
VerbalTS: Generating Time Series from Texts

Shuqi Gu 1 Chuyue Li 1 Baoyu Jing 2 Kan Ren 1

Abstract
Time series synthesis has become a foundational
task in modern society, underpinning decision-
making across various scenes. Recent approaches
primarily generate time series from structured con-
ditions, such as attribute-based metadata. How-
ever, these methods struggle to capture the full
complexity of time series, as the predefined struc-
tures often fail to reflect intricate temporal dy-
namics or other nuanced characteristics. More-
over, constructing structured metadata requires
expert knowledge, making large-scale data label-
ing costly and impractical. In this paper, we intro-
duce VERBALTS, a novel framework for generat-
ing time series from unstructured textual descrip-
tions, offering a more expressive and flexible so-
lution to time series synthesis. To bridge the gap
between unstructured text and time series data,
VERBALTS employs a multi-focal alignment and
generation framework, effectively modeling their
complex relationships. Experiments on two syn-
thetic and four real-world datasets demonstrate
that VERBALTS outperforms existing methods in
both generation quality and semantic alignment
with textual conditions. The project page is at
https://seqml.github.io/VerbalTS/.

1. Introduction
Time series modeling plays a crucial role in modern soci-
ety, with applications spanning finance (Gao et al., 2024),
medicine (He et al., 2023; Chen et al., 2024b; Jarrett et al.,
2021), climate (Jing et al., 2021; 2022; 2024b;c), and en-
ergy (Lai et al., 2018). However, challenges like complex
data collection and the rarity of extreme conditions limit
access to large-scale, high-quality time series data. To ad-
dress this, research has explored generating time series from

1School of Information Science and Technology, ShanghaiTech
University, Shanghai, China 2University of Illinois at Urbana-
Champaign, Illinois, United States. Correspondence to: Kan Ren
<renkan@shanghaitech.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Sample-specific information Sequence of events

Unstructured:
It‘s the morning of a day in June. The current
weather is showing light rain. The weather overall
is expected to be partly broken clouds with
moderate rain later on.

Unstructured:
The time series has a linear and up trend.
The season cycle is 4.
The beginning part has double peaks.

Structured:
Trend type: linear
Trend direction: up
Season cycle: 4
Local shapelet: ???

Structured:
Weather:
 Light rain ?
 Cloud ?
 Moderate rain ?

Figure 1. Illustration of the different control conditions. Com-
pared to structured conditions, unstructured conditions are better at
capturing unique, sample-specific information, e.g., special local
shapelets that are not present in all samples (left figure). Addition-
ally, structured conditions fail to effectively describe the sequence
of events, a common characteristic of time series (right figure).

scratch (Narasimhan et al., 2024) or modifying existing
ones (Jing et al., 2024a), enabling richer datasets and ad-
vancing time series modeling.

Current time series generation tasks can be broadly classi-
fied into unconditional (Desai et al., 2021; Yuan & Qiao,
2024; Pei et al., 2021; Yoon et al., 2019) and conditional
generation (Wang et al., 2023; Lee et al., 2023; Coletta
et al., 2024). Unconditional generation involves randomly
sampling from the learned time series distribution, offering
minimal control over the properties of the generated samples.
In contrast, conditional time series generation usually lever-
ages structured conditions such as metadata (Narasimhan
et al., 2024), time series attributes (Jing et al., 2024a) or
class labels (Li et al., 2022; Wang et al., 2023).

Generating time series from structured conditions is straight-
forward but comes with notable limitations. First, much of
the real-world information about time series is unstructured,
making the extraction of structured features from large, un-
organized datasets both time-consuming and labor-intensive.
Second, as illustrated in Fig. 1, this process often leads to
significant information loss. For instance, sample-specific
details that cannot be encapsulated within a uniform struc-
ture are frequently omitted. Similarly, sequential conditions
that govern the chronological characteristics of time series
may be inadequately captured by structured representations.

In this paper, we propose to generate time series using text
descriptions as control conditions. Text, as a prevalent form
of unstructured information, inherently conveys rich seman-
tic content that allows for more nuanced and detailed ex-

1

VerbalTS: Generating Time Series from Texts

pressions compared to traditional structured conditions, as
illustrated in Fig. 1. By leveraging text descriptions for time
series generation, our approach enables fine-grained control
and communicates richer semantic information, offering
users enhanced flexibility and control over the generation.

This novel task presents several challenges stemming from
the target of multi-modality modeling and the unique char-
acteristics of time series, which cannot be effectively ad-
dressed using image generation approaches (Song et al.,
2021; Peebles & Xie, 2023). First, unstructured data, such
as text, often carries intricate semantic information, mak-
ing it difficult to distinguish relevant content from irrele-
vant noise (Yin et al., 2019). Additionally, time series data
exhibit multivariate characteristics and complex temporal
dependencies (Torres et al., 2021; Wu et al., 2021), which
fundamentally differ from the spatial structures typically
encountered in image generation tasks. Furthermore, the
control conditions for time series generation encompass
multi-semantic information and exert varying influences.
For example, textual conditions like “raining the whole day”
and “raining after sunny weather” introduce nuanced distinc-
tions that must be accurately reflected in the generated time
series. Finally, the scarcity of paired time series and text
data in real-world scenarios hinders the learning of robust
connections between the two modalities.

To tackle these challenges, we propose VERBALTS, a novel
multi-focal alignment and generation framework based on
vanilla diffusion models (Ho et al., 2020) for text-to-time-
series generation. We first recognize that time series exhibit
multi-semantic information, reflected through representa-
tions and generations at different resolutions. VERBALTS
captures both the hierarchical semantics in text conditions
and their multi-resolution influences on the generated time
series. Specifically, low-resolution representations capture
global trends, while high-resolution representations focus
on finer details, such as local shapelets. Second, consider-
ing that diffusion models process information and generate
content at varying granularities (Zhang et al., 2024a; Fan
et al., 2024), VERBALTS segments the generation process
into multiple stages, applying condition information dynam-
ically. Additionally, our framework extends to multivariate
time series generation with nuanced semantic information
alignment. Beyond traditional diffusion models (Song et al.,
2021), our proposed method VERBALTS integrates a multi-
view time series noise estimator with a multi-focal text
processor, capturing the nuanced interplay between textual
conditions and time series dynamics.

Our main contributions are summarized as follows. (i) We
introduce the novel task of time series generation from un-
structured data, to the best of our knowledge, marking the
first work to address this challenge and enabling more fine-
grained controlled generation. (ii) To effectively model

the complex relationships between text and time series, we
incorporate an innovative multi-focal alignment and genera-
tion framework. (iii) We construct a comprehensive bench-
mark with multi-facet time series datasets and textual in-
formation, which evaluates both generation and semantic
editing performance of different methods.

2. Related Work
2.1. Conditional Time Series Generation

Conditional time series generation has attracted significant
attention in recent years (Ang et al., 2023; Yang et al., 2024;
Zhang et al., 2024c). Early approaches primarily relied
on generative adversarial networks (GANs) (Esteban et al.,
2017; Wang et al., 2023; Li et al., 2022) where a generator
and a discriminator were jointly trained to refine genera-
tion quality through adversarial learning. Variational au-
toencoders (VAEs) (Lee et al., 2023) were also explored,
optimizing the evidence lower bound (ELBO) to approxi-
mate the underlying data distributions. More recently, diffu-
sion models (Coletta et al., 2024; Narasimhan et al., 2024;
Tashiro et al., 2021) have emerged as a more stable and
reliable alternative, consistently demonstrating superior per-
formance in time series synthesis.

From the perspective of control conditions, time series gen-
eration can be categorized into structured and unstructured
conditions. Structured conditions follow a fixed format,
such as discrete categories (Li et al., 2022; Lee et al., 2023),
metadata (Narasimhan et al., 2024) or preset constraints (Co-
letta et al., 2024). While easy to learn, these approaches are
inherently constrained by the predefined condition space,
restricting the diversity of generated samples. For instance,
DiffTime (Coletta et al., 2024) incorporates constraints as
conditions, struggling with conditions that cannot be easily
formulated as constraints, ultimately limiting its general-
izability. In contrast, unstructured conditions offer greater
flexibility. Several works (Chen et al.; Chung et al., 2023)
attempt to utilize clinical text reports to generate electro-
cardiograph data. However, these methods rely on domain
knowledge, which are largely domain-specific and lack the
generalization capability required for broader time series
applications.

2.2. Time Series with Multi-modal Data

Prior studies (Liu et al.; Wang et al., 2024c) suggest that
numerical time series alone often lack sufficient informa-
tion, while external multi-modal data can provide valuable
complementary insights. This has sparked growing interest
in jointly modeling time series alongside other modalities.
Some works (Han et al., 2024; Duan et al., 2023; Akbari
et al., 2021) focus on aligning different modalities such
as text, images, and time series to learn unified represen-

2

VerbalTS: Generating Time Series from Texts

tations. Others (Xu et al., 2024; Srinivas et al., 2024; Jia
et al., 2024; Xue & Salim, 2023; Liu et al., 2024) utilize
the coarse-grained textual information to enhance time se-
ries forecasting. Additionally, some exploration like (Li
et al., 2023) aims to describe time series in natural language,
thereby improving their interpretability. Together, these ef-
forts collectively highlight the feasibility and necessity of
integrating multi-modal data to improve time series model-
ing. Building on this trend, we explore multi-modal time
series generation, aiming to strengthen connections between
time series and other modalities.

2.3. Multi-scale Time Series Modeling

The complex temporal dependencies inherent in time series
present significant modeling challenges, motivating the de-
velopment of multi-resolution and multi-scale approaches.
These methods are particularly prominent in forecasting
tasks. For example, TimeMixer (Wang et al., 2024b) and
TimeMixer++ (Wang et al., 2024a) decompose time series
into trend and seasonality components, employing top-down
and bottom-up mixing strategies at different resolutions, re-
spectively. Pathformer (Chen et al., 2024a) introduces a
multi-scale routing mechanism for dynamically selecting
appropriate transformers. MG-TSD (Fan et al., 2024) mod-
els the denoising process in diffusion as a progressive re-
finement from low to high resolution, using downsampled
series as supervision signals at various diffusion steps. In
time series editing, TEdit (Jing et al., 2024a) operates on
variable patch sizes to enable parallel multi-resolution edit-
ing. For representation learning, TS2Vec (Yue et al., 2022)
performs hierarchical contrastive learning to obtain robust
contextual representations. However, these methods primar-
ily focus on intra-modal multi-scale structures, overlooking
the hierarchical information present in other modalities and
the cross-modal interactions that are crucial for effective
multi-modal modeling.

3. Text To Time Series Generation
3.1. Problem Formulation

Consider a sample pair of time series x and its corre-
sponding textual description c. Given a text description
c ∈ NM with M tokens, we aim to learn a generative
model f , to generate a time series that conforms to the text
x̂ = f(c) ∈ RK×L, where K and L are the number of
variables and the length, respectively.

3.2. Conditional Diffusion Model Framework

Our model is built upon the conditional diffusion model (Sa-
haria et al., 2022), We briefly review the training and infer-
ence procedures below.

During training, noise is gradually added to the original data
distribution q(x0)

1 via a Gaussian Markov transition:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) = N (xt−1;
√

1− βtxt−1, βtI),

(1)

and produces the noisy sample xt at each diffusion step
t ∈ [1, T]. Here {βt}Tt=1 are the predetermined variance
schedule. xt can be expressed as xt =

√
αtx0 +

√
1− αtϵ,

where ϵ ∼ N (0, I) and αt :=
∏t

s=1(1− βs).

Then, a learnable noise estimation network ϵθ(xt, t, gϕ(c))
with the condition processor gϕ are trained by estimating
the noise added to xt, which is used in the reverse process
of diffusion model described later. The objective function is
to minimize the noise estimation loss as

min
θ,ϕ

L(x0) = min
θ,ϕ

Eϵ∼N (0,I),t∼U(1,T) ∥ϵ− ϵθ (xt, t, gϕ(c))∥22 .

(2)
gϕ(c) denotes the encoder of the condition c and will be
further discussed in Sec. 4.2, x0 ∼ q(x0) is sampled from
the real data distribution, xt is a noisy version of x0.

During inference, given a condition c processed by gϕ(c),
a sample x̂0 can be generated from random noise x̂T ∼
N (0, I) through multiple steps of denoising which uses the
trained noise estimator ϵθ(x̂t, t, gϕ(c)) with a sampler, such
as the deterministic Denoising Diffusion Implicit Model
(DDIM) (Song et al., 2021)

x̂t−1 =

√
αt−1√
αt

(x̂t −
√
1− αtϵθ (x̂t, t, gϕ(c)))

+
√
1− αt−1ϵθ(x̂t, t, gϕ(c)).

(3)

Consequently, it is critical for the noise estimator in time
series generation to effectively capture the spatio-temporal
properties while accounting for the nuanced influences of
textual information on the generation process. A signifi-
cant challenge lies in bridging the gap between unstructured
textual descriptions and the time series modality. Aligning
the generation of time series with the multi-semantic infor-
mation embedded in text is a non-trivial task, as illustrated
in Sec. 1. In the following section, we will introduce our
proposed method, VERBALTS.

