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ABSTRACT

We consider the problem of sampling discrete field configurations ϕ from the
Boltzmann distribution [dϕ]Z−1

1 e−S1[ϕ], where S1 is the lattice-discretization
of the continuous Euclidean action S1 of some quantum field theory. Since
such densities arise as the approximation of the underlying functional density
[Dϕ(x)]Z−1

1 e−S1[ϕ(x)], we frame the task as an instance of operator learning. In
particular, we propose to approximate a time-dependent operator Vt whose time
integral provides a mapping between the functional distributions of the free the-
ory [Dϕ(x)]Z−1

0 e−S0[ϕ(x)] and of the target theory [Dϕ(x)]Z−1
1 e−S1[ϕ(x)]. Once

a particular lattice is chosen, the operator Vt can be discretized to a finite dimen-
sional, time-dependent vector field Vt which in turn induces a continuous nor-
malizing flow between finite dimensional distributions over the chosen lattice.
This flow can then be trained to be a diffeormorphism between the discretized
free and target theories [dϕ]Z−1

0 e−S0[ϕ], [dϕ]Z−1
1 e−S1[ϕ]. We run experiments on

the 2-dimensional ϕ4-theory to explore to what extent such operator-based flow
architectures generalize to lattice sizes they were not trained on and show that pre-
training on smaller lattices can lead to speedup over training directly on the target
lattice size.

1 INTRODUCTION

Consider S as an action characterizing a quantum field theory, with S representing its discretization
to a lattice. Albergo et al. (2019) suggest a method for sampling from the lattice quantum field
theory described by S. This involves a normalizing flow parameterizing a density function qθ of
discrete fields over the lattice, and optimizing the parameters θ until qθ closely approximates the
probability density e−S

Z , where Z is the normalizing constant of e−S .

Operator learning promotes the viewpoint that the lattice/mesh is merely a computational tool, and
model should capture the underlying continuous physics. Kovachki et al. (2021) term this property
of models discretization invariance. 1 In this work, we apply the same idea to the task of sampling
from lattice quantum field theories, motivated by the fact that lattice field theories also emerge as
the discretization of continuous field theories.

Suppose now that the field theory is defined on some domain D. Once a lattice, as a dis-
cretization of D, is chosen, one can construct a continuous normalizing flow Chen et al. (2018)
as a time-dependent vector field Vt that parametrizes the direction along which probability
mass moves. Generalizing this idea, we propose to parametrize a time-dependent operator Vt

from the space of functions on D to itself that defines the direction in which functional prob-
ability mass moves. Such an operator can then be used to map the functional distributions
[Dϕ(x)]Z−1

0 e−S0[ϕ(x)], [Dϕ(x)]Z−1
1 e−S1[ϕ(x)] to one another. Computationally the operator Vt can

only be accessed by a choice of a lattice which induces a vector field Vt as the discretization of Vt.

1Discretization invariance means that the neural operator evaluated on finer and finer discretizations ap-
proximates the continuous operator. Thus, strictly speaking, it is not a requirement of invariance rather that of
convergence.
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We then train this vector field to be a diffeomorphism between the discretized free and target theo-
ries, [dϕ]Z−1

0 e−S0[ϕ] and [dϕ]Z−1
1 e−S1[ϕ]. The upside of using a operator-based flow will be that a

single model can be used to operate on multiple discretizations of the same underlying continuous
system. Figure 1 provides a schematic overview of the objects and their relation in this paragraph.

[Dϕ(x)]Z−1
0 e−S0[ϕ(x)] [Dϕ(x)]Z−1

1 e−S1[ϕ(x)]

[dϕ]Z−1
0 e−S0[ϕ] [dϕ]Z−1

1 e−S1[ϕ]

Vt

approximate approximate

Vt

discretize

Figure 1: Schematic overview of the probability distributions of interest. The top row shows the
functional distributions of the free theory and the target theory connected by the time dependent
operator Vt. Descending to the bottom row means approximating all the objects of the top row on
a lattice. In particular, in the bottom row all objects are finite dimensional, well-defined and can be
numerically worked with.

The structure of the paper is as follows:

• Section §2 introduces the relevant background on the ϕ4 quantum field theory.

• In Section §3 we describe an operator-based normalizing flow architecture that we used in
our experiments.

• Section §4 documents our experiment on the ϕ4 theory.

• Section §A contains the relevant background on continuous normalizing flows, Boltzmann
densities and neural operators.

