
Under review as a conference paper at ICLR 2021

CHANNEL-DIRECTED GRADIENTS FOR OPTIMIZATION
OF CONVOLUTIONAL NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce optimization methods for convolutional neural networks that can be
used to improve existing gradient-based optimization in terms of generalization
error. The method requires only simple processing of existing stochastic gradients,
can be used in conjunction with any optimizer, and has only a linear overhead (in
the number of parameters) compared to computation of the stochastic gradient.
The method works by computing the gradient of the loss function with respect to
output-channel directed re-weighted H0 or Sobolev metrics, which has the effect
of smoothing components of the gradient across a certain direction of the parameter
tensor. We show that defining the gradients along the output channel direction
leads to a performance boost, while other directions can be detrimental. We present
the continuum theory of such gradients, its discretization, and application to deep
networks. Experiments on benchmark datasets, several networks, and baseline
optimizers show that optimizers can be improved in generalization error by simply
computing the stochastic gradient with respect to output-channel directed metrics.

1 INTRODUCTION

Stochastic gradient descent (SGD) is currently the dominant algorithm for optimizing large-scale
convolutional neural networks (CNNs) (LeCun et al. (1998); Simonyan & Zisserman (2014); He
et al. (2016b)). Although there has been large activity in optimization methods seeking to improve
performance, SGD still dominates in terms of its generalization ability. Despite SGD’s dominance,
there is still often a gap between training and real-world test accuracy performance, which motivates
research in improved optimization methods.

In this paper, we derive new optimization methods that are simple modifications of SGD. The methods
implicitly induce correlation in the output direction of parameter tensors in CNNs. This is based
on the empirical observation that parameter tensors in trained networks typically exhibit correlation
over output channel dimension (see Figure 1). We thus explore encoding correlation by constructing
smooth gradients in the output direction, which we show improves generalization accuracy. This is
done by introducing new Riemmanian metrics on the parameter tensors, which changes the underlying
geometry of the space of tensors, and reformulating the gradient with respect to those metrics.

Our contributions are as follows. First, we formulate output channel-directed Riemannian metrics (a
re-weighted version of the standard L2 metric and another that is a Sobolev metric) over the space of
parameter tensors. This encodes channel-directed correlation in the gradient optimization without
changing the loss. Second, we compute Riemannian gradients with respect to the metrics showing
linear complexity (in the number of parameters) over standard gradient computation, and thus derive
new optimization methods for CNN training. Finally, we apply the methodology to training CNNs
and show the empirical advantage in generalization accuracy, especially with small batch sizes,
over standard optimizers (SGD, Adam) on numerous applications (image classification, semantic
segmentation, generative adversarial networks) with simple modification of existing optimizers.

1.1 RELATED WORK

We discuss related work in deep network optimization; for a detailed survey, see Bottou et al. (2018).
SGD, e.g., Bottou (2012), samples a batch of data to tractably estimate the gradient of the loss
function. As the stochastic gradient is a noisy version of the gradient, learning rates must follow

1

Under review as a conference paper at ICLR 2021

Architectures AlexNet VGG-16 DenseNet ResNet-50
Input Channel Correlation 0.0057 0.0082 0.0029 0.0047
Output Channel Correlation 0.0267 0.0178 0.0116 0.0077

Figure 1: Visualization of parameter tensor of convolutional layers trained on ImageNet. Frequently
within in layers (especially deeper layers), there is correlation of the weights along the output channel
direction. The table shows output correlation (invariant to re-scaling) relative to input direction. Our
method induces parameter correlations in the output direction.

a decay schedule in order to converge. Many methods have been formulated to choose learning
rate over epochs and components of the gradient, including adaptive learning rates (e.g., Duchi
et al. (2011); Zeiler (2012); Kingma & Ba (2014); Bengio (2015); Loshchilov & Hutter (2017);
Luo et al. (2019)). For instance, Adam Kingma & Ba (2014) adaptively adjusts the learning rate
so that parameters that have changed infrequently based on historical gradients are updated more
quickly than parameters that have changed frequently. Another way to interpret such methods is
that they change the underlying metric on the space on which the loss function is defined to an
iso-tropically scaled version of the L2 metric given by a simple diagonal matrix; we change the
metrics an-isotropically. We show that our method can be used in conjunction with such methods by
simply using the stochastic gradient computed with our metrics to boost performance.

As the stochastic gradient is computed based on sampling, different runs of the algorithm can result
in different local optima. To reduce the variance, several methods have been been formulated, e.g.,
Defazio et al. (2014); Johnson & Zhang (2013). We are not motivated by variance reduction, rather,
inducing correlation in the parameter tensor to improve generalization. However, as our method
smooths the gradient, our experiments show reduced variance with our metrics compared to SGD.

Another method motivated by variance reduction is Osher et al. (2018) (see applications Wang et al.
(2019); Liang et al. (2020); Wang et al. (2020)), where the stochastic gradient is pre-multiplied
with an inverse Laplacian smoothing matrix. For CNNs, the gradient with respect to parameters is
rasterized in row or column order of network filters before smoothing. Our work is inspired by Osher
et al. (2018), though we are motivated by correlation in the parameter tensor. Osher et al. (2018)
can be interpreted as using the gradient of the loss with respect to a Sobolev metric. One insight
over Osher et al. (2018) is that keeping the structure of the parameter tensor and defining the Sobolev
metric with respect to the output-channel direction boosts accuracy, while other directions do not.
Secondly, we introduce a re-weightedH0 metric that preferentially treats the output-channel direction,
and can be implemented with a line of Pytorch code, has linear (in parameter size) complexity, and
performs comparably (in many cases) to our channel-directed Sobolev metric, boosting accuracy
of SGD. Third, our Sobolev gradient, a variant of the ordinary one, has linear complexity rather
than quasi-linear (not requiring FFT as Osher et al. (2018)). Sobolev gradients have been used in
computer vision Sundaramoorthi et al. (2007); Charpiat et al. (2007) for their coarse-to-fine evolution
Sundaramoorthi et al. (2008); we adapt that formulation to CNNs.