4. VERBALTS: Multi-focal Alignment and
Generation

In this section, we introduce our method, VERBALTS, which
consists of two key components: a multi-view noise esti-
mator ϵθ and a multi-focal text processor gϕ. The noise
estimator ϵθ is designed to model and generate time series

1x and x0 are interchangeable in this paper.

3

VerbalTS: Generating Time Series from Texts

Multi-resolution Patch Encoder

𝐏𝑡
(𝑗)

MLP

SSAFFN

× 𝐽

𝐀(spat)

…

𝐀(diff)

𝐀(temp)

𝐄

𝐙(temp)

Diffusion

Temporal

Spatial

𝐙(temp)

𝐙(spat)

Eq. (5)

Eq. (7)

𝛽, 𝛾

𝐱𝑡

𝛜𝑡

𝐀(∙)

𝐙(∙)

Compound Reprogram

Anchor vectors

Text representation𝐏𝑡
(𝑗) TS representation

𝛼

𝐄 Text embedding𝛜𝑡

Eq. (8)

Multi-focal Text Processor 𝑔𝜙Multi-view Noise Estimator 𝛜𝜃

𝐱𝑡 Time series (TS)

Estimated noise

Stage 1 Stage 𝑠 Stage 𝑆

Diffusion step

𝑇 𝑇 − 1 𝑇 − 2
…

𝑡 − 1 𝑡 𝑡 + 1… … 3 2 1…

𝐙𝑠
(diff)

… …

Eq. (6)

Eq. (6)

Residual Layer

Patch Decoder

Multi-resolution Mixer

Eq. (8)

Figure 2. The overall model architecture of VERBALTS, including multi-view noise estimator and multi-focal text processor.

with finer granularity, effectively capturing detailed tem-
poral dynamics, incorporating spatial interactions among
variables, and ensuring nuanced condition control through-
out the diffusion process (Sec. 4.1). Meanwhile, the text
processor gϕ transforms textual information into a multi-
semantic structured latent space, enabling a more precise
representation of the complex relationships between text and
time series modalities (Sec. 4.2). Finally, the multi-semantic
information would be aligned to the time series generation
process, with an elaborately designed conditional control
mechanism (Sec. 4.3). The overall model architecture is
presented in Fig. 2.

4.1. Multi-view Noise Estimator

Textual conditions provide the flexible descriptions of the
target time series from various perspectives, as mentioned
in Sec. 1. Generating time series from these flexible and
complex textual conditions requires fine-grained control
over the generation process. In this paper, we derive the fine-
grained time series generation from the three key views of
the generation process. First, from the temporal view, time
series data exhibit strong sequential characteristics. Jing
et al. (2024a) has demonstrated that the influence of control
conditions on time series generation varies across different
time spans, making finer-granularity temporal modeling
essential. Second, from the spatial view, real-world time
series data usually contains multiple variables, yet most
existing studies focus on univariate time series generation
(Jing et al., 2024a), overlooking variable-level interactions.
Furthermore, from the diffusion view, recent studies (Zhang
et al., 2024a; Fan et al., 2024) have discovered that different
steps in the denoising process in the diffusion model derive
the generation details at varying levels of granularity. In

the following content, we first provide an overview of the
proposed multi-view noise estimator and then elaborate on
each individual view.

Overview. As demonstrated in Fig. 2, given a noisy time se-
ries xt, the noise estimator ϵθ(xt, t, ·) first encode it into em-
bedding space via the patch encoder, which will be passed
through J residual layers and finally decoded by the patch
decoder and multi-resolution mixer to obtain the estimated
noise ϵt, that will be removed from xt. Each residual layer
contains two blocks: temporal self-attention TSA(·), spatial
self-attention SSA(·) (Vaswani, 2017), with a feed-forward
network FFN(·). Please refer to Appendix B for more de-
tails about the model architecture.

Temporal View. The input noisy time series xt ∈ RK×L

is modeled with a total of R resolutions in the temporal
dimension. First, at each resolution r, xt is sliced into
Nr = ⌊L−Lr

Lr
⌋ patches of size Lr to get xt,r ∈ RK×Nr×Lr .

xt,r is then encoded into embeddings pt,r ∈ RK×Nr×D

via a linear layer, where D is the size of the embedding.
Then we concatenate the N = ΣR

r=1Nr patch embeddings
from R resolutions into a single tensor Pt ∈ RK×N×D,
which will be fed into J residual layers. Within the j-th
residual layer, we design a TSA(·) block to capture multi-
resolution temporal information of P(j−1)

t by performing
the self-attention (Vaswani, 2017) on the temporal dimen-
sion. Note that we use a mask matrix to restrict attention
operations within the same resolution. More details can be
referred to Appendix B.1.

Spatial View. Within the j-th layer, we design a SSA(·)
block, similar to TSA(·), to capture the spatial information
by applying the self-attention over the K variables in the
spatial dimension of P(j−1)

t .

4

VerbalTS: Generating Time Series from Texts

The complete process of temporal and spatial modeling in
the j-th layer of the noise estimator can be expressed as

P
(j)
t = P

(j−1)
t + FFN(SSA(TSA(P

(j−1)
t + et))), (4)

where P(0)
t = Pt, et ∈ RD is the embedding of the current

denoising time step, with spatial and temporal self-attention
mechanism mentioned above. More details are presented in
Appendix B.1.

Diffusion View. Now we move attention onto the overall dif-
fusion process ϵθ(xt, t, ·), t ∈ [1, T]. We evenly divide the
total T denoising steps into S stages. For the denoising step
t, it is assigned to the s-th stage where s =

⌊
t×S
T

⌋
. At each

stage, the diffusion model generates time series at different
granularities, guided by corresponding levels of textual in-
formation, as detailed in Sec. 4.3. For clarity, we represent
the multi-view time series representations across the entire
diffusion process as a unified variable P̄ ∈ RT×K×N×D

concatenating the temporal and spatial representation Pt for
each diffusion step t ∈ [1, T].

Till now, the proposed multi-view time series modeling and
generation framework in the noise estimator has been clari-
fied. It is worth noticing that, the control of textual informa-
tion on the three views, i.e., different temporal resolutions,
spatial variables and multiple diffusion stages, would be
further described in Sec. 4.3. Unlike existing time series dif-
fusion models (Tashiro et al., 2021; Narasimhan et al., 2024;
Coletta et al., 2024), our approach models the generation of
time series from three views: spatiotemporal relationships
and the noise reduction process. This design, assembly with
the multi-focal alignment module described in Sec. 4.3, en-
ables more nuanced generation and leads to higher-quality
outputs, as is shown in the Sec. 5.2.

4.2. Multi-focal Text Processor

Textual conditions encode complex multi-semantic informa-
tion within an unstructured token sequence. The effective-
ness of the noise estimator ϵθ is strongly influenced by how
well the textual conditions are modeled. However, modeling
this information presents several challenges. First, aligning
time series components with relevant textual semantics is
non-trivial.. From the temporal view, phrases like “at the
beginning” and “around the middle” describe local features,
while “overall” and “global” refer to broader trends. From
the spatial view, terms like “light rain” primarily affect the
variable of precipitation while having minimal influence
on the variable of wind direction. From the diffusion view,
tokens conveying global information are likely to play a
larger role in early diffusion stages, whereas tokens with
fine-grained details become more relevant in later stages.
Second, textual data includes grammatical fillers (e.g., “the”,
“is”, and “of”) that carry little semantic weight and should
not be overemphasized during modeling.

To address these challenges, we propose a multi-focal text
processor, denoted as gϕ(c), for better information align-
ment. This text processor transforms a complete text sen-
tence into multi-semantic components from the views of
temporal, spatial dimensions and diffusion process, through
semantic reprogramming (Chen, 2024), as introduced as
below. We term it “multi-focal” because textual semantics
are distributed across different tokens, and our approach
selectively focuses on the most relevant ones.

Multi-focal Reprogramming. Given a text condition
c ∈ NM of M tokens, we first encode c into embeddings
E ∈ RM×D via a pre-trained text encoder, e.g., Long-clip
(Zhang et al., 2024b). Then, we reprogram E into I seman-
tic levels Z ∈ RI×D based on the learnable anchor vectors
A ∈ RI×D, where the i-th row corresponds to the i-th se-
mantic level. Specifically, the reprogram (RPG) operation
is defined by:

Z = RPG(QA,KE ,VE) = Softmax(
QAK

⊤
E√

D
)VE , (5)

where QA = AWQ, KE = EWK , VE = EWV , are
query, key, and value matrices, respectively, and W(·) are
learnable weights.

From the three views of multi-focal modeling, we specifi-
cally define: (i) Diffusion semantic anchors A(diff) ∈ RS×D

where S is the stage number of denoising process; (ii)
Temporal semantic anchors A(temp) ∈ RR×D where R is
the resolution number of time series modeling; (iii) Spa-
tial semantic anchors A(spat) ∈ RK×D where K is the
variable number. The corresponding text representations
can be calculated by the reprogramming mechanism, re-
sulting in Z(diff) ∈ RS×1×1×D, Z(temp) ∈ R1×1×R×D,
Z(spat) ∈ R1×K×1×D, respectively. By aligning multi-
semantic conditions with the corresponding time series
components (Sec. 4.3) and updating them through gradi-
ent backpropagation, distinct anchor vectors learn unique
representations, as demonstrated in Sec. 5.4.3.

Further, we unify the multi-semantic representations of the
temporal, spatial and diffusion process views to a compound
matrix Z̄ ∈ RS×K×R×D as below.

Z̄ := Z(diff) ⊛ Z(spat) ⊛ Z(temp),where

Z̄s,k,r = Z(diff)
s + Z

(spat)
k + Z(temp)

r .
(6)

The ⊛ is the operation of matrix addition with broadcast-
ing. The representation Z̄ not only encodes various multi-
semantic textual information but also enables multi-modal
control for time series generation, which will be further
discussed in Sec. 4.3.

Unlike the text processor in visual generation (Rombach
et al., 2022), which uses a unified text condition throughout,
our multi-focal text processor leverages hierarchical textual

5

VerbalTS: Generating Time Series from Texts

information. This design facilitates multi-semantic pattern
discovery and enables more refined generation, as demon-
strated in Secs. 5.3 and 5.4. Furthermore, we introduce
the learnable anchor vectors to eliminate the need for man-
ual extraction of structured information from unstructured
text, enhancing both flexibility and efficiency and exhibiting
more superior performance than the strong baselines based
on structured conditions, as shown in Sec. 5.2.

4.3. Multi-modality Semantic Alignment

Using the multi-view noise estimator and multi-focal text
processor described earlier, we obtain multi-view represen-
tations for the time series, P̄ ∈ RT×K×N×D, and for the
text, Z̄ ∈ RS×K×R×D. The key challenge now lies in effec-
tively aligning and applying the semantic information from
the text descriptions into the diffusion denoising process.

To address this, we propose an adapter that aligns the multi-
semantic information of the text across its three views with
the corresponding components of the time series, ensuring
seamless integration during the diffusion process. Inspired
by the adaptive layer normalization (Xu et al., 2019), the pro-
posed adapter rectifies the time series embedding P̄ based
on the textual condition Z̄ via a gate α, a scaler γ and a
shifter β, which are calculated through a Multi-Layer Per-
ceptron (MLP):

α, β, γ = MLP(Z̄) ,where α, β, γ ∈ RS×K×R×D . (7)

Each dimension of the controlling parameters manages the
influence on time series modeling along with R resolutions
and K variables within the S stages of the diffusion process
correspondingly, as explained in Sec. 4.1. The representa-
tions within the diffusion model are controlled via

P̃ = α⊙ SSA(TSA(γ ⊙ (P̄+ e)⊕ β)), (8)

⊙ and ⊕ are custom element-wise multiplication and ad-
dition between matrices. The adapter parameters α, β, γ
undergo broadcasted expansion through temporal and dif-
fusion segment replication, achieving dimensional compat-
ibility with tensor P̄, with detailed calculations provided
in Appendix B.3. The conditionally altered representation
P̃ ∈ RT×K×N×D will be passed into FFN in each residual
layer for further calculation.

With the proposed adapter, we align multi-semantic informa-
tion across temporal, spatial, and diffusion views between
the two modalities. Unlike Liu et al. (2022), which adjusts
weights for decomposed conditions, our approach considers
the correspondence between control conditions and gen-
erated data, a crucial factor for fine-grained conditional
generation. The effectiveness is detailed in Sec. 5.

5. Experiment
In this section, we present the experimental settings and
the corresponding results. Our analysis follows the below
research questions (RQs). RQ1: Does the unstructured
condition conveys more information than the structured one
for time series generation? RQ2: How does the multi-focal
generation mechanism work? RQ3: How does the proposed
method VERBALTS build the alignment between text and
time series? We have released all the reproducible code and
benchmarking datasets at https://seqml.github.io/VerbalTS/.

5.1. Experiment Setup

Datasets. To solve the problem of scarcity of paired text
and time series data, we construct datasets using data from
three different sources: (i) Full synthetic datasets with man-
ually constructed texts and the corresponding ground-truth
time series, including Synth-U with univariate time series
and Synth-M with multivariate time series. (ii) Real-world
datasets including Weather (Xu et al., 2024) of climtime in-
dicators and BlindWays (Kim et al., 2024) of blind people’s
trajectories, both originating from real-world textual annota-
tions and time series. (iii) Augmented real-world datasets
including ETTm1 (Zhou et al., 2021) and Traffic (Leo,
2024) datasets with the real-world time series and the corre-
sponding textual descriptions annotated by the external tool.
For detail information of the dataset construction, please
refer to Appendix A.

