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Abstract

Super-resolution (SR) is a one-to-many task with multiple possible solutions.1

However, previous works were not concerned about this characteristic. For a one-2

to-many pipeline, the generator should be able to generate multiple estimates of3

the reconstruction, and not be penalized for generating similar and equally realistic4

images. To achieve this, we propose adding weighted pixel-wise noise after every5

Residual-in-Residual Dense Block (RRDB) to enable the generator to generate6

various images. We modify the strict content loss to not penalize the stochastic7

variation in reconstructed images as long as it has consistent content. Additionally,8

we observe that there are out-of-focus regions in the DIV2K, DIV8K datasets9

that provide unhelpful guidelines. We filter blurry regions in the training data10

using the method of [10]. Finally, we modify the discriminator to receive the low-11

resolution image as a reference image along with the target image to provide better12

feedback to the generator. Using our proposed methods, we were able to improve13

the performance of ESRGAN in ×4 perceptual SR and achieve the state-of-the-art14

LPIPS score in ×16 perceptual extreme SR.15

1 Introduction16

Super-resolution is the task of recovering a high-resolution (HR) image from a low-resolution (LR)17

image. Recent works have achieved significant performance in SR using deep convolutional neural18

network (CNN) based approaches. Some of them exploit strict content loss as the training objective19

for super-resolution and propose various network architectures to improve the PSNR score. However,20

these methods often result in overly smooth images and have poor perceptual quality [6]. Another21

branch of works focuses on improving perceptual quality with perceptual training methods [1,6,7].22

These methods employ generative adversarial networks (GAN) and perceptual loss functions to drive23

the network’s output towards the natural image manifold of possible HR images. We assess an1d24

further improve the perceptual quality of these works.25

Because super-resolution is a one-to-many problem with multiple possible reconstructions for one26

image, methods based on strict content loss often lead to predicting the average of possible reconstruc-27

tions[6]. Perceptual-driven solutions utilize perceptual and adversarial loss, which both don’t penalize28

the generator for generating equally realistic images with stochastic variance. However, we discover29

two incomplete aspects in the current perceptual SR pipeline. First, although the above-mentioned30

losses don’t penalize stochastic variation, the final loss is mixed with the strict content loss which31

strictly penalizes these variations. Second, the generator doesn’t have the ability to generate multiple32

estimates of the image despite a one-to-many problem. To implement such a one-to-many pipeline,33

we provide the generator with pixel-wise noise and improve the content loss so it doesn’t restrict the34

variation in the image while ensuring the consistency of the content.35

The key contributions of our work can be described as follows:36
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• We propose a weaker content loss that does not penalize generating high-frequency detail37

and stochastic variation in the image.38

• We enable the generator to generate diverse outputs by adding scaled pixel-wise noise after39

each RRDB block.40

• We filter blurry regions in the training data using Laplacian activation[10].41

• We additionally provide the LR image to the discriminator to give better gradient feedback42

to the generator.43

2 Related work44

Since the pioneering work of SRCNN[9], many works have exploited the pixel-wise loss and PSNR-45

oriented training objectives to learn the end-to-end mapping from LR to HR images. We denote46

such pixel-wise losses as the strict content loss. Many network architectures and techniques were47

experimented with to improve the complexity of such networks. Deeper network architectures[17],48

residual networks[6], channel attention[18], and techniques to remove batch normalization[19] were49

introduced. Although these works achieved state-of-the-art SR performance in the peak signal-to-50

noise ratio (PSNR) metric, they often produce overly smooth images.51

To improve the perceptual image quality of SR, SRGAN [6] proposes perceptual loss and GAN-based52

training. The perceptual loss is measured using intermediate activations of the VGG-19 network and53

a discriminator is used for the adversarial training process. Enhanced SRGAN (ESRGAN) further54

improves SRGAN by modifying the generator architecture with Residual in Residual Dense Block55

(RRDB), the Relativistic GAN [16] loss, and improving the perceptual loss. Such methods were56

superior to PSNR-oriented methods at generating photo-realistic SR images with sharp details, achiev-57

ing high perceptual scores. However, we could still often find unpleasant artifacts and problematic58

textures in the reconstructions of ESRGAN. Such cases are exemplified in Figure 4.59

