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Abstract

Temporal difference (TD) learning is often used to update the estimate of the value
function which is used by RL agents to extract useful policies. In this paper, we
focus on value function estimation in continual reinforcement learning. We propose
to decompose the value function into two components which update at different
timescales: a permanent value function, which holds general knowledge that
persists over time, and a transient value function, which allows quick adaptation to
new situations. We establish theoretical results showing that our approach is well
suited for continual learning and draw connections to the complementary learning
systems (CLS) theory from neuroscience. Empirically, this approach improves
performance significantly on both prediction and control problems.

1 Motivation

Deep reinforcement learning (RL) has achieved remarkable successes in complex tasks, e.g Go
[40, 41] but in a narrow setting, where the task is well-defined and stable over time. In contrast,
humans continually learn throughout their life and adapt to changes in the environment and in their
goals. This ability to continually learn and adapt will be crucial for general AI agents who interact
with people in order to help them accomplish tasks. One possible explanation for this ability in the
natural world is the existence of complementary learning systems (CLS): one which slowly acquires
structured knowledge and the second which rapidly learns specifics adapting to the current situation
[26]. In contrast, in RL, learning is typically focused on how to optimize return, and the main
estimated quantity is one value function (which then drives learning a policy). As a result, when
changes occur in the environment, RL systems are faced with the stability-plasticity dilemma [9]:
whether to forget past predictions in order to learn new estimates or to preserve old estimates, which
may be useful again later, and compromise the accuracy on a new task.

The stability-plasticity dilemma in RL is agnostic to the type of function approximation used to
estimate predictions, and it is not simply a side effect of the function approximator having small
capacity. In fact, the problem exists even when the RL agent uses a table to represent the value
function. To see this, consider policy evaluation on a sequence of tasks whose true value function
is different due to different rewards and transition probabilities. A convergent temporal-difference
(TD) algorithm [43] aggregates information from all value functions in the task distribution implicitly,
thereby losing precision in the estimate of the value function for the current situation. A tracking TD
learning algorithm [46] learns predictions for the current task, overwriting estimates of past tasks and
re-learning from scratch for each new task, which can require a lot of data. Using a separate function
approximator for each task, which is a common approach [23], requires detecting the identity of the
current task to update accordingly, which can be challenging and limits the number of tasks that can
be considered.
∗corresponding author.
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As an alternative, we propose a CLS-inspired approach to the stability-plasticity dilemma which
relies on maintaining two value function estimates: a permanent one, whose goal is to accumulate
"baseline" knowledge from the entire distribution of information to which the agent is exposed over
time, and a transient component, whose goal is to learn very quickly using information that is relevant
to the current circumstances. This idea has been successfully explored in the context of RL and tree
search in the game of Go [39], but the particular approach taken uses domain knowledge to construct
features and update rules. Our approach is general, simple, online and model-free, and can be used in
continual RL. Our method is also orthogonal to various advancements in the continual RL field, and
therefore, it can be combined with other improvements. Our contributions are:

• A conceptual framework for defining permanent and transient value functions, which can be
used to estimate value functions;

• RL algorithms for prediction and control using permanent and transient value functions;
• Theoretical results which help clarify the role of these two systems in the semi-continual

(multi-task) RL setting; and
• Empirical case studies of the proposed approaches in simple gridworlds, Minigrid [11],

JellyBeanWorld (JBW) [31], and MinAtar environments [51].

2 Background

Let S be the set of possible states and A the set of actions. At each timestep t, the agent takes
action At ∈ A in state St according to its (stochastic) policy π : S → Dist(A). As a consequence,
the agent receives reward Rt+1 and transitions to a new state St+1. Let Gt =

∑∞
k=t γ

k−tRk+1 be
the discounted return obtained by following π from step t onward, with 0 < γ < 1 the discount
factor. Let vπ(s) = Eπ[Gt|St = s]. This quantity can be estimated with a function approximator
parameterized by w, for example using TD learning [43]:

wt+1 ← wt + αtδt∇wvw(St), (1)
where αt is the learning rate at time t, δt = Rt+1 + γvw(St+1)− vw(St) is the TD error (see Sutton
and Barto [45] for details).

In the control problem, the agent’s goal is to find a policy, π∗, that maximizes expected returns.
This can be achieved by estimating the optimal action-value function, q∗ = maxπqπ, where qπ =
Eπ[Gt|St = s,At = a], e.g. using Q-learning [50].

"Continual RL" is closely related to transfer learning [48], meta learning [37, 15], multi-task learning
[10], and curriculum learning [35]. A thorough review distinguishing these flavours can be found in
Khetarpal et al. [24]. We use Continual RL to refer to a setup in which the agent’s environment (i.e.
the reward or transition dynamics) changes over time. We use the term semi-continual RL for the
case when the agent can observe task boundaries (this is similar to the multi-task setting, but does not
make assumptions about the task distribution or task IDs). In continual RL, a unique optimal value
function may not exist, so the agent has to continually track the value function in order to learn useful
policies [46, 2].

Our work focuses on the idea of two learning systems: one learning the "gist" of the task distribution,
slowly, the other which is used for tracking can quickly adapt to current circumstances. We instantiate
this idea in the context of learning value functions, both for prediction and control, but the idea can
be applied broadly (for e.g. policies, GVFs). The concept of decomposing the value function into
permanent and transient components was first introduced in model-based RL [39], for the single task
of learning to play Go, and using samples drawn from the model to train the transient value function.
In contrast, we focus on general continual RL, with samples coming from the environment.

In continual RL, most of the literature is focused on supplementing neural network approaches
with better tools, such as designing new optimizers to update weights [44, 19, 12, 4, 14], building
new architectures [21, 32], using experience replay to prevent forgetting [34, 36, 22, 8], promoting
plasticity explicitly [28, 29], or using regularization techniques from continual supervised learning
[25, 20, 30, 27]. Our method is agnostic to the nature of the function approximator used, and therefore,
complementary to these advancements (and could in fact be combined with any of these methods).

Our approach has parallels with fast and slow methods [13, 7] which use neural networks as the main
learning system and experience replay as a secondary system. Another similar flavor is to use the task
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distribution to learn a good starting point, as in distillation-based approaches [49, 18] or MaxQInit
[1]. But the latter are multi-task RL methods and their use in continual RL is limited.

3 Defining Permanent and Transient Value Functions

Inspired by CLS theory, we decompose the value function estimated by the agent into two, indepen-
dently parameterized components: one which slowly acquires general knowledge, the other which
quickly learns local nuances but then forgets. We call these components permanent value function,
V

(P )
θ and transient value function, V (T )

w . The overall value function is computed additively:

V (PT )(s) = V
(P )
θ (s) + V (T )

w (s), (2)

A similar decomposition can be done to the action-value function:

Q(PT )(s, a) = Q
(P )
θ (s, a) +Q(T )

w (s, a). (3)

Other approaches to combining the two components are possible but additive decomposition is the
simplest.

3.1 Permanent Value Function

Similar to the role of the neocortex in the brain, the permanent value function should capture general
structure in the value functions from the tasks that the agent has seen in its lifetime. It should also
provide good baseline predictions for any task that the agent faces, in order to allow it to learn good
estimates with fewer updates. To achieve this in a scenario where the agent goes through a sequence
of tasks and knows when the task changes, we might store all the states visited during the current task
in a buffer and using them when the task finishes, to update the permanent value function as follows:

θk+1 ← θk + αk(V (PT )(Sk)− V (P )
θ (Sk))∇θV (P )

θ (Sk), (4)

where α is the learning rate and k is the iteration index of the buffer. The permanent estimate takes a
small step towards the new estimate of the value function in the above update rule: bootstrapping at a
slower timescale. We analyze this idea further in Sec. 4.

3.2 Transient Value Function

The transient value function should compute corrections on top of the estimates provided by the
permanent value function, in order to approximate more closely the true value function of the current
task. We implement this intuition by updating the parameters of transient value function as:

wt+1 ← wt + αtδt∇wV
(T )
w (St), (5)

where α is the learning rate, δt = Rt+1 + γV (PT )(St+1) − V (PT )(St) and ∇wV
(T )
w (St) is the

gradient of transient value function at time t. Eq. (5) is a semi-gradient update rule, in the same sense
used to describe TD-learning, as the gradient is with respect to the current estimate only and not
the target. Since the permanent and the transient value functions are independently parameterized,
the semi-gradient ends up being just∇wV

(T )
w (St). This results in learning only a part of the value

function that is not captured by the permanent value function. The transient value function is reset or
decayed after transferring the new information into the permanent value function (e.g. at the moment
when the task changes), similar to the functioning of the hippocampus [26, 33].

3.3 Learning Algorithm

We can easily turn the updates above into algorithms; a blueprint for the prediction case is shown
in Algorithm 1, and the control version is in Appendix 3. The initialization and resets are done
appropriately based on the function approximation used.

In the above algorithm, we assumed that the agent can observe task boundaries, though not any
additional information (like a task id). We made this assumption to facilitate the theoretical analysis
presented in the next section. A fully continual version of the algorithms is presented and evaluated
empirically in Sec. 6.
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Algorithm 1 PT-TD learning (Prediction)

1: Initialize: Buffer B, θ, w
2: for t : 0→∞ do
3: Store St in B
4: Observe Rt+1, St+1

5: Update w using Eq. (5)
6: if Task Ends then
7: Update θ using B and Eq. (4)
8: Reset transient value function, w
9: Reset B

10: end if
11: end for

Note that this algorithm is a strict generalization of
TD learning: instead of setting w to 0 when the task
changes, if we were to match the difference between
the updated permanent value function and the transient
value function instead, we would obtain exactly the TD
learning predictions. Another way to get TD is by ini-
tializing θ to match the initialization of the TD learning
algorithm and updating w only without resetting. We
explore this connection formally in the next section.

4 Theoretical Results

In this section, we provide some theoretical results
aiming to understand the update rules of permanent and
transient value function separately, and then we study
the semi-continual RL setting (because the fully continual RL setting is poorly understood in general
from a theoretical point of view, and even the tools and basic setup are somewhat contentious). All
our results are for the prediction problem with tabular value function representation; We expect that
prediction results with linear function approximation can also be obtained. We present theorems in
the main paper and include proofs in appendices B. The appendix also contains analytical equations
describing the evolution of the parameters based on these algorithms.

4.1 Transient Value Function Results

We provide an understanding of what the transient value function does in the first set of results
(Theorems 1-4). We carry out the analysis by fixing V (P ) and only updating V (T ) using samples
from one particular task. We use V (TD)

t and V (PT )
t to denote the value function estimates at time t

learned using TD learning and Alg. 1 respectively.

The first result establishes a relationship between the estimates learnt using TD and the transient
value function update rule in Eq.(5).

Theorem 1. If V (TD)
0 = V (P ), V (T )

0 = 0 and the two algorithms train on the same samples using
the same learning rates, then ∀t, V (PT )

t = V
(TD)
t .

The theorem shows that the estimates learnt by our approach match those learnt by TD-learning in a
special case, proving that our algorithm is a strict generalization of TD-learning.

The next two theorems together shows that the transient value function reduces prediction error. First
we show the contraction property of the transient value function Bellman operator.
Theorem 2. The expected target in the transient value function update rule is a contraction-mapping
Bellman operator: T (T )V (T ) = rπ + γPπV (P ) − V (P ) + γPπV (T ), where rπ is expected one-step
reward for each state written in vector form and Pπ is the transition matrix for policy π.

We get the Bellman operator by writing the expected target in matrix form. We now characterize the
fixed point of the transient value function operator in the next theorem.
Theorem 3. The unique fixed point of the transient operator is (I − γPπ)−1rπ − V (P ).

The theorem confirms the intuition that the transient value function learns only the part of the value
function that is not captured in the permanent value function, while the agent still learns the overall
value function: V (PT ) = V (P ) + V (T ) = V (P ) + (I − γPπ)−1rπ − V (P ) = vπ .

The next theorem relates the fixed point of the transient value function to the value function of a
different Markov Reward Process (MRP)
Theorem 4. LetM be an MDP in which the agent is performing transient value function updates
for π. Define a Markov Reward Process (MRP), M̃, with state space S̃ : {(St, At, St+1),∀t},
transition dynamics P̃(x′|x, a′) = P(s′′|s′, a′), ∀x, x′ ∈ S̃,∀s′, s′′ ∈ S,∀a′ ∈ A and reward
function R̃(x, a′) = R(s, a) + γV (P )(s′) − V (P )(s). Then, the fixed point of Eq.(5) is the value
function of π in M̃.
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The proof follows by comparing the value function of the modified MRP with the fixed point of
transient value function. The theorem identifies the structure of the fixed point of the transient value
function in the form of the true value function of a different MRP. This result can be used to design an
objective for the permanent value function updates; For instance, to reduce the variance of transient
value function updates.