Evaluation metrics. We evaluate the quality of the gener-
ated time series from two perspectives. (i) Fidelity: Frechet
Inception Distance (FID) (Heusel et al., 2017) and Joint
Frechet Time Series Distance (J-FTSD) (Narasimhan et al.,
2024) are used to evaluate the fidelity by measuring the
discrepancy between the generated data distribution and the
real data distribution. (ii) Semantic Alignment: Contrastive
Time series Text Pretraing (CTTP) score is used to measure
the semantic similarity between the generated time series
x̂ and the text condition c. Similar to CLIP score (Rad-
ford et al., 2021), a proxy model trained through contrastive
learning calculates the similarity between the generated time
series and the condition text in the latent space. We further
provide the details of the model architecture of CTTP model
and prove its reliability in Appendix C.

Baselines. Since there are few works studying the general
unstructured text to time series generation problem, we
compare our proposed method VERBALTS with attribute-
based generative models TimeWeaver (Narasimhan et al.,
2024) and TEdit (Jing et al., 2024a), constrained generation
model DiffTime (Coletta et al., 2024) and class-conditioned
generation model TimeVQVAE (Lee et al., 2023). The
conditions for these methods are transformed from textual
descriptions. More implementation details are provided in
Appendix A.4.

6

VerbalTS: Generating Time Series from Texts

Multivariate setting Synthetic dataset Real-world datasets

Condition Method Synth-M BlindWays Weather
↓FID ↓JFTSD ↑ CTTP ↓FID ↓JFTSD ↑ CTTP ↓FID ↓JFTSD ↑ CTTP

Class TimeVQVAE (Lee et al., 2023) 83.17±0.13 94.16±0.10 51.23±0.22 29.48±3.30 36.87±3.20 8.63±0.09 54.26±0.30 59.46±0.25 22.19±0.10

Constraint DiffTime (Coletta et al., 2024) 49.87±1.12 96.86±1.40 21.60±0.40 58.32±29.41 66.21±29.37 7.14±0.73 50.90±0.97 68.88±0.51 14.48±0.17

Attribute TimeWeaver (Narasimhan et al., 2024) 43.38±0.00 59.59±0.00 52.15±0.00 51.31±26.27 59.22±26.29 7.50±0.48 16.07±0.11 19.79±0.20 27.27±0.13

TEdit (Jing et al., 2024a) 41.94±1.92 58.08±1.59 52.55±0.20 28.96±2.96 36.73±2.91 7.96±0.41 14.86±0.31 18.33±0.30 27.56±0.07

Text VERBALTS (ours) 29.05±0.62 32.91±0.62 64.13±0.06 27.63±1.49 34.40±1.55 9.18±0.26 6.13±0.21 8.56±0.21 30.62±0.03

Univariate setting Synthetic dataset Real-world datasets

Condition Method Synth-U ETTm1 Traffic
↓FID ↓JFTSD ↑ CTTP ↓FID ↓JFTSD ↑ CTTP ↓FID ↓JFTSD ↑ CTTP

Class TimeVQVAE (Lee et al., 2023) 41.29±1.23 54.47±1.01 26.94±0.07 26.84±0.91 30.19±0.94 10.56±0.16 40.47±0.57 42.68±0.52 8.52±0.08

Constraint DiffTime (Coletta et al., 2024) 45.42±1.72 72.94±1.53 12.79±0.12 59.14±1.75 66.37±1.66 2.33±0.10 100.60±3.76 104.27±3.75 3.89±0.07

Attribute TimeWeaver (Narasimhan et al., 2024) 36.38±1.26 49.96±1.07 27.95±0.08 32.90±0.55 36.26±0.51 10.34±0.05 44.34±1.69 46.66±1.67 8.31±0.05

TEdit (Jing et al., 2024a) 36.52±0.57 49.92±0.48 28.09±0.06 33.04±0.45 36.38±0.46 10.34±0.05 45.82±1.83 48.19±1.82 8.20±0.03

Text VERBALTS (ours) 28.29±0.29 32.26±0.23 37.56±0.07 24.19±0.53 27.10±0.58 11.10±0.10 37.03±1.53 39.03±1.54 8.43±0.03

Table 1. Averaged performance with standard deviation (mean±std) of multivariate and univariate settings on synthetic (left) and
real-world (right) datasets with three random runs. The best performance is with bold font, ↑ (↓) means the higher (lower), the better.

Dataset Metric VERBALTS w/o As w/o As & At w/o As & At & Ad

Synth-M
↓FID 29.05±0.62 29.98±0.68 34.17±0.56 34.18±0.39

↓JFTSD 32.91±0.62 33.91±0.65 40.95±0.51 41.43±0.61

↑CTTP 64.13±0.06 63.86±0.04 60.17±0.39 60.07±0.26

Weather
↓FID 6.13±0.21 7.01±0.33 7.30±0.25 7.60±0.41

↓JFTSD 8.56±0.21 9.43±0.32 9.76±0.28 10.12±0.38

↑CTTP 30.62±0.03 30.32±0.06 30.23±0.08 29.95±0.07

Table 2. Ablation studies on Synth-M and Weather datasets. As,
At and Ad are the abbreviations of A(spat), A(temp) and A(diff),
which refer to the anchor vectors of spatial, temporal and diffusion
in the multi-focal text processor, respectively.

5.2. Quantitative Results

In this section, we quantitatively evaluate and report the
performance of the compared methods for time series gener-
ation from given textual conditions (RQ1) across all datasets.
The average results for multivariate and univariate time se-
ries generation are presented in Tab. 1.

As shown in Tab. 1, VERBALTS demonstrates superior fi-
delity on both synthetic and real-world datasets, achieving
over 20% improvements on the Synth-M/U and Weather
datasets. Moreover, VERBALTS achieves significantly bet-
ter semantic alignment between the generated time series
and the descriptive texts, as evidenced by its much higher
CTTP performance. These results highlight not only the
richer information embedded in unstructured text conditions
but also the exceptional ability of our proposed method
to generate high-quality time series that are semantically
well-aligned with the given conditions. More qualitative
evaluation results are provided in Appendix F.2.

5.3. Ablation Study

We conduct an ablation study of VERBALTS on the Synth-M
and Weather datasets to evaluate the impact of the proposed
multi-focal text processor and multi-view noise estimator,
as described in Sec. 4.2 and 4.1 (RQ2).

In this study, we successively ablate the multi-focal model-
ing and generation capabilities of VERBALTS across the spa-

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Sy
nt

h-
M

Ground Truth
VerbalTS

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Ground Truth
TimeWeaver

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

W
ea

th
er

Ground Truth
VerbalTS

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Ground Truth
TimeWeaver

Figure 3. Comparison of generated data distribution between
the VERBALTS (left) and TimeWeaver (right) on Synth-M and
Weather datasets.

tial, temporal, and diffusion views by sequentially removing
the anchor vectors A(spat), A(temp), and A(diff). Correspond-
ingly, we simplify the calculation of the text representation
Ẑ ∈ R1×1×1×D by averaging the text sequence embedding
E along the text length dimension. As shown in Tab. 2,
each ablation operation results in a significant decline in
performance, highlighting the positive effects of multi-focal
modeling in VERBALTS for generating time series data that
are both high-fidelity and semantically well-aligned with
the textual conditions.

5.4. Extended Analysis

5.4.1. UNSTRUCTURED V.S. STRUCTURED CONDITION

We conduct analytical experiments, trying to uncover the
effects of the unstructured text conditions versus the struc-
tured condition on time series generation (RQ1). We also
analyze the behavior patterns of different compared models
on two condition types.

7

VerbalTS: Generating Time Series from Texts

5010
0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
55

0
60

0
65

0
70

0

Epochs

20

30

40

50

60

CT
TP

Synth-M

TimeWeaver
VerbalTS w/o MFTP
VerbalTS

5010
0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
55

0
60

0
65

0
70

0

Epochs

15

20

25

30
Weather

TimeWeaver
VerbalTS w/o MFTP
VerbalTS

Figure 4. The learning curves of CTTP score on the validation set
of Synth-M and Weather datasets. Findings: 1 : Structured con-
ditions are easier for model to learn. 2 : Unstructured conditions
provide additional information. 3 : The multi-focal text processor
(MFTP) in VERBALTS makes learning more effective.

Finding 1: Time series generated from unstructured text
conditions are more diverse and better aligned with the
ground-truth distribution than those from structured condi-
tions. As shown in Fig. 3, t-SNE (Van der Maaten & Hinton,
2008) visualization reveals that text-based conditions pro-
duce more diverse samples, while structured conditions lead
to stronger clustering and less variety. This highlights the
limitations of structured conditions and the value of flexible
controls like text for generating realistic time series. For
more visualization results, please refer to Appendix F.1.

Finding 2: Unstructured text conditions convey richer in-
formation but introduce additional noise, while this can be
effectively handled by the multi-focal mechanism of VER-
BALTS. We present the learning curves on the Synth-M
and Weather datasets in Fig. 4. Initially, TimeWeaver ex-
hibits faster learning (gap 1), as the structured conditions
are noise-free, allowing the model to more easily extract
useful information. However, it is later outperformed by
VERBALTS (gap 2), owing to the richer, fine-grained de-
tails provided by the unstructured text. Furthermore, the
multi-focal mechanism in VERBALTS enables more effec-
tive utilization of this additional information, leading to
faster convergence and ultimately superior performance in
text-to-time series generation (gap 3).

0.1 0.3 0.5 0.7 0.9

Mask ratio

0.6

0.7

0.8

0.9

1.0

1.1

C
T

T
P

ra
ti

o

Masking relevant tokens

0.1 0.3 0.5 0.7 0.9

Mask ratio

0.6

0.7

0.8

0.9

1.0

1.1

C
T

T
P

ra
ti

o

Masking irrelevant tokens

VerbalTS

VerbalTS w/o MFTP

TimeWeaver baseline 1

TimeWeaver baseline 2

Figure 5. Intervention experiment on Synth-M dataset. We com-
pare VERBALTS with and without the multi-focal text processor
(MFTP). TimeWeaver baseline 1 and 2 serve as references without
masking, representing the CTTP ratio of TimeWeaver to VER-
BALTS and VERBALTS w/o MFTP, respectively.

0.0

0.1 Stage 0

0.0

0.1

Di
ffu

sio
n

Stage 1

0.0

0.1 Stage 2

0.0

0.1 Resolution 0

0.0

0.1

Te
m

po
ra

l

Resolution 1

0.0

0.1 Resolution 2

linear... up ...sag...end... 0 ... 4 ... 8 ... flip ...axis...cycle...time... a ... is ...with... on ...
0.0

0.1 Variable 0

line
ar... up ...

sag
...

en
d... 0 ... 4 ... 8 ...

flip
...

ax
is...

cyc
le...

tim
e... a ... is ...

with... on ...
0.0

0.1Sp
at

ia
l

Variable 1

Figure 6. Distribution of the averaged attention weight in Eq. (5)
of each token within the vocabulary. VERBALTS exhibits various
attention distributions on different textual information from differ-
ent views, showcasing the effect of multi-focal processing.

5.4.2. TEXT EFFECT IN TIME SERIES GENERATION

We further explore how text information impacts time series
generation in VERBALTS, addressing RQ3.

Finding 3: VERBALTS focuses on semantically relevant
information in raw text, with the multi-focal text processor
enhancing this ability. To analyze the impact of relevant
and irrelevant information, we manually labeled the token
vocabulary into a relevant token set V (rel) (e.g., descriptions
of trend, shape, and seasonality) and an irrelevant token set
V (irr) (e.g., meaningless pronouns and stop words). More de-
tails are in Appendix A.1.5. We then conducted an interven-
tion experiment by randomly masking relevant or irrelevant
tokens and evaluating the effect on time series generation
performance. Fig. 5 shows the quantitative analysis of the
CTTP performance ratio CTTPmask

CTTP after masking tokens at
varying ratios. The results demonstrate that masking seman-
tically relevant tokens significantly degrades the generation
performance (left of Fig. 5), whereas masking irrelevant
tokens has minimal impact (right of Fig. 5). This resilience
is attributed to the multi-focal text processor and alignment
mechanisms in VERBALTS. Moreover, VERBALTS per-
forms much better than baseline TimeWeaver even masking
90% irrelevant tokens in text, highlighting the robustness of
our method. We further show a case study in Appendix F.3,
to qualitatively illustrate how our method works.

5.4.3. EFFECT OF MULTI-FOCAL TEXT PROCESSING

Finding 4: The multi-focal text processor enables VER-
BALTS to differentiate and utilize diverse textual informa-
tion for fine-grained time series generation. To evaluate
how VERBALTS processes nuanced textual details (RQ2),
we analyze the averaged attention values of each token in
the vocabulary from Eq. (5). (See Appendix E.2 for more
details.) As shown in Fig. 6, VERBALTS assigns varying

8

VerbalTS: Generating Time Series from Texts

attention to tokens across different focuses, demonstrating
the fine-grained modeling capabilities of the multi-focal text
processor, as outlined in Sec. 4.2.