We formulate Sobolev gradients by considering the space of parameter tensors as a Riemannian
manifold, and choosing the Sobolev metric on the tangent space. By choosing a metric, gradients
intrinsic to the manifold can be computed and gradient flows are guaranteed to decrease loss. Other
Riemannian metrics have been used for optimization in neural networks, e.g., Amari (1998); Marceau-
Caron & Ollivier (2016); Hoffman et al. (2013); Gunasekar et al. (2020) and tangentially relate to our
work. These works are based on Amari’s Amari (1998) information geometry on probability measures,
and the metric considered is the Fisher information metric. The motivation for these methods is
re-parametrization invariance of optimization, whereas our motivation is imposing correlation in the

2

Under review as a conference paper at ICLR 2021

parameter space. Other works Gunasekar et al. (2020) use the Hessian metric (in the convex case),
but these metrics are data-dependent and the gradient is challenging to compute, requiring (a large)
inverse matrix computation.

2 CHANNEL-DIRECTED GRADIENTS

We now present the theory to define channel-directed gradients. To do this, we formulate new metrics
on the space of tensors, and then derive analytic formulas for channel-directed gradients in terms
of the standard L2 gradient. As we show, our channel-directed gradients effectively smooth the
components of the L2 gradient across the output direction of the parameter tensors of the CNN,
which induces correlation in that direction in the gradient and thus also the parameter tensor. Another
interpretation is we are changing the geometry of the loss landscape (without changing the loss) to a
more smooth one by changing the metric of the space on which the loss is defined.

2.1 BACKGROUND ON RIEMANNIAN GRADIENTS

We present the definition of gradient on a Riemannian manifold, and show the dependence of the
gradient on the chosen metric on the manifold (see Carmo (1992); Abraham et al. (2012) for more
details). A manifold X is a space that is locally linear around each point X ∈ X ; this linear space is
the tangent space, denoted TXX . A Riemannian manifold has a smoothly varying positive definite
bilinear form 〈·, ·〉 (called the metric) on the tangent space. This metric allows one to define the
notion of lengths of curves on the space, in addition to other operations, including gradients.

Definition 1 (Gradient of a Function) Let X be a Riemannian manifold, and f : X → R be a
function. The directional derivative of f at X ∈ X along a direction k ∈ TXX is defined as
df(X) · k = d

dε f(X + εk)|ε=0. The gradient of f at X ∈ X is the vector, ∇f(X) ∈ TXX , that
satisfies the relation

df(X) · k = 〈∇f(X), k〉 , for all k ∈ TXX . (1)

Note that “the” gradient will depend on the choice of the metric on the manifold. We note that any
such gradient will decrease the the function f by moving infinitesimally in the tangent space in the
direction of negative the gradient as df(X) · k = −‖∇f(X)‖2 < 0 when k = −∇f(X), where
‖ · ‖ is the norm induced from the metric. The gradient flow, defined by the differential equation
Ẋt = −∇f(Xt), will converge to a local minimum. In our application of this theory to CNN
optimization, f will be the loss function, and X will be the space of parameter tensors.

A consequence of this definition is that the gradient is the direction (up to a scale factor) in the tangent
space that optimizes the following problem:

arg max
k∈TXX\{0}

|df(X) · k|
‖k‖

. (2)

Thus, the gradient can be regarded as the most efficient direction as it maximizes the ratio of the
change in energy by perturbing in a direction k over the cost (defined by the metric) of k. Thus, by
constructing the metric to have small costs for perturbations (directions) that we prefer for gradients,
the gradient flow will move in these preferential directions while minimizng the function, and thus
land in favorable local minima.

2.2 CHANNEL-DIRECTED METRICS

In existing deep network gradient-based optimization schemes, the underlying metric on the loss
function is assumed to be the standard Euclidean L2 metric. We will consider a re-weighted version
of the L2 metric and a Sobolev metric that favor correlation in the output channel direction of the
gradient and thus the parameter tensors. To formulate the methodology, we start from a continuum
formulation, where we treat weight tensors in the continuum, formulate the metrics in the continuum
and then in the next sub-section derive the gradients with respect to these metrics. Finally, we
discretize gradient flows in the implementation to derive iterative schemes.

Let X : O × I × H × W → R denote a parameter tensor of a layer of a convolutional neural
network. Here O = [0, O] denotes indices to the output channel dimension of the tensor, I = [0, I]

3

Under review as a conference paper at ICLR 2021

Figure 2: Visualization of kernels applied to the H0

gradient under different metrics for λ = 1. This
illustrates the smoothing effect of the metrics. In com-
putation, linear cost formulas are applied to compute
the gradients not using the convolution interpretation.

denote the indices to the input channel, and H = [0, H],W = [0,W] denote indices to the height
and width dimension of the spatial filters of the tensor. The metric is defined on the tangent space
to the space of such X . An element of the tangent space will have the same form of the tensor, i.e.,
k : O × I ×H×W → R. The L2 (called H0 from now on) metric is defined as

