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Abstract

Artificial neural networks (ANNs) are typically confined to accomplishing pre-defined tasks
by learning a set of static parameters. In contrast, biological neural networks (BNNs)
can adapt to various new tasks by continually updating their connection weights based on
their observations, which is aligned with the paradigm of learning effective learning rules
in addition to static parameters, e.g., meta-learning. Among broad classes of biologically
inspired learning rules, Hebbian plasticity updates the neural network weights using local
signals without the guide of an explicit target function, closely simulating the learning
of BNNs. However, typical plastic ANNs using large-scale meta-parameters violate the
nature of the genomics bottleneck and deteriorate the generalization capacity. This work
proposes a new learning paradigm decomposing those connection-dependent plasticity rules
into neuron-dependent rules thus accommodating O(n2) learnable parameters with only O(n)
meta-parameters. The decomposed plasticity, along with different types of neural modulation,
are applied to a recursive neural network starting from scratch to adapt to different tasks.
Our algorithms are tested in challenging random 2D maze environments, where the agents
have to use their past experiences to improve their performance without any explicit objective
function and human intervention, namely learning by interacting. The results show that rules
satisfying the genomics bottleneck adapt to out-of-distribution tasks better than previous
model-based and plasticity-based meta-learning with verbose meta-parameters.

1 Introduction

Artificial Neural Networks (ANNs) with a vast number of parameters have achieved great success in various
tasks (LeCun et al., 2015). Despite their innate capability of accomplishing pre-defined tasks, the learning
potential and generalizability to various tasks at low costs is much questioned. On the other hand, Biological
Neural Networks (BNNs) (Hebb, 2005) can easily acquire new skills with a few examples, while their
innate ability is relatively weak. Inspired by BNNs that acquire generalizability and learning potential
by compromising innate capability, researchers (Soltoggio et al., 2008; 2018) have focused on the natural
evolution of BNNs (Figure 1) to build machine intelligence with nested learning loops: an outer loop optimizes
meta-parameters that initialize neural networks and make rules of learning; an inner loop further adapts the
neural networks to varying tasks by utilizing observations and feedbacks.

More recently, the nested learning loops of BNNs have been used to inspire meta-learning (Zoph & Le,
2017; Finn et al., 2017), especially model-based meta-learning (Santoro et al., 2016; Mishra et al., 2018;
Chen et al., 2021). However, these works fail to meet one major hypothesis widely assumed in research
on BNNs—Genomic Bottleneck (Zador, 2019; Pedersen & Risi, 2021; Koulakov et al., 2021). For higher
animals such as human beings, it has been found that the amount of information in their DNA is much
less than that of synapses in their nervous system (such as the brain) in orders of magnitude (Zador, 2019).
This phenomenon suggests the weak abilities of a newborn but the strong potential for learning for further
development, such like human babes. In this way, compared to existing meta-learning algorithms, such as
few-shots learning or fine-tuning (Yosinski et al., 2014; Finn et al., 2017), which intensively rely on pre-training
over-parameterized learning rules or meta-parameters (genomes) and relatively short inner loops (life cycle),
BNNs actually acquire more information within the life cycle than those received from genomes.
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Figure 1: An illustration of the emergence of BNNs: In the outer loop of natural evolution, the genomes are
mutated and selected based on the fitness. The life cycle of each individual composes the inner loop. The
genomes that have a low capacity for information decide the learning mechanisms and initial configurations
of the BNNs for each individual. As the individual interacts with the environment through actions and
observations, the BNNs are further updated to better adapt to the environment, which is capable of memorizing
massive information.

Thus, in this work, we aim to study a novel meta-learning framework that incorporates fewer meta-parameters
within the nested learning loops in a BNN-style. To meet the desire of self-adaption, we follow the Learning
by Interacting (LBI) principle of BNNs — Compared to the learning algorithms of ANNs, where the training
loss/objective needs to be specified, and data collection/cleaning is required, human beings (Gottlieb et al.,
2013) however learn by making noisy/incomplete observations (including vision, hearing, etc.) and taking
actions, via innate biochemical mechanisms such as dopamine (Jalabert et al., 2011). Although the inner
loops of BNNs have been used to interpret or even design ANN-based learning algorithms (Averbeck & Costa,
2017) for specific tasks, from an external perspective, in BNNs, reinforcement learning, supervised learning,
and unsupervised learning are unified under the LBI principle by regarding features, labels, and feedbacks as
part of the observations. The learning process becomes a black-box mechanism encoded in the network. By
embedding LBI in the inner loop, the nested learning loops together make the overall populations of genomes
adaptable to various tasks of different objectives, generation by generation.

