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Abstract

Continual learning in neural networks suffers from a phenomenon called catas-
trophic forgetting, in which a network quickly forgets what was learned in a
previous task. The human brain, however, is able to continually learn new tasks and
accumulate knowledge throughout life. Neuroscience findings suggest that contin-
ual learning success in the human brain is potentially associated with its modular
structure and memory consolidation mechanisms. In this paper we propose a novel
topological regularization that penalizes cycle structure in a neural network during
training using principled theory from persistent homology and optimal transport.
The penalty encourages the network to learn modular structure during training. The
penalization is based on the closed-form expressions of the Wasserstein distance
and barycenter for the topological features of a 1-skeleton representation for the
network. Our topological continual learning method combines the proposed regu-
larization with a tiny episodic memory to mitigate forgetting. We demonstrate that
our method is effective in both shallow and deep network architectures for multiple
image classification datasets.

1 Introduction

Neural networks can be trained to achieve impressive performance on a variety of learning tasks.
However, when an already trained network is further trained on a new task, a phenomenon called
catastrophic forgetting [16] occurs, in which previously learned tasks are quickly forgotten with
additional training. The human brain, however, is able to continually learn new tasks and accumulate
knowledge throughout life without significant loss of previously learned skills. Neuroscience findings
suggest that the principle of modularity [7] may play an important role. Modular structures [23]
are aggregates of modules that perform specific functions without perturbing one another. Human
brains are characterized by modular structures during learning [5]. Such structures are hypothesized
to reduce the interdependence of components, enhance robustness, and facilitate learning [1].

Persistent homology has emerged as a tool for understanding, characterizing and quantifying the
topology of brain networks by interpreting brain networks as 1-skeletons of a simplicial complex
[24, 25]. The topology of a 1-skeleton is completely characterized by connected components and
cycles. In this paper we show that persistent homology can be used to improve performance of neural
networks in continual learning tasks. In particular, we interpret a network as a 1-skeleton and propose
a novel topological regularization of the 1-skeleton’s cycle structure to avoid catastrophic forgetting
of previously learned tasks. Regularizing the cycle structure allows the network to explicitly learn
its complement, i.e., the modular structure, through gradient optimization. Our approach is made
computationally efficient by use of the closed form expressions for the Wasserstein barycenter and
the gradient of Wasserstein distance between network cycle structures. We evaluate our approach
using image classification across multiple datasets and show it generally improves continual learning
performance compared to competing approaches in the challenging case of both shallow and deep
networks of limited width.
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2 Efficient Topological Representation and Measure for Neural Networks

Birth and Death Decomposition Represent a neural network as an undirected weighted graph
G = (V,W) with a set of nodes V , and a set of edge weights W = {wi,j}. Create a binary graph Gϵ

with the identical node set V by thresholding the edge weights so that an edge between nodes i and j
exists if wi,j > ϵ. The binary graph is considered as a 1-skeleton [17]. The only non-trivial topological
features in a 1-skeleton are connected components and cycles. As ϵ increases, more and more edges
are removed from the network G, resulting in a graph filtration [12]: Gϵ0 ⊇ Gϵ1 ⊇ · · · ⊇ Gϵk , where
ϵ0 ≤ ϵ1 ≤ · · · ≤ ϵk are called filtration values. If a topological feature is born at a filtration value
bl and persists up to a filtration value dl over ϵ, then this feature is represented as a 2D persistence
point (bl, dl). The set of all points {(bl, dl)}l is called persistence barcode [6]. The graph filtration
simplifies the barcodes to 1D descriptors [24]. Specifically, the representation of the connected
components can be simplified to a collection of birth values B(G) = {bl} and that of cycles to a
collection of death values D(G) = {dl}. In addition, neural networks of the same architecture have a
birth set B and a death set D of the same cardinality as |V | − 1 and |W| − (|V | − 1), respectively,
which resolve the problem of point mismatch in barcodes for same-architecture networks.

Closed Form Wasserstein Distance and Gradient Wasserstein distance for cycle structure
depends solely on the death sets. Let G,H be two given networks based on the same architecture.
Their Wasserstein distance for cycles has a closed-form expression that allows for very efficient
computation [24] as W 2

cycle(G,H) =
∑

dl∈D(G)

[
dl − ϕ∗(dl)

]2
, where ϕ∗ maps the l-th smallest

death value in D(G) to the l-th smallest death value in D(H) for all l. In addition, the gradient
of Wasserstein distance for cycles ∇GW

2
cycle(G,H) also has a closed-form expression as [25]

∂W 2
cycle(G,H)/∂dl = 2

[
dl − ϕ∗(dl)

]
.