4.2 Permanent Value Function Results

We focus on permanent value function in the next two theorems. First, we characterize the fixed point
of the permanent value function. Then, we connect the fixed point of the permanent value function to
the jumpstart objective [48, 1], which is defined as the initial performance of the agent in the new task
before collecting any data. The latter is used to measure the effectiveness of transfer in a zero-shot
learning setup, and therefore, is crucial to measure generalization under non-stationarity. We make an
assumption on the task distribution for the following proofs:
Assumption 1. Let MDPMτ = (S,A,Rτ ,Pτ , γ) denote task τ . Then, vτ is the value function of
task τ and let Eτ denote the expectation with respect to the task distribution. We assume there are N
tasks and task τ is i.i.d. sampled according to pτ .
Theorem 5. Following Theorem 2, under assumption 1 and Robbins-Monro step-size conditions, the
sequence of updates computed by Eq.(4) contracts to a unique fixed point Eτ [vτ ].

We use the approach described in Example 4.3 from Bertsekas and Tsitsiklis [5] to prove the result.
Details are given in Appendix B.2.1
Theorem 6. The fixed point of the permanent value function optimizes the jumpstart objective,
J = minu∈R|S|

1
2Eτ [‖u− vτ‖22].

4.3 Semi-Continual RL Results

We present two important results in this section which prove the usefulness of our approach in value
function retention, for past tasks, and fast adaptability on new tasks. For the proofs, we assume that
at time t, both V (TD)

t and V (PT )
t have converged to the true value function of task i and the agent

gets samples from task τ from timestep t+ 1 onward.

The first result proves that the TD estimates forget the past after seeing enough samples from a new
task, while our method retains this knowledge through V (P ).

Theorem 7. Under assumption 1, there exists k0 such that ∀k ≥ k0, Eτ
[∥∥∥V (TD)

t+k − vi
∥∥∥2
2

]
>

Eτ
[∥∥V (P ) − vi

∥∥2
2

]
, ∀i.

The proof uses the sample complexity bound from Bhandari et al. [6] (Sec. 6.3, theorem 1). Details
are in Appendix B.3.1.

Next, we prove that our method has a tighter upper bound on errors compared with the TD learning
algorithm in expectation.

Theorem 8. Under assumption 1, there exists k0 such that ∀k ≤ k0, Eτ
[∥∥∥vτ − V (PT )

t+k

∥∥∥2
2

]
has a

tighter upper bound compared with Eτ
[∥∥∥vτ − V (TD)

t+k

∥∥∥2
2

]
, ∀i.

The proof uses the sample complexity bound from Bhandari et al. [6] (Sec. 6.3, theorem 1) to get
the desired result as detailed in Appendix B.3.2. As k → ∞, the estimates of both the algorithms
converge to the true value function and their upper bounds collapse to 0. This result doesn’t guarantee
low error at each timestep, but it provides an insight on why our algorithm has low error.

To further understand the behaviour of our algorithm on a new task, we derive analytical expressions
for mean squared error similar to Singh and Dayan [42] for both our algorithm and TD-learning
algorithm (see Appendix B.3.3 and B.3.4). Then, we use them to calculate the mean squared error
empirically on a toy problem. We observe low error for our algorithm at every timestep for various
task distributions (details in Appendix C.2).
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5 Experiments: Semi-Continual Reinforcement Learning

We conducted experiments in both the prediction and the control settings on a range of problems.
Although the theoretical results handle the prediction setting, we performed control experiments to
demonstrate the broad applicability of our approach. In this section, we assume that the agent is
faced with a sequence of tasks in which the transition dynamics are the same but the reward function
changes. The agent knows when the task has changed. In the sections below, we focus on the
effectiveness of our approach. Additional experiments providing other insights (effect of network
capacity, sensitivity to hyperparameters, and effect of task distribution) are included in the Appendix
(Sec. C.2, C.3, and C.4).

Baselines: Because our approach is built on top of TD-learning and Q-learning, we primarily use
the usual versions of TD learning and Q-learning as baselines, which can be viewed as emphasizing
stability. We also include a version of these algorithms in which weights are reset when the task
switches, which creates significant plasticity. We include more baselines for the continual RL
experiments, which are described in Sec. 6. The results for all algorithms are averaged across
30 seeds and shaded regions in the figures indicate 90% confidence intervals2. We use the same
procedure to optimize hyperparameters for all algorithms, detailed in Appendix (Sec. C.4).

5.1 Prediction experiments

We ran five experiments on 3 types of navigation tasks, with various function approximators. The
policy being evaluated was uniformly random in all experiments. We used root mean squared value
error (RMSVE) as a performance measure on the online task and the expected mean squared error
(MSE) on the other tasks.

(a) Discrete grid. (b) Minigrid.

Figure 1: Environments (PE).

Discrete grid: is a 5x5 environment depicted in Fig. 1a, which has
four goal states (one in each corner). The agent starts in the center
and chooses an action (up, down, left or right). Each action moves
the agent one step along the corresponding direction. Rewards are
0 for all transitions except those leading into a goal state. The goal
rewards change as detailed in Table C.1, so the value function also
changes as shown in Fig. C.1. For the linear setting, each state
is represented using 10 features: five for the row and five for the
column. The permanent and transient value functions use the same
features. For the deep RL experiment, instead of receiving state
information, the agent receives 48x48 RGB images. The agent’s
location is indicated in red, and goal states are colored in green
as shown in Fig. 1a. Goal rewards are multiplied by 10 to diminish the noise due to the random
initialization of the value function. For the tabular and linear setting, we run 500 episodes and change
the goal rewards after every 50 episodes. For the deep RL experiments, we run 1000 episodes and
goal rewards are switched every 100 episodes. The discount factor is 0.9 in all cases.
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Figure 2: Prediction results on various problems. Solid lines represent RMSVE on the current task
and dotted lines represent MSE on other tasks. Black dotted vertical lines indicate task boundaries.

Continuous grid: is a continuous version of the previous task. The state space is the square
[0, 1]× [0, 1], with the starting state sampled uniformly from [0.45, 0.55]× [0.45, 0.55]. The regions
within 0.1 units (in norm-1) from the corners are goal states. The actions change the state by 0.1 units
along the corresponding direction. To make the transitions stochastic, we add noise to the new state,

2We report standard distribution confidence intervals with a z-score of 1.645. We use µ± z σ√
n

to represent
the shaded region.
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sampled uniformly from [−0.01, 0.01] × [−0.01, 0.01]. Rewards are positive only for transitions
entering a goal region. The goal reward for each task is given in Table C.1. In the linear function
approximation setting we convert the agent’s state into a feature vector using the radial basis function
as described in [45] and Appendix C.1.1. We run 2000 episodes, changing goal rewards every 200
episodes. For evaluation, we sample 225 evenly spaced points in the grid and estimate their true
values by averaging Monte Carlo returns from 500 episodes across 10 seeds for each task. Here,
γ = 0.99.

Minigrid: We used the four rooms environment shown in Fig. 1b. Each room contains one type of
item and each item type has a different reward and color. Goal states are located in all corners. The
episode terminates when the agent reaches a goal state. The agent starts in the region between cells
(3,3) and (6,6) and can move forward, turn left, or turn right. The agent perceives a 5x5 (partial) view
in front of it, encoded one-hot. The rewards for picking items change as described in Table C.2 and
the discount factor is 0.9. We run 750 episodes and change rewards every 75 episodes.

We provide the training and architecture details for the two deep RL prediction experiments in
Appendix (Sec. C.1.1 and C.1.2) due to space constraints.

Observations: The results are shown in Fig. 2. Solid lines indicate performance on the task currently
experienced by the agent (i.e., the online task) and the dotted lines indicate the performance on the
other tasks. The reset variant of TD-learning performs poorly because all learning progress is lost
when the weights are reset, leading to the need for many samples after every task change. TD-learning
also has high online errors immediately after a task switch, as its predictions are initially biased
towards the past task. As the value function is updated using the online interaction data, the error
on the current task reduces and the error on other tasks rises, highlighting the stability-plasticity
problem when using a single value function estimate. Our algorithm works well on both performance
measures. The permanent value function learns common information across all tasks, resulting in
lower errors on the second performance measure throughout the experiment. Also, due to the good
starting point provided by the permanent value function, the transient component requires little data
to make adjustments, resulting in fast adaptation on the new task. In our method, the permanent
component provides stability and the transient component provides plasticity, resulting in a good
balance between the two. We also plotted the heatmap of the value estimates, shown in Fig. C.3,
to understand the evolution of the predictions for TD-learning and our method which confirms the
observations made so far.

5.2 Control experiments

To test our approach as a complement to Q-learning 3, we conducted a tabular gridworld experiment
and a Minigrid experiment using deep neural networks.

(a) Toy grid.
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(b) Tabular results. (c) Minigrid.
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(d) DRL results.

Figure 3: The environments and the corresponding results in the control setting. (b) Tabular results:
episodic returns are plotted. (d) Deep RL results: returns smoothened across 10 episodes is plotted.

Tabular experiment: We use the 6x6 grid shown in Fig. 3a, with two goals located in the top right
corner. The agent starts in the bottom left corner and can choose to go up, down, left, or right. The
action transitions the agent to the next state along the corresponding direction if the space is empty
and keeps it in the same state if the transition would end up into a wall or obstacle. The action has the
intended effect 90% of the time; otherwise, it is swapped with one of the perpendicular actions. The
agent receives a reward of +1 and -1 for reaching the two goal states respectively, and the rewards
swap periodically, creating two distinct tasks. The discount factor is 0.95. We run 500 episodes and
change the task every 50 episodes.

Minigrid experiment: We use the two-room environment shown in Fig. 3c. The agent starts in
the bottom row of the bottom room and there are two goal states located in the top room. The goal
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rewards are +5 and 0 respectively, and they flip when the task changes. We run 2500 episodes,
alternating tasks every 500 episodes. The other details are as described in the previous section.Further
details on the training and architecture are described in Appendix (Sec. C.1.3).

Observations: The results are shown in Fig. 3. The reset variant of Q-learning has to learn a good
policy from scratch whenever the task changes, therefore, it requires many samples. Since, the goal
rewards are flipped from one task to another, Q-learning also requires many samples to re-adjust
the value function estimates. In our method, since the permanent component mixes action-values
across tasks, the resulting bias is favorable, and makes it fairly easy to learn the corrections required
to obtain overall good estimates. So, the transient component requires comparatively few samples to
find a good policy when the task changes.

6 Continual Reinforcement Learning

Algorithm 2 PT-Q-learning (CRL)

1: Initialize: Buffer B, θ, w, k, λ
2: for t : 0→∞ do
3: Take action At
4: Store St, At in B
5: Observe Rt+1, St+1

6: Update wt using Eq. (8)
7: if mod(t, k) == 0 then
8: Update θ using B and Eq. (7)
9: wt+1 ← λwt+1

10: Reset B
11: end if
12: end for

So far, we assumed that the agent observes task bound-
aries; This information is usually not available in con-
tinual RL. One approach that has been explored in the
literature is to have the agent infer, or learn to infer, the
task boundaries through observations (e.g. see [17, 23]).
However, these methods do not work well when task
boundaries are not detected correctly, or simply do not
exist. We will now build on the previous algorithm we
proposed to obtain a general version, shown in Alg. 2,
which is suitable for continual RL.

Our approach maintains the permanent and transient
components, but updates them continually, instead of
waiting for task changes. The permanent component is
updated every k steps (or episodes) using the samples
stored in the buffer B. And, instead of resetting the
transient component, it is now decayed by a factor λ ∈
[0, 1]. Here, k and λ are both hyperparameters. When
λ = 0 and k the duration between task switches, we obtain the previously presented algorithm as
a special case. In general, k and λ control the stability-plasticity trade off. Lower λ means that
the transient value function forgets more, thus retaining more plasticity. Lower k introduces more
plasticity in the permanent value function, as its updates are based on fewer and more recent samples.
The algorithm still retains the idea of consolidating information from the transient into the permanent
value function.

The effect of k and λ: To illustrate the impact of the choice of hyperparameters, we use the tabular
task shown in Fig. 3a. The details of the experiment are exactly as before, but the agent does not
know the task boundary. We run the experiment for several combinations of k and λ for the best
learning rate. The results are shown in Fig. 4. As expected, we observe that the hyperparameters
k and λ have co-dependent effects to a certain degree. For small values of k, large values of λ
yield better performance, because the variance in the permanent value function is mitigated, and the
transient value function in fact is more stable. For large values of k, the transient value function
receives enough updates before the permanent value function is trained, to attain low prediction error.
Therefore, the updates to the permanent value function are effective, and the transient predictions
can be decayed more aggressively. More surprisingly, if the frequency of the permanent updates is
significantly higher or significantly lower than the frequency of task changes, the overall performance
is marginally affected, but remains better than for Q-learning (indicated using black dotted line) for
most k and λ values. In fact, for each k, there is at least one λ value for which the performance of
the proposed algorithm exceeds the Q-learning baseline. So, in practice, we could fix one of these
hyperparameters beforehand and tune only the second. We suspect that the two parameters could be
unified into a single one, but this is left for future work.