To reduce the number of meta-parameters, this work revisits the canonical Hebbian plasticity rules (Hebb,
1949), which update the connection weights within the forward process by considering the states of the
pre-synaptic and post-synaptic neurons. To fit ANNs, Hebbian plasticity rules typically employ 3 to 4
meta-parameters for each connection weight (Najarro & Risi, 2020). In order to lower the number of
meta-parameters used for Hebbian plasticity rules, researchers have proposed either decreasing the number
of rules used through evolving-and-merging (Pedersen & Risi, 2021) or using proper initial weights (Miconi
et al., 2019b;a). Compared to the above works, we assume that the plasticity rule depends on its pre-synaptic
neuron type and post-synaptic neuron type separately. As a result, (1) instead of assigning a unique plasticity
rule for each connection, we correspond plastic rules to neurons and lower the size of meta-parameters from
O(n2) to O(n) (n is the hidden size of neurons); (2) since human beings generate reward signals (such as
dopamine) by themselves, this work proposes neural modulator signals calculated from neural layers and
enables learning-by-interacting as dopamine neurons; (3) the proposed framework, for the first time, learns
plasticity rules that can update an RNN from scratch, leading to better generalizability in more challenging
tasks.

Different methods are compared in 2D random maze environments, where the maze architecture, the agent
origin, and the goal are randomly generated for each task. Besides generalizing across the pre-defined

2



Under review as submission to TMLR

distributions, we also test the ability of the learned meta-parameters to generalize to out-of-distribution tasks.
We prove that by following the genomics bottleneck, the proposed framework surpasses the performance of
the previous Meta-RNNs (5000+ meta-parameters) and plasticity-based learners (20000+ meta-parameters)
with only 1300+ meta-parameters. Moreover, we show that the proposed methods can generalize better in
out-of-distribution tasks, which sheds light on open-ended learning research.

2 Related Works

2.1 Deep Meta-Learning

In meta-learning, an agent gains experience in adapting to a distribution of tasks with two nested learning
loops: The outer learning loop optimize the meta-parameters that may involve initial parameters (Finn et al.,
2017; Song et al., 2019), learning rules (Li & Malik, 2016; Oh et al., 2020; Najarro & Risi, 2020; Pedersen &
Risi, 2021), and model structures (Zoph & Le, 2017; Liu et al., 2018; Real et al., 2019); The inner learning
loops adapt the model to specific tasks by utilizing the meta-parameters. Based on the genre of inner-loop
learners, those methods can be roughly classified into gradient-based (Finn et al., 2017; Song et al., 2019),
model-based (Santoro et al., 2016; Duan et al., 2016; Mishra et al., 2018), and metric-based (Koch et al., 2015)
methods (Huisman et al., 2021). In addition, the Plasticity-based (Soltoggio et al., 2008; 2018; Najarro & Risi,
2020) methods updates the connection weights of neural networks in the inner loop, but not through gradients.
A key advantage of plasticity and model-based learning is the capability of learning by forward-only process,
and the exemption of human designed objective function, which closely simulates the learning of BNNs. Our
work can be classified under both model-based and plasticity-based meta-learning.

2.2 Model-based Meta-Learning

Models with memories (including recurrence and self-attention) are capable of adapting to various tasks by
continually updating their memory through forwarding (Hochreiter & Schmidhuber, 1997). Those models
are found to be effective in automatically discovering supervised learning rules (Santoro et al., 2016), even
complex reinforcement learning rules (Duan et al., 2016; Mishra et al., 2018). Similar capabilities are found
in large-scale language models (Brown et al., 2020). We see hopes of unifying all different learning paradigms
(supervised learning, unsupervised learning, reinforcement learning) within one model. Still, the limitation of
those models becomes evident when the input sequences get long. A reasonable guess is that the limited
memory space restricted the learning potential since the memories are typically much sparser than the
parameters (For the recurrent models, memories are in the order of O(n) while the parameters are O(n2),
with n being the number of hidden units; For self-attention models, the inference cost is proportional to
O(m2) as m is the memory length). In contrast, learning paradigms that update parameters embrace higher
learning potential and better asymptotic performances.

2.3 Plastic Artificial Neural Networks

The synaptic plasticity of BNNs is found to be related to the pattern of pre-synaptic and post-synaptic
neurons, which is initially raised by Hebb’s rule (Hebb, 1949), known as “neurons that fire together wire
together”. For ANNs, those rules are found ineffective without proper modulation and meta-parameters. For
instance, in the αABCD plasticity rule (Soltoggio et al., 2008), given the pre-synaptic neuron state x and
post-synaptic neuron state y, the connection weight w is updated by

δw = m[A · xy + B · x + C · y + D], (1)

where m is the modulation signal, typically specified by dopamine neurons (Soltoggio et al., 2008), reward
(Frémaux & Gerstner, 2016), or trainable scalars (Pedersen & Risi, 2021). As for the learning rules, some
also use the eligibility traces e to replace the four terms in the brackets (Miconi et al., 2019b), denoted by

δw ∝ e = (1 − η)e + ηxy. (2)

3



Under review as submission to TMLR

Plastic neural layers can either be in a feed-forward layer (Najarro & Risi, 2020) or part of the recurrent
layer (Miconi et al., 2018; 2019a). The initial parameters can either start from scratch (Najarro & Risi, 2020;
Pedersen & Risi, 2021) or be treated as part of the meta-parameters (Miconi et al., 2019b;a).