Closed Form Wasserstein Barycenter Wasserstein barycenter is the mean of a collection of net-
works under Wasserstein distance and represents a topological centroid. Consider same-architecture
networks G(1), ..., G(N). Let D(G(i)) : d

(i)
1 ≤ · · · ≤ d

(i)
|D| be the death set of network G(i). Wasser-

stein barycenter for cycles Gcycle has a closed form expression as Gcycle : d1 ≤ · · · ≤ d|D|, where

dl =
∑N

i=1 νid
(i)
l

/∑N
i=1 νi. The complete proof is given in Appendix A.

3 Topological Continual Learning

Consider a continual learning scenario in which T supervised learning tasks are learned sequen-
tially. Each task has a task descriptor τ ∈ T = {1, 2, ..., T} with a corresponding dataset
Pτ = {(xi,τ ,yi,τ )

Nτ
i=1} containing Nτ labeled training examples consisting of a feature vector

xi,τ ∈ X and a target vector yi,τ ∈ Y . We further consider the continuum of training examples that
are experienced only once, and assume that the continuum is locally independent and identically
distributed (iid), i.e., (xi,τ ,yi,τ )

iid∼ Pτ following the prior work of Lopez-Paz & Ranzato [15]. The
goal is to train a model f : X × T → Y that predicts a target vector y corresponding to a test pair
(x, τ), where (x,y) ∼ Pτ .

Our approach to addressing this problem is to topologically penalize training with future tasks based
on the underlying 1-skeleton of the neural network. Define a neural network G(τ) for learning task τ
with nodes given by neurons, and edge weights defined by the weight/parameter set W. All past-task
networks G(j), for j = 1, ..., τ − 1, have the identical node sets with the trained weight set W∗

j
denoting the weights after training through the entire sequence up to task j. Since these graphs
have the same architecture, their death sets have the same cardinality denoted by |D|. Then the
birth-death decomposition of the weight set W∗

j results in the death set D(G(j)) : d
(j)
1 ≤ · · · ≤ d

(j)
|D|.

The Wasserstein barycenter for cycles of the first τ − 1 training tasks associated with networks
G(1), ..., G(τ−1) is G(τ−1)

cycle : d
(τ−1)

1 ≤ · · · ≤ d
(τ−1)

|D| , where d
(τ−1)

l =
∑τ−1

j=1 νjd
(j)
l

/∑τ−1
j=1 νj .

Our approach to learning task τ minimizes the empirical risk minimization loss (ERM) with the
Wasserstein distance and barycenter penalty Lτ (W) = LERM,τ (W) + λ

2W
2
cycle(G

(τ),G(τ−1)
cycle ) for

all task τ > 1, where λ controls relative importance between past- and current-task cycle structure.
Intuitively, we penalize changes of cycle structure in a neural network while allowing the network to
explicitly learn the modular structure represented by births of connected components.
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Table 1: ACC and BWT performance for P-MNIST, R-MNIST, split CIFAR and split miniImageNet
datasets. The mean and standard deviation over five different task sequences are shown.

P-MNIST R-MNIST

Methods Memory ACC (%) BWT (%) ACC (%) BWT (%)

Finetune N 34.44 ± 2.07 -58.89 ± 2.23 41.43 ± 2.09 -55.42 ± 2.09
EWC N 48.05 ± 1.27 -44.55 ± 1.46 39.80 ± 2.01 -55.26 ± 2.03
RGO N 73.18 ± 0.57 -19.86 ± 0.61 63.34 ± 0.96 -29.30 ± 0.95
A-GEM Y 59.50 ± 1.20 -33.63 ± 1.24 53.38 ± 0.90 -43.35 ± 0.93
ORTHOG-SUB Y 42.83 ± 1.22 -9.94 ± 1.05 23.85 ± 0.84 -3.45 ± 1.08
ER-Res Y 66.38 ± 1.29 -25.02 ± 1.51 72.54 ± 0.36 -23.48 ± 0.39
ER-Ring Y 70.10 ± 0.89 -23.19 ± 1.01 70.52 ± 0.51 -25.72 ± 0.51
TOP-Res Y 68.13 ± 0.66 -24.50 ± 0.66 74.33 ± 0.66 -20.80 ± 0.63
TOP-Ring Y 71.05 ± 0.80 -22.18 ± 0.86 72.12 ± 0.81 -23.85 ± 0.84

