
FLUTE: A Scalable, Extensible Framework for
High-Performance Federated Learning Simulations

Dimitrios Dimitriadis
Microsoft Research

didimit@microsoft.com

Mirian Hipolito Garcia
Microsoft Research

mirianh@microsoft.com

Daniel Madrigal Diaz
Microsoft Research

danielmad@microsoft.com

Andre Manoel
Microsoft Research

amonteiroman@microsoft.com

Robert Sim
Microsoft Research

rsim@microsoft.com

Abstract

In this paper we introduce “Federated Learning Utilities and Tools for Experimen-
tation” (FLUTE), a high-performance open source platform for federated learning
research and offline simulations. The goal of FLUTE is to enable rapid prototyping
and simulation of new federated learning algorithms at scale, including novel opti-
mization, privacy, and communications strategies. We describe the architecture of
FLUTE, enabling arbitrary federated modeling schemes to be realized, we compare
the platform with other state-of-the-art frameworks, and we describe available
features of FLUTE for experimentation in core areas of active research, such as op-
timization, privacy, and scalability. A comparison with other established platforms
shows speed-ups up to 42× and savings in memory footprint of 3×. A sample of
the platform capabilities is presented for a range of tasks and other functionality
such as scaling and a variety of federated optimizers.

1 Introduction

Federated Learning (FL) has been proposed as a strategy to address new constraints in data manage-
ment, driven by the need for privacy compliance for personal data and information, as well as widely
distributed and segregated data silos McMahan et al. [2017]. FL is a decentralized machine learning
scheme with a focus on collaborative training and user data privacy. The key idea is to enable training
of a global model with the participation of multiple clients coordinated without the need of sharing
the client local information. In contrast to other forms of Distributed Training (DT) Ben-Nun and
Hoefler [2019], Sergeev and Bals [2018], Abadi et al. [2016a], Chen and Huo [2016], the clients
train a version of the model on segregated local data. Then, the tuned parameters are sent back to the
server where the global model is updated by aggregating these local client information.

One of the challenges when building Federated Learning platforms is the need for scaling the learning
process to millions of clients, in order to simulate real-world conditions under reasonable computing
resources. As such, developing and validating any novel algorithm in realistic circumstances, e.g.,
using real devices or close-to-real scaled deployments, can be particularly difficult. Simulation
platforms play an important role, enabling researchers and developers to develop proof-of-concept
implementations (POCs) and validate their performance before building and deploying in production.
While several open-source frameworks have been developed to enable FL solutions, few optimize
performance for scientific agility and offline scalability.

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.

This paper introduces a novel platform “Federated Learning Utilities and Tools for Experimentation”
(FLUTE) as a framework for running large-scale, offline FL simulations. It is designed to be flexible,
to enable arbitrary model architectures1, and to allow for prototyping novel approaches in federation,
optimization, quantization, privacy, and so on. Finally, it provides an optional integration with
AzureML workspaces AzureML Team [2016], enabling scenarios closer to real-world applications,
and leveraging platform features to manage and track experiments, parameter sweeps, and model
snapshots.

The main contributions of FLUTE are:

1. A platform for high-performance FL simulations at scale (scaling to millions of clients),

2. Flexibility in the platform to include new FL paradigms, unlocking research, experimenta-
tion, and proof-of-concept (PoC) development,

3. A generic API for new model types and data formats,

4. A pre-built list of features - state-of-the-art federation algorithms, optimizers, differential
privacy, bandwidth management, client management/sampling, etc,

5. Experimental results illustrating the utility of the platform for FL research,

6. A comprehensive analysis and comparisons with two of the leading FL simulation platforms2,
i.e. FedML He et al. [2020] and Flower Beutel et al. [2020].

The goal of FLUTE is to facilitate the study of new algorithmic paradigms and optimizations,
enabling more effective FL solutions in real-world deployments, by extension the platform has been
applied by multiple research groups to advance their ideas, such as: Dimitriadis et al. [2020a], Liu
et al. [2022a], Sun et al. [2022] and Wang et al. [2022]. In contrast to incumbent platforms, we
decouple FLUTE from production constraints such as process isolation or data security measures.
This decoupling is a feature, rather than a bug: by focusing on scaling and performance we can
optimize for scientific agility, enabling researchers to experiment and prototype much more efficiently.
The unique architecture of FLUTE allows clients to be instantiated on-the-fly once the resource
is available and then process each independent client asynchronously, making it more efficient
than other platforms. On the other hand, FLUTE does not currently address challenges like data
collection, secure aggregation or attestation. The code for the platform is open-sourced and available
at aka.ms/msrflute.

2 Background and Prior Work

In general, there are two different approaches concerning the architecture of FL systems: either
using a central server [Patarasuk and Yuan, 2009], as the “coordinator or orchestrator”, or opting for
peer-to-peer learning, without the need of a central server [Liang et al., 2020]. FLUTE is based on
the “server-client” architecture, where the server coordinates any number of clients. Besides the basic
architecture, FLUTE addresses technical challenges such as the required resources, i.e. bandwidth,
and computing power, efficiency, optimization and learning pipeline [Shamir et al., 2013], and privacy
constraints. Such challenges are usually attributed to either the ML side of federated learning, e.g.,
the distributed nature of the tasks, or the engineering side where the available resources are limited.

Communication overhead: FL relies heavily on the communication between server and the clients
to complete any training iteration. The fact that some of the clients and the server can be in different
networks may cause limited connectivity, high latency, and other failures. Different approaches have
been proposed, e.g., gradient quantization and sparsification [McMahan et al., 2017, Jhunjhunwala
et al., 2021], different architectures per client [Cho et al., 2022], use of adapters for federating trans-
former models, etc. Most of these approaches are already implemented in FLUTE, e.g., quantization
results shown in Section 6.

1The repository provides some examples and users are urged to add their implementations.
2Based on the availability of simulation functionality and the number of downloads from their GitHub

repository.

2

Hardware heterogeneity: Computing capabilities of each client can vary, i.e., CPU, memory,
battery level, storage are not expected to be the same across all nodes. This can affect both the
selection and availability of the participating devices and it can bias the learning process. Different
approaches have been also proposed to address slower clients, i.e. “stragglers”, with the most popular
allowing for asynchronous updates and client dropouts. FLUTE provides a flexible, asynchronous
framework to incorporate workers of different capabilities. Also, there is an intuitive way of modeling
faster/slower nodes as part of the training process.