6.1 Experiments

We test our algorithm on two domains: JellyBeanWorld (JBW) [31] and MinAtar [51]. We chose
these domains because of the relatively lighter computational requirements, which still allow us to
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sweep a range of hyperparameters and to report statistical results averaged over 30 seeds. We include
architecture and further training details in Appendix (Sec. C.1.5, C.1.6).
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Figure 4: λ and k analysis.

JellyBeanWorld is a benchmark to test continual RL algorithms [31].
The environment is a two-dimensional infinite grid with three types of
items: blue, red, and green, which carry different rewards for different
tasks as detailed in Sec. C.1.5. In addition to reward non-stationarity,
the environment has spatial non-stationarity as shown in Fig. 5a. The
agent observes an egocentric 11x11 RGB image and chooses one of
the four usual navigation actions. We run 2.1M timesteps, with the
task changing every 150k steps. The discount factor is 0.9.

MinAtar is a standard benchmark for testing single-task RL algo-
rithms [51]. We use the breakout, freeway, and space invaders envi-
ronments. We run for 3.5M steps and setup a continual RL problem,
by randomly picking one of these tasks every 500k steps. We stan-
dardize the observations across tasks by padding with 0s when needed
and we make all the actions available to the agent. This problem has non-stationarity in transitions,
rewards and observations making it quite challenging. The discount factor is 0.99. More details are
included in Appendix (Sec. C.1.6).

Baselines: We compare our method with DQN, two DQN variants, and a uniformly random policy.
For the first baseline, we use a large experience replay buffer, an approach which was proposed
recently as a viable option for continual RL [8]. The second baseline, DQN with multiple heads,
uses a common trunk to learn features and separate heads to learn Q-values for the three tasks. This
requires knowing the identity of the current task to select the appropriate head. We use this baseline
because it is a standard approach for multi-task RL, and intuitively, it provides an upper bound on the
performance. This approach is not suitable if the number of tasks is very high, or if the problem is
truly continual and not multi-task. For our approach, we use half the number of parameters as that
of DQN for both permanent and transient value networks to ensure the total number of parameters
across all baselines are same — hence the name PT-DQN-0.5x.3
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(a) JellyBeanWorld.

DQN PT-DQN-0.5x (ours) DQN-multi-head DQN-large buffer Random

(b) JellyBeanWorld Results. (c) MinAtar.

DQN
PT-DQN-0.5x (ours)

DQN-multi-head
DQN-large buffer

Random

(d) MinAtar results.

Figure 5: (a) JellyBeanWorld task. (b) Results: JellyBeanWorld. (c) MinAtar tasks. (d) Results:
MinAtar.

Results are presented in Fig. 5 and the pseudocode of PT-DQN is included in Appendix C.1.4. For
JBW experiment, we plot the reward obtained per timestep over a 10k step window (reward rate) as a
function of time. For MinAtar, we plot the return averaged over the past 100 episodes. Our method,
PT-DQN-0.5x, performs better than all the baselines. The performance boost is large in the JBW
experiment, where the rewards are completely flipped, and still favourable in the MinAtar experiment.
DQN’s performance drops over time when it needs to learn conflicting Q-values, as seen in the JBW
results. DQN also needs a large number of samples to overcome the bias in its estimates when the
task changes. Surprisingly, multi-headed DQN performs poorly compared to our method, despite
having the additional task boundary information. The weights of the trunk are shared, and they vary
continuously over time. Therefore, the weights at the head become stale compared to the features,
which degrades performance. These findings may be different if the trunk were pre-trained and then
fixed, with only the heads being fine-tuned, or if the networks were much bigger (which is however
not warranted for the scale of our experiment). Augmenting DQN with a large experience replay
is detrimental for general non-stationary problem, based on our experiments. This is because the
samples stored in the replay buffer become outdated, so using these samples hampers the agent’s
ability to track environment changes.

3Strictly speaking, DQN-based baselines use more parameters compared with ours because their target
networks are 2x larger than the target network of the transient value function.
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7 Discussion

Designing agents that can learn continually, from a single stream of experience, is a crucial challenge
in RL. In this paper, we took a step in this direction by leveraging intuitions from complementary
learning systems, and decomposing the value function into permanent and transient components. The
permanent component is updated slowly to learn general estimates, while the transient component
computes corrections quickly to adapt these estimates to changes. We presented versions adapted to
both semi and fully continual problems, and showed empirically that this idea can be useful. The
theoretical results provide some intuition on the convergence and speed of our approach.

The non-stationarity in our experiments is much more challenging, including arbitrary reward
changes, as well as dynamics and observation changes, compared to other works, which use specific
structure, or rely on a curriculum of tasks (thereby limiting non-stationarity). Our approach provided
improvements in performance compared to the natural TD-learning and Q-learning baselines.

Our approach performs fast and slow interplay at various levels. The permanent value function is
updated at a slower timescale (every k steps or at the end of the task); The transient value function is
updated at a faster timescale (every timestep). The permanent value function is updated to capture
some part of the value function from the agent’s entire experience (generalization), which is a slow
process; The transient value function adapts the estimates to a specific situation, which is a fast
process. The permanent value function is updated using a smaller learning rate (slow), but the
transient value function is updated using a larger learning rate (fast) [3].

7.1 Limitations and Future Work

While we focused on illustrating the idea of permanent and transient components with value-based
algorithms with discrete action spaces, the approach is general and could in principle be used with
policy gradient approaches. One could use the proposed value function estimates to compute the
gradient of the policy (represented as a separate approximator) in actor-critic methods. Another
possibility is to have a "permanent" policy, which is corrected by a transient component to adapt
to the task at hand. These directions would be interesting to explore. Our idea can be extended to
learning General Value Functions [47] too.

Our theoretical analysis is limited to piece-wise non-stationarity, where the environment is stable
for some period of time. An interesting direction would be to extend our approach to other types of
non-stationarity, such as continuous wear and tear of robotic parts.

Another important future direction is to consider distinct feature spaces for the permanent and
transient components, as done in Silver et al. [38]. This would likely increase the ability to trade
off stability and plasticity. Another direction to better control the stability and plasticity trade-off is
by learning the frequency parameter k and the decay parameter λ using meta objectives [16]; We
suspect there’s a relation between the two parameters that can unify them into a single one.

Our approach can also be used to bridge offline pre-training and online fine-tuning of RL agents.
The permanent value function can be learnt using offline data and these estimates can be adjusted by
computing corrections using the transient value function using online interaction data.
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Appendix

A Control algorithm

The action-value function can be decomposed into two components as:

Q(PT )(s, a) = Q
(P )
θ (s, a) +Q(T )

w (s, a), (6)

The updates for permanent value function are:

θk+1 ← θk + αk(Q̂(Sk, Ak)−Q(P )
θ (Sk, Ak))∇θQ(P )

θ (Sk, Ak). (7)

where α is the learning rate. An update rule similar to Q-learning can be used for the transient value
function:

wt+1 ← wt + αtδt∇wQ
(T )
w (St, At), (8)

where δt = Rt+1 + γmaxaQ
(PT )(St+1, a)−Q(PT )(St, At) is the TD error.

Algorithm 3 PT-Q-learning (Control)

1: Initialize: Buffer B, θ, w
2: for t : 0→∞ do
3: Take action At
4: Store St, At in B
5: Observe Rt+1, St+1

6: Update w using Eq. (8)
7: if Task Ends then
8: Update θ using B and Eq. (7)
9: Reset transient value function, w

10: Reset B
11: end if
12: end for

B Proofs

B.1 Transient Value Function Results

We carry out the analysis by fixing V (P ) and only updating V (T ) using samples from one particular
task. We use V (TD)

t and V (PT )
t to denote the value function estimates at time t learned using TD

learning and Alg. 1 respectively.

Theorem B.1.1. If V (TD)
0 = V (P ), V (T )

0 = 0 and the two algorithms train on the same samples
using the same learning rates, then ∀t, V (PT )

t = V
(TD)
t .

Proof. We use induction to prove this statement.

Base case: When t = 0, the PT-estimate of state s is V (PT )
0 (s) = V (P )(s) + V

(T )
0 (s) = V (P )(s).

And, the TD estimate of state s is V (TD)
0 (s) = V (P )(s). Therefore, both PT and TD estimates are

equal.

Induction hypothesis: PT and TD estimates are equal for some timestep k for all states. That is,
V

(PT )
k (s) = V (P )(s) + V

(T )
k (s) = V

(TD)
k (s).

Induction step: PT estimates at timestep k + 1 is

V
(PT )
k+1 (s) = V (P )(s) + V

(T )
k+1(s),

= V (P )(s) + V
(T )
k (s) + αk+1(Rk+1 + γ(V (P )(Sk+1) + V

(T )
t (Sk+1))− V (P )(s)− V (T )

k (s)),
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= V
(PT )
k (s) + αk+1(Rk+1 + γV

(PT )
k (Sk+1)− V (PT )

k (s)),

= V
(TD)
k (s) + αk+1(Rt+1 + γV

(TD)
k (St+1)− V (TD)

k (s)),

= V
(TD)
k+1 (s).

The penultimate step follows from the induction hypothesis completing the proof.

Theorem B.1.2. The expected target in the transient value function update rule is a contraction-
mapping Bellman operator: T (T )V (T ) = rπ + γPπV (P ) − V (P ) + γPπV (T ).

Proof. The target for state s at timestep t in the transient value function update rule is Rt+1 +
γV (P )(St+1)− V (P )(s) + γV (T )(St+1). The expected target is:

T (T )V (T )(s) = Eπ[Rt+1 + γV (P )(St+1)− V (P )(s) + γV (T )(St+1)|St = s],

= rπ(s) + γ(PπV (P ))(s)− V (P )(s) + γ(PπV (T ))(s).

We get the operator by expressing the above equation in the vector form:

T (T )V (T ) = rπ + γPπV (P ) − V (P ) + γPπV (T ).

For contraction proof, consider two vectors u, v ∈ R|S|.∥∥∥T (T )u− T (T )v
∥∥∥
∞

=
∥∥∥rπ + γPπV (P ) − V (P ) + γPπu− (rπ + γPπV (P ) − V (P ) + γPπv)

∥∥∥
∞
,

= ‖γPπ(u− v)‖∞ ,

≤ γ ‖u− v‖∞ .

Therefore, the transient value function Bellman operator is a contraction mapping with contraction
factor γ.

Theorem B.1.3. The unique fixed point of the transient operator is (I − γPπ)−1rπ − V (P ).

Proof. We get the fixed point, V (T )
π , by repeatedly applying the operator to a vector v:

V (T )
π = rπ + γPπV (P ) − V (P ) + γPπv,

= rπ + γPπV (P ) − V (P ) + γPπ(rπ + γPπV (P ) − V (P ) + γPπv),

= rπ + γPπrπ + (γPπ)2V (P ) − V (P ) + (γPπ)2v,

= rπ + γPπrπ + (γPπ)2V (P ) + · · ·+ (γPπ)nV (P ) − V (P ) + (γPπ)nv,

= (I − γPπ)−1rπ − V (P ).

We applied the operator to v in steps 1 to 4 and used the property limn→∞ (γPπ)n → 0 in the
penultimate step as γPπ is a sub-stochastic matrix. Many terms cancel out as it is a telescoping
sum.

Theorem B.1.4. Let M be an MDP in which the agent is performing transient value function
updates for π. Define an MRP, M̃, with state space S̃ : {(St, At, St+1),∀t}, transition dynamics
P̃(x′|x, a′) = P(s′′|s′, a′), ∀x, x′ ∈ S̃,∀s′, s′′ ∈ S,∀a′ ∈ A and reward function R̃(x, a′) =

R(s, a) + γV (P )(s′)− V (P )(s). Then, the fixed point of Eq.(5) is the value function of π in M̃.

Proof. The state space of the new MDP M̃ is made up of all possible consecutive tuples
of (St, At, St+1) pairs. The rewards in this MDP are defined as R̃(x, a′) = R(s, a) +

γV (P )(s′) − V (P )(s),∀x ∈ S̃,∀a′ ∈ A. The transition matrix P̃(x′|x, a′) = prob(x′|x, a′) =
prob(s′, a′, s′′|s, a, s′, a′) = prob(s′′|s′, a′) = P(s′′|s′, a′) using Markov property ofM. Then, the
value of state x = (s, a, s′) is:

vπ(x) = vπ(s, a, s′) = Eτ [Zt|Xt = (s, a, s′)],
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where Zt =
∑∞
k=t γ

k−tR̃k+1 is the returns starting from state Xt = (s, a, s′). Without loss of
generality, consider a sample trajectory generated according to π, τk = (S0 = s,A0 = a,R1, S1 =
s′, A1, R2, S2, A2, R3, . . . , RT , ST ) where ST is the terminal state. The returns Zτk of this trajectory
is:

Zτk =

∞∑
k=0

γkR̃k+1

=

∞∑
k=0

γk(Rk+1 + γV (P )(Sk+1)− V (P )(Sk)),

=

∞∑
k=0

γkRk+1 − V (P )(S0 = s),

= Gτk − V (P )(s).