Multitask – 90.31 – 93.43 –

Split CIFAR Split miniImageNet

Methods Memory ACC (%) BWT (%) ACC (%) BWT (%)

Finetune N 40.62 ± 5.09 -23.80 ± 5.31 33.13 ± 2.72 -24.95 ± 2.30
EWC N 38.26 ± 3.71 -25.30 ± 4.57 33.48 ± 1.79 -19.56 ± 2.24
RGO N 38.93 ± 1.03 -18.98 ± 0.89 42.03 ± 1.22 -14.19 ± 1.56
A-GEM Y 43.54 ± 6.23 -23.25 ± 5.65 39.52 ± 4.10 -18.48 ± 4.39
ORTHOG-SUB Y 37.93 ± 1.59 -5.44 ± 1.37 32.36 ± 1.44 -5.52 ± 1.07
ER-Res Y 43.28 ± 1.26 -23.08 ± 1.51 38.51 ± 2.40 -13.58 ± 3.49
ER-Ring Y 52.75 ± 1.18 -14.51 ± 1.79 44.67 ± 1.81 -12.23 ± 1.79
TOP-Res Y 45.92 ± 1.50 -20.10 ± 1.00 39.95 ± 1.91 -14.34 ± 2.06
TOP-Ring Y 54.27 ± 1.54 -11.70 ± 1.27 49.08 ± 1.71 -8.42 ± 1.48

Multitask – 61.08 – 57.99 –

The minimization is accomplished via gradient descent over all training samples in learning task τ
using the closed form Wasserstein gradient. In other words, the gradient computation is achieved in
two steps: 1) compute birth-death decomposition of W to find D(G(τ)); 2) sort D(G(τ)) to find the
optimal matching ϕ∗ between D(G(τ)) and G(τ−1)

cycle . Furthermore, we execute the first step every m
iterations. When m = 1, we compute birth-death decomposition every iteration to determine which
edge belongs to D(G(τ)) before sorting, while m > 1 allows to utilize multiple gradient descent
updates to consolidate changes to previously determined edges in D(G(τ)) by directly sorting updated
weights in D(G(τ)) from previous iterations. This approach may mimic human learning and memory
consolidation over multiple temporal scales from days to decades [1].

At any time, we only need to store one Wasserstein barycenter from the previous task G(τ−1)
cycle =

{d(τ−1)

l }l. The barycenter for the current task G(τ)
cycle = {d(τ)l }l can be computed as: d

(τ)

l =

(pd
(τ−1)

l + qd
(τ)
l )

/
(p + q), where d

(τ)
l ∈ D(G(τ)(W∗

τ )) and p, q > 0 used to emphasize the
contribution of G(τ−1)

cycle and D(G(τ)) to G(τ)
cycle. This online update satisfies the closed-form Wasserstein

barycenter. A proof by induction is provided in Appendix A.

Pseudo-code and related work are provided in Appendices B and C, respectively.

4 Image Classification Experiments

Datasets Experiments are performed on four datasets: (1) Permuted MNIST (P-MNIST) [9], (2)
Rotated MNIST (R-MNIST) [15], (3) Split CIFAR [10] and (4) split miniImageNet [20, 26].

Network Architecture The P-MNIST and R-MNIST use a fully-connected neural network with
two hidden layers each with 128 neurons. The split CIFAR and split miniImageNet use a downsized
version of ResNet18 [8] with eight times fewer feature maps across all layers, similar to [15].

Method Comparison We evaluate our method performance in relative to eight baseline approaches
that learn a sequence of tasks in a fixed-size network architecture: (1) finetune, i.e., a model trained
sequentially without any regularization and past-task episodic memory, (2) elastic weight consoli-
dation (EWC) [9], (3) recursive gradient optimization (RGO) [14], (4) averaged gradient episodic
memory (A-GEM) [2], (5) ORTHOG-SUB [4], (6) experience replay [3] with reservoir sampling
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Figure 1: ACC and BWT scores as a function of the hyper-parameters of TOP-Ring, TOP-Res and
TOP for P-MNIST dataset. λ = 0 for TOP-Ring, TOP-Res and TOP describe ER-Ring, ER-Res and
finetune, respectively. TOP is our method without any memory buffer and uses a neural network
graph constructed with the whole neural network.