Unbalanced and/or non-IID data: Local training data are individually generated according to
the client usage, e.g., users spending more time on their devices tend to generate more training
data than others. Therefore, it is expected that these locally segregated training sets may not be
either a representative sample of the global data distribution or uniformly distributed between
clients. A simple strategy to overcome communication overheads was proposed with the “Federated
Averaging” (FedAvg) algorithm [McMahan et al., 2017]. In this approach, the clients perform several
training iterations, and then send the updated models back to the server for aggregation based on a
weighted average. FedAvg is one of the go-to training strategies for FL, given the simplicity and the
consistently good results achieved in multiple experiments. On the other hand, FedAvg is not the
best aggregation strategy, especially in the case of non-IID local data distributions. Over time, new
approaches have emerged to overcome these limitations, for example, adaptive optimizers [Reddi
et al., 2021], SCAFFOLD [Karimireddy et al., 2020], and the Dynamic Gradient Aggregation
(DGA) algorithm [Dimitriadis et al., 2020b], which propose optimization strategies to address the
heterogeneity problems on data and devices.

Threats: The ever-increasing interest for applying FL in different scenarios has brought interest in
malicious attacks and threat models, as described [Liu et al., 2022b]. FL itself cannot assure either
data privacy, or robustness to diverse attacks proven to be effective in breaking privacy or destroying
the learning process. Without any mitigation, both the server and clients can be attacked by malicious
users, e.g., attackers can poison the model by sending back to the server fake model parameters
[Zhang et al., 2021] or fake the server and send a malicious model to the clients, stealing local
information [Enthoven and Al-Ars, 2020]. As such, FL strategies started to incorporate techniques
like Differential Privacy (DP), as detailed in [Wei et al., 2020] or Multi-Party Computation (MPC),
which only reveals the computation result while maintaining the confidentiality of all the intermediate
processes [Byrd and Polychroniadou, 2020, Bhowmick et al., 2019]. Some defenses against inference
and backdoor attacks have been implemented in FLUTE Wang et al. [2022].

Simulation and prototyping: Building federated learning solutions can require significant up-front
engineering investment, often with an unclear or uncertain outcome. Simulation frameworks enable
FL researchers and engineers to estimate the potential utility of a particular solution, and investigate
novel approaches, before making any significant investments. To this day, different FL platforms
have been proposed, however, most of them have been designed with a specific purpose which
limits experimentation agility for complex large-scale FL scenarios. Some frameworks have been
developed aiming to support researchers such as: TensorFlow Federated [Abadi et al., 2016a] and
PySyft [Ziller et al., 2021] whose main focus is privacy, also some simulators have been introduced
within a production environment for proof-of-concept scenarios including FedML [He et al., 2020]
and Flower [Beutel et al., 2020]. Finally we have some frameworks that are introduced to provide a
wide benchmark of datasets and metrics like LEAF [Caldas et al., 2018]. An extensive comparison of
the most popular frameworks is shown in Section 5, evaluating the competitive advantages of FLUTE
vs some of the most representative platforms based on the number of stars on GitHub: FedML and
Flower.

3 FLUTE Platform Design

FLUTE is designed as a scalable framework for rapid prototyping, encouraging researchers to propose
novel FL solutions for real-world applications, in scale, data volume, etc, under the following design
constraints/specs:

• Scalability: Capacity to processs many thousands of clients on any given round. FLUTE
allows to run large-scale experiments using any number of clients with reasonable turn-

3

Figure 1: Client-server communication protocol. At each iteration, the server sends a copy of the
global model to each worker, samples a number of clients and asynchronously assigns them to a
worker as they become available

around time, since scale is a critical factor in understanding practical metrics such as
convergence and privacy-utility trade-offs.

• Flexibility: Allow for any combination of model, dataset and optimizer. FLUTE sup-
ports diverse FL configurations, including some of the state-of-the-art algorithms such as
DGA Dimitriadis et al. [2020b], FedAdam Reddi et al. [2020] and FedAvg McMahan et al.
[2017], with Pytorch being the framework of choice for implementing the training pipelines.

• Expandable: Enable end users to incorporate new model architectures and scenarios, and
allow them to easily plug in customized/novel techniques like differential privacy, gradient
quantization, transfer learning, and personalization. FLUTE provides an open architecture
allowing the incorporation of new algorithms and models in a straightforward fashion.

FLUTE design is based on a central server architecture, as depicted in Figure 1. The logical workflow
is:

1. Send an initial global model to participating clients,
2. Train instances of the global model with the locally available data on each client,
3. Send training information, e.g., updated model parameters, logits (if required), and/or

gradients/pseudo-gradients back to the server,
4. Combine the returned information on the server to produce a new global model,
5. Optionally, update the global model with an additional server-side rehearsal step,
6. Send the updated global model to the next sampled subset of clients,
7. Repeat steps 2 - 6 for the next training iteration.

A FLUTE job leverages one or more multi-GPU computers (local or in the cloud) running up to a
total of K worker processes, each executing tasks assigned by the server (Worker 0). The number
of workers is decoupled from the number of clients, P , allowing the platform to scale to millions
of clients even when K � P . During training, the server plays the role of both the orchestrator
and the aggregator. First, it distributes a copy of the global model(s), training data and the list of
all the client-IDs among the workers. The workers iteratively process the clients’ data producing
new models, and send the models back to the server. After N of the clients are processed, the server
aggregates the resulting models, typically into a single global model. Algorithm 1 describes in detail
this process and Figure 2 exemplifies the execution flow.

The distributed nature of FLUTE is based on PyTorch, using the torch.distributed package as the
communication backbone. The interface between server and workers is based on message payloads
containing model parameters, client-IDs and training instructions. There are four message-types that
can be passed from server to worker:

4

Figure 2: FLUTE Execution Flow: The server samples N of the clients and sends them to the K
workers. Every time one of the workers finishes processing the client data, it returns the gradient and
draws the next client until all clients are processed.

Algorithm 1 FLUTE Orchestration: P is a Client Pool, which contains IDs of each client, P = |P|,
M is the federation rounds to be executed, K is the number of Workers,N is the subset of clients per
iteration and N = |N | the number of clients per iteration

Server-Side Worker-0:
for each federated round from 1, . . . ,M do
N ← Sample N clients from P
repeat

Wait for workerk to finish
Save pseudo-gradient response from workerk
c← Sample client-ID from C
Dispatch model and c to workerk

until all client-IDs c in N have been processed
Aggregate pseudo-gradients
Update model with optimization step

end for

Client-Side Worker-k, with k > 0:
Load client and model data
Execute local training processes
Send pseudo-gradients and statistics about local training to Worker-0

1. Update creates a copy of the model parameters and learning rate on the worker,

2. Train triggers the execution of a training step on a worker, for a given client. The resulting
model (or pseudo-gradient) is passed from worker to server,

3. Evaluate triggers the execution of an evaluation step in a given client. Resulting metrics
are passed from worker to server,

4. Terminate shuts down the worker thread.

FLUTE leverages the communication scheme in Figure 1 by loading a local copy of the training data
on each worker prior to training, significantly reducing the traffic communication between server and
workers, only sending client indices. As previously noted, while this design decision would not be
viable in production, it serves as an important performance optimization that has no impact on the
validity of simulation results. Clients are implemented as isolated object instances– local data for
each client stays within its logical boundaries and it is never sent to the server or aggregated with

5

other local data sources. Only metrics, model parameters or gradients are communicated between the
server and clients – these quantities can be encrypted if necessary 3.