Returns of every trajectory end up being the difference between the returns in the original MDP, Gτk
and the permanent value function. Most importantly, these returns only depend on the state s and it is
the same for all a and s′ choices following s. The value of state x = (s, a, s′) can then be simplified
using this observation:

vπ(s, a, s′) = Eτ [Zt|Xt = (s, a, s′)],

= Eτ [Gt − V (P )(s)|St = s,At = ·, St+1 = ·],

= V (T )
π (s).

B.2 Permanent Value Function Results

We focus on permanent value function in the next two theorems. First, we characterize the fixed
point of the permanent value function. We use assumption 1 on the task distribution for the following
proofs:
Theorem B.2.1. Following Theorem 2, under assumption 1 and Robbins-Monro step-size conditions,
the sequence of updates computed by Eq.(4) contracts to a unique fixed point Eτ [vτ ].

Proof. The permanent value function is updated using Eq. (4) and samples stored in the buffer B at
the end of each task. This update rule can be simplified as:

V
(P )
k+1(s)← V

(P )
k (s) + αk

L∑
i=1

I(si=s)(V
(PT )
τ (s)− V (P )

k (s)),

= V
(P )
k (s) + αk(V (PT )

τ (s)− V (P )
k (s))

L∑
i=1

I(si=s),

= V
(P )
k (s) + αkL(s)(V (PT )

τ (s)− V (P )
k (s)),

= V
(P )
k (s) + α̃k(s)(V (PT )

τ (s)− V (P )
k (s)),

where L is the length of the buffer, I is the indicator function, L(s) is the number of samples for state
s in the buffer B, α̃k(s) = αkL(s). The above update is performed once for every state in B at the
end of each task. We assume that the buffer has enough samples for each state so that all states are
updated. This can be ensured by storing all the samples in B for a long but finite period of time. The
updates performed to permanent value function until that timestep will not affect the fixed point since
we are in the tabular setting.

Let the sequence of learning rate α̃k(s) obey the conditions:
∑∞
n=1 α̃n(s) =∞ and

∑∞
n=1 α̃

2
n(s) =

0.

We can rewrite the PM update rule by separating the noise term:

V
(P )
k+1(s)← V

(P )
k (s) + α̃k(s)(V (PT )

τ (s)− V (P )
k (s)),
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= V
(P )
k (s) + α̃k(s)(E[V (PT )

τ (s)]− V (P )
k (s) + V (PT )

τ (s)− E[V (PT )
τ (s)]),

= V
(P )
k (s) + α̃k(s)(E[V (PT )

τ (s)]− V (P )
k (s) + wk).

Let Fk denote the history of the algorithm. Then, E[wk(s)|Fk] = E[V
(PT )
τ (s)− E[V

(PT )
τ (s)]] = 0

and under the assumption E[w2
k(s)|Fk] ≤ A+BV

(P )
k

2
(s) (finite noise variance), we conclude that

the permanent value function converges to E[V
(PT )
τ (s)]. But E[V

(PT )
τ (s)] is contracting towards

E[vτ (s)], therefore, the permanent value function is contracting towards E[vτ (s)].

Theorem B.2.2. The fixed point of the permanent value function optimizes the jumpstart objective,
J = arg minu∈R|S|

1
2Eτ [‖u− vτ‖22].

Proof. The jumpstart objective function is given by J = arg minu∈R|S|
1
2Eτ [‖u− vτ‖22]. Let K =

1
2Eτ [‖u− vτ‖22. We get the optimal point by differentiating K with respect to u and then equating it
to 0:

∇uK = ∇u
(

1

2
Eτ [‖u− vτ‖22]

)
,

=
1

2
Eτ [∇u ‖u− vτ‖22],

=
1

2
Eτ [2(u− vτ )],

= u− Eτ [vτ ],

0 = u− Eτ [vτ ],

u = Eτ [vτ ].

Therefore, the fixed point of the permanent value function also optimizes the jumpstart objective.

B.3 Semi-Continual RL Results

We assume that at time t, both V (TD) and V (PT ) have converged to the true value function of task i
and the agent gets samples from task τ from timestep t+ 1 onward for the following theorems.

Theorem B.3.1. Under assumption 1, there exists k0 such that ∀k ≥ k0, Eτ [
∥∥∥V (TD)

t+k − vi
∥∥∥2
2
] >

Eτ [
∥∥V (P ) − vi

∥∥2
2
], ∀i.

Proof. Let
∥∥V (P ) − vi

∥∥2
2

= Di, which is a constant because we are updating transient value function
only. Let ‖vτ − vi‖22 = ∆τ,i denote the distance between value functions of two tasks i and τ .

Clearly, ∆τ,i = ∆i,τ 6= 0 and ∆i,i = 0. And, let Erri,τt =
∥∥∥V (TD)

t − vi
∥∥∥2
2

denote prediction error
with respect to the previous task i at timestep t for TD estimates.

At timestep t, V (PT ) = V (TD) = vi. The agent starts getting samples from task τ from timestep
t+ 1. Using the result from Bhandari et al. [6]:∥∥∥V (TD)

t+1 − vτ
∥∥∥2
2
≤ exp

{
−ω(1− γ2)

4

}∥∥∥V (TD)
t − vτ

∥∥∥2
2
,

= exp

{
−(1− γ2)

4

}
∆τ,i,

since the smallest eigenvalue of the feature matrix ω = 1 for tabular approximations. Let C =

exp{−(1−γ
2)

4 }. Now we can apply the above result recursively for k timesteps to get∥∥∥V (TD)
t+k − vτ

∥∥∥2
2
≤ Ck∆τ,i.
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Then the error with respect to the past task after k timesteps is,

Erri,τt+k ≥ ∆τ,i − Ck∆τ,i = ∆τ,i(1− Ck).

Taking the expectation with respect to τ gives

Eτ [Erri,τt+k] =
∑
τ

pτErr
i,τ
t+k,

≥
∑
τ

pτ∆τ,i(1− Ck),

≥ (1− Ck)Eτ [∆τ,i].

Now we will find a timestep k0 such that ∀k > k0, Eτ [Erri,τt+k] > Di. Let ki denote the timestep for
which (1− Cki)Eτ [∆τ,i] = Di. Then,

(1− Cki)Eτ [∆τ,i] = Di,

(1− Cki) =
Di

Eτ [∆τ,i]
,

Cki =
Eτ [∆τ,i]−Di

Eτ [∆τ,i]
,

ki =
1

logC
log

(
Eτ [∆τ,i]−Di

Eτ [∆τ,i]

)
.

So, after time t+ ki, V (P ) is a better estimate of the value function of the past task i than the current
TD estimates. Then, by letting k0 = maxi ki we have Eτ [Erri,τt+k0 ] > Di,∀i.

Note that the above result depends on the fact that ki exists, which is only possible when Eτ [∆τ,i]−
Di > 0. We will now show that there exists at least one solution, the fixed point of the permanent
value function (Eτ [vτ ]), which satisfies this constraint.

Eτ [∆τ,i] > ‖Eτ [vi − vτ ]‖22 , (Using Jensen’s inequality)

= ‖vi − Eτ [vτ ]‖22 .

Then,

Eτ [∆τ,i]−Di > ‖vi − Eτ [vτ ]‖22 −Di = 0.

The final step follows from the fact that Di =
∥∥V (P ) − vi

∥∥2
2

= ‖Eτ [vτ ]− vi‖22 for V (P ) fixed
point.

Next, we show that our method has tighter upper bound on errors compared with the TD learning
algorithm in expectation.

Theorem B.3.2. Under assumption 1, there exists k0 such that ∀k ≤ k0, Eτ
[∥∥∥vτ − V (PT )

t+k

∥∥∥2
2

]
has

a tighter upper bound compared with Eτ
[∥∥∥vτ − V (TD)

t+k

∥∥∥2
2

]
, ∀i.

Proof. We assume that V (P ) is converged to its fixed point, Eτ [vτ ] (Theorem 5). Using sample
complexity bounds from Bhandari et al. [6] for TD learning algorithm, we get:

Eτ
[∥∥∥vτ − V (TD)

t+k

∥∥∥2
2

]
≤ Eτ

[
exp

{
−
(

(1− γ)2ω

4

)
T

}∥∥∥vτ − V (TD)
t

∥∥∥2
2

]
,

= exp

{
−
(

(1− γ)2ω

4

)
T

}
Eτ
[∥∥∥vτ − V (TD)

t

∥∥∥2
2

]
.
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We know that our algorithm can be interpreted as TD learning with V (P ) as the starting point (see
Theorem 1). Using this relationship, we can apply the sample complexity bound to get:

Eτ
[∥∥∥vτ − V (PT )

t+k

∥∥∥2
2

]
≤ Eτ

[
exp

{
−
(

(1− γ)2ω

4

)
T

}∥∥∥vτ − V (P )
t

∥∥∥2
2

]
,

= exp

{
−
(

(1− γ)2ω

4

)
T

}
Eτ
[∥∥∥vτ − V (P )

t

∥∥∥2
2

]
.

For k = 0, we know that our algorithm has lower error in expectation (see Theorem 6), that is

Eτ
[∥∥∥vτ − V (P )

t

∥∥∥2
2

]
≤ Eτ

[∥∥∥vτ − V (TD)
t

∥∥∥2
2

]
. Therefore, the error bound for our algorithm is

tighter compared with that of TD learning algorithm. As k → ∞, the right hand side of both the
equations goes to 0, which confirms that both algorithms converges to the true value function.

The theorem shows that the estimates for our algorithm lie within a smaller region compared to that
of TD learning estimates. This doesn’t guarantee low errors for our algorithms, but we can expect it
to be closer to the true value function.

The next theorems contain analytical MSE equations for TD-learning and for our algorithm. Our
analysis is similar to that of [42], but we don’t assume that rewards are only observed in the final
transition. Analytical MSE equations allow calculating the exact MSE that an algorithm would incur
at each timestep when applied to a problem, instead of averaging the performance over several seeds,
which is the first step towards other analyses such as bias-variance decomposition of value estimates,
error bounds and bias-variance bounds, step-size adaptation for the update rule, etc. We use these
equations to compare our method against TD-learning when varying the task distribution diameter
(Sec. C.2).

We assume that the agent gets N i.i.d samples 〈s, r, s′〉 from task τ in each round, where s is sampled
according to the stationary distribution dτ . Also, the agent accumulates errors from all the samples
and updates its estimates at the end of the round t. Let Eseeds denote the expectation with respect to
random seeds, i.e., expectation with respect to the data generation process which generates the data
that the agent observes over rounds and within a round.
Theorem B.3.3. Let:

m
(TD)
t (s) = Eseeds[V (TD)

t (s)],

Cov(V
(TD)
t (s), V

(TD)
t (x)) = Σ

(TD)
t (s, x)−m(TD)

t (s)m
(TD)
t (x),

where Σ
(TD)
t (s, x) = Eseeds[V (TD)

t (s)V
(TD)
t (s)]. We have:

m
(TD)
t+1 (s) = m

(TD)
t (s) + αNdπ(s)∆

(TD)
t (s),

Σ
(TD)
t+1 (s, x) = Σ

(TD)
t (s, x) + αΩ

(TD)
t (s, x) + α2Ψ

(TD)
t (s, x),

and, the mean squared error ξ(TD)
t at timestep t is

ξ
(TD)
t+1 = ξ

(TD)
t + α

∑
s∈S

dπ(s)(−2vπ(s)∆
(TD)
t (s) + Ω

(TD)
t (s, s))

+ α2
∑
s∈S

dπ(s)Ψ
(TD)
t (s, s).

Proof.

m
(TD)
t+1 (s) = Eseeds[V (TD)

t+1 (s)],

= Eseeds

[
V

(TD)
t (s) + α

N∑
k=1

ISk=s(Rk + γV
(TD)
t (S′k)− V (TD)

t (s))

]
,

= m
(TD)
t (s) + α

N∑
k=1

Eseeds[ISk=s(Rk + γV
(TD)
t (S′k)− V (TD)

t (s))],
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= m
(TD)
t (s) + α

N∑
k=1

Eseeds
[
E[ISk=s(Rk + γV

(TD)
t (S′k)− V (TD)

t (s))|seed]
]
,

= m
(TD)
t (s) + α

N∑
k=1

Eseeds
[
d̂π(s)E[(Rk + γV

(TD)
t (S′k)− V (TD)

t (s))|seed, Sk = s]
]
,

= m
(TD)
t (s) + α

N∑
k=1

Eseeds

d̂π(s)(r̂π(s) + γ(P̂π = V
(TD)
t )(s)− V (TD)

t (s))︸ ︷︷ ︸
Independent quantities

 ,
= m

(TD)
t (s) + α

N∑
k=1

dπ(s)(rπ(s) + γ(Pπm(TD)
t )(s)−m(TD)

t (s))],

= m
(TD)
t (s) + αNdπ(s)(rπ(s) + γ(Pπm(TD)

t )(s)−m(TD)
t (s))],

m
(TD)
t+1 (s) = m

(TD)
t (s) + α∆

(TD)
t (s),

where ∆
(TD)
t (s) = rπ(s) + γ(Pπm(TD)

t )(s) − m(TD)
t (s). We used the following results in the

proof:

1. Eseeds[d̂π(s)r̂π(s)] = Eseeds[d̂π(s)] Eseeds[r̂π(s)] = dπ(s)rπ(s).

2. Eseeds[d̂π(s)γ(P̂πV (TD)
t )(s)] = γEseeds[d̂π(s)] Eseeds[(P̂πV (TD)

t )(s)],

= γdπ(s)
∑
s′

Eseeds[P̂π(s′|s)V (TD)
t (s′)],

= γdπ(s)
∑
s′

Pπ(s′|s)m(TD)
t (s′)],

= γdπ(s)(Pπm(TD)
t )(s).