A challenge for Plastic Artificial Neural Networks (PANN) is the requirement for verbose meta-parameters.
Connections with n input neurons and n output neurons costs over 4n2 hyper-parameters (A, B, C, D), which
is even more than the connection weights to be updated (n2).

2.4 Implementing Genomics Bottleneck

Most large-scale deep neural networks perform poorly in task generalization, especially in out-of-distribution
(OOD) tasks. The bias can grow very large by introducing human-imperceptible minor disturbances to the
inputs (Goodfellow et al., 2014). A potential way to pursue robustness is to manipulate a large-scale neural
network with relatively simple rules, following the genomics bottleneck of BNNs. Previous works utilizing
genomics bottleneck include encoding learning and forwarding rules with a number of tied tiny genomics
networks (Koulakov et al., 2021) or fewer learning rules (Pedersen & Risi, 2021), and encoding extensive
neural-network parameters with smaller genomics networks (or hyper-networks) (Clune et al., 2009; Ha et al.,
2016; Kirsch & Schmidhuber, 2021). Among those works, merging plasticity rules of different connections
and re-evolving the tied rules (Pedersen & Risi, 2021) is more related to our proposed decomposed plasticity.
However, compared with (Pedersen & Risi, 2021) that seeks to tie meta-parameters among the connections
irregularly, our solution is more biologically plausible and easier to scale up.

3 Algorithms

Problem Settings. We consider an agent (learner) that is dependent on meta-parameters (genomes)
θGene. It adapts to a distribution of tasks Tj ∈ T by interacting through observations it and actions at.
Specifically, in this paper we mainly consider the settings of reinforcement learning, where the observation it

include the current state (st), preivous-step action (at−1), and previous-step feedback (rt−1) (In supervised
learning we can use the feature xt and previous-step label yt as observation) (Mishra et al., 2018). The
agent first makes some observations by tentatively exploring the environment (this stage can be referred to
as meta-training-training, see (Beaulieu et al., 2020)), where its parameters or memories are updated. It
then improves its performance in the following steps by utilizing those learned memories/parameters, where
the fitness is evaluated (meta-training-testing). In meta-testing, similarly, the learned meta-parameters are
given meta-testing-training and meta-testing-testing in order. A life cycle marks the length of an agent’s
inner-loop training and testing process. The goal of meta-training is to optimize the meta parameters or
genomes (θGene) such that the agent achieves higher fitness in meta-training-testing.

Decomposed Plasticity. Considering a plastic layer with pre-synaptic (input) neurons states x ∈ Rnx and
post-synaptic (output) neurons states y ∈ Rny , we can rewrite Equation 1 in the matrix form of

Wt+1 = Wt + mt(WA ⊙ (yt ⊗ xt) + WB ⊙ (1 ⊗ xt)
+ WC ⊙ (yt ⊗ 1T) + WD), (3)

where we use ⊙ and ⊗ to represent “element-wise multiplication” and “outer product” respectively. Here
W0 ∈ Rny×nx is initialized from scratch, and WA, WB , WC , WD ∈ Rny×nx are the meta-parameters of
learning rules. To satisfy the genomics bottleneck, we introduce a neuron dependent decomposition of those
meta-parameters, which is denoted by

WA = vA,y ⊗ vA,x, (4)

where vA,x ∈ Rnx , vA,y ∈ Rny . We perform similar decomposition for WB , WC and WD, which gives us
4(nx + ny) rules in all. It is orders of magnitude smaller than the scale of the connection weights nx × ny.
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Modulated Plastic RNN. Interaction between the agent and the environment yields a sequence of
observations i1, ..., it, ..., a plastic RNN updates the hidden states ht with the following equation:

ht+1 = tanh(W (p)
h,t ht + W

(p)
i,t it + b),

at = f(Woht+1). (5)

We use superscript (p) to represent plastic connection weights. Different from previous works of plastic RNN
or plastic LSTM that only implement plasticity in W

(p)
h,t , we apply decomposed plasticity for both W

(p)
h,t

and W
(p)
i,t by regarding ht and it as input neurons respectively. This further reduces our meta-parameters.

Notice that this formulation is somewhat similar to hyper-RNN (Ha et al., 2016), but there is a fundamental
difference in that decomposed plasticity updates the connections from scratch while hyper-RNN decides the
connections from another RNN.

We consider two types of modulation regarding mt: The pre-synaptic dopamine neuron generates the
modulation by a non-plastic layer processing the pre-synaptic hidden states; The post-synaptic dopamine
neuron generates the modulation by processing the post-synaptic hidden states, as follows:

Pre-synaptic Dopamine Neuron (PreDN): mh,t, mi,t = σ(Wm[it, ht]) (6)
Post-synaptic Dopamine Neuron (PostDN): mh,t, mi,t = σ(Wmht+1) (7)

The proposed plasticity can be implemented in both recurrent NNs and forward-only NNs. Notice that
θGene = {Wm, Wo, b, vh,A,x, vh,B,x, ..., vh,A,y, ..., vi,A,x, vi,B,x, ...} are the meta-parameters optimized by meta-
training but kept static within the inner loop. For convenience we directly refer to those meta-parameters
with genomes. On the other hand, θMem = {W

(p)
h,t , W

(p)
i,t , ht} starts from scratch but is continually updated

in the inner loop, which can be regarded as memories. We use NGene and NMem to denote the number of
parameters in genomics and memories respectively.