4 FLUTE Features

FLUTE provides a range of built-in functionality while state-of-the-art algorithm implementations
cover important areas in FL research. In this section we discuss federated optimization, differential
privacy, bandwidth efficiency, personalization and computing resource capabilities of FLUTE.

4.1 Federated Optimization

The “Federated averaging” (FedAvg) algorithm, Konecny et al. [2015], McMahan et al. [2017] is the
first and perhaps the most widely used FL training algorithm. The server samplesMT ⊂ N of the
available N devices and sends the model w(s)

T at that current iteration T . Each client j, j ∈MT has
a version of the model w(j)

T , where it is locally updated with the segregated local data. The size of the
available data D(j)

T , per iteration T and client j, is expected to differ and as such, N (j)
T = |D(j)

T | is
the size of processed local training samples. After running E steps of SGD, the updated model ŵ(j)

T
is sent back to the server. The new model wT+1 is given by

wT+1 ←
1∑

j∈MT
N

(j)
T

∑
j∈MT

N
(j)
T ŵ(j)

T (1)

The server-side model in iteration T + 1 is a weighted average of the locally updated models of the
previous iteration. Despite some drawbacks like lack of fine-tuning or annealing of a global learning
rate, FedAvg is the baseline aggregation approach in FLUTE, based on its popularity.

Although the golden standard in FL training, FedAvg presents several drawbacks Zhao et al. [2018].
A different family of learning algorithms, “Adaptive Federated Optimizers” has been proposed to
address them Reddi et al. [2020], Dimitriadis et al. [2020b], Li et al. [2019a], where the clients return
pseudo-gradients instead of model parameters.

wT+1 ← wT+1 − f

 ∑
j∈MT

α(j)
(

ŵ(j)
T − w(s)

T−1

) (2)

where f(·) is the optimization function, ŵ(j)
T − w(s)

T−1 the difference between the fine-tuned local
model and the seed model of the same iteration. Finally, the weights α can be 1 in the case of
FedAdam or take different values, e.g., in the case of DGA, as detailed in Dimitriadis et al. [2021].

The training process consists of two optimization steps: first, on the client-side using a stateless
optimizer for local SGD steps, and then on the server-side with a “global” optimizer utilizing the
aggregated gradient estimates. The two-level optimization provides both speed-ups in convergence
rates due to the second optimizer on the server, and improved control over the training by adjusting
the learning rates. In addition, scaling in the number of clients becomes straightforward by adjusting
the server-side optimizer.

The FLUTE system provides support for this group of federated optimizers by adjusting the gradient
aggregation weights, and the server-side optimizers, making FedYogi and FedAdam Reddi et al.
[2020], and DGA Dimitriadis et al. [2021] rather straightforward to apply. Besides these optimizers,
FLUTE provides implementations for FedProx, Li et al. [2019b] and SCAFFOLD, Karimireddy et al.
[2020]. Finally, the FLUTE client scaling capabilities can be enhanced by switching to large-batch
optimizers on the server-side, like LAMB You et al. [2020], and LARS You et al. [2017], as validated
experimentally in Section 6.

3Encryption and secure aggregation are currently not implemented in FLUTE since these security mechanisms
aren’t necessary for simulating the learning process, and they are outside the scope of our research focus.

6

4.2 Differential Privacy

In the FL context, differential privacy (DP) Dwork et al. [2014] is typically enforced by clipping the
norm of, and adding noise to, the gradients produced during training Abadi et al. [2016b]. This can
be done either by each client (local DP), or by the server (global DP).

In FLUTE, either local or global DP can be used, depending on whether the clients or the server
are responsible for doing the clipping and noise addition. In both cases, that is done directly to the
pseudo-gradient, i.e., the difference between current and previous weights after each user’s data is
processed. The pseudo-gradients are re-scaled so that their norm is at most C, ensuring the norm of
the difference between any two of them (the sensitivity) is bounded. We typically use Gaussian noise,
with variance σ2 = 2 log

(
1.25
δ

)
C2

ε2 picked so that the aggregation is at most (ε, δ)-DP w.r.t. each
client. In the case of DGA Dimitriadis et al. [2020b], the aggregation weights are data-dependent,
and also go through the same procedure.

Local clipping and noise addition can be accumulated as if it were per-example (i.e. per-client,
or per-pseudo-gradient) clipping and noise addition in centra DP-stochastic gradient descent (DP-
SGD). As such, we track the per-client noise across all clients and apply the Renyi DP accountant
globally Mironov [2017]. Note that tighter bounds have been presented recently in the literature Gopi
et al. [2021], Zhu et al. [2021] improving these results.

4.3 Bandwidth Efficiency

Gradients produced during training of the neural networks are known to be quite redundant, and can
be compressed without adversely affecting the optimization procedure, e.g., gradient components can
be represented by a single bit Seide et al. [2014], or some of the components discarded, making the
gradient sparse Wangni et al. [2018]. Such compression leads to decreased bandwidth requirements.

In FLUTE, we use an approach similar to that of Alistarh et al. [2017]. We first get the dynamic
range of the gradient components, and then create a histogram of 2B bins between these two values,
per layer. Next, we replace each gradient component by the label of the closest bin. That way, only
the bin indices, together with the min./max. values need to be communicated. This quantization
procedure is done on the client side, improving the uplink communication. We can also sparsify the
gradients in parallel by keeping only the p% largest (in absolute value) components. If quantization
is also active, binning is done before sparsification, but the original value of the component is used to
decide whether it is replaced by the bin label or zeroed-out.

As part of FLUTE, novel compression algorithms are proposed, e.g., the use of adapters Houlsby
et al. [2019] when the global models are based on transformers, achieving even further bandwidth
compression, or the use of heterogeneous model architectures, as in Cho et al. [2022]. In more detail,
the transformer models are communicated only once and frozen, while the adapter modules are
federated. Despite the significant bandwidth benefits, the computation complexity is increased since
all model parameters need to be evaluated. The results are presented in Section 6.

4.4 Personalization

The convergence of most Federated Learning optimization algorithms is theoretically proven when
the client data distributions are iid. However, scenarios where the data distributions are non-iid, are
far more challenging, e.g., Li et al. [2019b]. One of the different approaches for addressing this
issue is with convex interpolation between the global θ(r) and the local models θ(r,B)

i for the ith

client, Deng et al. [2020], after B local training epochs. The resulting personalized model θ(r)
int after

interpolation is given by

θ
(r)
int = αi · θ(r,B)

i + (1− αi) · θ(r) (3)

and the interpolation weights αi for each client i are estimated as described in Deng et al. [2020].
FLUTE architecture supports this feature for new models, leveraging clients’ local data to obtain
models that are better adjusted to the local data distribution. A baseline experiment is included in the
repository for computer vision (CV) tasks, as shown in Section 6.5. As expected, a certain drawback
of this method is that it requires P + 1 models for federation with P clients.