〈k1, k2〉
H0

=

∫
O,I,H,W

k1(o, i, h, w) · k2(o, i, h, w) do didhdw, (3)

where k1, k2 are in the tangent space of tensors. We now define a re-weighted version of H0 that
favors tangent vectors that have global smoothness in the direction of the O dimension:

〈k1, k2〉H0
λ

=

∫
I,H,W

k̄1(i, h, w) · k̄2(i, h, w) didhdw +
λ

O

〈
k1 − k̄1, k2 − k̄2

〉
H0
, (4)

where λ > 0 is a hyper-parameter, and k̄ is the average value in the output channel direction, i.e.,

k̄(i, h, w) =
1

O

∫
O
k(o, i, h, w) do. (5)

The metric in (4) splits the tangent vector into global translations in the output channel direction and its
orthogonal complement, i.e., the deformation. The weight λ is used to control the weighting between
the translation and deformation components, i.e., larger values of λ means that deformations more
heavily influence the norm of the perturbation. As shown in the next sub-section that means gradients
with respect to this metric have higher weighted channel-directed translations than deformations.

Next, we introduce a channel-directed version of a Sobolev metric, defined as follows:

〈k1, k2〉H̃1 =

∫
I,H,W

k̄1(i, h, w) · k̄2(i, h, w) di dhdw + λO

〈
∂k1
∂o

,
∂k2
∂o

〉
H0

, (6)

where ∂
∂o indicates the partial derivative with respect to the the output channel direction. The partial

derivative in the o-direction implies that tensor perturbations that are smooth along the o-direction
are close with respect to these metrics, which will imply that the corresponding gradients will exhibit
smoothness in this direction, i.e., convolution filters that are nearby in the output direction will exhibit
correlation. The metric is a weighted combination of the H0 metric of the derivative in the output
direction, and the H0 metric of the output-directed translation. Note that the traditional Sobolev
metric uses the H0 metric of the perturbation rather than the translation. Our choice is motivated by
computational efficiency of the corresponding gradient, to be discussed below. The scale factors of
O in the expressions above are so that the metric is scale invariant with respect to different sizes of
output channels. The part of the metric with the partial derivative component implies that tensors that
differ in the output channel direction by a non-smooth perturbation are far away in distance. Tensors
that differ by just a channel-directed translation are close.

2.3 COMPUTING CHANNEL-DIRECTED GRADIENTS

We now compute gradients with respect to the metrics defined in the previous sub-section in terms
of the H0 gradient so that existing SGD code can be re-use with minimal changes. To compute
the relation between the channel-directed gradients and the usual H0 gradient, we note (1) that the
directional derivative can be written as an inner product with the gradient with respect to any metric:

dL(X) · k =
〈
∇H0

λ
L(X), k

〉
H0
λ

= 〈∇H1L(X), k〉H̃1 = 〈∇H0L(X), k〉H0 . (7)

With this relation, we may compute the channel-directed gradients in terms of theH0 gradient (details
are in Appendix D). Letting f = ∇H0L(X), we have

∇H0
λ
L(X) = f̄ +

1

λ
(f − f̄) and f = ∇H̃1L(X)− λO2 ∂

2

∂o2
∇H̃1L(X), (8)

4

Under review as a conference paper at ICLR 2021

where the last expression is a second order ordinary differential equations (ODE), whose solution we
discuss next. Notice that the re-weighted H0 gradient (8) re-weights the channel-directed translation
component and the deformation component of the H0 gradient differently, i.e., as λ gets larger, the
channel-directed translation becomes more prominent.

Our Sobolev gradient effectively computes local averages, as we show, in the output channel direction,
and by doing so effectively imposes an ordering of the kernels in CNNs so that nearby kernels
(according to the distance in the output direction) are similar. As ordering of kernels in CNNs
is arbitrary, in the sense that permutations of kernels in the output direction along with the input
channels result in the same output, we are free to impose one ordering, which Sobolev effectively
does during the optimization so that filters that are close in the o-dimension are similar.

In obtaining the expression for the Sobolev gradient below, we have assumed periodic boundary
conditions in the O dimension, which further imposes the ordering of filters such that starting and
ending filters in the o-dimension are similar. The periodic assumption gives that the Sobolev gradient
can be computed with a circular convolution with the H0 gradient, which is simpler to compute in
practice. In fact, the Sobolev gradient is given as∇H̃1L(X)(o, i, h, w) =

1

O

∫
O
K((o− õ)/O)f(õ, i, h, w) dõ, where K(o) = 1 +

o2 − o+ 1/6

2λ
, for o ∈ [0, 1]. (9)

Note that the re-weighted H0 solution also has an interpretation of convolution with respect to a
smoothing kernel. Figure 2 shows plots of the kernels for the parameter λ chosen in experiments. For
each o, the Sobolev or re-weighted H0 is a local average whose weights die far away from o. Thus,
the effect of the metrics is to induce smoothness of the gradient along the output channel direction.

The Sobolev gradient need not use the convolution formula, as one can just integrate the ODE twice,
an advantage of our mean variant of the Sobolev metric. This saves one from having to compute the
convolution directly, and hence a reduction in computational cost from quadratic (or quasi-linear with
an FFT) to linear in O given the H0 gradient. The Sobolev gradient can be computed as

g(o, i, h, w) = g(0, i, h, w) + o
∂g

∂o
(0, i, h, w)− 1

λ

∫ o

0

(o− õ)(f(oO, i, h, w)− f̄(i, h, w)) dõ

(10)

∂g

∂o
(0, i, h, w) = − 1

λ

∫ 1

0

o(f(oO, i, h, w)− f̄(i, h, w)) do (11)

g(0, i, h, w) =

∫ 1

0

K(o)f(oO, i, h, w) do, o ∈ [0, 1] (12)

where g = ∇H̃1L(X) and f = ∇H0L(X). These are just three integrals that can be computed in
linear complexity with respect to O. The gradient flows under these metrics are given by

Ẋt = −∇L(Xt), (13)

where t denotes the artificial time variable, Ẋ is the time derivative of the parameter tensor, and ∇
denotes the gradient with respect to the desired metric.