2 THE ϕ4 (LATTICE) QUANTUM FIELD THEORY2

Let us now consider the Euclidean action on real valued scalar fields ϕ(x) with periodic bound-
ary conditions on the D-dimensional hypercube of edge length L, ϕ : (R/LZ)D → R, for some
constants m2 and g

S[ϕ] =
∫
(R/LZ)D

dDx
[
(∇ϕ)2 +m2ϕ2 + gϕ4

]
(1)

where we dropped the argument x of the field ϕ(x) for notational convenience. To estimate the
expectation value of an observable O, we need to average over all field configurations that satisfy
the boundary conditions, with each configuration weighted by the exponential of the negative action

⟨O⟩ =
∫
DϕO[ϕ]e−S[ϕ]∫
Dϕ e−S[ϕ]

(2)

The action S corresponds to the energy function f of a Boltzmann density and the denominator
Z =

∫
Dϕ e−S[ϕ] to the normalizing constant as introduced in Appendix §A.1.

Equations (13) and (14) describe an infinite dimensional system. To tackle it numerically, one first
needs to discretize it to a lattice. This comes at the cost of losing the information contained in
the high-frequency components as the highest possible frequency of a periodic function on a lattice
with edge length L with N nodes is 2πN

L . The hope is that one can do the same on larger and larger
lattices, and as the lattice approaches the continuum limit, the error due to discretization converges
to zero.

2We recommend the book (Thijssen, 2007, Chapter 15) for further details on lattice field theories.
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DISCRETE REPRESENTATIONS ON LATTICES

To discretise the action, we consider fields living on the points located at
{

0
N , L

N , ..., (N−1)L
N

}d

forming a periodic lattice with cardinality ND and lattice spacing a = L/N . We then turn integrals
into sums

∫
(R/LZ)D dDx → aD

∑
x and differentials into differences between nearest neighbors

∂iϕ → 1
aϕ(x+µi)−ϕ(x), where µi is the generator of lattice along the i−th coordinate axis. After

these substitutions we end up with the following discretised action on the lattice,

S[ϕ] = aD

{
1

a2

∑
x,µ

(ϕx+µ − ϕx)
2 +

∑
x

m2ϕ2
x + gϕ4

x

}
(3)

where x runs over the lattice sites and µ over the generators of the lattice.

3 FLOWS PARAMETRISED BY NEURAL OPERATORS

Let now ϕ ∈ RN×....×N be a discretized scalar field on a lattice. The architecture then consists of
the following sequence of steps, where the subscript θ denotes trainable parameters,

1. Use a per-node neural network fθ to embed the field values, ϕemb = fθ(ϕ) ∈ Rc×N×....×N .
2. Use a neural network to parametrize c-many continous spherically symmetric kernels

Kθ(r). Let then K̃θ be the evaluation of the continous kernels on the lattice.
3. Mask out the origin of the discrete kernel, i.e. set K̃θ[:, 0] = 0.
4. Perform a the channel-wise convolution ϕemb ⋆ K̃θ and denote the result by C ∈

Rc×N×....×N . Because of the previous step, Ci is independent of ϕi, and we will call
it the conditioner (Chen & Duvenaud (2019)).

5. Apply a per-node neural network τθ to the concatenation (C, ϕemb) with output Y =
τθ(C, ϕemb) ∈ RT×N×....×N .

6. Contract the first dimension of Y with a vector of length T that only depends on time.
7. Finally, denoting all the above steps as i, we set the output of the model to be V (ϕ, t) =

1
2 ∗ (i(ϕ, t)− i(−ϕ, t)). This enforces the Z2 symmetry of the system.

To compute the divergence of the architecture one needs the Jacobians of the per-point operations
fθ and τθ, Kθ does not have to be differentiated through.

THE FREE THEORY AS AN INITIAL DENSITY

The normalizing flow architecture described in Section §A.1 requires an initial density from which
samples can easily be drawn. Instead of sampling from a standard gaussian at every node, we choose
a more physical initial density by setting g = 0 in the action (17). This results in the free theory with
a gaussian Boltzmann density that becomes diagonal in momentum space. Position and momentum
space are related by a discrete Fourier transform

ϕx =
1√
ND

∑
p

ϕ̃pe
i2π⟨p,x⟩ ϕ̃p =

1√
ND

∑
x

ϕxe
−i2π⟨p,x⟩ (4)

where p runs over
{
− ⌊N/2⌋

L , ...., 0
L , ...,

⌈(N−1)/2⌉
L

}D

and the prefactor 1√
ND

makes the map

{ϕx} ↔ {ϕ̃p} unitary. The covariance matrix of the free theory is diagonalized in the momen-
tum basis 1√

ND
e2πi⟨x,p⟩ with eigenvalues

S

[
1√
ND

e2πi⟨x,p⟩
]
= aD

(
m2 +

1

a2

∑
µ

2− 2 cos(2πpµa)