[27] (ER-Res), (7) ER with ring buffer (ER-Ring) [15] and (8) multitask method that jointly learns
the entire dataset in one training round and thus is not a continual learning strategy but serves as an
upper bound reference for other methods. We employ our proposed topological regularization with
reservoir sampling and ring buffer strategies, termed TOP-Res and TOP-Ring.

Continual Learning Evaluation We evaluate the algorithms based on two performance measures:
average accuracy (ACC) and backward transfer (BWT) as proposed by Lopez-Paz & Ranzato [15].
Formally, ACC and BWT are defined as ACC = 1

T

∑T
j=1 RT,j and BWT = 1

T−1

∑T−1
j=1 RT,j−Rj,j ,

where T is the total number of sequantial tasks, and Ri,j is the accuracy of the model on the jth task
after learning the ith task in sequence. We report ACC and BWT averaged over five different task
sequences for each dataset.

Further experimental details are provided in Appendix D

Experimental Results Table 1 shows method performance on all four datasets. Finetune without
any continual learning strategy produces lowest ACC and BWT performance, while the oracle
multitask is trained across all tasks and sets the upper bound ACC performance for all datasets.
Gradient-based RGO and ORTHOG-SUB rely on over-parameterization in a neural network to reduce
interference between tasks. Given the long sequence of tasks and small network architecture in our
experiments, it is likely that over-parameterization is insufficient for strong performance. Although
ORTHOG-SUB achieves highest BWT, it also has the lowest ACC scores, in some cases worse than
Finetune. ER-Res and ER-Ring achieve high ACC and BWT scores relative to the other baseline
methods across all experiments. Our TOP-Res and TOP-Ring methods in turn demonstrate clear
performance improvement over ER-Res and ER-Ring based on both ACC and BWT, suggesting
that our topological continual learning strategy facilitates the consolidation of past-task knowledge
beyond that provided by memory replay alone.

Figure 1 illustrates the impact of parameters λ and m of the proposed method on the ACC and BWT
measures for the P-MNIST dataset. The two leftmost column plots depict the increase in ACC and
BWT scores provided by TOP-Ring and TOP-Res relative to ER-Ring and ER-Res baselines for
all λ, the topological regularizer weight. In addition, we demonstrate classification performance
of TOP, our method without any episodic memory buffer. The results show that TOP outperforms
finetune baseline and demonstrates clear past-task knowledge retention. TOP without any memory
buffer performs better than the regularization-based EWC and gradient-based ORTHOG-SUB with
memory buffers, as displayed in Table 1. The third column plot displays ACC scores as a function of
m, the number of iterations between birth-death decomposition updates. We observe stable upward
trend as m increases for TOP-Ring and TOP-Res. Less frequent birth-death decomposition update
(m = 10, 20) improves performance and reduces run time. The last column displays ACC scores
as a function of memories per class of 1, 2, 3 and 5. We observe that ACC scores increases as
more past-task examples are stored in a tiny memory buffer. TOP-Ring and TOP-Res improves
the performance over ER-Ring and ER-Res for all memory sizes. Finally, we explored ACC as a
function of p/q of 9/1, 7/3, 5/5, 3/7 and 1/9, and found that the performance of both TOP-Ring
and TOP-Res are not dependent on p/q.
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A Proofs

A.1 Closed Form Wasserstein Barycenter

Let D(G(i)) : d
(i)
1 ≤ · · · ≤ d

(i)
|D| be the death set of network G(i). It follows that the l-th smallest

death value of the barycenter Gcycle of the N networks is given by the weighted mean of all the l-th
smallest death values of such networks, i.e., Gcycle : d1 ≤ · · · ≤ d|D|, where

dl =

N∑
i=1

νid
(i)
l

/ N∑
i=1

νi.
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Proof. Recall that the Wasserstein barycenter for cycles Gcycle is defined as the death set that
minimizes the weighted sum of the Wasserstein distances for cycles, i.e.,

Gcycle = argmin
G

N∑
i=1

νiW
2
cycle(G, G(i))

= argmin
G

N∑
i=1

νi
∑
dl∈G

[
dl − ϕ∗

i (dl)
]2
,

where νi is a non-negative weight, and ϕ∗
i maps the l-th smallest death value in G to the l-th smallest

death value in D(G(i)) for all l. The sum can be expanded as

N∑
i=1

νi
∑
dl∈G

[
dl − ϕ∗

i (dl)
]2

=

N∑
i=1

νi

(
[d1 − d

(i)
1 ]2 + · · ·+ [d|D| − d

(i)
|D|]

2
)
,

which is quadratic. By setting its derivative equal to zero, we find the minimum at dl =∑N
i=1 νid

(i)
l

/∑N
i=1 νi.