5.4.4. SENSITIVITY STUDY

Finding 5: VERBALTS demonstrates robustness to hyper-
parameter settings. Beyond a certain threshold, the benefits
of multi-resolution and multi-stage modeling become evi-
dent. To evaluate the sensitivity of VERBALTS to specific
hyperparameters, we conduct a sensitivity study on Synth-M
and Weather datasets to evaluate the impact of the multi-
resolution number R and multi-stage number S. As shown
in Fig. 7, VERBALTS maintains stable performance across
a wide range of hyperparameter values. Beyond a certain
threshold, the benefits of incorporating multiple resolutions
and stages become significant.

1 2 3
0

10

20

30

40

50

60

Sy
nt

h-
M

R

FID
JFTSD
CTTP

1 2 3 4
0

10

20

30

40

50

60

S

FID
JFTSD
CTTP

1 2 3
0

5

10

15

20

25

30

W
ea

th
er

FID
JFTSD
CTTP

1 2 3 4
0

5

10

15

20

25

30 FID
JFTSD
CTTP

Figure 7. Sensitivity study on Synth-M and Weather dataset. R is
the resolution number and S is the stage number of diffusion.

5.4.5. WIDER APPLICATION: TIME SERIES EDITING

Finding 6: VERBALTS enables flexible and precise time se-
ries editing. Adopting the approach from (Jing et al., 2024a),
we integrate VERBALTS into the editing process. Specif-
ically, noise is added to the source time series xsrc via the
forward process (Eq. (1)), and the reverse process (Eq. (3))
generates the edited time series x̂tgt under the target text
condition via our proposed VERBALTS. Fig. 8 showcases
the ability of VERBALTS to retain original text characteris-
tics while aligning with modified descriptions. Compared
to TEdit (Jing et al., 2024a), which relies on attributes,
VERBALTS achieves finer edits by precisely locating and
following the adjusted tokens in the target text description.
More case study results are provided in Appendix F.4.

6. Conclusion
Text offers rich and nuanced information, making it a power-
ful modality for describing time series details or uncovering

CTTP:24.30 CTTP:48.49

Sample 1: The season cycle is 1. The high
frequency component in the time series has
the period equal to 64. The time series has a
log and (down up) trend. The beginning
part has (double peaks a sag).

CTTP:58.53 CTTP:60.62 Sample 2: The high frequency component in
the time series has the period equal to
(16 64). The trend is quad and up. There
are double peaks at beginning. There is a
season of (4 1).

Before editing Edited through TEdit

CTTP:26.23

Edited through VerbalTS

CTTP:56.54

Sample 3: The season cycle is 0. Double peaks
at (middle beginning) area. A single peak
at end area. The time series has a high
frequency signal of 16 frequencies. The trend
is (linear exp) and down.

Figure 8. Illustration of editing task. Column 1: the raw time
series before editing. Column 2: result edited by TEdit (Jing et al.,
2024a); Column 3: result edited by our VERBALTS; Column 4: the
condition prompts for editing, with (source → target) properties.

underlying mechanisms. In this work, we addressed the
problem of generating time series from text by proposing
VERBALTS, which integrates a novel multi-focal text pro-
cessor with a multi-view diffusion model to achieve fine-
grained semantic alignment between the two modalities.
Experiments on two synthetic and four real-world datasets
demonstrated the effectiveness of our approach through
both quantitative and qualitative analyses. VERBALTS also
showed strong capabilities in extracting meaningful text
information, enabling high-quality generation and flexible
applications such as controlled generation and editing.

However, our method has limitations, such as slower gen-
eration efficiency due to the long-range reverse process in
diffusion models, which may hinder real-world applications.
Addressing this limitation presents an important direction
for future research.

Impact Statement
This work introduces a novel method for generating time
series from texts, bridging the gap between natural language
understanding and time series synthesis. We foresee several
potentially positive societal impacts: (i) providing richer
time series data across various fields, (ii) reducing the risk
of personal privacy leakage in data, and (iii) advancing the
study of refined and controlled time series generation.

While we do not anticipate immediate or direct negative
societal consequences arising from this contribution, we
acknowledge that, like other generative technologies, it may
be vulnerable to misuse. As such, responsible use, ethical
oversight, and continued monitoring are essential to ensure
that the technology is applied for beneficial purposes.

Acknowledgment
The research was supported by National Natural Science
Foundation of China (Grant No. 62406193). The authors
also gratefully acknowledge further assistance provided by
Shanghai Frontiers Science Center of Human-centered Arti-
ficial Intelligence, MoE Key Lab of Intelligent Perception
and Human-Machine Collaboration, and HPC Platform of
ShanghaiTech University.

9

VerbalTS: Generating Time Series from Texts

References
Akbari, H., Yuan, L., Qian, R., Chuang, W.-H., Chang, S.-F.,

Cui, Y., and Gong, B. Vatt: Transformers for multimodal
self-supervised learning from raw video, audio and text.
Advances in Neural Information Processing Systems, 34:
24206–24221, 2021.

Ang, Y., Huang, Q., Bao, Y., Tung, A. K., and Huang, Z. Ts-
gbench: Time series generation benchmark. Proceedings
of the VLDB Endowment, 17(3):305–318, 2023.

Chen, J., Lai, Y., Zhang, D., Wang, Y., Geng, S., Li, H., and
Hong, S. Diffusets: 12-lead ecg generation conditioned
on clinical text reports and patient-specific information.
In Artificial Intelligence and Data Science for Healthcare:
Bridging Data-Centric AI and People-Centric Health-
care.

Chen, P., ZHANG, Y., Cheng, Y., Shu, Y., Wang, Y.,
Wen, Q., Yang, B., and Guo, C. Pathformer: Multi-
scale transformers with adaptive pathways for time se-
ries forecasting. In The Twelfth International Confer-
ence on Learning Representations, 2024a. URL https:
//openreview.net/forum?id=lJkOCMP2aW.

Chen, P.-Y. Model reprogramming: Resource-efficient
cross-domain machine learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pp. 22584–22591, 2024.

Chen, Y., Ren, K., Wang, Y., Fang, Y., Sun, W., and Li, D.
Contiformer: Continuous-time transformer for irregular
time series modeling. Advances in Neural Information
Processing Systems, 36, 2024b.

Chung, H., Kim, J., Kwon, J.-m., Jeon, K.-H., Lee, M. S.,
and Choi, E. Text-to-ecg: 12-lead electrocardiogram
synthesis conditioned on clinical text reports. In ICASSP
2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1–5. IEEE,
2023.

Coletta, A., Gopalakrishnan, S., Borrajo, D., and Vyetrenko,
S. On the constrained time-series generation problem.
Advances in Neural Information Processing Systems, 36,
2024.

Desai, A., Freeman, C., Wang, Z., and Beaver, I. Timevae:
A variational auto-encoder for multivariate time series
generation. arXiv preprint arXiv:2111.08095, 2021.

Duan, Y., Zhou, J., Wang, Z., Wang, Y.-K., and Lin, C.-T.
Dewave: discrete eeg waves encoding for brain dynam-
ics to text translation. In Proceedings of the 37th Inter-
national Conference on Neural Information Processing
Systems, pp. 9907–9918, 2023.

Esteban, C., Hyland, S. L., and Rätsch, G. Real-valued
(medical) time series generation with recurrent condi-
tional gans. arXiv preprint arXiv:1706.02633, 2017.

Fan, X., Wu, Y., Xu, C., Huang, Y., Liu, W., and Bian,
J. MG-TSD: Multi-granularity time series diffusion
models with guided learning process. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=CZiY6OLktd.

Gao, Y., Chen, H., Wang, X., Wang, Z., Wang, X.,
Gao, J., and Ding, B. Diffsformer: A diffusion trans-
former on stock factor augmentation. arXiv preprint
arXiv:2402.06656, 2024.

Han, J., Gong, K., Zhang, Y., Wang, J., Zhang, K., Lin, D.,
Qiao, Y., Gao, P., and Yue, X. Onellm: One framework to
align all modalities with language. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 26584–26595, 2024.

He, H., Zhao, S., Xi, Y., and Ho, J. C. Meddiff: Generat-
ing electronic health records using accelerated denoising
diffusion model. arXiv preprint arXiv:2302.04355, 2023.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Jarrett, D., Yoon, J., Bica, I., Qian, Z., Ercole, A., and
van der Schaar, M. Clairvoyance: A pipeline toolkit
for medical time series. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=xnC8YwKUE3k.

Jia, F., Wang, K., Zheng, Y., Cao, D., and Liu, Y. Gpt4mts:
Prompt-based large language model for multimodal time-
series forecasting. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 23343–23351,
2024.

Jing, B., Tong, H., and Zhu, Y. Network of tensor time
series. In Proceedings of the Web Conference 2021, pp.
2425–2437, 2021.

Jing, B., Zhang, S., Zhu, Y., Peng, B., Guan, K., Margenot,
A., and Tong, H. Retrieval based time series forecasting.
arXiv preprint arXiv:2209.13525, 2022.

Jing, B., Gu, S., Chen, T., Yang, Z., Li, D., He, J., and
Ren, K. Towards editing time series. Advances in Neural
Information Processing Systems, 2024a.

10

https://openreview.net/forum?id=lJkOCMP2aW
https://openreview.net/forum?id=lJkOCMP2aW
https://openreview.net/forum?id=CZiY6OLktd
https://openreview.net/forum?id=CZiY6OLktd
https://openreview.net/forum?id=xnC8YwKUE3k
https://openreview.net/forum?id=xnC8YwKUE3k

VerbalTS: Generating Time Series from Texts

Jing, B., Wang, Y., Sui, G., Hong, J., He, J., Yang, Y., Li,
D., and Ren, K. Automated contrastive learning strategy
search for time series. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge
Management, pp. 4612–4620, 2024b.

Jing, B., Zhou, D., Ren, K., and Yang, C. Causality-aware
spatiotemporal graph neural networks for spatiotemporal
time series imputation. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge
Management, pp. 1027–1037, 2024c.

Kim, H. J., Sengupta, K., Kuribayashi, M., Kacorri, H., and
Ohn-Bar, E. Text to blind motion. In The Thirty-eight
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=QIJQ1qCGqV.

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. Modeling
long-and short-term temporal patterns with deep neural
networks. In The 41st international ACM SIGIR confer-
ence on research & development in information retrieval,
pp. 95–104, 2018.

Lee, D., Malacarne, S., and Aune, E. Vector quan-
tized time series generation with a bidirectional prior
model. In International Conference on Artificial
Intelligence and Statistics, 2023. URL https:
//api.semanticscholar.org/CorpusID:
257405229.

Leo. Istanbul traffic index. Kaggle, 2024. URL https:
//www.kaggle.com/datasets/leonardo00/
istanbul-traffic-index/data.

Li, X., Ngu, A. H. H., and Metsis, V. Tts-cgan: A trans-
former time-series conditional gan for biosignal data aug-
mentation. arXiv preprint arXiv:2206.13676, 2022.

Li, Y., Gao, Y., Cai, J., Zheng, G., Shi, H., and Liu, X.
Repr2seq: A data-to-text generation model for time se-
ries. In 2023 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE, 2023.

Liu, H., Xu, S., Zhao, Z., Kong, L., Kamarthi, H., Sasanur,
A. B., Sharma, M., Cui, J., Wen, Q., Zhang, C., et al.
Time-mmd: Multi-domain multimodal dataset for time
series analysis. In The Thirty-eight Conference on Neu-
ral Information Processing Systems Datasets and Bench-
marks Track.

Liu, N., Li, S., Du, Y., Torralba, A., and Tenenbaum, J. B.
Compositional visual generation with composable dif-
fusion models. In European Conference on Computer
Vision, pp. 423–439. Springer, 2022.

Liu, Y., Qin, G., Huang, X., Wang, J., and Long, M. Auto-
times: Autoregressive time series forecasters via large lan-
guage models. arXiv preprint arXiv:2402.02370, 2024.

Narasimhan, S. S., Agarwal, S., Akcin, O., Sanghavi, S.,
and Chinchali, S. P. Time weaver: A conditional time
series generation model. In ICML, 2024. URL https:
//openreview.net/forum?id=WpKDeixmFr.

Nie, Y., H. Nguyen, N., Sinthong, P., and Kalagnanam, J. A
time series is worth 64 words: Long-term forecasting with
transformers. In International Conference on Learning
Representations, 2023.

Nils Braun, Maximilian Christ, A. K.-L. tsfresh, 2024.
URL https://github.com/blue-yonder/
tsfresh.

OpenAI. ChatGPT-3.5: Language model for conversational
AI, 2023. URL https://openai.com/chatgpt.
Available at https://openai.com/chatgpt.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 4195–4205,
2023.

Pei, H., Ren, K., Yang, Y., Liu, C., Qin, T., and Li, D.
Towards generating real-world time series data. In 2021
IEEE International Conference on Data Mining (ICDM),
pp. 469–478. IEEE, 2021.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in neural information processing systems, 35:
36479–36494, 2022.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=St1giarCHLP.