Traditional metrics for assessing image quality such as PSNR and SSIM (Structural Similarity Index60

Measure) fail to coincide with human perception[4]. The PSNR score is calculated based on the61

pixel-wise MSE, so methods that minimize pixel-wise differences tend to achieve high PSNR scores62

[9]. However, the PSNR-oriented solutions fail at generating high-frequency details and often drive63

the reconstruction towards the average of possible solutions, producing overly smooth images[6]. The64

learned perceptual image patch similarity (LPIPS) score[4] was proposed to measure the perceptual65

quality on various computer vision tasks. According to [2], the LPIPS score reliably coincides with66

human perception for assessing super-resolved images. We use the LPIPS score as an indicator of67

perceptual image quality in our experiments.68

CycleGAN[8] is a pipeline for image-to-image translation with unpaired images using generative69

adversarial nets and cycle loss. CycleGAN consists of 2 generators G1, G2, and 2 discriminators70

D1, D2, where G1 and G2 each translate the input image in a cycling manner. The generators are71

trained to minimize the adversarial loss and cycle loss ||G2(G1(x))− x||1 between the input image72

and cycled image. We were able to design a loss based on the cycle loss to reliably measure the73

content consistency without such a complicated design.74

3 Method75

We design a one-to-many approach for perceptual super-resolution by modifying the generator and the76

training objective. We also describe additional modifications to the training process and discriminator77

to improve the perceptual quality of SR.78

3.1 Cycle consistency loss79

Most works on perceptual super-resolution[1, 6, 7] combine the content loss, adversarial loss (GAN80

loss), and perceptual loss for the training objective as in Equation 1. Although the strict content81

loss and adversarial loss are fundamentally disagreeing objectives, relying exclusively on either loss82

each has significant issues. The strict content loss guides the network output to be exactly consistent83

with the HR image, guiding the network to learn the mean of possible reconstructions and thus84

tends to give overly-smoothed results. Although the GAN framework is a powerful method for85
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Figure 1: An overview of our method. The cycle consistency loss is measured by comparing the LR
image with the downsampled SR image. The discriminator is provided with the target image and a
reference image generated by bicubic-upsampling the LR image.

photo-realistic image generation, adversarial learning is highly unstable, and while the adversarial86

loss and perceptual loss guide the network to be perceptually convincing, they don’t enforce the87

content of the super-resolved image to be consistent with the low-resolution image.88

LTotal = Lpercep + λLGAN + ηL1 (1)

We regard simply trading off these disagreeing losses as an incomplete objective for super-resolution89

since the mixing of such losses will obstruct the optimization of either loss. An improved training90

objective must be GAN-oriented while ensuring consistent content of the image. That is, there needs91

a content loss that doesn’t hamper the generation of images with high-frequency details.92

We propose a soft content loss inspired by the cycle loss of CycleGAN[8] to ensure the output of93

the generator to be consistent with the low-resolution image while not disturbing the generation of94

high-frequency information.95

We view the super-resolution problem as an image-to-image translation task between the LR and HR96

image space and apply the CycleGAN framework. To simplify the problem, we exploit our prior97

knowledge on G2 : HR− > LR. We can denote the downsampling operation as f and set G2 to98

be f instead of learning it. Consequently, our pipeline doesn’t require learning D2 which is a tool99

for learning G2. This leaves only G1 and D1 to be learned. We can write the cycle consistency loss100

as Equation 2. This loss won’t penalize generating high-frequency details in any way while the SR101

image remains consistent with the LR image. Finally, we can conclude our generator loss as Equation102

3.103

Lcyc(G1) = ||f(G1(LR))− LR||1 (2)

LTotal(G1) = Lcyc(G1) + λLGAN (G1, D1) + ηLpercep (3)