3. Eseeds[d̂π(s)V
(TD)
t (s)] = Eseeds[d̂π(s)] Eseeds[V (TD)

t (s)] = dπ(s)m
(TD)
t (s).

Now consider Σ
(TD)
t+1 (s, x),

Σ
(TD)
t+1 (s, x) = Eseeds[V (TD)

t+1 (s)V
(TD)
t+1 (x)],

= Eseeds

[(
V

(TD)
t (s) + α

N∑
k=1

ISk=s(Rk + γV
(TD)
t (S′k)− V (TD)

t (s))V
(TD)
t+1 (x)

)
(
V

(TD)
t (x) + α

N∑
l=1

ISl=x(Rl + γV
(TD)
t (X ′l)− V

(TD)
t (x))

)]
,

= Eseeds[V (TD)
t (s)V

(TD)
t (x)]

+ αEseeds

[
V

(TD)
t (s)

(
N∑
l=1

ISl=x(Rl + γV
(TD)
t (X ′l)− V

(TD)
t (x))

)]
(9)

+ αEseeds

[
V

(TD)
t (x)

(
N∑
k=1

ISk=s(Rk + γV
(TD)
t (S′k)− V (TD)

t (s))

)]
(10)

+ α2Eseeds

[(
N∑
k=1

ISk=s(Rk + γV
(TD)
t (S′k)− V (TD)

t (s))

)
(

N∑
l=1

ISl=x(Rl + γV
(TD)
t (X ′l)− V

(TD)
t (x))

)]
(11)
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Next, we will tackle each part separately. We will begin with Eq (9):

Eseeds

[
V

(TD)
t (s)

(
N∑
l=1

ISl=x(Rl + γV
(TD)
t (X ′l)− V

(TD)
t (x))

)]

= Eseeds

[
V

(TD)
t (s)

N∑
l=1

E[(ISl=x(Rl + γV
(TD)
t (X ′l)− V

(TD)
t (x)))|seed]

]
,

= Eseeds[V (TD)
t (s)Nd̂π(x)(r̂π(x) + γ(P̂πV (TD)

t )(x)− V (TD)(x))],

= NEseeds[d̂π(x)r̂π(x)V
(TD)
t (s)] + γNEseeds[d̂π(x)(P̂πV (TD)

t )(x)V
(TD)
t (s)]

−NEseeds[d̂π(x)V
(TD)
t (x)V

(TD)
t (s)],

= Ndπ(x)rπ(x)m(TD)(s) + γNdπ(x)Eseeds

[∑
x′

P̂π(x′|x)V
(TD)
t (x′)V

(TD)
t (x)

]
−Ndπ(x)Σ

(TD)
t (s, x),

= Ndπ(x)

(
rπ(x)m

(TD)
t (s) + γ

∑
x′

Eseeds[P̂π(x′|x)V
(TD)
t (x′)V

(TD)
t (x)]− Σ

(TD)
t (s, x)

)
,

= Ndπ(x)

(
rπ(x)m

(TD)
t (s) + γ

∑
x′

Pπ(x′|x)Σ
(TD)
t (x′, s)− Σ

(TD)
t (s, x)

)
,

= Ndπ(x)
(
rπ(x)m

(TD)
t (s) + γ(PπΣ

(TD)
t )(x, s)− Σ

(TD)
t (s, x)

)
.

A similar simplification can be done to Eq. (10) which results in:

(10) = Ndπ(s)
(
rπ(s)m(TD)(x) + γ(PπΣ

(TD)
t )(s, x)− Σ

(TD)
t (x, s)

)
.

We will break down Eq. (11) into 9 parts and simplify each of them separately.

(11) = Eseeds

[(
N∑
k=1

ISk=sRk

)(
N∑
l=1

ISl=xRl

)]
(12)

+ γEseeds

[(
N∑
k=1

ISk=sRk

)(
N∑
l=1

ISl=xV
(TD)
t (X ′l)

)]
(13)

− Eseeds

[(
N∑
k=1

ISk=sRk

)(
N∑
l=1

ISl=xV
(TD)
t (x)

)]
(14)

+ γEseeds

[(
N∑
k=1

ISk=sV
(TD)
t (S′k)

)(
N∑
l=1

ISl=xRl

)]
(15)

+ γ2Eseeds

[(
N∑
k=1

ISk=sV
(TD)
t (S′k)

)(
N∑
l=1

ISl=xV
(TD)
t (X ′l)

)]
(16)

− γEseeds

[(
N∑
k=1

ISk=sV
(TD)
t (S′k)

)(
N∑
l=1

ISl=xV
(TD)
t (x)

)]
(17)

− Eseeds

[(
N∑
k=1

ISk=sV
(TD)
t (s)

)(
N∑
l=1

ISl=xRl

)]
(18)

− γEseeds

[(
N∑
k=1

ISk=sV
(TD)
t (s)

)(
N∑
l=1

ISl=xV
(TD)
t (X ′l)

)]
(19)

+ Eseeds

[(
N∑
k=1

ISk=sV
(TD)
t (s)

)(
N∑
l=1

ISl=xV
(TD)
t (x)

)]
. (20)
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Consider Eq. (12)

Eseeds

[(
N∑
k=1

ISk=sRk

)(
N∑
l=1

ISl=xRl

)]
= Eseeds

[
E

[(
N∑
k=1

ISk=sRk

)(
N∑
l=1

ISl=xRl

)
|seed

]]
,

= Eseeds

[
E

[(
N∑
k=1

ISk=sRk

) N∑
l=1,
l 6=k

ISl=xRl

 |seed
]]

+ Eseeds

[
E

[(
N∑
m=1

ISm=sISm=xRmRm

)
|seed

]]
,

= Eseeds

[
E

[(
N∑
k=1

ISk=sRk

)
|seed

]
E

[ N∑
l=1,
l 6=k

ISl=xRl

 |seed
]]

+ Is=xEseeds

[
N∑
m=1

d̂π(s)E[R2
m|seed, Sm = s]

]
,

= Eseeds

[
N∑
k=1

d̂π(s)r̂π(s)

N∑
l=1,
l 6=k

d̂π(x)r̂π(x)

]
+ Is=x

N∑
m=1

Eseeds[d̂π(s)(ĉ(s) + r̂π
2(s)],

=

N∑
k=1

N∑
l=1,
l 6=k

Eseeds[d̂π(s)r̂π(s)d̂π(x)r̂π(x)] + Is=xNdπ(s)
(
c(s) + r2π(s)

)
,

= N(N − 1)dπ(s)dπ(x)rπ(s)rπ(x) + Is=xNdπ(s)
(
c(s) + r2π(s)

)
.

We have used the i.i.d assumption to separate the terms. Later, we used the indicator function to
indicate the part which is non-zero. Also, we have used the definition of the second moment in the
penultimate step.

We do a similar simplification to Eq. (13) now.

γEseeds

[(
N∑
k=1

ISk=sRk

)(
N∑
l=1

ISl=xV
(TD)
t (X ′l)

)]

= γEseeds

 N∑
k=1

N∑
l=1,
l 6=k

ISk=sISl=xRkV
(TD)
t (X ′l)

+ γEseeds

[
N∑
m=1

ISm=sISm=xRmV
(TD)
t (X ′m)

]
,

= γEseeds

 N∑
k=1

N∑
l=1,
l 6=k

E[ISk=sISl=xRkV
(TD)
t (X ′l)|seed]

+ γIs=x
N∑
m=1

Eseeds[E[ISm=sISm=xRmV
(TD)
t (X ′m)|seed]],

= γEseeds

 N∑
k=1

N∑
l=1,
l 6=k

d̂π(s)d̂π(x)r̂π(s)(P̂πV (TD)
t )(x)

+ γIs=xNEseeds[d̂π(s)rπ(s)(P̂πV (TD)
t )(s)],

= γN(N − 1)dπ(s)dπ(x)rπ(s)(Pπm(TD)
t )(x) + γIs=xNdπ(s)rπ(s)(Pπm(TD)

t )(s)

We will simplify Eq. (14) now.

Eseeds

[(
N∑
k=1

ISk=sRk

)(
N∑
l=1

ISl=xV
(TD)
t (x)

)]
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= Eseeds

 N∑
k=1

N∑
l=1,
l 6=k

ISk=sISl=xRkV
(TD)
t (x)

+ Eseeds

[
N∑
m=1

ISm=sISm=xRmV
(TD)
t (x)

]

= Eseeds

 N∑
k=1

N∑
l=1,
l 6=k

E[ISk=sISl=xRkV
(TD)
t (x)|seed]

+ Is=x
N∑
m=1

Eseeds[E[ISm=sISm=xRmV
(TD)
t (x)|seed]],

= Eseeds

 N∑
k=1

N∑
l=1,
l 6=k

d̂π(s)d̂π(x)r̂π(s)V
(TD)
t (x)

+ Is=xNEseeds[d̂π(s)rπ(s)V
(TD)
t (s)],

= N(N − 1)dπ(s)dπ(x)rπ(s)m
(TD)
t (x) + Is=xNdπ(s)rπ(s)m

(TD)
t (s)

The next expression Eq. (15) is similar to Eq. (13) and therefore, we skip the simplification details.

γEseeds

[(
N∑
k=1

ISk=sV
(TD)
t (S′k)

)(
N∑
l=1

ISl=xRl

)]

= γN(N − 1)dπ(s)dπ(x)rπ(x)(Pπm(TD)
t )(s) + γIs=xNdπ(s)rπ(s)(Pπm(TD)

t )(s)

Now, we simplify (16),

γ2Eseeds

[(
N∑
k=1

ISk=sV
(TD)
t (S′k)

)(
N∑
l=1

ISl=xV
(TD)
t (X ′l)

)]

= γ2Eseeds

 N∑
k=1

N∑
l=1,
l 6=k

ISk=sISl=xV
(TD)
t (S′k)V

(TD)
t (X ′l)

+ γ2Eseeds

[
N∑
m=1

ISm=sISm=xV
(TD)
t (S′m)V

(TD)
t (X ′m)

]

= γ2Eseeds

 N∑
k=1

N∑
l=1,
l 6=k

E[ISk=sISl=xV
(TD)
t (S′k)V

(TD)
t (X ′l)|seed]


+ γ2Is=x

N∑
m=1

Eseeds[E[ISm=sISm=xV
(TD)
t (S′m)V

(TD)
t (X ′m)|seed]],

= γ2Eseeds

 N∑
k=1

N∑
l=1,
l 6=k

d̂π(s)d̂π(x)(P̂πV (TD)
t )(s)(P̂πV (TD)

t )(x)


+ γ2Is=x

N∑
m=1

Eseeds[d̂π(s) (P̂πV (TD)
t )(s)(P̂πV (TD)

t )(x)],

= γ2N(N − 1)dπ(s)dπ(x)(PπΣ
(TD)
t PTπ )(s, x) + γ2Is=xNdπ(s)(Pπdiag(Σ

(TD)
t ))(s)

We now consider the next piece Eq. (17),

γEseeds

[(
N∑
k=1

ISk=sV
(TD)
t (S′k)

)(
N∑
l=1

ISl=xV
(TD)
t (x)

)]
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= γEseeds

 N∑
k=1

N∑
l=1,
l 6=k

ISk=sISl=xV
(TD)
t (S′k)V

(TD)
t (x)

+ γEseeds

[
N∑
m=1

ISm=sISm=xV
(TD)
t (S′m)V

(TD)
t (x)

]

= γEseeds

 N∑
k=1

N∑
l=1,
l 6=k

E[ISk=sISl=xV
(TD)
t (S′k)V

(TD)
t (x)|seed]


+ γIs=x

N∑
m=1

Eseeds[E[ISm=sISm=xV
(TD)
t (S′m)V

(TD)
t (x)|seed]],

= γEseeds

 N∑
k=1

N∑
l=1,
l 6=k

d̂π(s)d̂π(x)(P̂πV (TD)
t )(s)V

(TD)
t (x)

+ γIs=x
N∑
m=1

Eseeds[d̂π(s) (P̂πV (TD)
t )(s)V

(TD)
t (s)],

= γN(N − 1)dπ(s)dπ(x)(PπΣ
(TD)
t )(s, x) + γIs=xNdπ(s)(PπΣ

(TD)
t )(s, s).