Srinivas, S. S., Ravuru, C., Sannidhi, G., and Runkana,
V. Reprogramming foundational large language mod-
els (llms) for enterprise adoption for spatio-temporal
forecasting applications: Unveiling a new era in copilot-
guided cross-modal time series representation learning.

11

https://openreview.net/forum?id=QIJQ1qCGqV
https://openreview.net/forum?id=QIJQ1qCGqV
https://api.semanticscholar.org/CorpusID:257405229
https://api.semanticscholar.org/CorpusID:257405229
https://api.semanticscholar.org/CorpusID:257405229
https://www.kaggle.com/datasets/leonardo00/istanbul-traffic-index/data
https://www.kaggle.com/datasets/leonardo00/istanbul-traffic-index/data
https://www.kaggle.com/datasets/leonardo00/istanbul-traffic-index/data
https://openreview.net/forum?id=WpKDeixmFr
https://openreview.net/forum?id=WpKDeixmFr
https://github.com/blue-yonder/tsfresh
https://github.com/blue-yonder/tsfresh
https://openai.com/chatgpt
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP

VerbalTS: Generating Time Series from Texts

In Proceedings of the AAAI-2024 Workshop on Deploy-
able AI (DAI), 2024. URL https://arxiv.org/
abs/2408.14387.

Tashiro, Y., Song, J., Song, Y., and Ermon, S. Csdi: Con-
ditional score-based diffusion models for probabilistic
time series imputation. Advances in Neural Information
Processing Systems, 34:24804–24816, 2021.

Torres, J. F., Hadjout, D., Sebaa, A., Martı́nez-Álvarez, F.,
and Troncoso, A. Deep learning for time series forecast-
ing: a survey. Big Data, 9(1):3–21, 2021.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(11), 2008.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Wang, L., Zeng, L., and Li, J. Aec-gan: adversarial error
correction gans for auto-regressive long time-series gener-
ation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 10140–10148, 2023.

Wang, S., Li, J., Shi, X., Ye, Z., Mo, B., Lin, W., Ju, S.,
Chu, Z., and Jin, M. Timemixer++: A general time series
pattern machine for universal predictive analysis. arXiv
preprint arXiv:2410.16032, 2024a.

Wang, S., Wu, H., Shi, X., Hu, T., Luo, H., Ma, L., Zhang,
J. Y., and ZHOU, J. Timemixer: Decomposable multi-
scale mixing for time series forecasting. In The Twelfth
International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?
id=7oLshfEIC2.

Wang, X., Feng, M., Qiu, J., Gu, J., and Zhao, J. From news
to forecast: Integrating event analysis in LLM-based time
series forecasting with reflection. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024c. URL https://openreview.net/
forum?id=tj8nsfxi5r.

Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: Decom-
position transformers with auto-correlation for long-term
series forecasting. Advances in neural information pro-
cessing systems, 34:22419–22430, 2021.

Xu, J., Sun, X., Zhang, Z., Zhao, G., and Lin, J. Under-
standing and improving layer normalization. Advances
in neural information processing systems, 32, 2019.

Xu, Z., Bian, Y., Zhong, J., Wen, X., and Xu, Q. Be-
yond trend and periodicity: Guiding time series forecast-
ing with textual cues. arXiv preprint arXiv:2405.13522,
2024.

Xue, H. and Salim, F. D. Promptcast: A new prompt-
based learning paradigm for time series forecasting. IEEE
Transactions on Knowledge and Data Engineering, pp.
1–14, 2023. doi: 10.1109/TKDE.2023.3342137.

Yang, Y., Jin, M., Wen, H., Zhang, C., Liang, Y., Ma, L.,
Wang, Y., Liu, C., Yang, B., Xu, Z., et al. A survey on
diffusion models for time series and spatio-temporal data.
arXiv preprint arXiv:2404.18886, 2024.

Yin, G., Liu, B., Sheng, L., Yu, N., Wang, X., and Shao, J.
Semantics disentangling for text-to-image generation. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 2327–2336, 2019.

Yoon, J., Jarrett, D., and Van der Schaar, M. Time-series
generative adversarial networks. Advances in neural in-
formation processing systems, 32, 2019.

Yuan, X. and Qiao, Y. Diffusion-TS: Interpretable diffu-
sion for general time series generation. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=4h1apFjO99.

Yue, Z., Wang, Y., Duan, J., Yang, T., Huang, C., Tong, Y.,
and Xu, B. Ts2vec: Towards universal representation of
time series. In Proceedings of the AAAI conference on
artificial intelligence, volume 36, pp. 8980–8987, 2022.

Zhang, B., Gao, Z., Qu, Y., and Xie, H. How con-
trol information influences multilingual text image gen-
eration and editing? In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024a. URL https://openreview.net/forum?
id=r3c0WGCXgt.

Zhang, B., Zhang, P., Dong, X., Zang, Y., and Wang,
J. Long-CLIP: Unlocking the long-text capability of
CLIP. In Leonardis, A., Ricci, E., Roth, S., Russakovsky,
O., Sattler, T., and Varol, G. (eds.), Computer Vision –
ECCV 2024, volume 15109 of Lecture Notes in Com-
puter Science, pp. 310–325, Cham, 2024b. Springer. doi:
10.1007/978-3-031-72983-6 18. URL https://doi.
org/10.1007/978-3-031-72983-6_18.

Zhang, Q., Wang, H., Long, C., Su, L., He, X., Chang, J.,
Wu, T., Yin, H., Yiu, S.-M., Tian, Q., et al. A survey of
generative techniques for spatial-temporal data mining.
arXiv preprint arXiv:2405.09592, 2024c.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Virtual Conference, volume 35, pp. 11106–11115.
AAAI Press, 2021.

12

https://arxiv.org/abs/2408.14387
https://arxiv.org/abs/2408.14387
https://openreview.net/forum?id=7oLshfEIC2
https://openreview.net/forum?id=7oLshfEIC2
https://openreview.net/forum?id=tj8nsfxi5r
https://openreview.net/forum?id=tj8nsfxi5r
https://openreview.net/forum?id=4h1apFjO99
https://openreview.net/forum?id=4h1apFjO99
https://openreview.net/forum?id=r3c0WGCXgt
https://openreview.net/forum?id=r3c0WGCXgt
https://doi.org/10.1007/978-3-031-72983-6_18
https://doi.org/10.1007/978-3-031-72983-6_18

VerbalTS: Generating Time Series from Texts

Attribute Value

Trend Types [Linear, Quadratic, Exponential, Logistic]

Trend Directions [Up, Down]

Season Cycles [0, 1, 2, 4]

Local Shapelets [None, Single Peak, Sag, Double Peaks]

High Frequency Components [0, 16, 32, 64]

Multivariable [X-axis Flip, Y-axis Flip, Shift Forward, Shift Backward]

Table 3. Summary of attribute options for synthetic datasets.

A. Datasets
In this section, we provide detailed instructions for constructing the datasets, which include six datasets of three categories,
as mentioned in Sec. 5.1.

A.1. Full synthetic datasets

The Full synthetic represents the datasets that both time series and text description are manually generated, including the
Synth-U and Synth-M datasets.

Specifically, we first manually define 6 types of attributes, as shown in Tab. 3. Based on these attributes, time series
data are generated using specific mathematical formulas and multivariate rules; While textual descriptions are generated
through predefined text templates. Thus, our processed dataset combines three types of data: generated time series, textual
descriptions, and predefined attributes.

We generate Synth-U dataset according to the following formula:

x = xtrend + xseason + xlocal + xhf + xnoise

Among them, trend and season are the main components of time series, while noise, high-frequency components, and local
shapelet are supplementary details. Therefore, we divide the control attributes into two categories: primary and secondary.
The primary attributes are shared by all data in the data set, including Trend Types, Trend Directions, and Season cycles.
The secondary attributes are attributes that are sample-specific and are difficult to be uniformly described, including Local
Shapelets and High Frequency Components.

Synth-M follows a construction method similar to that of Synth-U but in a multivariate setting with an extra attribute:
Multivariable. The second variable of the time series is transferred from the first variable following four kinds of rules:
X-axis Flip, Y-axis Flip, Shift Forward, Shift Backward. We present all the attribute information in Tab. 3.

We sample 1000 samples for 32 combinations of primary attributes (4 Trend Types×2 Trend Directions×4 Season Cycles)
and get 32000 samples. We randomly split the samples into training set, validation set, and test set in a ratio of 6: 1: 1.
Finally, we get 24000 training samples, 2400 validation samples, and 2400 test samples.

A.1.1. PRIMARY ATTRIBUTES

The primary attributes are attributes that all data in a dataset have in common, such as trend and season in all time series.
Such attributes are often represented in a structured format, but lack the ability to represent unique characteristics of the data.

Trend Types
There are 4 trend types: linear, quadratic, exponential, and logistic. As described above, t is used to obtain x. For linear
trend: xtrend = t, in this case ti ∈ [0, 1], xi ∈ [0, 1]. For quadratic trend: xtrend = t2, in this case ti ∈ [0, 1], xi ∈ [0, 1].
For exponential trend: xtrend = 2t

1024 , in this case ti ∈ [−10, 10], xi ∈ [0, 1]. xtrend is needed to range from 0 to 1, so ti
is in [-10,10]. For logistic trend: xtrend = 1

1+exp(−t) , where ti ∈ [−10, 10], xi ∈ [0, 1]. Similar to the exponential trend
operation, we repeat a scaling process in logistic trend. To train the model more easily, xtrend = (x− 0.5)× 2 is used to
normalize xtrend to [−1, 1].

13

VerbalTS: Generating Time Series from Texts

Trend Directions
There are totally 2 directions: up and down. For instance, in the Cartesian coordinate system, a linear line from coordinates
(0,0) to (1,1) represents an “up” trend, while another line from coordinates (0,0) to (1,-1) represents a “down” trend. To
implement this idea, we used a simple method to generate these two types of data as the following formulas: up trend is
xtrend = xtrend and down trend is xtrend = −xtrend.

Season Cycles
The Season represents the number of cycles in a time series. We add [0,1,2,4] sinusoidal waves into the original synthetics
time series.

xseason = a sin(2πt+ ϕ)

where t ∈ [0, ncycle], ncycle ∈ [0, 20, 21, 22]. The Random Variances of these two variables follow uniform distributions:
a ∼ U(0.4, 0.6), ϕ ∼ U(0, 2π).

A.1.2. SECONDARY ATTRIBUTES

The secondary attributes are attributes that only some samples have. Such attributes are often hard to be represented in a
structured format, containing sample-specific details.

Local Shapelets
We define three local shapelets: [single peak, sag, double peaks], which are used to simulate local details in real-world time
series. A single peak consists of a linear rise and a linear fall, with a length of 9, 0 at both ends, the highest midpoint in the
range of [1.0, 1.2]. Sag is a single peak with a downward concave shape that is symmetrical about the x-axis. Double peaks
are two single peaks spliced together. We also divide the time series into three segments of equal length: the beginning, the
middle, and the end, and add 0 or 1 shapelet to a random position in each segment. The probability of adding nothing is 0.7,
and the probability of single peak, sag, and double peaks is 0.1.

High Frequency Components
High-frequency signals are common components in time series. We add high-frequency components to simulate real-world
time series. The period of high-frequency components ranges from [0, 16, 32, 64] and is constructed in the same way as
season where a ∼ U(0.1, 0.3), ϕ ∼ U(0, 2π).

Noise
The noises are added to simulate the real-world time series. Since noise is difficult to model, adding noise is more to
increase the randomness and diversity of samples. Since noise is difficult to model, adding noise is more to increase the
randomness and diversity of the sample. The noise will be sampled from a Gaussian distribution xnoise ∼ N (µ, σ2), where
σ ∈ [0.04, 0.06].

A.1.3. MULTIVARIABLE

The multi variable transfer rules include X-axis Flip, Y-axis Flip, Shift Forward, and Shift Backward. X-axis Flip and Y-axis
Flip are flipping the time series of the first variable along the x-axis and y-axis to get the second variable. Shift Forward and
Shift Backward are shifting the time series along the time dimension where the shift distance dshift ∈ [20, 40].

A.1.4. ATTRIBUTES TO TEXT DESCRIPTIONS

The text descriptions are generated from the attributes with prompt templates. Here are examples of text descriptions for
each attribute in Synth-M dataset:

• Trend Type & Trend Direction: “The trend is up and linear.”

• Season Cycles: “The season cycle is 4.”

• High Frequency Component: “There is a high frequency component with a period of 64.”

• Local Shapelet: “There is a sag at the beginning. The end part has double peaks.”

• Multivariable: “Flip the variable 1 along x-axis can get variable 2.”

14

VerbalTS: Generating Time Series from Texts

A.1.5. RELEVANT AND IRRELEVANT TOKENS

As mentioned in Sec. 5.4.2, we manually annotated all tokens within the synthetic datasets, categorizing them as either
relevant or irrelevant. Specifically, tokens associated with the attribute value (refer to Tab. 3) were labeled as relevant, while
all other tokens were labeled as irrelevant. The results are presented as follows:

• Relevant tokens: “linear”, “quad”, “exp”, “log”, “up”, “down”, “peak”, “peaks”, “sag”, “double”, “single”, “beginning”,
“end”, “middle”, “0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”, “x”, “y”, “flip”, “forward”, “backward”, “shift”.