Outer-Loop Evolution. Given task Tj ∈ T , by continuously executing the inner loop including meta-
training-training and meta-training-testing, we acquire the fitness of each individual at the end of its life cycle.
By following Evolution Strategies (ES) (Salimans et al., 2017) the genomes θGene shall be updated by

Fit(θGene, T ) = Fitness(i1, a1, i2, a2, ..., iτ , aτ ),

θk+1
Gene = θk

Gene + α
1
n

n∑
i=1

Fit(θk,i
Gene, Tk)(θk,i

Gene − θk
Gene). (8)

The superscript k and i represent the kth generation and the ith individual in that generation respectively.
The subscript τ marks the length of an individual life cycle. For computational efficiency, in our work, we
actually use seq-CMA-ES (Ros & Hansen, 2008) with the fitness normalized across the generation, which is
empirically more efficient than Equation 8.

4 Experiments

4.1 Experiment Settings

We validate the proposed method in MetaMaze2D (Wang, 2021), an open-source maze simulator that can
generate maze architectures, start positions, and goals at random. The observation it is composed of three
parts: the 3 × 3 observed grids, the previous-step action, and the previous-step reward. The maze structures,
their positions, and the goals are hidden from the agents. Our settings give 15-dimensions input and
5-dimensions output in all. The output action includes 4 dimensions deciding the probability of taking a step
in its four directions (east, west, south, north) and one additional dimension deciding whether it will take a
softmax sampling policy or an argmax policy. On top of the plastic layers, we add a non-plastic output layer
that processes the hidden units to 5-dimensional output. The agents acquire the reward of 1.0 by reaching the
goal and −0.01 in other cases. Each rollout (episode) terminates when reaching the goal, or at the maximum
of 200 steps. We apply two different settings for the experiments: For Short Life Cycle each individual has
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3-rollouts lifetime, with the first 2 rollouts being the training phase the last one being the testing phase; For
Long Life Cycle, we extend the life cycle to 8 rollouts, with the first 2 rollouts being the training phase, the
last 6 rollouts being the testing phase.

(a) Standard 9 × 9 Maze (b) Standard 15 × 15 Maze (c) Standard 21 × 21 Maze

(d) Crowded 15 × 15 Maze (e) Spacious 15 × 15 Maze

Figure 2: Cases of standard, crowed, and spacious mazes: The red squares mark the current positions of the
agents; The green squares mark the goals; The left parts show the observed state (st) of the agents.

For meta-training, individuals acquire their fitnesses by repeatedly running nl = 4 life-cycles for nt = 8
different tasks, which is nt × nl = 32 life-cycles in all. Each generation requires evaluating npool = 360
genomes, which are distributed to 360 CPUs (400 Intel(R) Xeon(R) CPU E5-2650). The variance of the
noises in Seq-CMA-ES is initially set to be 0.01 and updated in training. The fitness is calculated by
Fit =

∑
z∈[0,lr) wz · Rz, with lr being the number of rollouts in a life cycle and Rz being the reward of zth

rollout. For Short Life Cycle, lr = 3, and we set w0, w1 = 0.0 and w2 = 1.0; For Long Life Cycle lr = 8, we
set w0, w1 = 0.0, and wz = 0.87−z for z > 1. We show the pseudo code of meta-training and meta-testing
in Algorithm 2 1. Every 100 generations we add a validating phase by testing the current genome in 1024
pre-sampled mazes (validating tasks). By reducing nt, nl, or npool we observed obvious drop in asymptotic
performance. Scaling up those settings will stabilize the training but lead to an obvious increase in time
and computation costs. To accelerate the meta-training process, we set nt = 2 and nt = 4 for the first
4,000 and the second 4,000 generations, after which we set nt = 8. Meta training includes 15,000 to 30,000
generations (For our proposed methods, we basically use 15,000 generations; However, for some baseline
methods, we found that 15,000 is hard to acquire satisfying results, so we extend the meta-training to up to
30,000 generations.), among which we pick those with the highest validating scores for meta testing.