Simplification of Eq. (18) is similar to Eq. (14).

Eseeds

[(
N∑
k=1

ISk=sV
(TD)
t (s)

)(
N∑
l=1

ISl=xRl

)]

= N(N − 1)dπ(s)dπ(x)rπ(x)m(TD)(s) + Is=xNdπ(s)rπ(s)m(TD)(s).

Also, the simplification of Eq. (19) is similar to that of Eq. (17).

γEseeds

[(
N∑
k=1

ISk=sV
(TD)
t (s)

)(
N∑
l=1

ISl=xV
(TD)
t (X ′l)

)]

= γN(N − 1)dπ(s)dπ(x)(PπΣ
(TD)
t )T (s, x) + γIs=xNdπ(s)(PπΣ

(TD)
t )T (s, s).

We will simplify the final part i.e., Eq. (20).

Eseeds

[(
N∑
k=1

ISk=sV
(TD)
t (s)

)(
N∑
l=1

ISl=xV
(TD)
t (x)

)]

= Eseeds

 N∑
k=1

N∑
l=1,
l 6=k

ISk=sISl=xV
(TD)
t (s)V

(TD)
t (x)

+ Eseeds

[
N∑
m=1

ISm=sISm=xV
(TD)
t (s)V

(TD)
t (x)

]

= Eseeds

 N∑
k=1

N∑
l=1,
l 6=k

E[ISk=sISl=xV
(TD)
t (s)V

(TD)
t (x)|seed]


+ γIs=x

N∑
m=1

Eseeds[E[ISm=sISm=xV
(TD)
t (s)V

(TD)
t (x)|seed]],

= Eseeds

 N∑
k=1

N∑
l=1,
l 6=k

d̂π(s)d̂π(x)V
(TD)
t (s)V

(TD)
t (x)

+ γIs=x
N∑
m=1

Eseeds[d̂π(s)V
(TD)
t (s)V

(TD)
t (s)],

= N(N − 1)dπ(s)dπ(x)Σ
(TD)
t (s, x) + γIs=xNdπ(s)Σ

(TD)
t (s, s).
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We can put all these pieces together to get the desired result.

Σ
(TD)
t (s, x) = Σ

(TD)
t (s, x) + αΩ

(TD)
t (s, x) + α2Ψ

(TD)
t (s, x),

Ω
(TD)
t (s, x) = Ndπ(x)

(
rπ(x)m

(TD)
t (s) + γ(PπΣ

(TD)
t )(x, s)− Σ

(TD)
t (s, x)

)
+Ndπ(s)

(
rπ(s)m

(TD)
t (x) + γ(PπΣ

(TD)
t )(s, x)− Σ

(TD)
t (x, s)

)
,

Ψ
(TD)
t (s, x) = N(N − 1)dπ(s)dπ(x)rπ(s)rπ(x) + Is=xNdπ(s)

(
c(s) + r2π(s)

)
+ γN(N − 1)dπ(s)dπ(x)rπ(s)(Pπm(TD)

t )(x) + γIs=xNdπ(s)rπ(s)(Pπm(TD)
t )(s)

−N(N − 1)dπ(s)dπ(x)rπ(s)m
(TD)
t (x)− Is=xNdπ(s)rπ(s)m

(TD)
t (s)

+ γN(N − 1)dπ(s)dπ(x)rπ(x)(Pπm(TD)
t )(s) + γIs=xNdπ(s)rπ(s)(Pπm(TD)

t )(s)

+ γ2N(N − 1)dπ(s)dπ(x)(PπΣ
(TD)
t PTπ )(s, x) + γ2Is=xNdπ(s)(Pπdiag(Σ

(TD)
t ))(s)

− γN(N − 1)dπ(s)dπ(x)(PπΣ
(TD)
t )(s, x)− γIs=xNdπ(s)(PπΣ

(TD)
t )(s, s)

−N(N − 1)dπ(s)dπ(x)rπ(x)m
(TD)
t (s)− Is=xNdπ(s)rπ(s)m

(TD)
t (s)

− γN(N − 1)dπ(s)dπ(x)(PπΣ
(TD)
t )T (s, x)− γIs=xNdπ(s)(PπΣ

(TD)
t )T (s, s)

+N(N − 1)dπ(s)dπ(x)Σ
(TD)
t (s, x) + Is=xNdπ(s)Σ

(TD)
t (s, s)

We will now prove the final part of the theorem. The mean squared error ξ(TD)
t+1 can be decomposed

into bias and covariance terms:

ξ
(TD)
t+1 =

∑
s

(bias2t+1(s) + Covt+1(s, s)),

=
∑
s

(
(vπ(s)−m(TD)

t+1 (s)) + (Σ
(TD)
t+1 (s, s)−m(TD)

t+1 (s)m
(TD)
t+1 (s))

)
,

=
∑
s

(v2π(s)− 2vπ(s)m
(TD)
t+1 (s) + Σ

(TD)
t+1 (s, s)),

=
∑
s

(
v2π(s)− 2vπ(s)(m

(TD)
t (s) + α∆

(TD)
t (s)) + Σ

(TD)
t (s, s) + αΩ

(TD)
t (s, s) + α2Ψ

(TD)
t (s, s)

)
,

=
∑
s

(
v2π(s)− 2vπ(s)m

(TD)
t (s) + Σ

(TD)
t (s, s)

)
+
∑
s

(
−2αvπ(s)∆

(TD)
t (s)) + αΩ

(TD)
t (s, s) + α2Ψ

(TD)
t (s, s)

)
,

= ξ
(TD)
t + α

∑
s∈S

(−2vπ(s)∆
(TD)
t (s) + Ω

(TD)
t (s, s)) + α2

∑
s∈S

Ψ
(TD)
t (s, s).

Theorem B.3.4. Let Eseeds denote the expectation with respect to seeds. Let

m
(PT )
t (s) = Eseeds[V (PT )

t (s)],

Cov(V
(PT )
t (s), V

(PT )
t (x)) = Σ

(PT )
t (s, x)−m(PT )

t (s)m
(PT )
t (x),

where Σ
(PT )
t (s, x) = Eseeds[V (PT )

t (s)V
(PT )
t (s)]. Then:

m
(PT )
t+1 (s) = m

(PT )
t (s) + αNdπ(s)∆

(PT )
t (s),

Σ
(PT )
t+1 (s, x) = Σ

(PT )
t (s, x) + αΩ

(PT )
t (s, x) + α2Ψ

(PT )
t (s, x),
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and, the mean squared error ξ(PT )
t at timestep t is

ξ
(PT )
t+1 = ξ

(PT )
t + α

∑
s∈S

dπ(s)(−2vπ(s)∆
(PT )
t (s) + Ω

(PT )
t (s, s))

+ α2
∑
s∈S

dπ(s)Ψ
(PT )
t (s, s).

Proof. The proof is similar to that of TD learning algorithm. We have:

m
(PT )
t+1 (s) = m

(PT )
t (s) + αNdπ(s)(rπ(s) + γ(Pπm(PT )

t )(s)−m(PT )
t (s)),

Σ
(PT )
t (s, x) = Σ

(PT )
t (s, x) + αΩ

(PT )
t (s, x) + α2Ψ

(PT )
t (s, x),

Ω
(PT )
t (s, x) = Ndπ(x)

(
rπ(x)m

(PT )
t (s) + γ(PπΣ

(PT )
t )(x, s)− Σ

(PT )
t (s, x)

)
+Ndπ(s)

(
rπ(s)m

(PT )
t (x) + γ(PπΣ

(PT )
t )(s, x)− Σ

(PT )
t (x, s)

)
,

Ψ
(PT )
t (s, x) = N(N − 1)dπ(s)dπ(x)rπ(s)rπ(x) + Is=xNdπ(s)

(
c(s) + r2π(s)

)
+ γN(N − 1)dπ(s)dπ(x)rπ(s)(Pπm(PT )

t )(x) + γIs=xNdπ(s)rπ(s)(Pπm(PT )
t )(s)

−N(N − 1)dπ(s)dπ(x)rπ(s)m
(PT )
t (x)− Is=xNdπ(s)rπ(s)m

(PT )
t (s)

+ γN(N − 1)dπ(s)dπ(x)rπ(x)(Pπm(PT )
t )(s) + γIs=xNdπ(s)rπ(s)(Pπm(PT )

t )(s)

+ γ2N(N − 1)dπ(s)dπ(x)(PπΣ
(PT )
t PTπ )(s, x) + γ2Is=xNdπ(s)(Pπdiag(Σ

(PT )
t ))(s)

− γN(N − 1)dπ(s)dπ(x)(PπΣ
(PT )
t )(s, x)− γIs=xNdπ(s)(PπΣ

(PT )
t )(s, s)

−N(N − 1)dπ(s)dπ(x)rπ(x)m
(PT )
t (s)− Is=xNdπ(s)rπ(s)m

(PT )
t (s)

− γN(N − 1)dπ(s)dπ(x)(PπΣ
(PT )
t )T (s, x)− γIs=xNdπ(s)(PπΣ

(PT )
t )T (s, s)

+N(N − 1)dπ(s)dπ(x)Σ
(PT )
t (s, x) + Is=xNdπ(s)Σ

(PT )
t (s, s)

The MSE recursive equation can be obtained similar to that of TD expression. Therefore, we skip the
details and give the final expression.

ξ
(PT )
t+1 = ξ

(PT )
t + α

∑
s∈S

(−2vπ(s)∆
(PT )
t (s) + Ω

(PT )
t (s, s)) + α2

∑
s∈S

Ψ
(PT )
t (s, s).

C Experiments

Besides providing details for the experiments described in the main paper, we answer additional
interesting questions, such as:

• What is the effect of task distribution on the performance for various methods (Sec. C.2)?

• What is the effect of network capacity on the performance (Sec. C.3)?

• What is the effect of hyperparameters on the performance (Sec. C.4)?

C.1 Additional Details

We begin by providing details of the experiments.

C.1.1 Policy evaluation grids

We modify the rewards of the goal states as described in Table C.1. The true value function for each
task is shown in Fig. C.1. We convert the 5x5 discrete grid into a 48x48 RGB image for the deep RL
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Task ID Reward
Top-Left Top-Right Bottom-Left Bottom-Right

1 0 1 0 1
2 1 0 1 0
3 0 0 1 1
4 1 1 0 0

Table C.1: Rewards at goal states for various tasks.

1 2 3 4 5

1

2

3

4

5

0.0 0.09 0.22 0.48 0.0

0.04 0.09 0.18 0.33 0.53

0.05 0.09 0.16 0.27 0.39

0.04 0.09 0.18 0.33 0.53

0.0 0.09 0.22 0.48 0.0

Task: 1

1 2 3 4 5

1

2

3

4

5

0.0 0.48 0.22 0.09 0.0

0.53 0.33 0.18 0.09 0.04

0.39 0.27 0.16 0.09 0.05

0.53 0.33 0.18 0.09 0.04

0.0 0.48 0.22 0.09 0.0

Task: 2

1 2 3 4 5

1

2

3

4

5

0.0 0.04 0.05 0.04 0.0

0.09 0.09 0.09 0.09 0.09

0.22 0.18 0.16 0.18 0.22

0.48 0.33 0.27 0.33 0.48

0.0 0.53 0.39 0.53 0.0

Task: 3

1 2 3 4 5

1

2

3

4

5

0.0 0.53 0.39 0.53 0.0

0.48 0.33 0.27 0.33 0.48

0.22 0.18 0.16 0.18 0.22

0.09 0.09 0.09 0.09 0.09

0.0 0.04 0.05 0.04 0.0

Task: 4
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Figure C.1: Heatmap of the true value function for different tasks.

task. The agent’s location is indicated by colouring the its location in red and we use green squares
to indicate goal states. At every timestep, the agent receives a RGB image as an input. The action
space and the action consequences are the same as discrete grid. We select best hyperparameters
(learning rates) for each algorithm by choosing those values which results in the lowest area under the
error curves as shown in Table C.6 and Fig. C.9. The hyperparameter search and the final reporting
is performed by averaging the results on 30 different seeds. For our method, the buffer stores the
samples from the latest task only to update the permanent value function.

For the first linear FA experiment, we use the same setup as the tabular setting except we encode
each state in the grid as a vector of 10 bits. The first 5 bits encodes the row of the state and the
last 5 bits encodes the column of the state. For example, the starting state (2,2) is represented as
[0,0,1,0,0,0,0,1,0,0]. Both permanent value function and transient value function use same features to
learn respective estimates.