3.2 Providing scaled Gaussian noise to the generator104

For the generator to be capable of generating more than one solution given a single image, it must105

receive and apply random information. The variation between super-resolved images will mostly106

be stochastic variation in high-frequency textures. StyleGAN[3] achieves stochastic variation in107

images by adding pixel-wise Gaussian noise to the output of each layer in the generator. We adopt108

this method and add the noise after every RRDB layer in the generator.109

However, the sensitivity and the desired magnitude of noise would differ for each channel. Adding110

the same noise directly after every layer could rather harm the ability of the generator. For example, a111

channel that detects edges would be seriously harmed by the noise. The sensitivity will also depend on112

the depth of the network. To mitigate such possible issues, we allow each channel to learn the desired113

magnitude of the noise. Specifically, before adding the noise to the output of each layer, we multiply114
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Figure 2: Boxplot of the scaling factors against the position of the layer in the network. The desired
magnitude of noise increases in deeper layers, while the final layers have smaller scaling factors. The
sensitivity to random noise varies for each layer and channel.

the noise with a channel-wise scaling factor. The scaling factor is learned concurrently with the115

network parameters. We observe that the desired magnitude differs along the network depending on116

the position of the layer. This shows that our method effectively implements a one-to-many generator117

for super-resolution. The early layers seem to be focusing more on extracting the feature of the image,118

while the final layers preferred the noise to be scaled before being applied to the reconstruction.119

Details are illustrated in Figure 2. The noise is not applied at evaluation.120

3.3 Reference image for the discriminator121

Traditionally, the discriminator network receives a single image and is trained to classify whether the122

given image is real or a generated image. This setting will provide the generator with gradients to123

"any natural image" instead of towards the corresponding HR image. In an extreme example, the124

traditional discriminator won’t penalize the generator for generating completely different but equally125

realistic images from an LR image. Although this is unlikely due to the existence of other content126

and perceptual losses, the gradient feedback given by the discriminator is sub-optimal for the task of127

super-resolution.128

As a solution, we provide the low-resolution image as a reference along with the target image to the129

discriminator. This enables the discriminator to learn more important features for discriminating130

the generated image and provide better gradient feedback according to the LR image. For details,131

refer to Figure 1. We upsample the LR image to the same size as the HR image and concatenate132

them, feeding a tensor of shape (H,W, 6) to the discriminator. Despite its simplicity, conditioning133

the discriminator on the input is a crucial modification for training such a supervised problem with134

GAN-oriented losses.135

3.4 Blur detection136

We recognized that there are often severely blurry regions in the images from the DIV2K[14] and137

DIV8K[15] datasets. Although the authors of [15] argue that the data was collected by "paying special138

attention to image quality", there were many scenes with out-of-focus backgrounds. These blurry139

regions might plague the generator to learn to generate such blurry patches. Blurry backgrounds are140

often indistinguishable from finer objects based only on the LR image. Though some might argue141

that the blurry backgrounds must also be learned, we were able to achieve finer detail and higher142

LPIPS score by detecting and removing blurry patches from both datasets.143

We propose to detect and remove blurry patches before the network is trained on those patches.144

There are various methods for blur detection e.g. algorithmic methods and deep-learning-based145

approaches[11, 12]. However, most deep-learning-based works focus on predicting pixel-wise blur146

maps of the image, which wouldn’t be suited for our needs. Mostly, the algorithmic method of [10]147

was successful at reliably detecting blurry patches as can be observed in Figure 3. We measure the148

variance of the Laplacian activation of the patch and consider patches with variance of under 100 as149
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Figure 3: Randomly selected samples of the blur detection algorithm tested on image 0031 from the
DIV8K dataset. The top two rows are the patches classified as clear and the bottom rows are blurry
patches. Regions that are clear in the image (person, pole) are correctly considered as clear patches
by the detection algorithm.

blurry patches. The algorithm detects 28.8% blurry patches in a sample of 16,000 randomly cropped150

patches of size 96×96 from the DIV2K dataset and 48.9% of patches in a sample of 140,000 patches151

from the DIV8K dataset.152

4 Experiments153

We conduct experiments to evaluate the effectiveness of our proposed techniques in ×4 and ×16154

resolution and compare them with the baseline ESRGAN. We first experiment the effects of blur155

detection, then we perform an ablation study of our proposed training methods to evaluate their156

effectiveness. Implementation detail and training logs can be found on GitHub1. All our experiments157