)
(5)

To constrain the sampling to real valued fields, we sample p from the hermitian symmetric subspace
of real dimension ND of the Fourier-space of complex dimension ND.
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4 EXPERIMENTS

One of the core dilemmas when choosing the lattice size lies in balancing the cost efficiency of a
smaller lattice against the better approximation of the underlying continuous system of a larger one.
Ideally, one would train on a small lattice and evaluate on a large one, but it is unreasonable to expect
this approach to work well as the smaller lattices cannot capture the higher frequency components of
the system. We thus explore the next best strategy: extensive pretraining on a small lattice followed
by transferring the model to a larger lattice size and fine-tuning it with a reduced number of steps.

4.1 MULTI-LATTICE SAMPLING IN D = 1 DIMENSION

We now work in D = 1 dimensions. Strictly speaking, a one dimensional lattice does not correspond
to a quantum field theory, rather it describes the trajectory of a quantum mechanical particle in a
potential. Nonetheless, it’s the simplest setup in which we can experiment and serves as a good
starting point. We also fix L = 4,m2 = −4, g = 1 and train a single model for 5000 steps with
mesh size uniformly sampled at each training step from N = L/a ∈ {4, 8, 16, ..., 128}. We then
evaluate performance on lattices of size N = L/a up to 512 by sampling from the trained model to
calculate the effective sample size

ESS =

(
1
N

∑
i

wi

)2/(
1
N

∑
i

w2
i

)
(6)

where wi is the importance weight p(ϕi)/qθ(ϕi). We also estimate the two-point correlation func-
tion

G(x, y)[ϕ] := ϕ(x)ϕ(y). (7)
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Figure 2: Experiment 4.1. (Left) ESS computed from 16384 samples at different lattice sizes. The
blue crosses correspond to lattice sizes that the model was trained on, while orange dots denote
lattice sizes unseen by the network during training. (Right) The two-point correlation function
G(x, y) computed from 16384 samples on different lattice sizes the model was trained on. Because
of the symmetries of the task the correlation function only depends on the distance r = |x− y|, thus
the function G(r) is plotted.

4.2 PRETRAINING ON SMALLER LATTICES

In this experiment we consider the target D = 2, L = 12,m2 = −4, g = 5.276, N = 64. Instead
of training directly on the N = 64 lattice, we pretrain on a sequence of smaller lattices as they are
significantly cheaper to work on. We start training on a 12 × 12 lattice for 2000 steps, after which
we train on lattices of size 162, 202, 242, 282, 322, 362, 402, 442, 482, 522, 562, 602 for 250 training
steps each. Finally, we train on the target size 64 × 64 for 1000 steps. As a baseline, we also train
the same architecture only on the target size for the same total number of steps (6000).

While the performance, as measured by the effective sample size on target lattice, is comparable
after training (Table 1), the training procedure that ”trained through” the smaller lattices was ∼ 2.4-
times quicker to train(Figure 3). Figure 4 shows the estimated correlation function at different lattice
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sizes computed from model checkpoints saved right after taking the last training step on the given
lattice size.

0 1000 2000 3000 4000 5000 6000
training step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
S
S

6
4
×

6
4

0 1000 2000 3000 4000 5000 6000
training step

0

2

4

6

8

10

12

co
st

[s
/
st

ep
]

0 5 10 15 20
training time [h]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
S
S

6
4
×

6
4

Figure 3: Experiment 4.2. ESS estimated during training on 128 samples plotted against the number
of training steps (left) and training time (right). Time required to take a single step (center). All plots
contain two curves, one for the model that is trained on the sequence of increasing lattice sizes (blue)
and one that is only trained on the 64× 64 lattice (orange).
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Figure 4: Experiment 4.2. The two-point cor-
relation function G(x, y) computed from 16384
samples with (right) and without (left) log-scaled
y-axis. These curves are computed from model
checkpoints saved right after taking the last
training step on the given lattice size. Because of
the symmetries of the task the correlation func-
tion only depends on the distance r = |x − y|,
thus the function G(r) is plotted.

Table 1: Experiment 4.2. ESS values on 16384 samples from the trained model. Since training on
larger lattices degrades performance on smaller ones (Figure 6), the model is evaluated directly after
the last training step has been performed on a given lattice size. The final column marked with ♭
denotes the baseline model.