The testing tasks include 2048 9 × 9 mazes (Figure 2 (a)), 2048 15 × 15 mazes (Figure 2 (b)), 2048 21 × 21
mazes (Figure 2 (c)) sampled in advance, universally used for all the methods for comparison. To further
investigate the capability of generalizing to out-of-distribution tasks, we sample 2048 15 × 15(crowded) mazes,
and 2048 15 × 15(spacious) mazes in addition, where the mazes are either more crowded with obstacles
(Figure 2 (d)) or more spacious (Figure 2 (e)). MetaMaze2D allows developers to specify density of obstacles.
To maintain reasonable difficulty level, in 9 × 9 mazes we set the obstacle density to 0.30, in 15 × 15 and
21 × 21 mazes we set the density to 0.35. For 15 × 15 (crowded) it is 0.45 and for 15 × 15 (spacious) it is
0.15 (Figure 2). To investigate the generalizability, our experiments also include Standard Meta Testing and
Out-Of-Distribution (OOD) Meta Testing, depending on whether or not the tasks used for meta-training and
those used for meta-testing are identically distributed.

We add the following methods into comparison:

1source code available at **anonymous**
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Algorithm 1 Inner-Loop Learning
1: Input θGene (defined in Section 3), T .
2: for T ∈ T do
3: Randomly reset θMem (defined in Section 3).
4: for z = 0, 1, 2, ..., lr − 1 do
5: for t = 0, 1, 2, ... until the end of the episode do
6: Observe st, set it = [st, at−1, rt−1].
7: Update θMem using θGene and Equation 3, 5, 6, 7, acquire output at.
8: Execute at, receive rt.
9: Rz =

∑
t rt

10: Fit(θGene, T ) =
∑

z wz · Rz.
11: Return Fit(θGene, T ) = 1

nt

∑
T ∈T Fit(θGene, T ).

Algorithm 2 Meta-Training and Meta-Testing
1: Pre-sample Tvalid and Ttst.
2: Randomly sample npool initial genomes θ0,i

Gene (defined in Section 3).
3: for Generations k = 0, 1, 2, ... until convergence do
4: Randomly sample training tasks Ttra = {T1, ..., Tnt

}.
5: for i = 1, 2, ..., npool (distributed to npool CPUs) do
6: Acquire average Fit(θk,i

Gene, Ttra) by repeating Algorithm 1 for nl runs.
7: Apply Seq-CMA-ES to acquire the next generation centroid θk+1

Gene and population θk+1,i
Gene

8: Acquire Fit(θk
Gene, Tvalid) by Algorithm 1, record θ∗

Gene acquiring the best score.
9: Return Fit(θk

Gene, Ttst) by Algorithm 1.

• DNN: Evolving the parameter of a forward-only NN with two hidden fully connected layers (both
with a hidden size of 64) and one output layer. Two different settings are applied: In DNN, we only
use the current state as input; In Meta-DNN, we concatenate the state and the previous-step action
and feedback as the observation.

• Meta-RNN: Employing RNN to encode the observation sequence, the parameters of RNN are
treated as meta-parameters. We evaluate Meta-RNNs with hidden sizes of 32 and 64.

• Meta-LSTM: Employing LSTM (with hidden units of 64) to encode the observation sequence, the
parameters of LSTM are treated as meta-parameters.

• PRNN: Applying the original αABCD plasticity rule to the PRNN.

• DecPDNN: Applying the decomposed plasticity to the first two layers of Meta-DNN.

• DecPRNN: Applying the decomposed plasticity to PRNN (Equation 5).

• PRNN (ET) : Applying the eligibility-traces plasticity (Equation 2) to PRNN, but only to the re-
cursive connections (W (p)

h ), the input connections (W (p)
i ) are not included. Following Backpropamine

(Miconi et al., 2019a), the initial parameters of the connection weights are not from scratch, but
involved in meta-parameters.

• PRNN (Scratch-ET): In PRNN (ET), start the connection weights from scratch.

• Evolving&Merging: Implementing evolving and merging (Yaman et al., 2021) in PRNN, where we
start training with the αABCD rules and reduce those rules using K-Means clustering and re-train
the tied rules. But unlike the original proposal that evolves and merges multiple times, we merge
and re-evolve for only one time, reducing the 20224 rules to 1144 rules, equal to the size of genomes
in DecPRNN.
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Those synaptic plasticities may be further combined with different types of neural modulation, including
non-modulation, PreDN (Equation 6), and PostDN (Equation 7).

4.2 Experiment Results with Short Life Cycles

4.2.1 Standard Meta Testing

In standard meta-testing, meta-training and meta-testing are with identically distributed tasks. We show the
results on 9 × 9 and 15 × 15 mazes in Table 1, including the mean and variance of the evaluation score. We
also list the scale of genomes (NGene) and memories (NMem, defined in Section 3) for the agents. For clarity,
we select some of the competitive groups and show their per-rollout rewards in Figure 3(a) and (b).