For the second linear FA experiment, we use a continuous version of the grid. The goal rewards for
each task is same as the discrete counterpart as described in Table C.1. The true value function is also
different for each task and it is shown as a heatmap in Fig. C.2. We use RBFs to generate features
as described in Sutton and Barto [45]. We use 676 centers (order2) spaced equally in both x and y
directions across the grid with a variance (0.75/(order − 1))2 and use a threshold to convert the
continuous vector into a binary feature vector. Any feature value greater than 0.5 is set to 1, while
those features with values less than 0.5 is set to 0. We search for the best learning rate from the same
set of values as the discrete grid task. The hyperparameter curves are shown in Fig. C.11.

For the deep RL experiment, the rewards are multiplied by a factor of 10 to minimize the initialization
effect of deep neural network on prediction. We used a convolution neural network (CNN) to
approximate the value function for all algorithms tested. The CNN consists of two conv layers with

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Task: 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Task: 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Task: 3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Task: 4

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Figure C.2: Heatmap of the true value function for different tasks.

27



8 filters, (2,2) stride, and relu activation in each layer. We use a max pooling layer in between the
two conv layers with a stride 2. The output of the second conv layer is flatted, and it is followed by
a couple of linear layers. The fully connected network has 64 and 1 hidden units in the respective
layers. The first fully connected layer uses a tanh activation and no activation is used in the final
layer. For our method, we attach a new head after the first two conv layers for permanent value
function. This head also has two linear layers where the first layer has tanh activation. The entire
network is trained by backpropagating the errors from the transient value function. But, the conv
layers are not trained when updating the permanent value function. The transient value function and
the TD learning algorithm are trained in an online fashion using an experience replay buffer of size
100k. The buffer is reset at the end of the task for all methods to reduce the bias from old samples.
permanent value function is trained at the end of the task using the samples from the latest task. 100
gradient steps are taken during each update cycle. We use SGD optimizer to update its weights. The
best learning rate is picked by computing the area under the error curve on a set of values shown in
Table C.7. The mean AUC curves of various choices of learning rates are shown in Fig. C.12.
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Figure C.3: Predictions evolution across episodes.

C.1.2 Policy evaluation minigrid

We use 4 rooms task as shown in Fig. 1b. The environment is a grid task with each room containing
one type of item. Each item type is different in terms of how it is perceived and in terms of reward the
agent receives upon collecting it. There are 4 goal cells, one in each room located at the corner. At
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the beginning of the episode, the agent starts in one of the cells within the region spanning between
cells (3,3) and (6,6). It has 3 actions to chose from turn left, turn right, and move forward. Turn-based
actions changes the orientation of the agent along the corresponding direction, whereas the move
action changes the agent’s location to the state in front of it. The agent can only observe a 5x5 view
in front of it (partial view). Items are one-hot represented along the 3rd dimension to make the overall
input space 5x5x5. To set up the continual learning problem, we change the rewards of the items
from task-to-task as described in Table C.2. The evaluation policy is kept uniformly random for all
states and for all the tasks. We use a discount factor of 0.9. We evaluate the performance for a total of
750 episodes and the tasks are changes after every 75 episodes.

Task ID Reward
Blue ( ) Red ( ) Yellow( ) Purple ( )

1 -1 1 1 1
2 1 1 0.5 1
3 1 1 1 -1
4 -1 1 0.5 -1

Table C.2: Rewards for items for various tasks.

We used a convolution neural network (CNN) to approximate the value function for all algorithm.
The CNN consists of three conv layers with 16, 32, and 64 filters, (2,2) stride and relu activation in
each layer. The output of the third conv layer is flatted, which is then followed by a couple of linear
layers with 64 and 1 hidden unit. Tanh activation in the first linear layer and no activation is used in
the last layer. We attach a head after conv layers for permanent value function. The architecture of
this head is same as the TD learning head. The training method and buffer capacities are same as the
discrete image grid task. We use SGD optimizer to update weights in all networks. The best learning
rate is picked by computing the area under the error curve on a set of values shown in Table C.8 and
Fig. C.13. All the results reported are averaged across 30 seeds.

C.1.3 Control minigrid

We use two room environment as shown in Fig. 3c. The agent starts in one of the bottom row states
in the bottom room and there are two goal states located in the top room. In the first task, the goal
rewards are +5 and 0 for the first and second goals respectively, and it is flipped for the second task.
We alternate between two tasks every 500 episodes for a total of 2500 episodes. The agent receives a
one hot, 5x5 view (partial observability) in front of it at each timestep. It can take one of the three
actions (move forward, turn left, turn right) at every step. The move action transitions the agent to the
state in front of it if there is no obstacle. The environment is deterministic and episodic, and we use a
discount factor of 0.99.

We use a CNN as a function approximator. The CNN has 3 conv layers with 16, 32, and 64 filters,
(2,2) stride, and relu activations. It is followed by a fully connected neural network with 128, 64, and
4 hidden units. The first layer is relu activated, the second layer is tanh activated, and the final layer is
linear. We use target network and experience replay to train the network. Target network’s weights
are updated every 200 timesteps. Experience replay buffer’s capacity is capped to 100k and the stored
samples are deleted when the task changes. We use batch size of 64 and update the network every
timestep. We search for the best learning rate from a set of value shown in Table C.10 on 3 seeds and
we pick the one that gave the highest area under the rewards curve. We then run on 30 seeds using
that learning rate to report the final performance. The transient value function training procedure and
details are identical to DQN. permanent value function uses a separate head following conv layers
and is updated using Adam optimizer whenever the task is changed.
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C.1.4 PT-DQN Pseudocode

Algorithm 4 PT-DQN Pseudocode (Continual Reinforcement Learning)

1: Initialize transient network buffer B, permanent network buffer D
2: Initialize permanent network θ, transient network w
3: Initialize target network wtarget

4: for t : 0→∞ do
5: Take action At according to ε-greedy policy
6: Observe Rt+1, St+1

7: Store (St, At, Rt+1, St+1) in B
8: Store (St, At, Q(P )(St, At)) in D
9: Sample a batch of transitions (Sj , Aj , Rj+1, Sj+1) from B

10: Compute target
y = Rj+1 + γmaxa′∈A

(
Q(P )(Sj+1, a

′; θ) +Q(T )(Sj+1, a
′;wtarget)

)
−Q(P )(Sj , Aj ; θ)

11: Perform a gradient step on
(
y −Q(T )(Sj , Aj ;w)

)2
with respect to w

12: Update target network every N steps, wtarget = w
13: if mod(t, k) == 0 then
14: Sample a batch of transitions (Sj , Aj , Q

(P )(Sj , Aj)) from D

15: Compute target ŷ = Q(P )(Sj , Aj) +Q(T )(Sj , Aj ;w)

16: Perform a gradient step on
(
ŷ −Q(P )(Sj , Aj ; θ)

)2
with respect to θ

17: Decay transient network weights, w = λw
18: Clear permanent network buffer, D = {}
19: end if
20: end for

C.1.5 JellyBeanWorld (JBW)

Item Blue ( ) Green ( ) Red ( )
Color [0, 0, 1.0] [0, 1.0, 0] [1.0, 0, 0.0]
Intensity Constant [-2.0] Constant [-6.0] Constant [-2.0]

Interactions
Piecewise box [2, 100, 10, -5] Zero Piecewise box [150, 0, -100, -100]
Zero Zero Zero
Piecewise box [150, 0, -100, -100] Zero Piecewise box [2, 100, 10, -5]

Table C.3: JellyBeanWorld environment parameters.
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Figure C.4: JellyBeanWorld sample observation and performance curves for various decay values.

We test algorithms on a continual learning problem in the JBW testbed [31] and use neural networks
as the function approximator. The environment is a two-dimensional infinite grid with three types
of items: blue, red, and green. We induce spatial non-stationarity by setting the parameters of the
environment as described in Table C.3 . In our configuration, three to four similar items (red or
blue) form a tiny group and similar groups appear close to each other to form a sea of red (or blue)
objects as shown in Fig. 5a. Therefore, the local observation distribution at various parts of the
environment are different. At each timestep, the agent receives a egocentric 11x11 RGB, 360o view
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Figure C.5: Items collected by various algorithms during each task switches.

as an observation as shown in Fig. C.4a. It has four actions to choose from: up, down, left, and right.
Each action transitions it by one square along the corresponding direction. The rewards for green
items, which are uniformly distributed, are set to 0.1, whereas the rewards for picking red and blue
items alternate between -1 and +2 every 150k timesteps, therefore, inducing reward non-stationarity.
We run the experiment for 2.1 million timesteps and train algorithms using a discount factor 0.9.

The DQN agent uses four layered neural network with relu activations in all layers except the last to
estimate q-values. The number of hidden units are 512, 256, 128, and 4 respectively. The network is
trained using Adam optimizer with experience replay and a target network. We use epsilon-greedy
policy with ε = 0.1 for exploration. The permanent and transient network architectures are identical
to that of DQN but with half the number of parameters in each layer. This ensures that the total
number of parameters for the baselines and our method is same. Transient network is also trained
using Adam optimizer, whereas, permanent network is updated every 10k timesteps (k=10,000) using
SGD optimizer. Target network’s weights are updated every 200 timesteps. Experience replay buffer
capacity is capped to 8000 as higher capacity buffer stores old training samples which affects the
training when the environment is changing continuously. We use batch size of 64 and update the
network every timestep. For our approach, we experimented with three choices of λ values (0.55,
0.75, and 0.95) and all the choices resulted in a better performance than the DQN agent as seen in
Fig. C.4b. We use the same exploration policy as the DQN agent. We flatten the observation into
one long array, then stack the last four observation arrays to form an input to the neural network.
The best learning rate for all algorithms are chosen by comparing the total reward obtained in 1.5
million timesteps for a set of fixed learning rate values on 3 different seeds. We search for the best
learning rate from a set of value shown in Table C.12 on 3 seeds and we pick the one that gave the
highest rewards. We then run on 30 seeds using that learning rate to report the final performance. The
random agent picks one of the four actions according to uniform probability at each timestep. For the
multi-head DQN baseline, we attach two output heads - one for each task. The baseline knows the
task IDs, so it chooses the appropriate head to select actions and to train the network. The replay
buffer is reset for this baseline whenever the task is changed. We use a buffer capacity of 250k for the
DQN baseline that is augmented with a large buffer. The rest of the training and architecture details
are same as the DQN agent.

C.1.6 MinAtar

This domain is a standard benchmark for testing single task RL algorithms [51]. We use breakout,
freeway, and space invaders environments to setup a continual RL problem by randomly picking one
of these tasks every 500k steps for a total of 3.5M steps. We standardize the observation space across
tasks by padding 0s when needed and make all the actions available for the agent. This problem has
non-stationarity in transitions besides the reward and observation signals making it challenging. We
use a discount factor of 0.99 for this experiment.

We used a CNN which has 1 relu activated conv layer with 16 filters followed by a relu activated
linear layer with 256 units, and a linear output layer for DQN. The architecture is same as the one
used in the original paper [51]. The architecture is same for other DQN variants but we add 3 output
layers for the multi-headed DQN. For our method, we use the same architecture but 8 filter in the
conv layer and 128 units in the linear layer. Target network is used for all the methods which is
updated every 1000 steps and we use an experience replay of 100k for all methods but we use 500k
sized experience replay for large replay based DQN baseline. We use Adam optimizer to train the
networks in online fashion. For our method, permanent value function network is updated using SGD
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optimizer every 50k steps. The best hyperparameters are chosen by running the experiment for 1.5M
steps by switching the tasks every 500k steps on 3 seeds. The results of hyperparameter tuning are
detailed in Tables C.17, C.18, C.19, and C.20. We make all 7 actions available to the agent at all
times and the input to the agent is 10x10x7 images.

C.2 What is the effect of task distribution on the performance for various methods?
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Figure C.6: Expected analytic MSVE on a task for various algorithms and ε values.

Setup: We set up a continual learning problem by creating 7 tasks whose value functions are ε (task
diameter) distance from one another in norm-2. Each task has 7 states. For a particular ε value, for
a particular number of task switches, we run each algorithm 100 times and save the final estimates
which form the initial point for the new task. We then sample a task according to uniform distribution
and use analytical MSE expression derived in the previous section to analyze the behaviour of PT-TD
learning and the two versions of TD learning algorithm for 100 rounds. We then average the error
across rounds and across different starting values to get a point in the plot shown in Fig. C.6.

Task details: We use the following Pπ for all tasks and for all task diameters (ε):

Pπ =



0.18 0.19 0.08 0.16 0.1 0.11 0.18
0.04 0.05 0.01 0.0 0.4 0.0 0.51
0.0 0.2 0.0 0.05 0.28 0.06 0.41
0.17 0.14 0.09 0.26 0.15 0.19 0.01
0.16 0.16 0.16 0.24 0.17 0.0 0.11
0.25 0.02 0.24 0.24 0.08 0.05 0.11
0.0 0.25 0.19 0.44 0.05 0.0 0.07


We then sample 7 points in Rn that are ε units from one another. These points form the true value
function of the tasks. We then compute the reward vector for each task τ as rπ(τ) = (I−γPπ)vπ(τ).
At the time of testing the algorithms, we add a zero mean Gaussian noise with 0.1 standard deviation
to these rewards to simulate stochasticity. We search from the learning rates shown in Table C.4 to
pick the best one for each combination of ε and number of task switches. We use a learning rate of
0.01 while using analytical expressions.