N ×N 16× 16 24× 24 32× 32 48× 48 64× 64 64× 64♭

ESS 0.8937 0.8628 0.8771 0.7736 0.7824 0.7722

5 CONCLUSION

In this work we explored the idea of using operator-based normalizing flows for sampling from the
ϕ4 quantum field theory. Experiment 4.1 showed that models trained on a collection of lattices do
not generalize zero-shot to lattice sizes much larger than those of the training set. They do generalize
with a reasonable performance to lattice sizes slightly larger than the ones it has been trained on.
Making use of this observation, in experiment 4.2 we show that training a model on a sequence of
meshes of increasing size leads to faster training compared to training directly on the target lattice
size.
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Racanière, Danilo Jimenez Rezende, and Phiala E. Shanahan. Introduction to normalizing flows
for lattice field theory, 2021a. URL https://arxiv.org/abs/2101.08176.
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A BACKGROUND

A.1 CONTINUOUS NORMALIZING FLOWS

A continuous normalizing flow Chen et al. (2018) is a density estimator that operates by pushing
forward a simple, usually Gaussian, initial density q0 along a parametric, time-dependent vector
field Vθ : [0, 1]× Rn → Rn. Explicitly, the pushforward density qθ is given by

log qθ(x1) = log q0(x0) +

∫ 0

1

dt∇ · Vθ(t, xt) (8)

where ∇ is the divergence operator in the spatial coordinates and xt is the integral curve of Vθ that
passes through x1 at t = 1. In this work all normalizing flows will be continuous normalizing flows,
and we will refer to them as normalizing flows or even just flows for brevity.

Boltzmann distributions The Boltzmann distribution of an energy function3 f : Rn → R is a
probability distribution with density function

p(x) =
1

Z
e−f(x) (9)

where Z =
∫
dx e−f(x) is the normalizing constant ensuring that the density function integrates to

1. Boltzmann distributions appear in the context of the canonical ensemble, a statistical ensemble
that describes a system in thermal equilibrium with an external heat reservoir. Such Boltzmann
distributions describe the molecular systems in thermal equilibrium as well as Wick-rotated quantum
field theories. Learning to sample from Boltzmann distributions using only the energy function (i.e.
without true samples) can be done by training a normalizing flowAlbergo et al. (2019; 2021a; 2022);
Abbott et al. (2022); Albergo et al. (2021b); Boyda et al. (2021); Noé et al. (2018); Köhler et al.
(2020); Nicoli et al. (2020; 2021; 2023); de Haan et al. (2021); Gerdes et al. (2022); Máté & Fleuret
(2023), usually, to minimize the reverse KL divergence

KL[qθ, p] = Ex∼qθ [log qθ(x)− log p(x)] (10)
= Ex∼qθ [log qθ(x) + f(x)] + Z (11)

where qθ is the density realized by the normalizing flow (8). Once a density qθ, approximating
p = Z−1e−f , is learnt, one can use importance sampling to correct for small inaccuracies of qθ
when estimating the expected value of an observable O

⟨O⟩ := Ex∼p [O(x)] = Ex∼qθ

[
O(x)

p(x)

qθ(x)

]
(12)

3Assuming that exp(−f) is integrable.
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A.2 THE ϕ4 (LATTICE) QUANTUM FIELD THEORY4

Let us now consider the Euclidean action on real valued scalar fields ϕ(x) with periodic bound-
ary conditions on the D-dimensional hypercube of edge length L, ϕ : (R/LZ)D → R, for some
constants m2 and g

S[ϕ] =
∫
(R/LZ)D

dDx
[
(∇ϕ)2 +m2ϕ2 + gϕ4

]
(13)

where we dropped the argument x of the field ϕ(x) for notational convenience. To estimate the
expectation value of an observable O, we need to average over all field configurations that satisfy
the boundary conditions, with each configuration weighted by the exponential of the negative action

⟨O⟩ =
∫
DϕO[ϕ]e−S[ϕ]∫
Dϕ e−S[ϕ]

(14)

The action S corresponds to the energy function f of a Boltzmann density and the denominator
Z =

∫
Dϕ e−S[ϕ] to the normalizing constant as introduced in Section §A.1.

Equations (13) and (14) describe an infinite dimensional system. To tackle it numerically, one first
needs to discretize it to a lattice. This comes at the cost of losing the information contained in
the high-frequency components as the highest possible frequency of a periodic function on a lattice
with edge length L with N nodes is 2πN

L . The hope is that one can do the same on larger and larger
lattices, and as the lattice approaches the continuum limit, the error due to discretization converges
to zero.