7

FLUTE FedML (Parrot) Flower (Simulator)

Focus Research and Simulation Research and Production Research and Production
ML Framework PyTorch PyTorch PyTorch / TensorFlow
Communication Protocols Supported Gloo,NCCL SP, MPI Ray, gRPC
Support Security/Privacy related functions 3 3 3
Support Multiple Federated Optimization Techniques 3 3 3
Flexible and Generic API 3 3 3
Cloud Integration 3 3 7
Multi-GPU Support 3 3 7
Performance Optimizations 3 7 7
Easily Extensible to Production 7 3 3

Table 1: Comparison between FLUTE and Popular Federated Learning Simulation Platforms. This
analysis is focused on the simulators provided by these platforms only.

4.5 Computing Resources

AzureML (AML) AzureML Team [2016] is the preferred computing FLUTE environment for staging,
executing, tracking, and summarizing FL experiments. FLUTE has native AML integration for job
submissions, allowing the users to use the built-in CLI or web interface for job/experiment tracking,
and for visualization purposes. While FLUTE needs only the experiment-related configurations,
AML expects the computing environment parameters such as target, cluster, code, etc. Besides AML,
FLUTE can also run seamlessly on stand-alone devices, such as laptop and desktop machines (like
those used for Section 5), using the local GPUs if/when available.

5 Comparison with related platforms

Multiple FL platforms have been proposed. However, most of them have been designed with a
specific purpose limiting their flexibility to experiment with restricted resources in an acceptable
turnaround time. Some frameworks oriented towards implementation allow researchers to work in a
simulation environment using a production-compatible platform. Nonetheless, these simulators suffer
from long runtimes, especially in complex FL scenarios, given that their architecture requires some
production-oriented routines. Table 1 shows a detailed comparison of some of the most common 4

FL platforms’ features and main focus.

FLUTE allows customized training procedures and complex algorithmic implementations at scale,
making it a valuable tool to rapidly validate the feasibility of novel FL solutions, while avoiding
the need to deal with complications that production environments present. FLUTE harnesses its
architecture to provide a significant advantage in runtime and memory utilization, leveraging benefits
of using NCCL Nvidia with GPUs, when available. For this comparison, we selected the FedML He
et al. [2020] and Flower Beutel et al. [2020] platforms as the most representative, based on their
number of stars on GitHub. In order to ensure a fair comparison among platforms, we used the
datasets5 and models6 from the FedML Benchmarking Recipes7 with the training configuration
described in Table 2. All FLUTE scripts can be found under Experiments in the FLUTE repository.

Model Dataset Algorithm # Clients Clients/round Batch Size Client Optim. lr Local Epochs # Rounds Test Freq

Log. Regr. mnist FedAvg 1000 10 10 SGD 0.03 1 100 20
CNN fedmnist FedAvg 3400 10 20 SGD 0.1 1 800 50

ResNet18 fedcifar100 FedAvg 500 10 20 SGD 0.1 1 4000 50
RNN fedshakespeare FedAvg 715 10 4 SGD 0.8 1 1200 50

Table 2: Training configuration for FLUTE/FedML/Flower Benchmarking

Table 3 shows that FLUTE outperforms FedML by 42× in speed and 3× in memory consumption.
The advantage of FLUTE relies on its ability to asynchronously assign new clients to the workers as

4Based on the number of stars on GitHub as of 10/26/22
5FedML Datasets https://github.com/FedML-AI/FedML/tree/master/python/fedml/data
6FedML Models https://github.com/FedML-AI/FedML/tree/master/python/examples/

simulation/mpi_fedavg_datasets_and_models_example
7FedML Benchmarking Recipes and Results https://doc.fedml.ai/simulation/benchmark/

BENCHMARK_MPI.html

8

https://github.com/FedML-AI/FedML/tree/master/python/fedml/data
https://github.com/FedML-AI/FedML/tree/master/python/examples/simulation/mpi_fedavg_datasets_and_models_example
https://github.com/FedML-AI/FedML/tree/master/python/examples/simulation/mpi_fedavg_datasets_and_models_example
https://doc.fedml.ai/simulation/benchmark/BENCHMARK_MPI.html
https://doc.fedml.ai/simulation/benchmark/BENCHMARK_MPI.html

they become available, and receive their outputs. On the other hand, FedML8 links the number of
workers with the number of MPI processes, which is reflected as the number of parallel clients during
training, FLUTE design allows processing multiple clients per worker, decoupling the need for 1 : 1
mapping between clients and training processes. In FLUTE, each worker holds a pre-loaded local
copy of the training data, avoiding communication overheads during training as the Server only sends
indices of the clients to instantiate.

Task FedML (MPI) 0.7.303 FLUTE (NCCL) 1.0.0

Model Dataset Clients Rounds Acc Time GPU memory Acc Time GPU memory

Log. Regr. mnist 1000 100 81 00:03:09 3060 MB 81 00:01:35 1060 MB
CNN fedmnist 3400 800 83 05:49:52 5180 MB 83 00:08:22 1770 MB
ResNet18 fedcifar100 500 4000 34 15:55:36 5530 MB 33 01:42:01 1900 MB
RNN fedshakespeare 715 1200 57 06:46:21 3690 MB 57 00:21:50 1270 MB

Table 3: GPU Performance comparison FLUTE 1.0.0 vs FedML 0.7.303 on 4x NVIDIA RTX A6000
using FedML Datasets. Test accuracy is reported from the last communication round.

An additional comparison of FLUTE versus Flower 1.0.0 9 is presented in Table 4. While in principle
Flower supports multi-GPU setups using Ray, we were unable to find any Flower/Ray configuration
that out-performed the CPU setup, following the recipe provided on their GitHub for the simulator 10.
Thus, to run a fair comparison, we compare FLUTE CPU performance (using the Gloo backend)
against Flower, evaluating the overall time of the job using the same setup for the "MNIST Log. Reg."
task described in Table 2. FLUTE is up to 54× faster than Flower on GPUs given that their simulation
capabilities are not optimized for multi-GPU jobs out of the box.

Regardless, FLUTE, running on a Gloo backend, is 9× faster than Flower, running only on CPUs.

6 Case Studies

This section provides some insights of the FLUTE features. The list of datasets, tasks and experimental
results herein presented is by no means exhaustive. Also, no particular models are detailed since
the platform allows training on any architecture currently supported by PyTorch. However, FLUTE
provides the baseline configuration for the models that the platform supports and a group of datasets
for the different tasks incorporated in the repository, inside the Experiments folder.