A.2 Online Computation for Closed Form Wasserstein Barycenter

Given the Wasserstein barycenter from the previous task G(τ−1)
cycle = {d(τ−1)

l }l. The barycenter for the

current task G(τ)
cycle = {d(τ)l }l can be computed as:

d
(τ)

l =
pd

(τ−1)

l + qd
(τ)
l

p+ q
,

where d
(τ)
l ∈ D(G(τ)) and p, q > 0.

Proof. Let ρ = q/(p+ q). Then 1− ρ = p/(p+ q). Recall D(G(j)) = {d(j)l }l be the death set of
weights after training through the entire sequence up to task j.

When τ = 2, we have the barycenter after training through the entire sequence up to the second task
G(2)
cycle = {d(2)l }l, where d

(2)

l = (1 − ρ)d
(1)
l + ρd

(2)
l . That is, G(2)

cycle is the barycenter of G(1) and
G(2) with weights associated with G(1) and G(2) as (1− ρ) and ρ, respectively.

For τ > 2, suppose G(τ−1)
cycle = {d(τ−1)

l }l is the barycenter after training through the sequence up to

task τ − 1. Then the online computation for barycenter for the next task results in {d(τ)l }l, where

d
(τ)

l = (1− ρ)d
(τ−1)

l + ρd
(τ)
l

= (1− ρ)

τ−1∑
i=1

νid
(i)
l

/ τ−1∑
i=1

νi + ρd
(τ)
l νi > 0,∀i.

It follows that the sum of weights associated with G(1), ..., G(τ)

(1− ρ)

τ−1∑
i=1

νi

/ τ−1∑
i=1

νi + ρ = (1− ρ) · 1 + ρ

= 1,

indicating that the lth smallest death value d
(τ)

l is given by the weighted mean of all the lth smallest

death values of networks G(1), ..., G(τ). Thus, G(τ)
cycle = {d(τ)l }l is the barycenter after additional

training of the τ th task.
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B Algorithm

Algorithm 1 Topological continual learning algorithm

1: procedure TOP(P,W = {w}, λ, p, q, γ)
2: M← {} ▷ Allocate a tiny memory buffer
3: for BP ∼ P1 do ▷ Sample without replacement a mini-batch from 1st dataset
4: gsgd ← ∇wLERM (BP) ▷ Compute gradient using the mini-batch
5: w ← w − γ · gsgd
6: M← mem_update(M, BP) ▷ Update memory
7: end for
8: G(1) ← D(W) ▷ Initial barycenter
9: for τ ∈ {2, .., T} do

10: iter ← 0
11: for BP ∼ Pτ do ▷ Sample without replacement a mini-batch from τ th dataset
12: BM ∼ M ▷ Sample a mini-batch from the buffer
13: if iter mod m == 0 then ▷ Every m iterations
14: D← bd_decomposition(W) ▷ Compute death set from current weight set
15: end if
16: gsgd ← ∇wLERM (BP ∪BM) ▷ Compute gradient using aggregated mini-batch
17: if w ∈ D then
18: gtop ← w − ϕ∗(w) ▷ Compute closed form gradient
19: w ← w − γ · (gsgd + λ · gtop)
20: else
21: w ← w − γ · gsgd
22: end if
23: iter ← iter + 1
24: M← mem_update(M, BP)
25: end for
26: G(τ) ← G(τ−1)(p, q) ▷ Update barycenter
27: end for
28: return W ▷ Return optimal weight set
29: end procedure