Observation: We observe both TD learning algorithm and our approach has the same performance
after seeing data from one task. But the error gap increases as the number of task switches increase.
The low error in our method can be attributed to the presence of permanent value function which
captures some portion of the value that is common for all tasks. transient value function then learns
the remaining part with a small number of samples resulting in low error overall. We also observe that
the error gap between TD learning and our method gets wider as we increase task diameter, which
demonstrates that our method is broadly applicable. The reset variant of the TD learning algorithm
whose predictions are reset whenever task changes has the largest error emphasizing learning from
scratch could be costly.

Algorithm LRs
TD (without reset) {8e-1 5e-1 3e-1 1e-1 5e-2 1e-2}

PT-TD PV: {5e-1 3e-1 1e-1 5e-2 1e-2 5e-3}
TV: {8e-1 5e-1 3e-1 1e-1 5e-2 1e-2}

Table C.4: LRs considered to pick the best one.
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C.3 What is the effect of network capacity on the performance?

Setup: We use JBW task in the continual RL setting to perform the ablation study. We run two
additional experiments by varying the number of parameters in DNN for the DQN and our method.
In the first experiment, we use the same DNN architecture for all algorithms, therefore, our method
has twice the number of parameters as that of DQN. In the second experiment, we double the network
capacity for the DQN variant making the total number of parameters same as ours. We keep the rest
of the experimental setup same as before and we pick the best learning rate based on the AUC by
searching over the values detailed in Table C.5 over 3 seeds for 1.5M steps.

Algorithm LRs
DQN (2x) {1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7}
PT-DQN PV: {5e-1 3e-1 1e-1 5e-2 1e-2 5e-3}

TV: {8e-1 5e-1 3e-1 1e-1 5e-2 1e-2}

Table C.5: Search space of learning rates.
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Figure C.7: (a) Rewards accumulated per timestep across 10k step window is plotted against timesteps.
(b) Number of items collected within a task for each type (subplots use different scales along y-axis).
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Figure C.8: (a) Rewards accumulated per timestep across 10k step window is plotted against timesteps.
(b) Number of items collected within a task for each type (subplots use different scales along y-axis).

Observations: The results for ablation experiments are shown in Figures C.7 and C.8. We observe
that our algorithm continues to perform better than the DQN agent in both the cases. The results
also indicate that it is efficient to devote the available capacity in learning parts of the value function
rather than learning the whole.

In the second ablation experiment, the DQN agent with twice the number of parameters starts off
learning slowly but catches up with our method after seeing enough data. In fact, the DQN agent
continues to perform similar to our method without any drop in performance as we continue to train
further (we tested it by running the agent to 6M timesteps). This result highlights that our approach
is beneficial in the big world - small agent setup where the computation budget of the agent is very
small compared to the complexity of the environment. When the agent’s capacity is large relative to
the complexity of the environment, there’s no additional benefit (neither there is any downside) to our
method. Since the world is much more complicated in comparison to the agent’s capacity, using our
method is preferable.

These experiments also provide partial answer to the question - when does the plasticity problem
arise in neural networks? We think that a combination of learning algorithm (like DQN), small agent

34



capacity, and a complex environment could give rise to the plasticity problem in neural networks. A
thorough investigation is necessary to confirm this hypothesis.

C.4 What is the effect of hyperparameters on the performance?

In this section we analyze the sensitivity of additional hyperparameter in our method (learning rate to
update permanent value function) and compare it with the sensitivity of TD and Q-learning algorithms
on various environments.

Algorithm LRs
TD (without reset) {8e-1, 5e-1, 3e-1, 1e-1, 5e-2, 1e-2}

TD (with reset) {8e-1, 5e-1, 3e-1, 1e-1, 5e-2, 1e-2}
PT-TD PV: {1e-1, 5e-2, 1e-2, 5e-3, 1e-3}

TV: {8e-1, 5e-1, 3e-1, 1e-1, 5e-2, 1e-2}

Table C.6: LRs considered in the search space for the policy evaluation grid tasks.

0.0 0.2 0.4 0.6 0.8
LRs

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

M
ea

n 
A

U
C

 o
f R

M
S

V
E

TD

0.0 0.2 0.4 0.6 0.8
LRs

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

M
ea

n 
A

U
C

 o
f R

M
S

V
E

TD with resets

0.0 0.2 0.4 0.6 0.8
TV LRs

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

M
ea

n 
A

U
C

 o
f R

M
S

V
E

PT-TD (ours)

PV LRs
0.1
0.05
0.01
0.005
0.001

Figure C.9: Mean AUC of RMSVE against learning rate for various algorithms.
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Figure C.10: Mean AUC of RMSVE against learning rate for various algorithms.

For tabular and linear grid tasks, we select best hyperparameters (learning rates) for each algorithm
by choosing those values which results in the lowest area under the error curves as shown in Table
C.6, Figures C.9, C.10, C.11. The hyperparameter search and the final reporting is performed by
averaging the results on 30 different seeds. For the deep RL task with discrete grid, we choose the
best learning rate from the values shown in Table C.7 and the corresponding U curves are shown in
C.12. For the minigrid policy evaluation task, we search for the best learning rates from the values
shown in Table C.8 and the corresponding U curves are shown in Fig. C.13.

For the tabular control experiment, the learning rates used to search for the best value is listed in
Table C.9 and the mean returns for various choices of these values are plotted in Fig. C.14 for various
algorithms. Similar table for the minigrid task (deep control) is shown in Table C.10 and the mean
returns for various choices of these values is shown in Fig. C.15. We use 30 seeds to pick the best
learning rate for the tabular task but use 3 seeds to select the learning rates for the minigrid task.

The learning rate tables and the corresponding performance for the full continual RL experiments are
shown in Fig. C.16 and Tables C.11, C.12, C.17, C.18, C.19, and C.20. We use 30 seeds to find the
best hyperparmeters for the tabular task, but we use 3 seeds for JBW experiment and MinAtar.
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Figure C.11: Mean AUC of RMSVE against learning rate for various algorithms.

Algorithm LRs
Deep TD (without reset) {1e-1, 3e-2, 1e-2, 3e-3, 1e-3}

Deep TD (with reset) {1e-1, 3e-2, 1e-2, 3e-3, 1e-3}
Deep PT-TD PV: {1e-3, 3e-4, 1e-4, 3e-5}

TV: {1e-2, 5e-3, 3e-3, 1e-3}

Table C.7: LRs considered to pick the best one for the Deep prediction experiment with discrete grid.

We find the best learning rate for each k, λ pair by searching over the learning rates listed in Table
C.11.

Observations: We see that our algorithm performs better than their vanilla counterparts on all the
problems we tested for a broad range of hyperparameters. There are a handful of (α, α) pairs that
results in a better performance in each setting, which indicates that our method is not sensitive to
hyperparameter selection. We also observe that in all the cases α is smaller than α, which fits into
our intuition. Because, the permanent value function has to capture regularities in the value function
estimate, it needs to update slowly, whereas, the transient value function should be updated quickly
to facilitate fast adaptation. The sensitivity of two new hyperparameters: λ, k for the fully continual
RL setting is analyzed in the main paper (see Sec. 6.1) where we concluded that our algorithm is
robust to these values.
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Figure C.12: Mean AUC of RMSVE against learning rate for various algorithms on image grid.
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Algorithm LRs
TD (without reset) {1e-1, 3e-2, 1e-2, 3e-3, 1e-3}
TD (with reset) {1e-1, 3e-2, 1e-2, 3e-3, 1e-3}
permanent value function {3e-2, 1e-2, 3e-3, 1e-3, 3e-4}
transient value function {3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5, 3e-6, 1e-6}

Table C.8: Search space of learning rate for the policy evaluation minigrid task.
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Figure C.13: Mean AUC of RMSVE against learning rate for various algorithms on minigrid grid.

Algorithm LRs
Q-learning {8e-1, 5e-1, 1e-1, 5e-2, 1e-2, 5e-3, 1e-3}
Q-learning (with reset) {8e-1, 5e-1, 1e-1, 5e-2, 1e-2, 5e-3, 1e-3}
Permanent Value Function {8e-1, 5e-1, 3e-1, 1e-1, 5e-2, 1e-2, 5e-3, 1e-3}
Transient Value Function {8e-1, 5e-1, 3e-1, 1e-1, 5e-2, 1e-2}

Table C.9: Search space of learning rates for the tabular control task.
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Figure C.14: Mean returns for various learning rates for the tabular control task.

Algorithm LRs
Q-learning {3e-3, 1e-3, 3e-4, 1e-4, 3e-5}
Q-learning (with reset) {1e-2, 3e-3, 1e-3, 3e-4, 1e-4}
Permanent Value Function {1e-5, 3e-6, 1e-6, 3e-7}
Transient Value Function {3e-4, 1e-4, 3e-5, 1e-5}

Table C.10: Search space of learning rates.
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Figure C.15: Mean returns for various learning rates for the Minigrid control task.
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Figure C.16: Performance plot of PT-Q-learning against Q-learning for k, λ pairs

Algorithm LRs
Q-learning {8e-1, 5e-1, 1e-1, 5e-2, 1e-2, 5e-3, 1e-3}
Permanent Value Function (0.5x) {1e-4, 1e-5, 1e-6, 1e-7, 1e-8}
Transient Value Function (0.5x) {1e-2, 1e-3, 1e-4, 1e-5}

Table C.11: Search space of learning rates for the main JBW experiment.

Algorithm LRs
Q-learning {1e-2, 1e-3, 1e-4, 1e-5}
Permanent Value Function {1e-4, 1e-5, 1e-6, 1e-7}
Transient Value Function {1e-2, 1e-3, 1e-4, 1e-5}

Table C.12: Search space of learning rates for the main JBW ablation experiment.

λ=0.55 λ=0.75 λ=0.95
TV-LR→ 1e-2 1e-3 1e-4 1e-5 1e-2 1e-3 1e-4 1e-5 1e-2 1e-3 1e-4 1e-5PV-LR ↓

1e-4 0.031 0.223 0.126 0.103 0.035 0.257 0.154 0.154 0.038 0.217 0.199 0.159
1e-5 0.031 0.252 0.071 0.051 0.030 0.261 0.077 0.068 0.040 0.220 0.201 0.096
1e-6 0.041 0.242 0.070 0.061 0.034 0.260 0.090 0.083 0.030 0.234 0.207 0.084
1e-7 0.036 0.256 0.056 0.067 0.040 0.268 0.062 0.070 0.028 0.227 0.216 0.124
1e-8 0.031 0.247 0.051 0.069 0.041 0.261 0.069 0.069 0.037 0.232 0.213 0.080

Table C.13: JBW: Reward per step for various hyperparameters for PT-DQN. We highlight the values
that is larger than DQN’s best performance.

LRs 1e-2 1e-3 1e-4 1e-5
Returns 0.03 0.127 0.192 0.093

Table C.14: JBW: Reward per step for various hyperparameters for DQN.

LRs 1e-2 1e-3 1e-4 1e-5
Returns 0.037 0.135 0.247 0.245

Table C.15: JBW: Reward per step for various hyperparameters for DQN-multi-head.

38



LRs 1e-2 1e-3 1e-4 1e-5
Returns 0.025 0.055 0.055 0.031

Table C.16: JBW: Reward per step for various hyperparameters for DQN with large experience
replay.

λ=0.55 λ=0.75 λ=0.95
TV-LR→ 1e-3 1e-4 1e-5 1e-3 1e-4 1e-5 1e-3 1e-4 1e-5PV-LR ↓

1e-7 14.41 17.38 7.89 13.87 19.07 10.55 9.50 16.12 12.16
1e-8 15.29 17.35 7.79 14.02 20.54 10.72 9.79 16.71 12.48
1e-9 15.54 17.51 8.02 12.63 19.54 10.90 8.57 16.48 11.76

Table C.17: MinAtar: AUC of the average return (in the previous 100 episodes) per step for various
hyperparameters for PT-DQN. We highlight the values that is larger than DQN’s best performance.

LRs 1e-3 1e-4 1e-5 1e-6
Returns 7.10 12.90 13.14 5.90

Table C.18: MinAtar: AUC of the average return (in the previous 100 episodes) per step for various
hyperparameters for DQN.

LRs 1e-3 1e-4 1e-5 1e-6
Returns 8.72 14.93 15.68 8.54

Table C.19: MinAtar: AUC of the average return (in the previous 100 episodes) per step for various
hyperparameters for DQN-multi-head.

LRs 1e-3 1e-4 1e-5 1e-6
Returns 6.78 11.44 10.70 4.56

Table C.20: MinAtar: AUC of the average return (in the previous 100 episodes) per step for various
hyperparameters for DQN with large experience replay.
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