6.1 Sample of Baseline Experiments and Datasets

We provide some of the available models/tasks as part of the FLUTE distribution. This list of models
and tasks is not exhaustive since the flexibility of the platform allows extensions in models such as
Graph Neural Networks (GNNs), He et al. [2021], Gradient Boosted Trees (GBTs), Li et al. [2019c],
and others:

• ASR Task: LibriSpeech: FLUTE offers a Speech Recognition template task based on the
LibriSpeech task Panayotov et al. [2015]. The dataset contains about 1,000 hours of speech
from 2,500 speakers reading books. Each of the speakers is labeled as a different client. In
one of the ASR task examples, a sequence-to-sequence model was used for training, more
details can be found in Dimitriadis et al. [2020a].

• Computer Vision Task: MNIST and EMNIST: Two different datasets, i.e., the
MNIST LeCun and Cortes [2010] and the EMNIST Cohen et al. [2017] dataset are used
for Computer Vision tasks. The EMNIST dataset is a set of handwritten characters and
digits captured and converted to 28× 28 pixel images maintaining the image format and
data-structure and directly matching the MNIST dataset. Among the many splits of EMNIST
dataset, we use the “EMNIST Balanced”, containing ~132k images with 47 balanced classes.

• NLP Tasks: Reddit: Various NLP tasks are supported in FLUTE, e.g., 2 use-cases for
MLM and next-word prediction using Reddit data Baumgartner et al. [2020]. The Reddit

8FedML Simulator (Parrot) on its release 0.7.303, commit ID 8f7f261f
9Flower Simulator on its release 1.0.0, commit ID 4e7fad9

10GitHub issue: PyTorch Simulation example with GPUs https://github.com/adap/flower/issues/1415

9

FLUTE 1.0.0 Flower 1.0.0
Gloo/NCCL Ray

Accelerator Acc Time Acc Time

CPU 80 00:03:20 80 00:30:14
GPU 2x 80 00:01:31 80 01:21:44
GPU 4x 81 00:01:26 79 00:56:45

Table 4: Performance comparison FLUTE 1.0.0 vs Flower 1.0.0 on 4x NVIDIA RTX A6000, AMD
EPYC 7V12 64-Core Processor. Test accuracy is reported from the last communication round.

dataset consists of users’ tweets grouped in months as published. For these use-cases,
we use 2 months of Reddit data with 2.2M users. The seed models used are either from
HuggingFace or a baseline language model (LM), as described below.

• Sentiment Analysis: sent140, IMDb, YELP: Sent140 Go et al. [2009], is a sentiment
analysis dataset consisting of tweets, automatically annotated from the emojis found in them.
The dataset consists of 255k users, with mean length of 3.5 samples per user. IMDb is based
on movie reviews of 1012 users providing 140k reviews with 10 rating classes Diao et al.
[2014]. The YELP dataset is based on restaurant reviews with labels from 1 to 5 Tang et al.
[2015]. It contains 2.5k users with 425k reviews.

• Baseline LM Model: A baseline LM model is used for most of the experiments in Section 6.
A two-layer GRU with 512 hidden units, 10,000 word vocabulary, and embedding dimension
160 is used for fine-tuning during the FL experiments. The seed model is pretrained on the
Google News corpus Gu et al. [2020].

6.2 Quantization Experiment

The accuracy for a next-word-prediction task on the Reddit dataset and the baseline LM model (as
described in Section 6.1) for various levels of quantization B is shown in Table 5. As expected, using
less bits leads to decreased performance in terms of accuracy.

Quant. (bits) Acc @1 (%) Rel. Imprv. (%)

Seed Model N/A 9.83 (56.62)
Server-Side Training N/A 22.30 (1.59)

FL Train. 32 22.70 0
10 22.40 (1.32)
8 22.20 (2.25)
4 21.30 (5.87)
3 18.80 (17.21)
2 17.80 (21.58)

Table 5: Next-word prediction: Top-1 accuracy after gradient quantization. The number of bits per
gradient coefficient varies 2− 32.

We have also done experiments varying the sparsity level, while keeping the quantization constant at
8 bits, cf. Table 6.2. In this particular experiment, we had gains in bandwidth of up to 16x with no
significant change in performance. Error compensation techniques Strom [2015] could be attempted
in order to increase the performance at higher sparsity levels. The difference in performances for the
case of 8-bit quantization level in Tables 5 and 6.2 is due to noise during the training process.

6.3 Performance for Variable/Different Number of Clients

The number of clients processed at each round is a variable we can control on FLUTE. Here, we show
in Table 7 a simulation with 1 server + 3 workers attached to RTX A6000 GPUs and 2.45GHz AMD
EPYC cores for varying number of clients per iteration. Since clients are processed sequentially
by each worker, runtime scales linearly. FLUTE also provides options for further speed-ups by
processing clients in multiple threads and pre-encoding the data.

10

% Sparsity Gain in Bandwidth Acc @1 (%)

0.0 4x 22.60
75.0 16x 21.70
95.0 80x 19.00
99.0 400x 17.70

Table 6: Next-word accuracy obtained by varying sparsity level on gradients while keeping quantiza-
tion fixed at 8 bits – gains in bandwidth are relative to standard 32 bits gradient. The performance
reported is the best one over 5000 iterations, with 1000 clients being processed at each iteration.

Number of Clients Runtime (sec.)
1,000 22.1 ± 0.6
5,000 111.3 ± 2.4
10,000 219.0 ± 2.3
50,000 1103.7 ± 11.3

Table 7: How long it takes for 3 workers to process different number of clients, on an NLG experiment
using a GRU model and the Reddit dataset. Averages are computed over 20 iterations.

Table 7 shows that FLUTE scales gracefully the number of clients per iteration, without any upper
bound to that number. We can also look at the predictive performance attained for different numbers
of clients, and study how it changes as a function of the optimizer used.

Num. of Clients Optimizer Acc @ 1 (%)
local-server

No Fine-tuning Seed Model 9.80
1k clients/iter SGD-Adam (Baseline) 22.70

SGD-RL-based DGA 22.80
10k clients/iter SGD-Adam (Baseline) 20.80

SGD-LARS 17.00
Adam-LARS 21.40
SGD-LAMB 23.00

Variable number SGD-Adam 22.30
[5k − 10k] clients/iter

Table 8: Next-word Prediction task: Top-1 accuracy achieved varying number of clients and optimiz-
ers.

In Table 8 , we compare 4 different scenarios for optimizers, increasing the number of clients,
showing that the accuracy remains stable for most of them. However, the Adam optimizer decreases
its accuracy as the number of clients increase, compared to SGD-LAMB that reaches a better
performance with a larger number of clients.

6.4 Comparing Optimizers

This experiment of next-word prediction, using the Reddit dataset and baseline LM model described
in Section 6.1, explores model training performance for a variety of state-of-the-art optimizer choices.
We trained a recurrent language model, fixing the number of clients per round to 1,000, and varying
the choice of optimizer in the central aggregator. Specifically, we applied standard SGD Rosenblatt
[1958], ADAM Kingma and Ba [2017], LAMB You et al. [2020], and LARS You et al. [2017].
Table 9 illustrates the performance of each optimizer, including maximum validation accuracy, and
convergence rate: the number of rounds to reach 95% of the max. accuracy. Note there is no
hyper-parameter tuning of the optimizers for this experiment.