C Related Work

Approaches to continual learning in neural networks can broadly be categorized into three classes. 1)
Regularization-based methods estimate importance of neural network parameters from previously
learned tasks, and penalize changes to those important parameters during current tasks to mitigate
forgetting [9, 21, 31]. Our topological regularization based method does not estimate importance for
each individual parameter, but rather focuses on global network attributes. Thus, our method does not
penalize individual parameters in the network, but rather penalizes cycle structure. 2) Memory-based
methods attempt to overcome catastrophic forgetting by either storing examples from past tasks in a
memory buffer for rehearsal [4, 15, 18, 19], or synthesizing past-task data from generative models
for pseudo-rehearsal [22]. 3) Expansion-based methods allocate a different set of parameters within a
neural network for each task [13, 28–30]. These methods may expand network size in an attempt
to eliminate forgetting by design. In contrast, our method does not require network growth, but
continually learns within a fixed network architecture.

Gradient-based methods, such as ORTHOG-SUB and RGO, can offer strong performance using
over-parameterized neural networks [4, 14]. However, their performance degrades substantially in a
more challenging scenario of limited network width and a long sequence of learning tasks, as in our
experiments. Such scenarios are especially important when computational power is limited. Large
neural networks not only demand more computation to optimize, but also demand a large memory
footprint to store their parameter set. Our topology-based method does not require over-parameterized
neural networks to be effective and thus has limited computational burden.
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D Experimental Details

D.1 Datasets

We perform continual learning experiments on four datasets. (1) Permuted MNIST (P-MNIST) [9]
is a variant of the MNIST dataset of handwriten digits [11] where each task is constructed by a
fixed random permutation of image pixels in each original MNIST example. (2) Rotated MNIST
(R-MNIST) [15] is another variant of the MNIST dataset where each task contains digits rotated
by a fixed angle between 0 and 180 degrees. Both P-MNIST and R-MNIST contain 30 sequential
tasks, each has 10,000 training examples and 10 classes. Each task in P-MNIST and R-MNIST is
constructed with different permutations and rotations, respectively, resulting in different distributions
among tasks. The other two datasets, (3) Split CIFAR and (4) split miniImageNet, are constructed by
randomly splitting 100 classes in the original CIFAR-100 dataset [10] and ImageNet dataset [20, 26]
into 20 learning tasks each with 5 classes.

D.2 Network architecture

The P-MNIST and R-MNIST datasets use a fully-connected neural network with two hidden layers
each with 128 neurons. The split CIFAR and split miniImageNet datasets use a downsized version of
ResNet18 [8] with eight times fewer feature maps across all layers, similar to [15]. For P-MNIST
and R-MNIST, we evaluate classification performance in a single-head setting where all tasks share
the final classifier layer in the fully-connected network, and thus the inference is performed without
task identifiers. For the split CIFAR and split miniImageNet datasets, the classification performance
is evaluated in a multi-head setting where each task has a separate classifier in the reduced ResNet18.

D.3 Method comparison

We evaluate our method performance in relative to eight baseline approaches that learn a sequence
of tasks in a fixed-size network architecture. (1) Finetune is a model trained sequentially without
any regularization and past-task episodic memory. (2) Elastic weight consolidation (EWC) [9] is a
regularization-based method that penalizes changes in parameters that were important for the previous
tasks using the Fisher information. (3) Recursive gradient optimization (RGO) [14] combines use
of gradient direction modification and task-specific random rearrangement to network layers to
mitigate forgetting between tasks. (4) Averaged gradient episodic memory (A-GEM) [2] and (5)
ORTHOG-SUB [4] methods store past-task examples in an episodic memory buffer used to project
gradient updates to avoid interference with previous tasks. (6) Experience replay with reservoir
sampling (ER-Res) and (7) ER with ring buffer (ER-Ring) mitigate forgetting by directly computing
gradient based on aggregated examples from new tasks and a memory buffer [3]. The ring buffer
[15] allocates equally sized memory for each class using FIFO scheduling, while reservoir sampling
[27] maintains a memory buffer by randomly drawing out already stored samples when the buffer is
full. (8) Multitask jointly learns the entire dataset in one training round, and thus is not a continual
learning strategy but served as an upper bound reference for other methods.

In our topology-based method we regularize different aspects of the two types of neural networks
employed. In the fully-connected network applied to P-MNIST and R-MNIST we apply subgraph
regularization based on two separate bipartite graphs: one consisting of neurons and weights from
the two hidden layers, the other consisting of neurons and weights from the last hidden layer and the
output layer. For ResNet18, we use one bipartite graph comprising neurons and weights from the
pooling layer and the fully-connected output layer. Bias neurons are not included in our regularization.
We employ topological regularization with reservoir sampling and ring buffer strategies, termed
TOP-Res and TOP-Ring. Universally, m is set to 5, p to 9, and q to 1 in our experiment.