2.4 PROPERTIES OF CHANNEL DIRECTED GRADIENT FLOWS

Correlation in the Weight Tensor: By the convolution formula, the Sobolev gradient is a smoothing
of the H0 gradient. Noting that the gradient flow (13) integrates (smooth) gradients over time, the
final tensor will exhibit correlation in the output direction as it sums smooth (correlated) gradients in
the output direction and the initialization, which is typically chosen to be decorrelated noise.

Coarse-to-Fine Evolution and Removal of Some Local Minima: Sobolev gradient flows evolve
according to coarse-scale perturbations before moving to finer scale perturbations Sundaramoorthi
et al. (2008). This avoids being trapped in local minima due to fine-scale structures. Also, since
Sobolev balls can fit in any L2 ball but not vice-versa, the loss landscape changes (i.e., topologically
in the continuum) and some local minima (in L2) may cease to exist numerically. As wide local
minima generalize well Chaudhari et al. (2019), the numerical removal of local minima due to fine
structures (e.g., sharp minima) may encourage convergence to wide minima and hence generalize
better than SGD. The correlated nature of the Sobolev (and re-weighted H0) gradient makes it
difficult to lock into sharp local minima.

5

Under review as a conference paper at ICLR 2021

def r ewe igh t ed_H0_grad (g rad =param . g rad . da t a , lambda) :
grad : L2 g r a d i e n t ; lambda >0 w e i g h t s t r a n s l a t i o n o f L2 grad
g rad += lambda∗ t o r c h . mean (grad , 0 , True) . r e p e a t (g r ad . s i z e (0) , 1 , 1 , 1)
re turn g rad

Figure 3: Pytorch code to compute the re-weighted H0 (H0
λ) gradient from the H0 gradient.

3 APPLICATION TO SGD AND IMPLEMENTATION

To apply re-weighted H0 and Sobolev channel-directed gradients to optimizing CNNs based on SGD
or its variants, we discretize the gradient flow (13) according to forward Euler. We approximate
the standard H0 gradient of the loss, ∇H0L(X), using a mini-batch, as is standard. We then use
this approximation of the H0 gradient to approximate the H̃1 gradient, ∇H̃1L(X), by discretizing
(10)-(12) using a standard Riemann sum. Note that (10) can be computed for each o, the output
channel index of the tensor, with the cumulative sum (CUMSUM) operation, which is linear in cost, as
are (11) and (12). We compute the Sobolev gradient for each convolutional layer parameter tensor
independent of others. We use λ = 1 for H̃1 gradient and add it to a scaled version (by a hyper
parameter) of the H0 gradient (as in Figure 2) to avoid over-smoothing. The re-weighted H0 gradient
is computed by using (8) from the H0 stochastic gradient. Both our gradients require few additional
lines of code; the code for re-weighted H0 is shown in Figure 3 (see Appendix Figure 12 for H̃1

code). Thus, our gradients replace the usual one, and other additions to SGD (e.g., momentum,
Adam) can be used.

4 EXPERIMENTS

We test our methods on different baseline optimizers and tasks. Our intent is to show that any method
can be improved just by switching to either of our gradients. We fix λ = 1 unless specified otherwise.
Table 1 shows the settings for each experiment. Experiments are run on a single NVIDIA Titan Xp
GPU except for GANs, which are run on a Tesla v100 GPU due to memory requirements.

Table 1: Experimental settings.

Task Dataset Baseline Network Batch Size Epochs Initial LR

Image Classification
CIFAR-10

SGD
ResNet-56 128,32,8 240 0.1
VGG-16 128,8,6 240 0.01

ADAM ResNet-56 128,32,8 200 1e-3
LS ResNet-56 128,32,8 240 0.1

MNIST SGD Two-layer Conv 100 100 0.01
Semantic Segmentation PascalVOC SGD ResNet50 2 70 7e-3
Image Generation (GAN) CityScapes SGD SPADE 2 100 1e-4,4e-4

Image Classification: We experiment on CIFAR-10 Krizhevsky et al. (2009). We test our gradients
with both SGD and ADAM on ResNet-56 He et al. (2016a) and VGG-16 Simonyan & Zisserman
(2014) following settings of Osher et al. (2018). For SGD, we set the initial learning rate to be 0.1
and 0.01 on ResNet-56 and VGG-16 respectively with momentum 0.9 and weight decay 5e-4. For
ADAM, we set the initial learning rate to 0.01. We decrease the learning rate by a factor of 10 every
40 epochs as Osher et al. (2018). We run 25 independent trials on SGD and 10 on ADAM (due to
lower variance of ADAM), and report the average.

In Figure 4, we show an example of training and test accuracy curves (batch size of 8) for baselines
as well as Laplacian Smoothing (LS) Osher et al. (2018), which rasterizes before smoothing. We
out-perform all methods. We also apply LS (without rasterization) to smooth the gradient in our
output-channel directed fashion, which improves LS, but we still out-perform it.

