. Wu, H. Lin, Y. Huang, and S. Z.
Li. “Enhancing protein predictive models via
Proteins Data Augmentation: A benchmark
and new directions”. In: arXiv (Cornell Uni-
versity) (Mar. 2024). doi: 10.48550/arxiv.
2403.00875. url: https://arxiv.org/abs/
2403.00875.

[25] T. J. Lambert. “FPbase: a community-editable
fluorescent protein database”. In: Nature
Methods 16.4 (Mar. 2019), pp. 277–278. doi:
10.1038/s41592-019-0352-8. url: https:
//www.nature.com/articles/s41592-019-

0352-8.

[26] T. U. Consortium. “UniProt: the Universal
Protein Knowledgebase in 2025”. In: Nucleic
Acids Research (Nov. 2024), gkae1010. issn:
0305-1048. doi: 10 . 1093 / nar / gkae1010.
eprint: https://academic.oup.com/nar/
advance-article-pdf/doi/10.1093/nar/

gkae1010 / 60719276 / gkae1010 . pdf. url:
https://doi.org/10.1093/nar/gkae1010.

A Data Augmentation Algo-
rithms

Algorithm A.1 Random Substitution(A1)

procedure Randomsubstitution(S)
map ← {A : V, S : T, F : Y,K : R,C : M,D :

E,N : Q,V : I}
n← len(S)
Initialize empty sequence S′ of length n
for Si in S do

if randint(0,100) < 10 and Si in map then
S′
i ← map[Si]

else
S′
i ← Si

end if
end for
return S′

end procedure

Algorithm A.2 Sequence Reversion(A2)

procedure Sequencereversion(S)
n← len(S)
Initialize empty sequence S′ of length n
for Si in S do S′

n+1−i = Si

end for
return S′

end procedure

Algorithm A.3 Subsequence Sampling(A3)

procedure Subsequencesampling(S)
n← len(S)
r ←randint(1,n)
S′ ← S[r : min(r + 50, n)]
return S′

end procedure

8

https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=COZDy0WYGg
https://dl.acm.org/doi/pdf/10.5555/3454287.3455397
https://dl.acm.org/doi/pdf/10.5555/3454287.3455397
https://doi.org/https://doi.org/10.1016/j.neunet.2017.12.012
https://doi.org/https://doi.org/10.1016/j.neunet.2017.12.012
https://www.sciencedirect.com/science/article/pii/S0893608017302976
https://www.sciencedirect.com/science/article/pii/S0893608017302976
https://www.amazon.science/publications/improving-generalizability-of-protein-sequence-models-with-data-augmentations
https://www.amazon.science/publications/improving-generalizability-of-protein-sequence-models-with-data-augmentations
https://www.amazon.science/publications/improving-generalizability-of-protein-sequence-models-with-data-augmentations
https://www.amazon.science/publications/improving-generalizability-of-protein-sequence-models-with-data-augmentations
https://doi.org/10.48550/arxiv.2403.00875
https://doi.org/10.48550/arxiv.2403.00875
https://arxiv.org/abs/2403.00875
https://arxiv.org/abs/2403.00875
https://doi.org/10.1038/s41592-019-0352-8
https://www.nature.com/articles/s41592-019-0352-8
https://www.nature.com/articles/s41592-019-0352-8
https://www.nature.com/articles/s41592-019-0352-8
https://doi.org/10.1093/nar/gkae1010
https://academic.oup.com/nar/advance-article-pdf/doi/10.1093/nar/gkae1010/60719276/gkae1010.pdf
https://academic.oup.com/nar/advance-article-pdf/doi/10.1093/nar/gkae1010/60719276/gkae1010.pdf
https://academic.oup.com/nar/advance-article-pdf/doi/10.1093/nar/gkae1010/60719276/gkae1010.pdf
https://doi.org/10.1093/nar/gkae1010


Algorithm A.4 Subsequence Shuffle(A4)

procedure Subsequenceshuffling(S)
n← len(S)
r ←randint(1,n)
s← S[r : min(r + 50, n)]
S′ ← S[: r] + shuffle(s) +S[min(r+50, n) :]
return S′

end procedure

Algorithm A.5 Random Swap(A5)

procedure Randomswap(S)
n← len(S)
Initialize empty sequence S′ of length n
for Si in S do

if randint(0,100) < 10 then
j ← randint(1,n)
S′
i ← Sj

S′
j ← Si

else
S′
i ← Si

end if
end for
return S′

end procedure

Algorithm A.6 Random Deletion(A6)

procedure Randomdeletion(S)
n← len(S)
Initialize empty sequence S′

for Si in S do
if randint(0,100) ≥ 10 then

S′ ← S′ + Si

end if
end for
return S′

end procedure

9


	Introduction
	Literature Review
	Methods
	Models
	Data Augmentation

	Experiments
	Datasets
	Implementation
	Experimental setup

	Results
	Data augmentations
	Benchmarking the performance
	Sensitivity tests

	Conclusion
	Data Augmentation Algorithms