D.4 Training protocol

We follow the training protocol of Chaudhry et al. [4] as follows. The training is done universally
through plain stochastic gradient descent with batch size of 10. All training examples in the datasets
are observed only once, except for past-task examples stored in an episodic memory buffer, which
can be replayed multiple times. We consider a tiny episodic memory with the size of one example
per class for all memory-based methods. For example, there are 100 classes in split CIFAR, and thus
the memory buffer stores up to 100 past-task examples. The size of past-task batch sampled from
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the episodic memory is also universally set to 10, the gradient descent batch size. Hyper-parameter
tuning is performed on the first three tasks in each dataset. A separate test set not used in the training
tasks is used for performance evaluation.

D.5 Implementation of Candidate Methods

For baseline methods, we used existing implementation codes from authors’ publications and publicly
available repository websites. Codes for EWC [9], A-GEM [2], ORTHOG-SUB [4], and ER-Res/ER-
Ring [3] are available at https://github.com/arslan-chaudhry/orthog_subspace under the
MIT License. Code for RGO [14] is available at https://openreview.net/forum?id=7YDLgf9_
zgm.

D.6 Hyperparameters Tuning

Grid search across different hypeparameter values is used to choose a set of optimal hy-
perparameters for all candidate methods. We consider gradient descent learning rates in
{0.003, 0.01, 0.03, 0.1, 0.3, 1.0} following Chaudhry et al. [4], Liu & Liu [14]. Other additional
hyperparameters of EWC, A-GEM, ORTHOG-SUB, and ER-Res/ER-Ring follow Chaudhry et al. [4],
while those of RGO follow the authors’ official implementation [14]. Specifically, below we report
grids for the candidate methods with the optimal hyperparameter settings for different benchmarks
given in parenthesis.

1. Finetune

• Learning rate: 0.003, 0.01, 0.03 (miniImageNet), 0.1 (P-MNIST, R-MNIST), 0.3 (CIFAR), 1

2. EWC

• Learning rate: 0.003, 0.01, 0.03 (CIFAR, miniImageNet), 0.1 (P-MNIST, R-MNIST), 0.3, 1
• Regularization: 0.01, 0.1, 1, 10 (P-MNIST, R-MNIST, CIFAR, miniImageNet), 100, 1000

3. RGO

• Learning rate: 0.003, 0.01, 0.03 (CIFAR, miniImageNet), 0.1 (P-MNIST, R-MNIST), 0.3, 1

4. A-GEM

• Learning rate: 0.003, 0.01, 0.03 (miniImageNet), 0.1 (P-MNIST, R-MNIST, CIFAR), 0.3, 1

5. ORTHOG-SUB

• Learning rate: 0.003, 0.01, 0.03 (R-MNIST), 0.1 (P-MNIST, CIFAR, miniImageNet), 0.3, 1

6. ER-Res

• Learning rate: 0.003, 0.01, 0.03 (miniImageNet), 0.1 (R-MNIST, CIFAR), 0.3 (P-MNIST), 1

7. ER-Ring

• Learning rate: 0.003, 0.01, 0.03 (miniImageNet), 0.1 (P-MNIST, R-MNIST, CIFAR), 0.3, 1

8. Multitask

• Learning rate: 0.003, 0.01, 0.03 (CIFAR, miniImageNet), 0.1 (P-MNIST, R-MNIST), 0.3, 1

9. TOP-Res

• Learning rate: 0.003, 0.01, 0.03, 0.1 (CIFAR, miniImageNet), 0.3 (P-MNIST, R-MNIST), 1
• Regularization: 0.01 (CIFAR, miniImageNet), 0.1, 1 (P-MNIST, R-MNIST), 10

10. TOP-Ring

• Learning rate: 0.003, 0.01, 0.03, 0.1 (P-MNIST, R-MNIST, CIFAR, miniImageNet), 0.3, 1
• Regularization: 0.01 (R-MNIST, miniImageNet), 0.1, 1 (P-MNIST, CIFAR), 10

D.7 Computational Resources

1× NVIDIA GeForce GTX 1080
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