were performed on a single Tesla T4 or Tesla K80 GPU on Google Colaboratory.158

We observed that a large portion of the training was used for loading high-resolution images, despite159

most of the images not being used. As an implementation detail to improve training speed significantly,160

we extract multiple patches and save them in a buffer while training instead of extracting only a single161

patch after loading the image. We randomly pick images from the buffer for training and discard the162

selected patches from the buffer. In all of our experiments, we extract 128 patches from each image163

and create a buffer of 1024 patches.164

4.1 ×4 super-resolution165

4.1.1 Training details166

We employ the ESRGAN network architecture with 23 RRDB blocks and most of its training167

configurations for the baseline of our experiments on ×4 super-resolution. The training process is168

divided into two stages. We first pretrain the PSNR-oriented models then train the ESRGAN-based169

models.170

The PSNR-oriented models are trained with the L1 loss with a batch size of 16 for 500K iterations.171

We apply learning rate decay with an initial learning rate of 2 × 10−4, decayed by a factor of 2172

every 200k iterations. We initialize the GAN-based model with the PSNR-oriented model. We173

initialize the learning rate with 1× 10−4 for both G1 and D1, decaying the learning rate by a factor174

of 2 at [50k, 100k, 200k, 300k] iterations. For optimization, we use the Adam optimizer for both175

pretrained networks and GAN-based models, with β1 = 0.9 and β2 = 0.99. The learning rate decay176

schedule corresponds to the one proposed by ESRGAN. We implement our models and methods with177

the Tensorflow framework. The loss function is scaled with η = 10 and λ = 5 × 10−3, which is178

equivalent to the training configuration of ESRGAN used in the PIRM-SR challenge. This is slightly179

different from the configuration used in the released model trained with η = 10−2.180

All of our networks are trained exclusively on the DIV2K dataset[14], while the original ESRGAN181

was trained with DIV2K, Flickr2K, and OST datasets combined. We obtained the LR images by182

1https://github.com/krenerd/ultimate-sr
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Table 1: LPIPS, PSNR, SSIM scores of various configurations for ×4.

Methods Set5 Set14 BSD100 Urban100
(LPIPS / PSNR / SSIM)

Pretrained (a) 0.1341 / 30.3603 / 0.8679 0.2223 / 26.7608 / 0.7525 0.2705 / 27.2264 / 0.7461 0.1761 / 24.8770 / 0.7764
+Blur detection (b) 0.1327 / 30.4582 / 0.7525 0.2229 / 26.8448 / 0.7547 0.2684 / 27.2545 / 0.7473 0.1744 / 25.0816 / 0.7821
ESRGAN (Official) 0.0597 / 28.4362 / 0.8145 0.1129 / 23.4729 / 0.6276 0.1285 / 23.3657 / 0.6108 0.1025 / 22.7912 / 0.7058

ESRGAN (c) 0.0538 / 27.9285 / 0.7968 0.1117 / 24.5264 / 0.6602 0.1256 / 24.6554 / 0.6447 0.1026 / 23.2829 / 0.7137
+refGAN (d) 0.0536 / 27.9871 / 0.8014 0.1157 / 24.4505 / 0.6611 0.1275 / 24.5896 / 0.6470 0.1027 / 23.0496 / 0.7103

+Add noise (e) 0.04998 / 28.23 / 0.8081 0.1104 / 24.48 / 0.6626 0.1209 / 24.8439 / 0.6577 0.1007 / 23.2204 / 0.7203
+Cycle loss (f) 0.0524 / 28.1322 / 0.8033 0.1082 / 24.5802 / 0.6634 0.1264 / 24.6180 / 0.6468 0.1015 / 23.1363 / 0.7103

-Perceptual loss (g) 0.2690 / 23.4608 / 0.6312 0.2727 / 22.2703 / 0.5685 0.2985 / 24.1648 / 0.5859 0.2411 / 20.8169 / 0.6244

downsampling the HR images with MATLAB bicubic interpolation. We compare the effects of our183

methods on LPIPS, PSNR, and SSIM scores on the Set5, Set14, BSD100, and Urban100 datasets.184