• Irrelevant tokens: “trend”, “type”, “direction”, “cycle”, “season”, “the”, “description”, “time”, “series”, “variable”,
“area”, “part”, “has”, “a”, “and”, “equal”, “.”, “is”, “high”, “frequency”, “component”, “with”, “period”, “along”,
“axis”, “signal”, “on”, “at”, “in”, “of”.

A.2. Augmented real-world datasets

The Augmented real-world represents the datasets that are composed of real-world time series and manually generated text
description, including the ETTm1 and Traffic.

Specifically, the original datasets only contain time series data. We first employ tsfresh (Nils Braun, 2024) library to
extract 6 time series features, serving as attributes for baseline input. Then, text annotations are generated from extracted
features through prompt templates. Details are given in Sec. A.2.1. Thus, our processed datasets combine three types of
data: time series data, text descriptions, and extracted attributes.

A.2.1. FEATURE EXTRACTION AND TEXT ANNOTATION

To annotate these real-world datasets with their corresponding text and attributes, we performed a series of processing
steps, including feature extraction and text annotation. Specifically, we used the tsfresh (Nils Braun, 2024) library to
extract four global features (Skewness, Kurtosis, Linear Trend Slope, FFT Frequency) and two local features (Local Linear
Trend Slope and Number of Peaks) from the time series data. These features were then used to generate attributes and text
descriptions. The extraction methods for each feature and the corresponding text generation process are detailed below.

Feature Name Description

Global Features

Skewness Measures the asymmetry of the time series value distribution.
Kurtosis Measures the sharpness of the time series value distribution.
Linear Trend Describes the overall trend direction and rate of change in the time series.
FFT Frequency Identifies the dominant periodicity in the frequency domain.

Local Features Local Linear Trend Captures the trend direction within each segment.
Number of Peaks Counts the number of local maxima within each segment.

Table 4. Summary of global and local features extracted using tsfresh for augmented real-world datasets.

Global Features Extraction and Text Annotation

The global features describe the overall characteristics of the time series, which include:

1. Skewness: The skewness of the time series distribution is calculated through tsfresh.skewness which measures
the asymmetry of the value distribution. Based on the skewness value:

• If skewness < −0.5, the text description is: “The distribution of the value in time series is shifted to the negative.”

• If skewness > 0.5, the text description is: “The distribution of the value in time series is shifted to the positive.”

• Otherwise, the text description is: “The distribution of the value in time series is symmetrical.”

2. Kurtosis: The kurtosis of the time series distribution is calculated through tsfresh.kurtosis, which measures the
sharpness of the distribution. Based on the kurtosis value:

• If kurtosis < −0.5, the text description is: “and has low kurtosis.”

15

VerbalTS: Generating Time Series from Texts

• If kurtosis > 0.5, the text description is: “and has high kurtosis.”

• Otherwise, the text description is: “and has normal kurtosis.”

3. Linear Trend: The overall trend of the time series is calculated through tsfresh.linear trend, which describes
the trend direction and intensity. For example:

• A strongly positive slope generates the description: “The time series is going up rapidly.”

• A weakly positive slope generates the description: “The time series is going up slowly.”

• A strongly negative slope generates the description: “The time series is going down rapidly.”

• A weakly negative slope generates the description: “The time series is going down slowly.”

• A near-zero slope generates the description: “The time series has no obvious trend direction.”

4. FFT Frequency: The dominant frequency of the time series is identified through tsfresh.fft coefficient. The
frequency with the highest magnitude is used to generate the description: “The main season cycles is around n pi,” where n
is the index of the dominant frequency.

Local Features Extraction and Text Annotation

We divide the time series into three segments: beginning, middle, and end along the time dimension equally. The local
feature extraction is performed on each segment independently, which includes:

1. Local Linear Trend: The local trend of the time series is calculated through tsfresh.linear trend, which
describes the trend direction and intensity. For example:

• “At the beginning, the time series slowly rises.”

• “At the middle, the time series has no obvious trend direction.”

• “At the end, the time series goes down rapidly.”

2. Number of Peaks: The number of local maxima is counted using tsfresh.number peaks with parameter n=10.
This feature generates a description such as:

• “At the beginning, there are 3 peaks.”

• “At the middle, there are 2 peaks.”

• “At the end, there are 4 peaks.”

After extracting all features, each time series is represented as a structured vector of indices, referred to as the attributes
index. This vector includes:

• Variable Index: [0,K-1] where K is the variable number.

• Trend Attribute: {0,1} which indicates {upward, downward}.

• Seasonality Attribute: [0,9] which indicates the dominant periodicity.

• Skewness Attribute: {0,1,2} which indicates {negative, positive, symmetrical}.

• Kurtosis Attribute: {0,1,2} which indicates {low, normal, high}.

The Text Caption for each time series is constructed by combining the descriptions of global and local features. For example:

16

VerbalTS: Generating Time Series from Texts

• Global description: “The distribution of the value in time series is shifted to the negative and has high kurtosis. For
the overall shape, the time series is going up rapidly. The main season cycle is around 2 pi.”

• Local description: “At the beginning, there are 3 peaks, and the time series slowly rises. At the middle, there are 2
peaks, and the time series has no obvious trend direction. At the end, there are 4 peaks, and the time series is going up
rapidly.”

A.2.2. ETTM1

Original Dataset

ETTm1 is obtained from the Electricity Transformer Dataset (ETDataset) (Zhou et al., 2021), a dataset specifically designed
to address the challenges of long-sequence time series forecasting. It was collected through a real-world platform in
collaboration with the research team and Beijing Guowang Fuda Science and Technology Development Company. The
dataset covers a two-year period from July 2016 to July 2018.

ETTm1, as a subset of ETDataset, focuses on minute-level data collected from a single transformer station. Each data point
in ETTm1 consists of 7 numerical features: High Useful Load (HUFL), High Useless Load (HULL), Middle Useful Load
(MUFL), Middle Useless Load (MULL), Low Useful Load (LUFL), Low Useless Load (LULL), and the target variable Oil
Temperature (OT).

Processed Dataset

The raw dataset, consisting of a single long sequence with a total length of 69,680, is first split along the temporal dimension
into training, validation, and test sets in a ratio of 8:1:1, resulting in sample sizes of 55,744 and 6,968, and 6,968 across the
original seven variables. Next, the seven-variate time series data are decomposed into univariate sequences. For each set, the
long sequence is further divided into shorter sequences using a sliding window with a sequence length of 120 and a stride of
30. This process yields the final samples split: (train: 13,013, valid: 1,631, test: 1,631).

Till now, we obtain the time series dataset for each time series feature variable of size (N,K,L), where N is the number of
samples, and Ntrain = 13, 013, Nvalid = 1, 631, Ntest = 1, 631 for train, validation and test set. K denotes the number of
time series variables, and K = 1 in our processed dataset. L represents the length of the time series, and L = 120 in this
dataset.

Furthermore, we apply z-score normalization to each variable using the mean and standard deviation computed from the
training set, which ensures that each variable has a mean of 0 and a standard deviation of 1, eliminating differences in
scale across variables. After that, we perform the feature extraction and text annotation to obtain the attributes and the text
descriptions, with processing details given in Appendix A.2.1.

The final text descriptions are of size N , where N is the number of samples. Each sample contains 1 string, corresponding
to the concatenated global and local descriptions of a time series sequence. The statistics of token numbers for the text
descriptions are summarized in Tab. 5.

Set Average Tokens Median Tokens Max Tokens Std. Dev.
Training 107.28 107 131 7.49
Validation 107.00 107 127 7.63
Test 106.63 107 128 7.39

Table 5. Summary of token number statistics for ETTm1 dataset.

A.2.3. TRAFFIC

Original Dataset

The Istanbul-Traffic dataset (Leo, 2024) provides minute-level time series data on Istanbul’s traffic index. It includes three
time series features: the Traffic index Overall(TI), Traffic index of Asian side(TI An), and the Traffic index of European
side(TI Av). The dataset covers the time period from November 1, 2022, to June 16, 2024, with a sampling frequency of
one minute and a weekly update frequency.

Processed Dataset

17

VerbalTS: Generating Time Series from Texts

The raw dataset, consisting of a single long sequence with a total length of 817,769, is first taken a sample every ten minutes
and split along the temporal dimension into training, validation, and test sets in a ratio of 8:1:1, resulting in sample sizes
of 65421, 8178, and 8178 across the original 3 variables. Next, the three-variate time series data are decomposed into
univariate sequences. For each set, the long sequence is further divided into shorter sequences using a sliding window with a
sequence length of 144 and a stride of 24. This process yields the final sample split: (train: 8178, valid: 1023, test: 1023).

Till now, we obtain the time series dataset for each time series feature variable of size (N,K,L), where N is the number of
samples, Ntrain = 8178, Nvalid = 1023, Ntest = 1023 for train, validation and test set. K denotes the number of time series
variables, and K = 1 in our processed dataset. L represents the length of the time series, and L = 144 in this dataset.

Furthermore, we apply z-score normalization to each variable using the mean and standard deviation computed from the
training set. After that, we perform the feature extraction and text annotation to obtain the attributes and the text descriptions,
with processing details given in Appendix A.2.1.

The final text descriptions are of size N , where N is the number of samples. Each sample contains 1 string, corresponding
to the concatenated global and local descriptions of a time series sequence. The statistics of token numbers for the text
descriptions are summarized in Tab.6.

Set Average Tokens Median Tokens Max Tokens Std. Dev.
Training 102.96 103 130 6.83
Validation 103.70 104 124 6.95
Test 101.90 101 126 6.64

Table 6. Summary of token number statistics for Traffic dataset.

A.3. Real-world datasets

The real-world datasets represent the datasets that are composed of real-world time series and text description pairs, including
the BlindWays and Weather.

Specifically, the original datasets contain paired time series and textual descriptions. We extract attributes from the original
text using ChatGPT 3.5 (OpenAI, 2023) for baseline input, producing a processed dataset that combines three types of data:
time series data, text descriptions, and extracted attributes.

A.3.1. BLINDWAYS DATASET

Original Dataset

The raw data is sourced from the benchmark dataset BlindWays (Kim et al., 2024). It includes 3D motion data from 10 blind
individuals and 1 visually impaired participant, capturing actions performed while navigating along 8 carefully designed
urban routes using a white cane or guide dog, along with corresponding rich textual descriptions.

The motion data comprises multivariate data from 1,029 motion segments, recorded through 18 IMU sensors worn by each
participant, detailing the positions, angles, and trajectories of 24 joints in the human body. Each joint is represented and
recorded using three variables, resulting in a total of 72 variables.

Additionally, the dataset provides (2 * 1,029 = 2,058) detailed textual descriptions, which include high-level descriptions
summarizing action intent and contextual background, and low-level descriptions that meticulously document action
specifics, such as step count and cane usage, for each time series sample. We utilized the 1029 high-level descriptions as the
textual descriptions paired with the time series in our work.

Processed Dataset

For the processed motion dataset, we conducted a random sampling on the raw dataset to partition the raw data into training,
validation, and test sets. The 1,029 motion segments were split into a training set containing 823 samples, a validation set
with 103 samples, and a test set also comprising 103 samples, resulting in a final distribution of (train: 823, validation: 103,
test: 103) samples. Additionally, we extract attributes from the original text using ChatGPT 3.5 (OpenAI, 2023).

For the time series data, we maintain the same shape as the raw dataset. The shape of the time series data is represented
as (N,K,L), where N denotes the number of samples. Specifically, for the training, validation, and test sets, we have

18

VerbalTS: Generating Time Series from Texts

Ntrain = 823, Nvalid = 103, and Ntest = 103. The variable count K = 72, while the time series length L = 600. Furthermore,
we apply z-score normalization to each variable using the mean and standard deviation computed from the training set.

For the text data, we utilize the high-level textual descriptions from the original BlindWays dataset. The text data has a
shape of N , where N indicates the number of samples, and we utilize the high-level textual descriptions in the original
dataset. The statistic details of the number of tokens in the text data are given in Tab. 7.

Set Average Tokens Median Tokens Max Tokens Std. Dev.
Training 33.24 31 135.0 11.68
Validation 34.56 32 106.0 12.76
Test 32.51 32 71.0 10.23

Table 7. Summary of token number statistics for BlindWays dataset.

For the attributes, the shape is represented as (N,A), where N indicates the number of samples and A = 2 represents
the number of attributes variables. The two attributes are derived by classifying and extracting features from the original
dataset’s text using ChatGPT 3.5 (OpenAI, 2023): the Guide Method and Hand. Guide Method attribute indicates the
method employed by the blind individuals, encompassing two values: [cane, guide dog] (i.e. using a white cane or a guide
dog). Hand attribute indicates the hand used by the blind individuals, with three possible values: [left, right, unknown] (i.e.
left hand, right hand, or unknown).

Attribute Value
Guide Method [Cane, Guide Dog]
Hand [Left, Right, Unknown]

Table 8. Summary of attribute options for BlindWays dataset.

A.3.2. WEATHER-CAPTIONED DATASET

Original Dataset

The raw data is derived from the weather station WS Beutenberg, located at the Max Planck Institute for Biogeochemistry in
Jena, Germany. The dataset includes climate time series spanning 8 years from 2014 to 2022.