DISCRETE REPRESENTATIONS ON LATTICES

To discretise the action, we consider fields living on the points located at
{

0
N , L

N , ..., (N−1)L
N

}d

forming a periodic lattice with cardinality ND and lattice spacing a = L/N . We then turn integrals
into sums and differentials into differences between nearest neighbors

∂iϕ → 1

a
ϕ(x+ µi)− ϕ(x) (15)∫

(R/LZ)D
dDx → aD

∑
x

(16)

where µi denotes the generator of the lattice along the i−th coordinate axis. After these substitutions
we end up with the following discretised action on the lattice,

S[ϕ] = aD

{
1

a2

∑
x,µ

(ϕx+µ − ϕx)
2 +

∑
x

m2ϕ2
x + gϕ4

x

}
(17)

where x runs over the lattice sites and µ over the generators of the lattice. It is customary to absorb
all the occurrences of a in the above formula by rescaling ϕ

ϕ → aD/2−1ϕ, m → am, g → a4−Dg (18)

This results in an alternative form of the action

S[ϕ] =
∑
x,µ

(ϕx+µ − ϕx)
2 +

∑
x

m2ϕ2
x + gϕ4

x (19)

While the action (19) has the advantage of not being dependent on the lattice spacing a, we will
continue working with (17) keeping the relation between different lattice sizes and to the underlying
continuous setting explicit.

4We recommend the book (Thijssen, 2007, Chapter 15) for further details on lattice field theories.
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A.3 NEURAL OPERATORS

Neural Operators Kovachki et al. (2021) are trainable function-to-function mappings. In particular,
both their domains and codomains are infinite dimensional function spaces. In practice, one works
with neural operators by choosing a mesh/lattice X ⊂ Rn, representing functions by their evalua-
tions on X and let the neural operator operate on this collection of evaluations. By design, neural
operators can be evaluated on lattices of different size. Importantly, if a neural operator is applied to
a sequence of meshes Xi, approaching the continuum limit Xi → Rn, it converges to the underlying
continuous operator. The main use case of neural operators is to approximate the solution of partial
differential equations, i.e. learn the mapping from an initial condition to the time evolved state after
some time ∆t (Figure 5), but have also been applied for multi-resolution generative modelling Voleti
et al. (2021); Hagemann et al. (2023). We will use them for parametrizing a flow, i.e. a vector field
Vt connecting the free theory (base density) to the ϕ4-theory (target density) in a way that can be
evaluated at any mesh.

N=6

u(0, x)

u(∆t, x)

N=12

u(0, x)

u(∆t, x)

N=24

u(0, x)

u(∆t, x)

N=48

u(0, x)

u(∆t, x)

N=96

u(0, x)

u(∆t, x)

Figure 5: An operator that maps an initial condition u(0, x) (top row) to its time-evolved state
u(∆t, x) (bottom row). The time evolution is given by the heat equation ∆u = ∂tu. The blue dots
denote the evaluation of u(0, x) on a discrete mesh, while the orange dots denote the output of the
operator (a convolution in this case) evaluated on that same mesh. As the mesh gets denser, the
operator becomes a better approximation of the map between the continuous u(0, x) (blue curve)
and u(∆t, x) (orange curve).
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Figure 6: Experiment 4.2. ESS values computed during training from 128 samples on all the lattices
the sees during training. The two thin vertical lines denote the interval during which the model is
trained on the given lattice size. The orange curve corresponds to the baseline model only trained
on the 64× 64 lattice.

10



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

10 2 100 102

r2

15

10

5

0

5

10

15

K
i(
r

2
)

N= 12

10 2 100 102

r2

20
15
10
5
0
5

10
15
20

K
i(
r

2
)

N= 16

10 2 100 102

r2

15

10

5

0

5

10

15

K
i(
r

2
)

N= 20

10 2 100 102

r2

15

10

5

0

5

10

K
i(
r

2
)

N= 24

10 2 100 102

r2

10

5

0

5

10

K
i(
r

2
)

N= 28

10 2 100 102

r2

10

5

0

5

10

K
i(
r

2
)

N= 32

10 2 100 102

r2

10

5

0

5

10

K
i(
r

2
)

N= 36

10 2 100 102

r2

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

K
i(
r

2
)

N= 40

10 2 100 102

r2

7.5

5.0

2.5

0.0

2.5

5.0

7.5

K
i(
r

2
)

N= 44

10 2 100 102

r2

7.5

5.0

2.5

0.0

2.5

5.0

7.5

K
i(
r

2
)

N= 48

10 2 100 102

r2

8
6
4
2
0
2
4
6
8

K
i(
r

2
)

N= 56

10 2 100 102

r2

8

6

4

2

0

2

4

6

K
i(
r

2
)

N= 64

Figure 7: Experiment 4.2. Kernels (Section §3) learnt by the model on various lattice sizes.
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