In Figure 5 (left), we compare the histograms of test accuracy over multiple runs of ours and SGD.
Our method achieves higher average test accuracy with reduced variance. To investigate the effect
of different channel directions of smoothing, we apply our method as well as LS along different
channel-directions. We compare approaches under two settings, which are smoothing gradients in
all layers and smoothing gradients in only convolutional layers. Figure 5 (right) shows that our
output-channel direction is preferred regardless of smoothing method used. This shows that the
output channel smoothing is essential. Smoothing only convolutional layers in a rasterized order (as

6

Under review as a conference paper at ICLR 2021

Figure 4: Evolution of training and test accuracy on CIFAR-10: an example with batchsize = 8.
Our metric improves both training and test accuracy.

Figure 5: Distribution of results on CIFAR-10. Left: Histogram of test accuracy. Ours achieves
higher average with significantly reduced variance. Right: Results from different methods. Best
accuracy obtained from our proposed direction. Ours: SGD+H̃1; LS-ChanDir: LS applied in our
proposed channel direction; Ours+O: output channel smoothing; Ours+R: parameters rasterized
into a 1-D vector to perform smoothing; Ours+I: Input channel smoothing.

in LS) performs worse than SGD, further showing importance of the output direction. Note LS makes
up the loss in convolutional layer smoothing with smoothing in other layers.

Table 2 summarizes results (over 10-25 trials). Both our gradients improve over H0. A greater
advantage is achieved with small batch sizes is small as the stochastic gradient is noisy, and our
method imposes regularity. Both gradients perform similarly, but H̃1 performs better with ADAM.

Table 2: Test accuracy on CIFAR-10. Channel-directed gradients improve H0 in all cases. Up to
11% of errors can be reduced. Results average 25 trials for SGD and 10 trials for ADAM.

Architecture ResNet-56 VGG-16 Architecture ResNet-56
Batch size 128 32 8 128 8 6 Batch size 128 32 8
SGD 93.24 91.96 86.54 93.02 92.31 91.88 ADAM 91.20 91.04 89.53
+H̃1 93.39 92.27 87.99 93.26 92.77 92.25 +H̃1 91.42 91.13 90.02
Error reduced% 2.2% 3.9% 10.8% 3.4% 6.0% 4.6% Error reduced% 2.5% 1.0% 4.7%
+H0

λ 93.57 92.25 88.04 93.19 92.79 92.43 +H0
λ 91.20 91.06 89.70

Error reduced% 4.9% 3.6% 11.1% 2.4% 6.2% 6.8% Error reduced% 0.0% 0.2% 1.6%

Effect of Smoothing Parameter: We examine the effect of the smoothing parameter on MNIST Le-
Cun & Cortes (2010) and Fashion-MNIST Xiao et al. (2017) by varying it from 0 to 20. We conduct
training on the test set (10000 samples) and test on the training set (60000 samples) to make gen-
eralization more challenging. We use a 2-layer CNN with 50 and 100 5 × 5 filters in each layer,
respectively, and train with batch size 100. Figure 6 shows the accuracy at the 100th epoch (average
over 5 trials). Note λ = 0 is SGD. Our methods are not sensitive to λ and improve SGD for any λ.

Semantic Segmentation: The experiments are conducted on PascalVOC Everingham et al. (2015)
using the popular UNet segmentation network Ronneberger et al. (2015) with ResNet-50 as the
encoder (https://github.com/nyoki-mtl/pytorch-segmentation). We use initial learning rate 7e-3 and
batch size 2 (to fit on Titan Xp memory), and average results over 3 trials. Figure 7 shows results.
Both our gradients improve segmentation accuracy by ~8% over SGD on the test set. We reduced the
generalization gap from 0.163 to 0.151 (by 7.4%) and 0.150 (by 8.0%) for H̃1 and H0

λ, respectively.

7

Under review as a conference paper at ICLR 2021

Figure 6: Results on MNIST and Fashion-MNIST with different choice of smoothness. Our
methods improve classification accuracy over SGD (i.e., λ = 0) for a wide range of smoothness.

Figure 7: Semantic Segmentation Results on PascalVOC. Sobolev H̃1 and re-weighted H0 (H0
λ)

improve segmentation accuracy by 8.5% and 7.8% respectively relative to SGD.

GAN Image Generation: We test on semantic labels to image conversion. We perform the experi-
ments on the current state-of-the-art model SPADE Park et al. (2019). We test on CityScapes Cordts
et al. (2016) dataset and results are evaluated by FID Heusel et al. (2017) score (lower is better).
Learning rates are 1e− 4 and 4e− 4 for the generator and discriminator, respectively. We compare
to SGD with momentum 0.9 and weight decay 5e-4. All models are trained with batch size 2 (to fit
on Tesla v100 memory). For each optimizer, we summarize the results of 24 different trained models.
Table 3 provides results. Our methods achieve better average FID score with less variance.

Method FID
SGD 65.77± 11.94

+H̃1 60.17± 6.15

+H0
λ 57.99± 5.01

Table 3: Results on the image generation task. Our
methods achieve better result with reduced variance due
to regularity imposed during training.

Speed: With PyTorch, re-weighted H0 adds negligible overhead. Currently, H̃1 increases training
time on CIFAR-10 by 50% with batch size 128. 70% of this overhead is due to using tensor transpose
and saving/loading, which is required due to limitations of Pytorch library. This can be eliminated by
implementing our own Pytorch function in C++; in this case, H̃1 would add a 15% overhead.