The time series data consist of 21 weather-related variables recorded at 10-minute intervals throughout the year, with
timestamps accurate to the second. The 21 weather-related variables include: atmospheric pressure (p, mbar); temperature
(T, degC); potential temperature (Tpot, K); dew point temperature (Tdew, degC); relative humidity (rh, %); maximum vapor
pressure (VPmax, mbar); actual vapor pressure (VPact, mbar); vapor pressure deficit (VPdef, mbar); specific humidity (sh,
g/kg); water vapor concentration (H2OC, mmol/mol); air density (rho, g/m³); wind speed (wv, m/s); maximum wind speed
(max. wv, m/s); wind direction (wd, deg); rainfall (rain, mm); rain duration (raining, s); shortwave radiation (SWDR, W/m²);
photosynthetically active radiation (PAR, µmol/m²/s); maximum photosynthetically active radiation (max. PAR, µmol/m²/s);
logarithmic temperature (Tlog, degC); and carbon dioxide concentration (CO2, ppm).

Textual descriptions are generated using weather forecasts obtained from publicly available platforms. These descriptions
are created using the GPT-4 model, which generates weather-related descriptions independently of the time series data,
relying solely on the weather forecast information.

Processed Dataset

For the processed dataset, we initially aggregate samples over a 6-hour period and partition the aggregated samples in
chronological order, using data from 2014 to 2020 for training, 2021 for validation, and 2022 for testing, resulting in 10,192
samples for training, 1,460 samples for validation, and 1,448 samples for testing. Each sample is a pair of time series data
and text data. Additionally, we extract attributes from the original textual descriptions to serve as input for the baseline.

For time series data, the shape is represented as (N,K,L), where N is the number of samples, K is the number of variables,
and L is the sequence length. Specifically, for the training, validation, and test sets, we haveNtrain = 10, 192,Nvalid = 1, 460,
and Ntest = 1, 448. The variable count K = 21, corresponding to the original weather variables. The sequence length L is
set to 36, representing 6 hours of data (10-minute intervals, 6 samples per hour, resulting in time series length of 6× 6 = 36).

19

VerbalTS: Generating Time Series from Texts

To standardize the data, z-score normalization is applied to each variable using the mean and standard deviation computed
from the training set.

For text data, each time series sample is associated with three textual descriptions, allowing for variability in phrasing while
maintaining the same semantic meaning. In the processed dataset, all descriptions are retained, and during training, one
description is randomly sampled for each time series instance. The textual data has a shape of N , where N is the number of
samples and we choose 1 textual description from 3 available textual descriptions in each sample. The detailed statistics of
the text length in tokens for the training, validation, and test sets are presented in Tab. 9:

Set Average Tokens Median Tokens Max Tokens Std. Dev.
Training 246.42 244 397 30.04
Validation 262.91 260 423 33.16
Test 258.61 256 388 31.49

Table 9. Summary of token number statistics for Weather dataset.

For attribute data, the shape is represented as (N,A), where N is the number of samples and A = 7 is the number of
attributes. We use ChatGPT 3.5 (OpenAI, 2023) to classify and extract 7 attributes from the original textual descriptions, as
detailed in Tab. 10:

Attribute Values
Season spring, summer, fall, winter
Time of Day early morning, morning, afternoon, evening
Weather Condition sunny, cloudy, rain, foggy, snowy, unknown
Temperature Trend increase, decrease, steady, unknown
Wind Direction S, N, W, E, SW, SE, NW, NE, unknown
Atmospheric Condition low, average, high, unknown
Humidity Level low, average, high, unknown

Table 10. Summary of attribute options for Weather dataset.

A.4. Transformation between structured and unstructured condition

In this section, we summarize the transformation between structured attribute conditions and unstructured textual description
conditions in the three aforementioned types of datasets.

For synthetic datasets (Synth-M, Synth-U), the entire datasets are manually generated. First, primary and secondary attributes
are predefined for multi-semantic characteristics. Then, textual descriptions are generated by substituting attribute values
into the prompt templates. Thus, we generate text from attributes, as described in Appendix A.1.4.

For augmented real-world datasets (ETTm1, Traffic), the original datasets only contain time series data. First, the attributes
are extracted from the original time series using the tsfresh. Subsequently, the textual descriptions are chosen from textual
templates determined by the value of the attributes. Thus, we generate text from attributes, as described in Appendix A.2.1.

For real-world datasets (BlindWays, Weather), the original datasets already contain time series-text pairs. The attributes
are directly generated from the textual descriptions in the original datasets using ChatGPT 3.5 (OpenAI, 2023). Thus, we
generated attributes from text for these datasets.

B. Model Architecture
In this section, we will show the architecture of our method and some details about previously mentioned modules in Sec. 4.

Model overview. The VerbalTS model takes a pair of noisy time series xt ∈ RK×L and textual description c ∈ NM as
inputs, and output the estimated noise ϵt. The noisy time series xt ∈ RK×L is patched into R resolutions and encoded into
embedding Pt ∈ RK×N×D via linear layers. TSA and SSA modules process Pt to compute temporal and spatial attention,
followed by a patch decoder and a multi-resolution mixer, producing the estimated noise ϵt ∈ RK×L, as mentioned in
Sec. 4.1. Textual descriptions c are encoded into embeddings E ∈ RM×D using a text encoder, followed by the multi-focal

20

VerbalTS: Generating Time Series from Texts

text processor that generates a unified semantic representation Z̄ ∈ RS×K×R×D for the complete generation process, as
mentioned in Sec. 4.2. For guiding conditional generation, the text representation Z̄ is integrated with the time series
representation Pt, t ∈ [1, T] via the custom element-wise multiplication and addition, as mentioned in Sec. 4.3.

B.1. TSA and SSA attention mechanisms

As mentioned in Sec. 4.1, we introduce two attention mechanisms, Temporal Self-Attention (TSA) and Spatial Self-
Attention (SSA), modeling the temporal and spatial dimensions of time series data, respectively. In TSA, we employ
masking mechanisms to enforce intra-resolution attention for temporal modeling; While in SSA, the attention operation is
applied across all variables, allowing every variable to interact with others.

Given a batch of noisy time series input xt ∈ RK×L, multi-resolution patching and patch encoding are first performed, as
mentioned in Sec. 4.1. Then, we obtain a multi-resolution embedding Pt ∈ RK×N×D. K denotes the number of variables,
N =

∑R
r=1Nr, where Nr denotes the patch number for resolution r, and D denotes the embedding dimension.

For simplicity and without causing confusion, we temporarily omit the notation t. The time series representation P is passed
to the TSA, which is in the shape of (K ×N ×D), Temporal Transformers compute the self-attention along the temporal
dimensionN , and in parallel along dimensionK. Specifically, the dimensionK is regarded as the batch dimension, ensuring
that each variable k ∈ [1,K] with its time series embedding of length N is independent of others. This allows attention
computation to be performed independently for each variable.

To restrict temporal self-attention within each resolution r ∈ [1, R], we leverage an attention mask M ∈ RN×N that restricts
attention to patches within the same resolution, where R denotes the total number of resolutions. The mask is defined as:

M =

M1 −∞ · · · −∞
−∞ M2 · · · −∞

...
...

. . .
...

−∞ −∞ · · · MR

 ,

where each sub-matrix Mr ∈ RNr×Nr with all elements set to 0 allowing attention within resolution r:

Mr =

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ,

and the residual values are set to negative infinity to mask inter-resolution attention.

The temporal self-attention TSA output is computed as:

PTSA = softmax
(
QK⊤
√
D

+M

)
V,

Where Q,K,V are query, key, and value matrices calculated from P. The output PTSA ∈ RK×N×D is subsequently passed
into the SSA module.

To facilitate the spatial attention computation along the variable dimension K in SSA module, PTSA is permuted into the
shape of (N ×K ×D), as the actual input of the Feature Transformer Layer to compute the self-attention along the spatial
dimension K, and in parallel along dimension N . Similarly, the temporal dimension N is regarded as the batch dimension,
ensuring that each patch index n ∈ [1, N] with its feature embedding of dimension K is independent of others. This allows
attention computation to be performed independently for each patch index, while each variable can have attention with every
other variable effectively. The spatial self-attention output is computed as:

PSSA = softmax
(
QK⊤
√
D

)
V,

Where Q,K,V are query, key, and value matrices calculated from PTSA. The output PSSA ∈ RN×K×D is subsequently
passed into the FFN module.

21

VerbalTS: Generating Time Series from Texts

The complete process for temporal and spatial modeling in the j-th layer of the noise estimator can be expressed as:

P(j) = P(j−1) + FFN(SSA(TSA(P(j−1) + e))),

where j ∈ [1, J], P(0) = P, e ∈ RD is the embedding of the current denoising time step, and FFN represents the
feed-forward network. The final output is P(J) ∈ RK×N×D.

B.2. Patch Decoder and Multi-resolution Mixer

After applying the TSA, SSA and FFN in J residual layers, we obtain the time series representation P(J) ∈ RK×N×D. To
generate multi-resolution noise estimates, two output modules are required to process these embeddings into the final noise
estimates, as mentioned in Sec. 4.1.

First, Patch Decoder divides the multi-resolution representation P(J) into R resolutions and decodes them back into the
original time series space, generating estimated noises {ϵr}Rr=1 for R resolutions, where ϵr ∈ RK×L.

Next, Multi-resolution Mixer combines the estimated noise at different resolutions output from the Patch Decoder, into the
final multi-resolution noise estimate. Specifically, we concatenate the estimated noise from different resolutions {ϵr}Rr=1,
and feed them into a Multi-Layer Perceptron (MLP) to generate the final noise estimate:

ϵ = MLP
(
[ϵ1 ◦ ϵ2, · · · ◦ ϵR]

)
,

where ◦ denotes the concatenation operation, ϵ ∈ RK×L denotes the final estimated noise.

B.3. Custom Element-wise Multiplication And Addition

As mentioned in Sec. 4.3, we propose the custom element-wise multiplication and addition, denoted as ⊙ and ⊕, for
applying the condition. In this section, we will introduce the details of these two operations. Suppose we have two
matrices A ∈ RT×K×N×D and B ∈ RS×K×R×D, where T is the number of the diffusion step, K is the variable number,
N is the length of the patch sequence, S is the stage number, and R is the resolution number. Given each element
At,k,n ∈ R1×1×1×D in A with index t, k, n, we can find the corresponding index s, k, r of element Bs,k,r ∈ R1×1×1×D in
B through the following rules:

s =

⌊
t× S
T

⌋
,

k = k,

r = argmin
r

[(Σr
i=1 Nr) ≥ n] ,

where the first equation projects the given diffusion step t to the corresponding diffusion stage s; the second equation
projects the given variable k to the same variable; and the third equation finds the corresponding resolution r covering the
given multi-resolution patch index n, as described in Sec. 4.1.

Then the custom element-wise multiplication and addition can be expressed as:

(A⊙B)t,k,n = At,k,n ×Bs,k,r,

(A⊕B)t,k,n = At,k,n +Bs,k,r.

With the custom element-wise multiplication and addition, we can apply the multi-semantic text conditions to the corre-
sponding time series components.

C. CTTP Model Details
As mentioned in Sec. 5.1, the Contrastive Text-Time Series Pretraining (CTTP) model is used to calculate the metrics which
is conceptually similar to the CLIP model (Radford et al., 2021). The purpose of the CTTP model is to train the time series
encoder ψts(x) and the text encoder ψtext(c) by learning the alignment between a batch of time series data X ∈ RB×K×L

and its associated textual descriptions C ∈ NB×M , where B is the batch size, paired samples x and c are individual samples

22

VerbalTS: Generating Time Series from Texts

from X and C, respectively. We use PatchTST (Nie et al., 2023) as the time series encoder and a pre-trained text model of
Long-clip (Zhang et al., 2024b) as the text encoder. The output embeddings of the time series encoder and text encoder
are Zx ∈ RB×d and Zc ∈ RB×d, respectively. These embeddings are mapped to a shared embedding space, enabling the
alignment of time series and text data. The model is trained to minimize the cross-entropy loss between Zx and Zc. The
pseudocode for the CTTP model is presented in Algorithm 1.

Algorithm 1 Pseudocode for the CTTP Model
Input:A batch of time series and text pairs (X ∈ RB×K×L,C ∈ NB×M)
Output:Total cross-entropy loss Lcross

1: # Extract embeddings of time series and text (joint embedding space)
2: Zx ← TimeSeriesEncoder(X) ▷Zx ∈ RB×d, time series embeddings.
3: Zc ← TextEncoder(C) ▷Zc ∈ RB×d, text embeddings.

4: # Compute pairwise similarities
5: S← Sim(Zx,Zc) ▷S ∈ RB×B , similarity score matrix.

6: # Compute cross-entropy losses
7: Lx ← CrossEntropy(S, I, axis = 1) ▷Loss for time series alignment.
8: Lc ← CrossEntropy(S, I, axis = 0) ▷Loss for text alignment.

9: # Total cross-entropy loss:
10: Lcross ← Lx+Lc

2 ▷Average loss.

11: Return: Lcross

d denotes the dimension of the joint embedding space, where both time series and text embeddings are projected. I ∈
{0, 1}B×B is the identity matrix.