Scores evaluated on the Set5 and Set14 datasets are obtained by averaging the final 5 checkpoints,185

each recorded at [480k, 485k, 490k, 495k, 500k] iterations.186

4.1.2 Ablation study187

To study the effects of our proposed methods, we perform an ablation study of our proposed method.188

We enable our proposed methods one by one and list the resulting scores in Table 1. Each training189

configuration was fully trained with the original training configurations. We provide the saved model190

and configuration files to reproduce our results in our project repository. We also list the results191

of the official ESRGAN for fair comparison. The improvements from the official results and the192

result from configuration(c) is because the η value is different from the official model. First, blur193

detection is experimented with in configuration(b) and improves the LPIPS score for all benchmarks.194

We train our baseline ESRGAN in configuration(c) and get reasonable results. By applying the195

technique of Section 3.3 in configuration(d), we slightly harm the network in terms of the LPIPS196

score. However, providing conditional information to the discriminator is crucial for learning such a197

supervised problem with adversarial learning. Our method of directly concatenating the reference198

image in the input is not optimal. The low-resolution image could be applied through SPADE[20]199

or alternative spatial transformation methods for improvements. Applying scaled noise shows large200

improvements as experimented in configuration(e).201

The cycle consistency loss applied in configuration(f) shows neutral and slightly negative effects202

on the LPIPS score. The reason for this is mostly because of the incompetent GAN framework203

lacking the training techniques of modern GAN literature. Our statement is stated by the failure of204

configuration(g) where the GAN framework alone is responsible for learning the super-resolution205

process. The GAN framework of ESRGAN is incapable of lead the training process and thus206

the image quality wasn’t improved when we gave more responsibility to the adversarial loss in207

configuration(f). However, coupled with improved GAN techniques in further research, the cycle208

consistency content loss will further enhance the image quality.209

4.2 ×16 super-resolution210

4.2.1 Training details211

We employ the RFB-ESRGAN of [21] as the baseline for our experiments on ×16 super-resolution.212

The RFB-ESRGAN proposes an architecture using Receptive Field Blocks(RFB) and Residual of213

Receptive Field Dense Block(RRFDB), each as an alternative for convolution and RRDB blocks. The214

RFB-ESRGAN uses less memory compared to methods that manipulate the image in the intermediate215

×4 resolution[22] and this allowed larger batch size in our environment. We employ the RFB-216

ESRGAN network architecture with 16 RRDB blocks and 8 RRFDB blocks for the baseline of our217

experiments on ×16 super-resolution.218

The model is first trained with the L1 loss for 100K iterations with an initial learning rate 2× 10−4,219

decayed by a factor of two every 2.5× 105 iteration. The GAN-based model is initialized with the220

pretrained model and is trained for 200K iterations, which is shorter than the original 400K iterations.221

Additionally, the batch size is decreased from 16 to 4 and we therefore approximately scale the222

initial learning rate of 10−4 to 2× 10−5 by a factor of 5. The learning rate is decayed at [50k, 100k]223
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Table 2: LPIPS, PSNR scores for various configurations for ×16 super-resolution.

Methods DIV8K validation
Pretrained (a) 0.4664 / 30.3603
+Blur detection (b) 0.4603 / 25.53
RFB-ESRGAN(official) 0.345 / 24.03
Baseline RFB-ESRGAN (c) 0.356 / 24.78
Ours w/o cycle-loss (d) 0.321 / 23.95
Ours w/ cycle-loss (e) 0.323 / 23.49

iterations. We don’t use model ensemble to further stabilize the network. All other models and224

hyperparameter configurations are equal. We train the network on the DIV8K dataset[15], while the225

original network was trained with additional datasets including DIV2K, Flicker2K, OST dataset. The226

first 1,400 images of DIV8K are used as training data and the rest 100 validation images are used for227

evaluation.228

4.2.2 Ablation study229

The PSNR-oriented method is improved using blur detection in configuration(b). Our GAN-baed230

model of configuration(c) achieves worse performance compared the the results reported in [21]231

because of the lighter training configurations. We were able to make significant improvements in232

the LPIPS score from the baseline RFB-ESRGAN using our proposed methods in configuration(d).233