Table 1: Evaluating all compared methods in standard meta-testing with a 3-rollouts life cycles

NGene NMem Maze 9 × 9 Maze 15 × 15
DNN 5,125 0 −0.933 ± 0.024 −1.751 ± 0.016
Meta-DNN 5,509 0 0.495 ± 0.013 −0.507 ± 0.024
Meta-RNN(Hidden=32) 1,701 32 0.651 ± 0.009 −0.197 ± 0.023
Meta-RNN(Hidden=64) 5,445 64 0.784 ± 0.008 0.148 ± 0.021
Meta-LSTM(Hidden=64) 20,805 128 0.798 ± 0.008 0.275 ± 0.020
PRNN 20,613 5,120 0.714 ± 0.011 0.080 ± 0.020
PRNN(PreDN) 20,694 5,120 0.770 ± 0.010 0.249 ± 0.019
PRNN(PostDN) 20,743 5,120 0.762 ± 0.009 0.248 ± 0.020
DecPDNN 1,281 5,056 0.586 ± 0.014 −0.246 ± 0.025
DecPDNN(PreDN) 1,362 5,056 0.697 ± 0.011 −0.002 ± 0.022
DecPDNN(PostDN) 1,411 5,056 0.754 ± 0.008 0.064 ± 0.021
DecPRNN 1,217 5,120 0.774 ± 0.008 0.191 ± 0.020
DecPRNN(PreDN) 1,298 5,120 0.772 ± 0.006 0.282 ± 0.017
DecPRNN(PostDN) 1,347 5,120 0.782 ± 0.008 0.271 ± 0.019
PRNN(ET) 5,511 4,160 0.757 ± 0.008 0.234 ± 0.018
PRNN(Scratch-ET) 1,481 4,160 0.618 ± 0.016 −0.829 ± 0.021
Evolving&Merging(PostDN) 1,347 5,120 0.743 ± 0.011 0.204 ± 0.020
Oracle 0.908 ± 0.001 0.820 ± 0.001
Random −1.308 ± 0.031 −1.934 ± 0.010

We make several remarks from the above results: First, by comparing DecPRNN with PRNN, despite using
only 1/15 of the size of genomes of αABCD rules, the decomposed plasticity rules perform comparably or
even surprisingly better. A possible explanation is that the αABCD rules are more vulnerable to noise and
local optimum in meta-training. DecPRNN and modulated DecPRNN also achieve better performance than
Meta-RNN (Hidden=32/64), which has fewer memories but more meta-parameters. PostDN modulated
DecPRNN are even comparable to the performances of LSTM, which has 15 times more meta-parameters.
Second, by comparing Hebbian plasticity-based methods (including PRNN, DecPDNN, DecPRNN) with
the other methods with lower memories, we observe relatively higher performance in more complex 15 × 15
mazes than simpler 9 × 9 mazes, implying larger memories facilitating longer life span. Third, models
obeying genomics bottlenecks (including DecPDNN and DecPRNN) with lower NGene and higher NMem start
with weaker performance but exhibits the higher learning potential, while others begin from a relatively
higher level (including PRNN, Meta-RNN, Meta-LSTM) but the growth prospects are lower. This is
consistent with the phenomenon that BNNs have a low start point but high potential. Compared with
Evolving&Merging(PostDN), DecPRNN(PostDN) achieves even better performance in both types of mazes
given an equal number of genomes, which is more encouraging considering Evolving&Merging is more costly
in meta-training. Moreover, synaptic plasticity with too sparse meta-parameters can not do well enough
to learn an RNN structure from scratch (PRNN(Scratch-ET) has the least plasticity rules with only one
meta-parameter) but has to count on proper initialization of the connection weights (PRNN(ET)). It meets
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Figure 3: Per-rollout performances of selected methods with 3-rollouts life cycles in standard meta-testing
((a), (b)) and OOD meta-testing ((c), (d), (e), (f)).

expectations since there is "no free lunch" for learning. Synaptic plasticity is only effective given "reasonably
complex" rules. It is also helpful to compare different model structures (DecPRNN, DecPDNN) and neural
modulations (PreDN, PostDN). Although DecPDNNs exhibit the ability to adapt to some extent, the
combination of recursion and plasticity obviously outperforms DecPDNNs, especially in more complex 15 × 15
tasks. As for neural modulations, they brought solid improvements in DecPDNN, PRNN, and DecPRNN.
PostDN modulation produces better results than PreDN in DecPDNN, but the comparison between different
types of modulation in cases of PRNN and DecPRNN is a draw.