5 CONCLUSION

Using stochastic gradients that promote correlation (and smoothness) in the output-channel dimension
of CNN network tensors is effective in improving accuracy of SGD and its variants. We reformulated
the gradient (without changing the loss) by changing the underlying Riemannian geometry on the
tensor space using two different metrics. In the continuum, Sobolev changes the topology of the
loss landscape (possibly removing fine-scale local minima), and so has better theoretical properties.
Both the channel-directed re-weighted H0 and H̃1 gave accuracy boosts, with H̃1 performing better
with ADAM. Regularity in other tensor dimensions is not effective in improving accuracy. Both
channel-directed gradients have the same (linear) computational complexity and not much cost over
SGD (re-weighted H0 is faster), and the code is simple.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Ralph Abraham, Jerrold E Marsden, and Tudor Ratiu. Manifolds, tensor analysis, and applications,
volume 75. Springer Science & Business Media, 2012.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

Yoshua Bengio. Rmsprop and equilibrated adaptive learning rates for nonconvex optimization. corr
abs/1502.04390, 2015.

Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pp. 421–436.
Springer, 2012.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

Manfredo Perdigao do Carmo. Riemannian geometry. Birkhäuser, 1992.

Guillaume Charpiat, Pierre Maurel, J-P Pons, Renaud Keriven, and Olivier Faugeras. Generalized
gradients: Priors on minimization flows. International journal of computer vision, 73(3):325–344,
2007.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent
into wide valleys. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):124018,
2019.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in neural information
processing systems, pp. 1646–1654, 2014.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(Jul):2121–2159, 2011.

M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes challenge: A retrospective. International Journal of Computer Vision,
111(1):98–136, January 2015.

Suriya Gunasekar, Blake Woodworth, and Nathan Srebro. Mirrorless mirror descent: A more natural
discretization of riemannian gradient flow. arXiv preprint arXiv:2004.01025, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun
2016a. doi: 10.1109/cvpr.2016.90. URL http://dx.doi.org/10.1109/cvpr.2016.
90.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016b.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium, 2017.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference.
The Journal of Machine Learning Research, 14(1):1303–1347, 2013.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pp. 315–323, 2013.

9

http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2016.90

Under review as a conference paper at ICLR 2021

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Zhicong Liang, Bao Wang, Quanquan Gu, Stanley Osher, and Yuan Yao. Exploring private federated
learning with laplacian smoothing. arXiv preprint arXiv:2005.00218, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2017.

Liangchen Luo, Yuanhao Xiong, and Yan Liu. Adaptive gradient methods with dynamic bound of
learning rate. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=Bkg3g2R9FX.

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally.
Exploring the regularity of sparse structure in convolutional neural networks. arXiv preprint
arXiv:1705.08922, 2017.

Gaétan Marceau-Caron and Yann Ollivier. Practical riemannian neural networks. arXiv preprint
arXiv:1602.08007, 2016.

Stanley Osher, Bao Wang, Penghang Yin, Xiyang Luo, Farzin Barekat, Minh Pham, and Alex Lin.
Laplacian smoothing gradient descent. arXiv preprint arXiv:1806.06317, 2018.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ganesh Sundaramoorthi, Anthony Yezzi, and Andrea C Mennucci. Sobolev active contours. Interna-
tional Journal of Computer Vision, 73(3):345–366, 2007.

Ganesh Sundaramoorthi, Anthony Yezzi, and Andrea Mennucci. Coarse-to-fine segmentation and
tracking using sobolev active contours. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(5):851–864, 2008.

Bao Wang, Difan Zou, Quanquan Gu, and Stanley Osher. Laplacian smoothing stochastic gradient
markov chain monte carlo. arXiv preprint arXiv:1911.00782, 2019.

Bao Wang, Quanquan Gu, March Boedihardjo, Lingxiao Wang, Farzin Barekat, and Stanley J
Osher. Dp-lssgd: A stochastic optimization method to lift the utility in privacy-preserving erm. In
Mathematical and Scientific Machine Learning, pp. 328–351. PMLR, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

10

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://openreview.net/forum?id=Bkg3g2R9FX
https://openreview.net/forum?id=Bkg3g2R9FX

Under review as a conference paper at ICLR 2021

A ADDITIONAL ANALYSIS OF EVOLUTION OF CHANNEL-DIRECTED
OPTIMIZATION

Figure 8 and Figure 9 present the evolution of training and test accuracy of ADAM and SGD with
different batch sizes. Using channel-directed gradients (H̃1 in this experiment) for SGD or ADAM
improves test accuracy for any batch size. More prominent performance gains are seen for smaller
batch sizes. This is due to that the stochastic gradient is typically more noisy when the batch size is
small, and our proposed channel-directed metrics implicitly encode smoothness.

Figure 8: Training and test accuracy on CIFAR-10 with ADAM.

Figure 9: Training and test accuracy on CIFAR-10 with SGD.

B ADDITIONAL EXPERIMENTAL VERIFICATION OF OUTPUT-CHANNEL
DIRECTION

To investigate the effect of different channel directions of smoothing, we apply our method as well as
LS along different channel-directions. Figure 10 shows that our output-channel direction is preferred
regardless of different smoothing approaches.

Figure 10: Channel-Directed Smoothing Leads to Better Performance. Best accuracy obtained
from our proposed direction. A: Output-Channel Directed; B: Input-Channel Directed; All: parame-
ters rasterized into a 1-D vector to perform smoothing; Ours: re-weighted L2.