6.5 Personalization Experiments

The CIFAR-10 task is used for the personalization experiments, splitting the data across 100 clients,
and sampling 10 clients per iteration. The client data are split according to the process described

11

Optimizer Acc @1 (%) Convergence Round
LAMB 23.10 115
ADAM 22.70 641
SGD 20.60 2172
LARS 17.40 414

Table 9: Next-word prediction task: Top-1 Accuracy and training rounds to 95% convergence for
various central optimizer choices.

in He et al. [2020], with α ∈ [0.2, 1.0] for the Dirichlet label distribution (client distributions
are more iid when the α values are larger). In addition to the label distributions, we investigate
different feature distributions by applying locally different image transformations (per each client).
For this experiment, we fix the test samples to match the local training data/label distributions, i.e.
we split the test set to follow similar local label distributions as the training samples. The image
transformations are unique per client for both the training and test samples, when applicable. Herein,
we investigate 3 different training strategies, i.e. a global model trained with DGA, local models
trained with SGD and the convex interpolation of these two, as described in Section 4.4. The relative
performance improvement shown in Table 6.5 is between the global and the interpolated models.
Convex interpolation, as described in Section 4.4, always benefits overall performance but the gains

Global Local Interp. Rel. Imprv.

iid (α = 1.0) 74.12 46.10 77.72 13.91
non-iid (α = 0.5) 72.33 54.90 79.56 26.13
non-iid (α = 0.2) 69.50 70.70 85.43 52.23

iid (α = 1.0) 51.34 46.48 62.78 23.51
+ Feat. Transf.

non-iid (α = 0.5) 49.40 54.57 67.60 35.97
+ Feat. Transf.

non-iid (α = 0.2) 47.55 70.90 77.45 57.01
+ Feat. Transf.

Table 10: Personalization on CIFAR-10: Two sources of non-iidness, (i) Label distribution based on
α ∈ [0.2, 1.0] and (ii) Different image transformations per client. All reported results are in image
classification accuracy (%).

are more significant in the case of extreme non-iidness.

Increasing the local non-iidness helps the local model performance (and the interpolated combination
between local and global models). The local datasets have more examples of the particular labels
since the total number of local training samples remains constant. As such, the local models can
generalize better, improving the overall performance. The feature-based non-iidness doesn’t affect
the local models, since these models are trained on matched transformations, their impact on the
model quality is minimal. On the contrary, image transformations have great impact on the global
models due to the increased data mismatch.

7 Discussion and Conclusions

In recent years, researchers have made significant efforts to address the challenges in Federated
Learning (FL), especially when it comes to setting up FL-friendly environments – privacy guarantees,
time-consuming processes, communication costs and beyond. Herein, we presented FLUTE, a
versatile, open-architecture platform for high-performance federated learning simulation geared
towards the research community to streamline the process of prototyping groundbreaking algorithms
in Federated Learning. FLUTE’s novel architecture provides scaling capabilities, several state-of-the-
art federation approaches and related features such as differential privacy and personalization, with a
flexible API that allows to easily incorporate extensions and the introduction of novel approaches.
FLUTE is model and task-independent, and provides facilities for easy integration of new model
architectures based on PyTorch.

12

The goal of FLUTE is to optimize the available resources, to enable rapid experimentation and
prototyping of novel algorithms, facilitating the development of new FL research efforts in the most
expeditious manner. We encourage the research community to explore new research using FLUTE
and invite contributions to the public source repository.

13

References
H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B.A.y. Arcas. Communication-efficient

Learning of Deep Networks from Decentralized Data. In Proc. of Intern. Conf. on Artificial
Intelligence and Statistics, pages 1273––1282, 2017.

T. Ben-Nun and T. Hoefler. Demystifying Parallel and Distributed Deep Learning: An In-depth
Concurrency Analysis. ACM Computing Surveys, 4(65), 2019.

A. Sergeev and M. D. Bals. Horovod: Fast and Easy Distributed Deep Learning in TensorFlow. arXiv
preprint arXiv:1802.05799, 2018.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A System for Large-Scale
Machine Learning. arXiv preprint arXiv:1605.08695, 2016a.

Kai Chen and Qiang Huo. Scalable training of deep learning machines by incremental block training
with intra-block parallel optimization and blockwise model-update filtering. In Proc. ICASSP,
March 2016.

AzureML Team. AzureML: Anatomy of a Machine Learning service. In Proc. of The 2nd Intern.
Conf. on Predictive APIs and Apps, Proc. of Machine Learning Research, pages 1–13. PMLR, Aug.
2016.

Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth
Vepakomma, Abhishek Singh, Hang Qiu, Xinghua Zhu, Jianzong Wang, Li Shen, Peilin Zhao, Yan
Kang, Yang Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram, and Salman Avestimehr. Fedml:
A research library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518,
2020.

Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao,
Lorenzo Sani, Kwing Hei Li, Titouan Parcollet, Pedro Porto Buarque de Gusmão, and Nicholas D.
Lane. Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390,
2020.

Dimitrios Dimitriadis, Kenichi Kumatani, Robert Gmyr, Yashesh Gaur, and Sefik Emre Eskimez. A
federated approach in training acoustic models. In In Proceedings of Interspeech’20, 2020a.

Xiaoyuan Liu, Tianneng Shi, Chulin Xie, Qinbin Li, Kangping Hu, Haoyu Kim, Xiaojun Xu,
Bo Li, and Dawn Song. Unifed: A benchmark for federated learning frameworks, 2022a. URL
https://arxiv.org/abs/2207.10308.

Lukang Sun, Adil Salim, and Peter Richtárik. Federated learning with a sampling algorithm under
isoperimetry, 2022. URL https://arxiv.org/abs/2206.00920.

Xiaoyang Wang, Dimitrios Dimitriadis, Sanmi Koyejo, and Shruti Tople. Invariant aggregator for
defending federated backdoor attacks, 2022. URL https://arxiv.org/abs/2210.01834.

P. Patarasuk and X. Yuan. Bandwidth Optimal All-reduce Algorithms for Clusters of Workstations. J.
Parallel Distrib. Comput., 69(2):117–124, 2009.

X. Liang, A. M. Javid, M. Skoglund, and S. Chatterjee. Asynchronous Decentralized Learning of a
Neural Network. arXiv preprint arXiv:2004.05082v1, 2020.

O. Shamir, N. Srebro, and T. Zhang. Communication Efficient Distributed Optimization Using an
Approximate Newton-type Method. arXiv preprint arXiv:1312.7853, 2013.

Divyansh Jhunjhunwala, Advait Gadhikar, Gauri Joshi, and Yonina C. Eldar. Adaptive quantization of
model updates for communication-efficient federated learning. arXiv preprpint arXiv:2102.04487,
2021.