4.2.2 Out-of-Distribution (OOD) Meta-Testing

We further investigate the performances of selected models in OOD environments as follows: 1. Applying
those meta-trained in 9 × 9 mazes to random 15 × 15 mazes (9 × 9 → 15 × 15, Figure 3(c)); 2. Applying those
meta-trained in 15 × 15 mazes to random 21 × 21 mazes (Figure 3(d)); 3. Applying those meta-trained in
standard 15 × 15 mazes to 15 × 15 (spacious) mazes (Figure 3(e)); 4. Applying those meta-trained in standard
15 × 15 mazes to 15 × 15 (crowded) mazes (Figure 3(f)). As a result, several Hebbian plasticity-based methods
(especially the proposed DecPRNN (PostDN)) substantially outperform Meta-LSTM and Meta-RNN in
the last rollout. Considering that those methods can not surpass Meta-LSTM and Meta-RNN in standard
tests (e.g., modulated DecPRNNs and Evolving&Merging in Figure 3(a) and (b)), they apparently exhibit
better generalizability in OOD tasks. Moreover, PRNN with verbose αABCD rules performs poorly in those
tasks, too, indicating that generalizability to OOD environments is more related to the genomics bottleneck
rather than the Hebbian plasticity. Additional discovery is that neural modulation is also helpful in this part,
especially PostDN modulation. It substantially surpasses the non-modulated and PreDN-modulated models.
Moreover, in both 9 × 9 → 15 × 15 and 15 × 15 → 21 × 21 tests, the non-modulated and PreDN-modulated
DecPRNN models fail to continually improve the performance within the life span (especially when comparing
the score of the last two rollouts) compared with PostDN-modulated models. This is possibly due to the
decline of the learning potential as the agent experiences a longer life cycle than it experiences in meta-training.
Interestingly, human beings also experience similar cognitive decline when getting old; a reasonable guess is
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the explosive growth of human life cycle length in recent years goes far beyond our average life cycle length
in evolutionary history.
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Figure 4: Per-rollout performances of selected methods for 8-rollouts life cycles.

Table 2: Performances of the best rollout with 8-rollouts life cycles

Maze 9 × 9 Maze 15 × 15 Maze 21 × 21
Meta-RNN(Hidden=64) 0.812 ± 0.006 0.169 ± 0.021 −0.336 ± 0.025
Meta-LSTM 0.832 ± 0.006 0.323 ± 0.020 −0.204 ± 0.025
DecPRNN 0.821 ± 0.006 0.292 ± 0.019 −0.257 ± 0.024
DecPRNN(PostDN) 0.839 ± 0.006 0.408 ± 0.015 −0.101 ± 0.022

4.3 Experiment Results with Long Life Cycles

To investigate the performance of decomposed plasticity in the long term, we further meta-train Meta-RNN,
Meta-LSTM, DecPRNN, and DecPRNN(PostDN) in standard 9 × 9, 15 × 15, and 21 × 21 mazes by extending
the lifetime to 8 rollouts. The per-rollout performance is shown in Figure 4. In Table 2 we list the highest
fitness in the testing phase. As expected, the performance of all compared methods improves over the
3-rollouts runs. However, DecPRNN(PostDN) surpasses those which yield SOTA performance in 3-rollouts
life cycles. Moreover, the advantage of DecPRNN(PostDN) is becoming more prominent when coming to
larger-scale mazes. It further affirms the superiority of plasticity-based methods and the importance of the
capacity of memories regarding a long inner loop. In Section A.1 we further show that plasticity captures the
long-term information while hidden states is responsible the short-term memory.

4.4 Case Analysis

To get intuitive understanding of the inner-loop learning, we randomly sample several mazes and test the
trained DecPRNN(PostDN) on them, and show the trajectory of the agents of each rollout in Figure 5.
Although the agents fail to find the globally shortest paths in large part, probably attributed to the limited
rollouts for exploration, we observe substantial improvements in the trajectories in the life cycle for most
cases. More interestingly, there seem to be both behaviors of exploitation to maintain high performance in
the current rollout and exploration to reveal better routes for the following rollouts. For instance, it tends
to explore new directions in case its previous rollout is not successful enough (e.g., the first two rollouts of
Figure 5(d)) and take the shortcut discovered in the previous rollout.
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(a) (b)

(c)

(d)

Figure 5: Example trajectories of the DecPRNN (PostDN) agents in each rollout in different mazes (9 × 9,
15 × 15, and 21 × 21) for agents with the life cycle of 3 rollouts ((a),(b)) and 8 rollouts ((c), (d)). The
red square marks the start position, the green square marks the goal, and the red lines denote the agents’
trajectories.

5 Discussions

5.1 Biological Plausibility

Plasticity rules decided by the types of pre-synaptic and post-synaptic neurons separately can be related
to neuronal differentiation (Morrison, 2001) in biological systems, where different neurons (such as motor
and sensory neurons) have different characteristics as well as learning rules. Based on this intuition, our
proposal further reduces the meta-parameters by allowing synapses in or out of the same neuron to share
part of the rules. Our experiments have further shown that modulation processed from post-synaptic neurons
performs better than pre-synaptic neurons, especially in OOD tasks. It is also in line with the phenomenon
that dopamine neurons respond not only to direct sensory stimuli but also to reward-expecting cases (Schultz,
1997), implying that the dopamine neurons are more possibly affected by hidden neurons than direct sensory
inputs.