11

Under review as a conference paper at ICLR 2021

C REGULARITY OF TRAINED CONVOLUTIONAL LAYERS

We show that the final weight tensor at convergence in our methods have correlation in the output
channel dimension in Figure 11, as should be the case as the tensor is composed of a component that
is smooth. To show this, we plot the correlation between filters in the weight tensors as a function of
the distance in the output channel dimension. This is done over multiple tensor layers in ResNet-56
and over multiple trials of optimization on CIFAR-10. We also show the correlation of filters in
the input channel direction. As can be seen, all optimization methods produce tensors that exhibit
correlation (in additional smoothness for Sobolev) in the output channel direction while no (or much
less) correlation in the input direction. Notice that our methods increase the amount of regularity
compared to SGD as it imposes this in optimization.

Figure 11: Correlation of Final Tensor. Correlation between weights within different channel
directions in CIFAR trained ResNet 56 conv layers (over 10 trials). |i− j| is distance between weight
locations in tensor for correlation computation. Sobolev/re-weighted H0 show strong correlation in
output direction, but not input. SGD shows correlation in output direction.

D DETAILED DERIVATIONS FOR SECTION 2.2

We first derive the re-weighted L2 gradient under H0
λ metric following the same notations from the

paper. Consider f , ∇H0L(X) the standard L2 gradient, and we want to solve for g , ∇H0
λ
L(X).

By (4) and (7) we have

〈f, k〉
H0

= 〈g, k〉H0
λ

(14)

=
〈
ḡ, k̄
〉
H0

+ λ
〈
g − ḡ, k − k̄

〉
H0
. (15)

Note the fact that
〈
ḡ, k − k̄

〉
H0

= 0 holds for all k. This is because
∫
ḡ(k − k̄) do = ḡ

∫
(k − k̄) do

and
∫

(k − k̄) do = 0 since k − k̄ is zero-mean. In this way, k̄ and k − k̄ become a set of orthogonal
basis.

After decomposing f and k into

f = f̄ + (f − f̄), k = k̄ + (k − k̄), (16)

by simple algebra we have

f̄ = ḡ, f − f̄ = λ(g − ḡ), (17)

which leads to the result of (8).

We then derive the Sobolev gradient under H1 metric, following similar computations in Sun-
daramoorthi et al. (2007). Consider∇H1L(X) the Sobolev gradient under H1 metric. By (6) and (7)
we have

〈∇H0L(X), k〉
H0

= 〈∇H1L(X), k〉
H1

(18)

=
1

O
〈k,∇H1L(X)〉

H0
+ λO

〈
∂k

∂o
,
∂∇H1L(X)

∂o

〉
H0

. (19)

Integrating by parts and considering the periodic boundary conditions, we have

〈∇H0L(X), k〉
H0

=

〈
∇H1L(X)− λO2 ∂

2

∂o2
∇H1L(X), k

〉
H0

. (20)

12

Under review as a conference paper at ICLR 2021

Since k can be any perturbation, by uniqueness, we have

∇H0L(X) = ∇H1L(X)− λO2 ∂
2

∂o2
∇H1L(X) (21)

which is (8). Similarly, for H̃1 metric, we have

∇H0L(X) = ∇H̃1L(X)− λO2 ∂
2

∂o2
∇H̃1L(X). (22)

First observe that by computed the output-channel directed average of the both sides of the above
equation, we see that∇H̃1L(X) = ∇H0L(X), i.e., the average values are same. One may integrate
(22) twice to solve for the H̃1 gradient. For simplicity, let f be the L2 gradient and g be the H̃1

gradient. Integrating twice yields

g(o, i, h, w) = g(0, i, h, w) +

∫ o

0

∂g

∂o
(0, i, h, w) dõ− 1

λ

∫ o

0

∫ ô

0

(f(õO, i, h, w)− f̄(i, h, w)) dõ dô

(23)

= g(0, i, h, w) +

∫ o

0

∂g

∂o
(0, i, h, w) dõ− 1

λ

∫ o

0

∫ o

õ

(f(õO, i, h, w)− f̄(i, h, w)) dô dõ

(24)

= g(0, i, h, w) + o
∂g

∂o
(0, i, h, w)− 1

λ

∫ o

0

(o− õ)(f(õO, i, h, w)− f̄(i, h, w)) dõ.

(25)
Note that here we perform normalization by scaling to the channel direction by letting o ∈ [0, 1].
With boundary conditions g(0) = g(1), ∂g∂o (0) = ∂g

∂o (1) and f̄ = ḡ, we have

∂g

∂o
(0, i, h, w) = − 1

λ

∫ 1

0

o(f(oO, i, h, w)− f̄(i, h, w)) do. (26)

For simplicity, we eliminate i, h, w and O in the following derivations. We have

g(0) = g(o)− o∂g
∂o

(0) +
1

λ

∫ o

0

(o− õ)(f(õ)− f̄) dõ (27)

= g(o) + o
1

λ

∫ 1

0

o(f(o)− f̄) do+
1

λ

∫ o

0

(o− õ)(f(õ)− f̄) dõ. (28)

Noting
∫ 1

0
g(0) do = g(0) and f̄ =

∫ 1

0
f(o) do, we integrate both sides over the entire interval [0, 1].

g(0) = ḡ +
1

λ

∫ 1

0

o do ·
∫ 1

0

o(f(o)− f̄) do+
1

λ

∫ 1

0

∫ o

0

(o− õ)(f(õ)− f̄) dõdo (29)

= f̄ +
1

2λ

∫ 1

0

of(o) do− 1

4λ
f̄ +

1

λ
(

∫ 1

0

∫ o

0

(o− õ)f(õ) dõ do+ f̄

∫ 1

0

∫ o

0

(o− õ) dõ do

(30)

= (1− 1

4λ
− 1

6λ
)f̄ +

1

2λ

∫ 1

0

of(o) do+
1

λ

∫ 1

0

∫ 1

õ

(o− õ)f(õ) dodõ (31)

= (1− 5

12λ
)

∫ 1

0

f(o) do+
1

2λ

∫ 1

0

of(o) do+
1

λ

∫ 1

0

(
1

2
+
õ2

2
− õ)f(õ) dõ (32)

=

∫ 1

0

(1 +
o2 − o+ 1/6

2λ
)f(o) do. (33)

This gives (12) in the main paper.