14

https://arxiv.org/abs/2207.10308
https://arxiv.org/abs/2206.00920
https://arxiv.org/abs/2210.01834

Yae Jee Cho, Andre Manoel, Gauri Joshi, Robert Sim, and Dimitrios Dimitriadis. Heterogeneous
ensemble knowledge transfer for training large models in federated learning. In Proc. of the 31st
Intern. Joint Conf. on Artificial Intelligence, IJCAI-22, pages 2881–2887. Intern. Joint Conf. on
Artificial Intelligence Org., Juky 2022.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In 9th Intern. Conf.
on Learning Representations, ICLR-21, May 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. In
Proc. of the 37th Inter. Conf. on Machine Learning, pages 5132–5143, 2020.

D. Dimitriadis, K. Kumatani, R. Gmyr, Y. Gaur, and E. S. Eskimez. Federated Transfer Learning
with Dynamic Gradient Aggregation. arXiv preprint arXiv:2008.02452, 2020b.

Pengrui Liu, Xiangrui Xu, and Wei Wang. Threats, attacks and defenses to federated learning: issues,
taxonomy and perspectives. Cybersecurity, 5, Feb. 2022b.

Jiale Zhang, Bing Chen, Xiang Cheng, Huynh Thi Thanh Binh, and Shui Yu. PoisonGAN: Generative
Poisoning Attacks Against Federated Learning in Edge Computing Systems. IEEE Internet of
Things Journal, 8(5):3310–3322, 2021.

David Enthoven and Zaid Al-Ars. An overview of federated deep learning privacy attacks and
defensive strategies. arXiv preprint arXiv:2004.04676, 2020.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farhad Farokhi, Shi Jin, Tony Q. S. Quek,
and H. Vincent Poor. Federated learning with differential privacy: Algorithms and performance
analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020. doi:
10.1109/TIFS.2020.2988575.

David Byrd and Antigoni Polychroniadou. Differentially private secure multi-party computation for
federated learning in financial applications. arXiv preprint arxiv:2010.05867, 2020.

Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan Rogers. Protec-
tion against reconstruction and its applications in private federated learning. arXiv preprint
arXiv:1812.00984, 2019.

Alexander Ziller, Andrew Trask, Antonio Lopardo, Benjamin Szymkow, Bobby Wagner, Emma
Bluemke, Jean-Mickael Nounahon, Jonathan Passerat-Palmbach, Kritika Prakash, Nick Rose,
Théo Ryffel, Zarreen Naowal Reza, and Georgios Kaissis. PySyft: A Library for Easy Federated
Learning, pages 111–139. Springer International Publishing, Cham, 2021. ISBN 978-3-030-70604-
3.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings, 2018.
URL https://arxiv.org/abs/1812.01097.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

J. Konecny, B. H. McMahan, and D. Ramage. Federated Optimization: Distributed Optimization
Beyond the Datacenter. arXiv preprint arXiv:1511.03575v1, 2015.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

T. Li, A. K. Sahu, A. Talwalkar, and V Smith. Federated Learning: Challenges, Methods, and Future
Directions. arXiv preprint arXiv:1908.07873v1, 2019a.

Dimitrios Dimitriadis, Ken’ichi Kumatani, Robert Gmyr, Yashesh Gaur, and Sefik Emre Eskimez. Dy-
namic Gradient Aggregation for Federated Domain Adaptation. arXiv preprint arXiv:2106.07578,
2021.

15

https://arxiv.org/abs/1812.01097

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019b.

Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel, K. Keutzer, and
C.-J. Hsieh. Large Batch Optimization for Deep Learning: Training BERT in 76 minutes. arXiv
preprint arXiv:1904.00962, 2020.

Y. You, I. Gitman, and B. Ginsburg. Large batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407, 2014.

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conf.
on computer and communications security, pages 308–318, 2016b.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security Foundations
Symposium (CSF), pages 263–275. IEEE, 2017.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
arXiv preprint arXiv:2106.02848, 2021.

Yuqing Zhu, Jinshuo Dong, and Yu-Xiang Wang. Optimal accounting of differential privacy via
characteristic function. arXiv preprint arXiv:2106.08567, 2021.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In 15th Annual Conf. of the Intern.
Speech Communication Association, 2014.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-
efficient distributed optimization. Advances in Neural Information Processing Systems, 31:1299–
1309, 2018.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. Advances in Neural Information Processing
Systems, 30:1709–1720, 2017.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proc. of the 36th Intern. Conf. on Machine Learning, pages 2790–2799, 2019.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arxiv preprint arXiv:2003.13461, 2020.

Nvidia. Nvidia/nccl: Optimized primitives for collective multi-gpu communication. URL https:
//github.com/NVIDIA/nccl.

Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang He,
Liangwei Yang, Philip S. Yu, Yu Rong, Peilin Zhao, Junzhou Huang, Murali Annavaram, and
Salman Avestimehr. Fedgraphnn: A federated learning system and benchmark for graph neural
networks. arXiv preprint arXiv:2104.07145, 2021.

Qinbin Li, Zeyi Wen, and Bingsheng He. Practical federated gradient boosting decision trees. arXiv
preprint arXiv:1911.04206, 2019c.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. LibriSpeech: an ASR corpus based on public
domain audio books. In Proc. of Intern. Conf. on Acoustics, Speech and Signal Processing, 2015.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database, 2010. URL http://yann.
lecun.com/exdb/mnist/.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In Intern. Joint Conf. on Neural Networks (IJCNN’17), pages 2921–2926.
IEEE, 2017.

16

https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn. The
pushshift reddit dataset. In Proc. of the Intern. AAAI Conf. on web and social media, volume 14,
pages 830–839, 2020.

Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision.
Stanford Tech. Report, 2009.

Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J. Smola, Jing Jiang, and Chong Wang.
Jointly modeling aspects, ratings and sentiments for movie recommendation (jmars). In Proc. of
the 20th ACM SIGKDD Intern. Conf. on Knowledge Discovery and Data Mining, 2014.

Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recurrent neural network for
sentiment classification. In Proc. of ACL Intern. Conf. EMNLP’15, 2015.

Xiaotao Gu, Yuning Mao, Jiawei Han, Jialu Liu, You Wu, Cong Yu, Daniel Finnie, Hongkun Yu,
Jiaqi Zhai, and Nicholas Zukoski. Generating representative headlines for news stories. In Proc. of
Intern. Conf. WWW’20, 2020.

Nikko Strom. Scalable distributed dnn training using commodity gpu cloud computing. In 16th
Annual Conf. of the Intern. Speech Communication Association, 2015.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the
brain. Psychological review, 65, 1958.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:a1412.6980, 2017.

A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. Advances in Neural
Information Processing Systems, pages 873—-881, 2011.