The CTTP model effectively aligns time series with text using the cross-entropy loss, providing a shared embedding space.
We further use this model to evaluate the quality of the generated time series.

Following contrastive learning practices (Radford et al., 2021), we evaluate the CTTP model using a retrieval-based protocol.
For each time series in a random batch (B=32), we compute the top-1 accuracy of retrieving its paired text from among B
candidates. The results in Tab. 11 demonstrate the CTTP model’s effective semantic alignment ability, providing evidence of
the metrics reliability.

Dataset Synth-M BlindWays Weather Synth-U ETTm1 Traffic

Accuracy 94.68% 15.53% 70.93% 97.55% 50.28% 36.56 %

Table 11. The evaluation results of CTTP models on different datasets. We report the accuracy of retrieving the most similar text
description in 32 candidates given the time series.

D. Evaluation Metrics
D.1. FID

The Frechet Inception Distance (FID) (Heusel et al., 2017) is a widely used metric for evaluating the fidelity of generated
data. FID is based on the Frechet Distance, which measures the similarity between two multivariate Gaussian distributions.
By comparing the feature distributions of the real and generated data, it quantifies how closely the generated data resembles
the real data.

23

VerbalTS: Generating Time Series from Texts

Specifically, the FID is defined as:

FID(X̂,X) = ∥µz − µẑ∥22 + Tr(Σz +Σẑ − 2(ΣzΣẑ)
1
2)

where X = {xi}Ni=1 and X̂ = {x̂i}Ni=1 represent the sets of real and generated data samples with the size of N , respectively.
The terms µz ∈ Rd and Σz ∈ Rd×d are the mean and covariance of the real data embedding distribution {zi}Ni=1, while
µẑ ∈ Rd and Σẑ ∈ Rd×d are the mean and covariance of the generated data embedding distribution {ẑi}Ni=1. d is the
dimensionality of the embedding. The embeddings zi, ẑi ∈ Rd are constructed as:

zi = ψts(xi), ẑi = ψts(x̂i)

where ψts(·) is the time series encoder of the CTTP Model, which processes time series data xi or x̂i to generate latent
embeddings.

For the FID formula, the first term ∥µz − µẑ∥22 measures the squared Euclidean distance between the mean vectors of the
real and generated data distributions, reflecting the difference in their central tendencies. The second term, Tr(Σz +Σẑ −
2(ΣzΣẑ)

1
2), captures the discrepancy in the covariance structures of the two distributions, where Tr denotes the trace of a

matrix. A smaller FID value indicates higher similarity between the real and generated data distribution, suggesting that the
generated data has a higher fidelity.

D.2. J-FTSD

The Joint Frechet Time Series Distance (J-FTSD) (Narasimhan et al., 2024) is a metric specifically designed to evaluate
conditional time series generation models. J-FTSD measures the similarity between the joint distributions of real and
generated data, incorporating both the time series and their associated conditions, which corresponds to the text in our
setting. By calculating the Frechet Distance in the joint embedding space, it provides a comprehensive evaluation of the
fidelity of the generated results, considering both the time series and text.

Specifically, the J-FTSD is defined as:

J-FTSD(D, D̂) = ∥µz − µẑ∥22 + Tr(Σz +Σẑ − 2(ΣzΣẑ)
1
2)

where D = {(xi, ci)}Ni=1 and D̂ = {(x̂i, ci)}Ni=1 represent the joint distributions of real and generated data with size of N ,
respectively. Each sample consists of a time series xi or x̂i and its corresponding condition ci, which is text in the CTTP
model. The terms µz ∈ Rdjoint and Σz ∈ Rdjoint×djoint are the mean and covariance of the joint embedding distribution of the
real data {zi}Ni=1, while µẑ ∈ Rdjoint and Σẑ ∈ Rdjoint×djoint are the mean and covariance of the joint embedding distribution
of the generated data {ẑi}Ni=1. djoint = dts + dtext is the dimensionality of the joint embedding, where dts and dtext are
the dimensionality of the time series embedding and the text embedding respectively. The embeddings zi, ẑi ∈ Rdjoint are
constructed as:

zi = ψts(xi) ◦ ψtext(ci), ẑi = ψts(x̂i) ◦ ψtext(ci)

where ψts(·) is the time series encoder of the CTTP Model, ψts(·) is the text encoder in the CTTP Model, and ◦ denotes con-
catenation. A smaller J-FTSD value indicates higher similarity between the real and generated data, which comprehensively
evaluates the fidelity of conditional time series generation by considering both the temporal and contextual similarity in the
joint embedding space.

D.3. CTTP Score

The CTTP score evaluates the sample-level alignment between the generated time series and the corresponding text
description. It is calculated through the CTTP model, which aligns time series with text descriptions in a shared embedding
space. Details of the CTTP model are provided in Appendix C.

Specifically, the CTTP model is used to encode the time series x to the embedding zx = ψts(x), and encode the text c to the
embedding zc = ψtext(c), where ψts(·) and ψtext(·) are the time series encoder and the text encoder of the CTTP Model,
respectively. The CTTP score is then defined as the dot product between zx and zc, given by:

CTTP(x, c) = zx · zc
where · denotes the dot product. A higher CTTP score indicates better semantic alignment between the time series data and
its corresponding textual description, reflecting the CTTP model’s ability to capture meaningful relationships between these
two modalities.

24

VerbalTS: Generating Time Series from Texts

E. Implement Details
E.1. Main Experiment

For all experiments, we set the number of diffusion steps as T = 50, embedding size for attributes and time series as 64. For
training, we use Adam optimizer to train the model, the initial learning rate is set to be 1e-4 with MultiStepLR scheduler for
all datasets, the batch size is set to be 512 for Synth-M, Synth-U, Weather, ETTm1 and Traffic, 16 for BlindWays. For the
hyperparameters of the multi-focal modeling, (R,S) = (3, 3) for all datasets. All our experiments were conducted three
times running with different random seeds.

E.2. Effect of Multi-focal Text Processing

To evaluate how VERBALTS processes nuanced textual details (Sec. 5.4.3), we analyze the averaged attention values of
each token in the vocabulary. For each text description in the dataset, we first divide it into separate tokens and encode
the tokens to embeddings independently. Then the token embeddings are used to calculate the attention values through
Softmax(QAK⊤

E√
D

) in Eq. (5). For each token in the vocabulary, we calculate the average of its attention values across all
sentences in which it appears. It’s worth noticing that, in Fig. 6, we position semantically relevant tokens in the first half
of the x-axis and place irrelevant tokens in the second half. The attention value distribution across the vocabulary further
demonstrates that VERBALTS learns to focus on semantically relevant tokens.

F. Experimental Results
F.1. More T-SNE Visualization Results

We provide more visualization results comparing the generation based on unstructured and structured data 5.4.1.

0.0 0.2 0.4 0.6 0.8
Dimension 1

0.0

0.2

0.4

0.6

0.8

1.0

Di
m

en
sio

n
2

Ground Truth
VerbalTS

0.0 0.2 0.4 0.6 0.8 1.0
Dimension 1

0.0

0.2

0.4

0.6

0.8

1.0

Di
m

en
sio

n
2

Ground Truth
TimeWeaver

Figure 9. Comparison of generated data distribution between the VERBALTS (left) and TimeWeaver (right) on BlindWays dataset.

0.0 0.2 0.4 0.6 0.8 1.0
Dimension 1

0.0

0.2

0.4

0.6

0.8

1.0

Di
m

en
sio

n
2

Ground Truth
VerbalTS

0.0 0.2 0.4 0.6 0.8 1.0
Dimension 1

0.0

0.2

0.4

0.6

0.8

1.0

Di
m

en
sio

n
2

Ground Truth
TimeWeaver

Figure 10. Comparison of generated data distribution between the VERBALTS (left) and TimeWeaver (right) on ETTm1 dataset.

25

VerbalTS: Generating Time Series from Texts

0.0 0.2 0.4 0.6 0.8 1.0
Dimension 1

0.0

0.2

0.4

0.6

0.8

1.0

Di
m

en
sio

n
2

Ground Truth
VerbalTS

0.0 0.2 0.4 0.6 0.8 1.0
Dimension 1

0.0

0.2

0.4

0.6

0.8

1.0

Di
m

en
sio

n
2

Ground Truth
TimeWeaver

Figure 11. Comparison of generated data distribution between the VERBALTS (left) and TimeWeaver (right) on Traffic dataset.

0.0 0.2 0.4 0.6 0.8 1.0
Dimension 1

0.0

0.2

0.4

0.6

0.8

1.0

Di
m

en
sio

n
2

Ground Truth
VerbalTS

0.0 0.2 0.4 0.6 0.8 1.0
Dimension 1

0.0

0.2

0.4

0.6

0.8

1.0

Di
m

en
sio

n
2

Ground Truth
TimeWeaver

Figure 12. Comparison of generated data distribution between the VERBALTS (left) and TimeWeaver (right) on Synth-U dataset.

F.2. Generation Case Study

In this section, we provide some visualization results (Sec. 5.2) to compare the generation ability of our method with the
baselines. As shown in Fig. 13, VERBALTS better aligns with the semantic information, capturing nuanced details more
accurately.

F.3. Intervention Case Study

In this section, we present additional visualization results from the intervention experiment (Sec. 5.4.2), which compares the
effects of masking semantically relevant tokens versus irrelevant ones. The results demonstrate that VERBALTS effectively
focuses on semantically relevant information in the raw text to achieve fine-grained control.

F.4. Editing Case Study

In this section, we provide more results of the editing experiment (Sec. 5.4.5) which compares the performance of VERBALTS
with TEdit.

26

VerbalTS: Generating Time Series from Texts

Figure 13. The qualitative comparison between the VERBALTS and baselines. From left to right column, there are TimeVQVAE,
DiffTime, TimeWeaver, TEdit, and VerbalTS.

27

VerbalTS: Generating Time Series from Texts

0 50 100
{}

1

0

1

Sa
m

pl
e

0 CTTP:48.14

0 50 100
{is, to, The}

2

0

The season cycle is 1. The high frequency component in the time
series has the period equal to 64. The time series has a log and down

trend. The beginning part has double peaks.

CTTP:46.94

0 50 100
{4, double, peaks}

1
0
1 CTTP:34.78

0 50 100
{}

2

1

Sa
m

pl
e

1

CTTP:49.89

0 50 100
{the, is, of}

1

0

1

The time series has a linear and up trend. The high frequency component
in the time series has the period equal to 32. There is a season of 1.

CTTP:50.06

0 50 100
{linear, up, 1}

0

1

CTTP:34.60

0 50 100
{}

2

0

Sa
m

pl
e

2

CTTP:55.35

0 50 100
{is, The, and}

0

1

2

The season cycle is 1. The time series has a high frequency signal
of 16 frequencies. The time series has a linear and up trend. A sag

at beginning area.The end part has double peaks.

CTTP:49.35

0 50 100
{linear, up, end}

1

0

1

CTTP:29.08

0 50 100
{}

1

0

Sa
m

pl
e

3

CTTP:49.64

0 50 100
{The, has, is}

1
0
1

There is a sag at beginning. The time series has
a exp and down trend. The season cycle is 2.

CTTP:49.67

0 50 100
{sag, beginning, exp}

1

0

CTTP:27.53

0 50 100
{}

2

1

0

Sa
m

pl
e

4

CTTP:50.90

0 50 100
{at, area, of}

1

0

1

Double peaks at middle area.Double peaks at end area. The season cycle is 0.
The trend is log and down. The time series has a high frequency signal of 64 frequencies.

CTTP:47.36

0 50 100
{double, end, log}

1
0
1

CTTP:36.30

Figure 14. Comparison of generated data before masking (left column), after masking irrelevant tokens (middle column) and relevant
tokens (right column). {Masked tokens} are shown below.

28

VerbalTS: Generating Time Series from Texts

CTTP:39.08 CTTP:46.89

Sample 1: There is 1 season cycle. The trend
is (log exp) and down. There is a single peak
at beginning. (A single peak Double peaks)
at middle area. There is a high frequency
component with a period of 64.

CTTP:44.66 CTTP:51.81 Sample 2: A sag at (middle beginning) area.
There is a single peak at end. There is a high
frequency component with a period of 16. There
is a season of 4. The time series has a log and
(up down) trend.

CTTP:27.76 CTTP:49.65
Sample 3: The trend is quad and up. A sag at
(beginning end) area. There is (0 2) season
cycle.

CTTP:40.97

CTTP:52.17 Sample 4: The time series has a quad and down
trend. The high frequency component in the
time series has the period equal to 16. There
is a season of (4 0). The beginning part has
a (sag single peak).

Before editing Edited through TEdit

CTTP:24.23

Edited through VerbalTS

CTTP:50.08

Sample 5: The trend is (log linear) and up.
The time series has a high frequency signal
of 64 frequencies. There is a sag at beginning.
(Double peaks A sag) at end area. The season
cycle is 0.

Figure 15. Illustration of editing task. Column 1: the raw time series before editing. Column 2: result edited by TEdit (Jing et al., 2024a);
Column 3: result edited by our VERBALTS; Column 4: the condition prompts for editing, with (source → target) properties.

29