E CODE FOR SOBOLEV GRADIENT

The Pytorch code to compute the Sobolev gradient is provided in Figure 12. In theory, the ‘cumsum’
operation should be the main part of the code with largest computational cost. However, in order to
match with standard Pytorch library, tensor operations including ‘permute’, ‘repeat’ and ‘unsqueeze’
are currently required. These operations contribute to over 70% of computational overhead, and can
be avoided by if the computation were done using C++.

13

Under review as a conference paper at ICLR 2021

def S o b o l e v _ g r a d (g rad =param . g rad . da t a , lambda) :
grad : L2 g r a d i e n t ; lambda >0
L = grad . s i z e (0)
s = t o r c h . a r a n g e (L , d t y p e = t o r c h . f l o a t 3 2) . cuda ()
tmp_mean = t o r c h . mean (grad , 0 , True) . r e p e a t (L , 1 , 1 , 1)
t m p _ d i f f = (g rad − tmp_mean) . pe rmute (1 , 2 , 3 , 0)
gp_0 = t o r c h . matmul (t m p _ d i f f , s) / (− lambda∗L∗∗3)
gp_0 = gp_0 . unsqueeze_ (3) . r e p e a t (1 , 1 , 1 , L)
s = s . unsqueeze_ (0) . unsqueeze_ (0) . unsqueeze_ (0) . r e p e a t

(t m p _ d i f f . s i z e (0) , t m p _ d i f f . s i z e (1) , t m p _ d i f f . s i z e (2) , 1)
S o b o l e v g r a d i e n t c o m p u t a t i o n
tmp2 = s ∗gp_0−(s ∗ t o r c h . cumsum (t m p _ d i f f , dim =3)

− t o r c h . cumsum (s ∗ t m p _ d i f f , dim = 3)) / (lambda∗L∗∗2)
g rad = lambda ∗ (tmp2 . permute (3 , 0 , 1 , 2) + tmp_mean)
re turn g rad

Figure 12: Pytorch code to compute the Sobolev (H̃1) gradient from the H0 gradient. The
‘permute’, ‘repeat’ and ‘unsqueeze’ operations are due to standard library limitations, and can be
avoided by further code optimization (e.g., writing the function in C++/Cuda that Pytorch calls).

F FURTHER ANALYSIS OF CORRELATION IN CONVOLUTIONAL LAYERS

Existing analysis on regularity in CNNs (Mao et al. (2017)) focus on filter level and kernel level
regularities in pruning. To the best of our knowledge, the channel-directed regularity proposed by our
paper has not been investigated nor has the regularity been used in optimization.

We show below that the output-direction correlation is not due to randomness in the network or due
to particular weight transformations that leave the output behavior of the CNN fixed. The reason for
the output direction correlation is unknown to us, but a direction for future investigation.

Could it be due to random noise? No. Figure 13 shows the histogram of correlation of a representa-
tive convolutional layer from ImageNet pretrained DenseNet. Note that the input channel correlation
is distributed as zero-mean Gaussian, which is likely to be due to random noise. In contrast, the
output channel correlation (our proposed channel direction) shows positive correlation. There are also
outliers (points near 0.3) corresponding to channels with mean value far away from zero (see vertical
lines in Figure 1). This shows that the neural network prefers regularities in the output channel
direction.

Figure 13: Histogram of correlation of a representative tensor. While the input channel correlation
is distributed as zero-mean Gaussian, the output channel shows positive correlation and sparsity. The
neural network prefers regularities in the output channel direction.

Could it be due to scaling? No. In modern CNNs, scaling the affine factor in BatchNorm layer
could create such structure in the following convolutional layer, without affecting the output of the
neural network. Note that in Figure 1, we use correlation that is invariant to re-scalings so this is not
the case. We also investigate this further. Figure 14 presents the scatter plot of mean of tensors in the
output direction (larger mean corresponds to stronger correlation) and standard deviation of output
channels. If scalings are contributing to the regularity, there would be a positive correlation between
the mean and standard deviation, as a scaling amplifies both. The plot does NOT show a positive

14

Under review as a conference paper at ICLR 2021

correlation between mean and standard deviation in this channel direction, which means the structure
is not due to simply scaling up all weights within particular channels (producing the same CNN).

Figure 14: Scatter plot of mean and standard deviation of output channels. There is no positive
correlation between channel mean and standard deviation, showing that the structure in output channel
direction is not due to scaling. Each color corresponds to a layer.

15

	Introduction
	Related Work

	Channel-Directed Gradients
	Background on Riemannian Gradients
	Channel-Directed Metrics
	Computing Channel-Directed Gradients
	Properties of Channel Directed Gradient Flows

	Application to SGD and Implementation
	Experiments
	Conclusion
	Additional Analysis of Evolution of Channel-Directed Optimization
	Additional Experimental Verification of Output-Channel Direction
	Regularity of Trained Convolutional Layers
	Detailed Derivations for Section 2.2
	Code for Sobolev Gradient
	Further Analysis of Correlation in Convolutional Layers