S. Dutta, G. Joshi, S. Ghosh, Dube. P., and Nagpurkar. P. Slow and stale gradients can win the race:
Error-runtime trade-offs in distributed sgd. In Proc. of the 21st Intl. Conf. on Artificial Intelligence
and Statistics, pages 803–812, 2018.

X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel stochastic gradient for nonconvex
optimization. In Proc. of 28th Intl. Conf. on Advances in Neural Information Processing Systems
(NIPS 2015), 2015.

A Appendix – Stale Gradient Analysis

The FLUTE platform offers flexibility when sampling the participating clients from the pool of
candidates. A range in the number of clients can be given, fluctuating between the two ends. This
can be seen as “client dropouts”, where a number of clients can be randomly discarded. Since the
default optimization pipeline is based on DGA, as in Section 4.1, the learning rate can be adjusted
accordingly.

Similar to the dropout functionality, FLUTE offers an option of delaying the contributions of random
clients rather than discarding the corresponding gradients. The system can introduce a 1-step
“staleness” to the system by randomly delaying a subset of the clients by 1 iteration. The convergence
analysis for the stale gradients scenario is held in Appendix A. As shown, the error introduced due
to staleness is upper bounded. As such, there is theoretical guarantee that the model will finally
converge. The theoretical conclusions are experimentally verified using FLUTE, shown in Figure 3.

A complementary approach to deal with the issue of straggling is to use asynchronous SGD. In
asynchronous SGD, any learner can evaluate the gradient and update the central PS without waiting
for the other learners. Asynchronous variants of existing SGD algorithms have also been proposed and
implemented in systems, e.g., Agarwal and Duchi [2011], Dutta et al. [2018]. In general, analyzing
the convergence of asynchronous SGD with the number of iterations is difficult in itself because of
the randomness of gradient staleness.

Gradient descent is a way to iteratively minimize this objective function by updating the parameter w
based on the gradient of the model θ(s)τ at every iteration τ , as given by

θ
(j)
t+1 = θ

(j)
t − η(j)∇θLθ(x

(j)
i) (4)

17

for the j client, over the local data mini-batches x(j)
i . As described in Section 4.1 the clients are

estimating a pseudo-gradient g̃(j)
Tj+τ

at the end of their training cycle,

g̃
(j)
Tj+τ

= θ
(j)
Tj
− θ(s)τ (5)

where Tj is the time took for the client j to estimate the final local model, and θτ is the global/initial
model communicated to the client at time τ . As in Dimitriadis et al. [2020b], these pseudo-gradients
are weighted and aggregated

θ
(s)
τ+1 = θ(s)τ − η(s)

∑
j∈N

Ij,ταj g̃(n)
Tj+τ

(6)

where N the number of clients per iteration τ , and the samples of

Ij,τ =

{
1 if Tj + τ ∈W[τ,τ+1)

0 else

and Ĩj,τ = 1− Ij,τ
There are different degrees of staleness and for this work, the stale gradients are considered to fall at
most one iteration behind, i.e. some of the gradients g̃(j)Tj+τ−1 are part of the aggregation step in Eq. 6
for the window W[τ,τ+1). In other words, Eq. 6 now becomes

θ
(s)
τ+1 = θ

(s)
τ − η(s)

[∑
j∈J αj(θ

(j)
Tj
− θ(s)τ) +

∑
i∈I αi(θ

(i)
Ti
− θ(s)τ−1)

]
(7)

where J, I is the index of nodes without/with stale gradients and assuming that J ∪ I = N , i.e, the
union of clients with current and stale gradients cover the client space per iteration. Assuming that
the final models θTj per client, would reach a similar point regardless of the starting model θ(s)τ (a
realistic assumption in convex models).

θ
(s)
τ+1 ≈ θ

(s)
τ − η(s)

[∑
n∈N αn(θ

(n)
Tn
− θ(s)τ) +

∑
i∈I αi(θ

(s)
τ − θ(s)τ−1)

]
(8)

Based on Eqs. 6, 8, the stale gradients of the I nodes introduces an error term Eτ which depends
only on the weights αi and the difference with the previous model, i.e, the aggregated gradients of
the previous time-step,

Eτ = η(s)
(
θ(s)τ − θ

(s)
τ−1

)∑
i∈I

αi

= η(s)
(
θ(s)τ − θ

(s)
τ−1

)∑
i∈I

Ĩi,ταi

The expectation of the L2-norm of the error is,

E [‖Eτ‖2] =

= E

[∥∥∥∥∥η(s) (θ(s)τ − θ(s)τ−1)∑
i∈I

Ĩi,ταi

∥∥∥∥∥
2

]
≤ η(s)E

[∥∥∥(θ(s)τ − θ(s)τ−1)∥∥∥
2

] (9)

since
∑

Ĩi,ταi ≤ 1. According to Eq. 9, the upper-bound of the error term due to the stale gradients
is the norm of the model differences between updates weighted by the learning rate η(s). In other
words, the expectation of the norm of the error due to stale gradients is bound by the model updates
(in fixed points in time). If we call ∆τ the norm of the difference between sequential in time models,

∆τ =
∥∥∥θ(s)τ − θ(s)τ−1∥∥∥

2
(10)

becomes smaller since the models converge to an optimal point. As such, limτ→∞∆τ = 0 and from
Eq. 9, the error due to stale gradients becomes limτ→∞Eτ = 0.

The conclusion from Eqs. 9 and 10 is in accordance with the analysis in Lian et al. [2015], where it
is shown that the convergence rate does not depend on the staleness ratio given sufficient number

18

Figure 3: Next-word Prediction task: Top-1 Accuracy for Reddit dataset with Staleness or 1 iteration.

of iterations. It is proved that the benefits of not waiting for the strangler nodes (thus producing
stale gradients) in terms of time needed to converge counter-balance the errors introduced early in
the training process. Also, based on the analysis in Dutta et al. [2018], adjusting the learning rate
schedule per iteration τ based on the staleness ∆τ can further expedite convergence,

η(s)τ = min

{
C

∆τ
, ηmax

}
, (11)

where C is a predefined constant related to the error floor.

We experimentally verify the theoretical analysis in Appendix A with two different experiments,
depending on the percentage of stale clients, 20% and 50% of the 1000 clients are stale – staleness in
this experiment equals to 1 cycle. This experiment is based on the next-word prediction task using
the Reddit dataset, together with the baseline LM model described in Section 6.1. As suggested, the
model still converges to an optimal point in terms of accuracy. However, it takes longer for the case
of 50% to reach a good point in performance.

19

	Introduction
	Background and Prior Work
	FLUTE Platform Design
	FLUTE Features
	Federated Optimization
	Differential Privacy
	Bandwidth Efficiency
	Personalization
	Computing Resources

	Comparison with related platforms
	Case Studies
	Sample of Baseline Experiments and Datasets
	Quantization Experiment
	Performance for Variable/Different Number of Clients
	Comparing Optimizers
	Personalization Experiments

	Discussion and Conclusions
	Appendix – Stale Gradient Analysis