5.2 Limitations

In contrast to its high potential, the meta-training expenses are relatively high compared with gradient-based
supervised and reinforcement learning methods, which is attributed to both the nested learning loops (The
computational efficiency of the meta-training of our method is superior to others such as Meta-RNN, and
PRNN, see Appendix A.2, it is still more costly than traditional supervised/reinforcement learning by an
order of magnitude) and evolution strategies (ES). ES is less efficient than gradient-based optimization in
typical cases, given an explicit objective function. However, considering the desirable larger memories (NMem),
sparser meta-parameters (NGene), and longer life cycles (τ) in LBI, ES is potentially more economic choice
in both CPU/GPU memory and computation consumption compared with back-propagation. It is also
prospective to further scale up the life cycle length, the hidden size, the depth of layers, and the maze scale
in order to further validate its capability of scaling up. We are looking forward to simulating inner loops as
long as the human life cycle, genomes (NGene) and memories (NMem) of human scale, which has the potential
of revealing human-like general intelligence. Unfortunately, it is prohibitively expensive at the current stage.
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Also, more decent environments with diverse sensory inputs, including image and language, and diverse tasks
are a must for this prospect. Although much effort has also been put into this line (Chevalier-Boisvert et al.,
2018; Yu et al., 2018; Silver et al., 2021), there is still a long way to go. Moreover, as we show that plasticity
captures longer-term memories compared with the hidden states of recursive models (see Appendix A.1), it
is not yet clear whether the decomposed plasticity is free from catastrophic forgetting when the tasks are
continually switched within the agent’s lifetime, which will be left to the future work.

5.3 Scaling Up With Genomics Bottleneck

To characterize the efficiency of learning with fewer genomes / meta-parameters, we can define bottleneck
factor (BF) by NMem/NGene. For instance, given layers with nx = ny = n ≫ 1, the BF of naive RNN is
approximately 1/2n; for αABCD plastic layers, the BF is close to 1/4; for decomposed plastic layers, the BF
is close to n/9. Our results have shown to some extent that higher BF can lead to higher generalizability and
learning potential simultaneously. Currently, typical large-scale deep models work with relatively low BF.
They have been powerful in pre-defined tasks but suffered from high customization costs and the inability to
generalize to variant scenarios. It is desirable and promising to design models with higher BF and with NMem
in a large scale. Those models are not necessarily capable of everything initially but capable of learning to
accomplish variant tasks by LBI with the high potential of shaping its memories. They learn not by the
arduous efforts of AI experts, but by exploring the environments and interacting with human beings or even
the other AI agents through a natural interface (e.g., natural language) on their own, just like human beings
learn from environments and their teachers.
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A Appendix

A.1 Inner Loop Visualization

We present the development of the memories within the agents’ life cycles, including hidden states (ht, ct) and
connection weights (W (p)

h,t ). We run t-SNE visualization to map those tensors to 2-D space and show their
temporal trajectories in Figure 6. Comparing Figure 6(a) and (b), we see that the trajectory of the connection
weights behaves differently from hidden states in DecPRNN(PostDN): The connection weights seem to keep
the long term information related to the overall task configurations since they slowly diverge depending on
different tasks; The hidden states seem to keep the short term memory only since they vibrate fast but stay
in a static region. In Figure 6(c) to (h) we also plot the connection weights and hidden states from the other
models including DecPRNN, PRNN(PostDN), DecPDNN(PostDN), Meta-LSTM and Meta-RNN. Conclusion
verifies some of our proposals: Trajectories of the connection weights for PRNN (PostDN) (Figure 6(d)) are
more spiking and noisy compared to DecPRNN (Figure 6(c)) and DecPRNN(PostDN) (Figure 6(a)), implying
the verbose meta-parameters leading to instability in updates; Similar problems are found in the trajectory
of DecPDNN(PostDN) connection weights (Figure 6(e)), a reasonable guess is that because of the absence
of short term memory, DecPDNN(PostDN) has to keep necessary short-term information in its connection
weights, which is blended with those long-term information. Moreover, the hidden states (as well as cell states)
of Meta-LSTM seem to catch both long-term and short-term information at the same time, resulting in both
short-term vibrations and long-term migrations in both its hidden states and cell states (Figure 6(f) and
(g)). Similar phenomenons are found in Meta-RNN (Figure 6(h)), but with even fewer long-term behaviors.
Those curves substantially validate that the plasticity is more capable of capturing long-term memories than
hidden states in recursion, which make those agents more qualified long-term learners than model-based-only
learners.

A.2 Convergence of Meta-Training

To show the cost of meta-training, we selected DecPRNN(PostDN), PRNN(PostDN), and Meta-RNN for
comparison by plotting the mean and variance of the validating score against the evolved generations and
wall time in the meta-training process with 3-rollouts life cycle (Figure 7). We see that PRNN(PostDN)
and DecPRNN(PostDN) nearly overlap with each other regarding the evolved generations (Figure 7(a),(b)),
but considering the wall time cost, DecPRNN(PostDN) is more efficient due to the lower I/O cost and
computation cost per step. Although Meta-RNN has the advantage of the lowest wall time cost per generation,
the wall time and generations cost for convergence is higher than the other two.
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Figure 6: t-SNE visualization of the transformation of the connection weights (W (p)
h,t ) and hidden states (ht)

in various methods. Each trajectory corresponds to the trajectory of the vector in a unique maze shown in
(a). The red ⋆ marks the end of a rollout.
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Figure 7: Plotting the mean and variance of the validating score against the evolved generations (or wall
clock time) in the meta-training process for selected methods with life cycle=3 rollouts.
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