We apply all of our proposed methods except the cycle consistency loss in configuration(d). We also234

train the model with cycle consistency loss and get similar results in configuration(e). We were able235

to make such improvements using much lighter training configurations with only half iteration steps,236

×4 smaller batch size, and without model ensemble. The results are described in Table 2.237

5 Conclusion238

We proposed a one-to-many approach for super-resolution and achieve improved perceptual quality239

and better LPIPS score from the baseline ESRGAN configuration and achieve the state-of-art LPIPS240

score in x16 perceptual super-resolution. We provide scaled pixel-wise to the generator to allow241

stochastic variation in the reconstructed image and implement a generator capable of a one-to-many242

pipeline. We also address the limitations of mixing the strict content loss with perceptual losses and243

propose an alternative based on the cycle loss. Our newly modified loss will ensure the consistency244

of the content while not penalizing high-frequency detail. Additionally, we further propose more245

techniques such as blur detection using Laplacian activation and redesign the discriminator input by246

providing a reference image to further improve the perceptual quality of×4 and×16 super-resolution.247

However, the GAN framework from ESRGAN was incompetent to guide the training on its own.248

Modern GAN training techniques could be applied to further improve the GAN framework used249

in super-resolution. Our proposed loss function will become more effective as a content loss when250

coupled with a robust GAN framework since it will reduce constraints in generating high-frequency251

detail. Such improvements are left for future work.252

7



Figure 4: Qualitative comparison of our methods with the official ESRGAN. We compare the poorly
reconstructed outputs of ESRGAN from BSD100 and Urban100 datasets with our proposed model
trained with configuration(f). Our method produces sharp textures and more realistic structures
compared to the baseline ESRGAN, although it also fails to accurately reconstruct human faces.
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The checklist follows the references. Please read the checklist guidelines carefully for information on how to302

answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or [N/A] . You are303

strongly encouraged to include a justification to your answer, either by referencing the appropriate section of304

your paper or providing a brief inline description. For example:305

• Did you include the license to the code and datasets? [Yes] See Section 2.306

• Did you include the license to the code and datasets? [No] The code and the data are proprietary.307

• Did you include the license to the code and datasets? [N/A]308

Please do not modify the questions and only use the provided macros for your answers. Note that the Checklist309

section does not count towards the page limit. In your paper, please delete this instructions block and only keep310

the Checklist section heading above along with the questions/answers below.311

1. For all authors...312

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-313

tions and scope? [Yes] The focus of our paper is on the proposal of a one-to-many pipeline for314

super-resolution.315

(b) Did you describe the limitations of your work? [Yes] The GAN framework used in our work316

was weak despite the successes of modern GANs.317

(c) Did you discuss any potential negative societal impacts of your work? [No]318

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]319

2. If you are including theoretical results...320

(a) Did you state the full set of assumptions of all theoretical results? [N/A]321

(b) Did you include complete proofs of all theoretical results? [N/A]322

3. If you ran experiments...323

(a) Did you include the code, data, and instructions needed to reproduce the main experimental324

results (either in the supplemental material or as a URL)? [Yes] As mentioned in the paper, all325

the code and training configurations are available at https://github.com/krenerd/ultimate-sr.326

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?327

[Yes]328

(c) Did you report error bars (e.g., with respect to the random seed after running experiments329

multiple times)? [No] There was hardware limitations for repeating our work multiple times,330

however the ablation study sufficiently described improvements of our methods.331

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,332

internal cluster, or cloud provider)? [Yes] All our experiments were executed on Google COLAB333

with a single Tesla T4 or Tesla K80 GPU.334

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...335

(a) If your work uses existing assets, did you cite the creators? [Yes] The DIV2K and DIV8K336

dataset was used and cited.337

(b) Did you mention the license of the assets? [N/A]338

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]339

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-340

ing/curating? [Yes] The DIV2K dataset was used for the baseline ESRGAN, which was341

compared with our methods and the DIV8K dataset was used for the RFB-ESRGAN.342

(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-343

tion or offensive content? [No]344

5. If you used crowdsourcing or conducted research with human subjects...345

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?346

[N/A]347

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)348

approvals, if applicable? [N/A]349

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on350

participant compensation? [N/A]351
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