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ABSTRACT

Large Language Models (LLMs) are widely deployed in real-world applications,
yet little is known about their training dynamics at the token level. Evaluation
typically relies on aggregated training loss, measured at the batch level, which over-
looks subtle per-token biases arising from (i) varying token-level dynamics and (ii)
structural biases introduced by hyperparameters. While weight decay is commonly
used to stabilize training, we reveal that it silently introduces performance biases
detectable only at the token level. In fact, we empirically show across different
dataset sizes, model architectures and sizes ranging from 270M to 3B parameters
that as weight decay increases, low-frequency tokens are disproportionately depre-
ciated. This is particularly concerning, as these neglected low-frequency tokens
represent the vast majority of the token distribution in most languages, calling for
novel regularization techniques that ensure fairness across all available tokens.
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(a) Apple OpenELM 270M on IMDB (b) Qwen Qwen2 0.5B on IMDB

0.0 0.1 0.2 0.4 0.6 0.8 1.0 1.25 1.5 1.75 2.0
Weight Decay 

10 2

10 1

100

101

Pe
r-T

ok
en

 C
ro

ss
 E

nt
ro

py

Frequency Bin
Low
High

0.0 0.1 0.2 0.4 0.6 0.8 1.0 1.25 1.5 1.75 2.0
Weight Decay 

10 2

10 1

100

101

Pe
r-T

ok
en

 C
ro

ss
 E

nt
ro

py

Frequency Bin
Low
High

(c) Apple OpenELM 3B on IMDB-xl (d) Qwen Qwen2 1.5B on IMDB-xl

Figure 1: We compare the per-token cross-entropy loss for low (blue) and high (orange) frequency
tokens when training different LLM architectures and sizes with varying weight decay λ ∈ (0.0, 2.0)
on the IMDB dataset using a BPE tokenizer with a vocabulary size of 32005. As weigth decay
increases, the model disproportionately disregards low-frequency tokens, which make up the vast
majority of tokens in language datasets. Low-frequency tokens suffer from higher cross-entropy loss,
while high-frequency tokens remain largely unaffected. Critically, the degradation of low-frequency
token performance happens silently, as the average training loss, monitored by practitioners, remains
largely unchanged across different levels of weight decay. An example of prompt with segmentation
of which tokens are low and high frequency is provided in Figure 2.
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i watched this film for 45 minutes and counted 9 mullets . that ’s a mullet every 5 minutes .
seriously though , this film is living proof that formula works . if it ain ’t broke , it don ’t need
fix in . a streetwise - yet - v ulner able heroine , a hardened ex - cop martial arts master with a
heart of gold and a serial killer with ’ iss ues ’. pure magic . </s>

Figure 2: Depiction of a training set prompt from IMDB with characters colored by token frequency:
low-frequency (blue) and high-frequency (orange). The coloring threshold is 1026 (P99). Tokens
appearing fewer than 1026 times in the dataset are blue, otherwise they are colored in orange.

1 INTRODUCTION

A major challenge in machine learning is designing algorithms that generalize well from training
data. One of the classic methods for promoting generalization (Krogh & Hertz, 1991; Shalev-
Shwartz & Ben-David, 2014) is the use of regularization techniques, such as L2 regularization, to
limit model complexity. Empirical evidence from classification problems with balanced classes
shows that increasing weight decay, while effectively fitting the data and minimizing training loss,
generally improves performance on unseen data. However, a recent study by Balestriero et al. (2024)
demonstrates that when training classifiers like ResNet-50 (He et al., 2016) on computer vision
tasks such as ImageNet classification (Russakovsky et al., 2015), higher weight decay leads to
undesired behavior, causing the model to neglect certain classes. This class-dependent effect of
regularization is further amplified by imbalanced class distributions, as increasing weight decay does
not result in a uniform performance decline across all classes. Instead, the model underperforms on
low-probability classes while performing significantly better on more prevalent ones.

This class-dependent behavior is not unique to vision tasks. In Natural Language Processing (NLP),
a shift from traditional classification settings has led to a lack of attention toward token frequency
and the per-token effects of regularization. In modern large language models (LLMs) trained on text
data (Brown et al., 2020; Radford et al., 2018; OpenAI et al., 2024; Anthropic, 2023; Ortiz, 2023), the
task of predicting the next token from a large vocabulary also results in significant token frequency
imbalances. For instance, as shown in Figures 3, in the IMDB dataset (Maas et al., 2011), 95% of the
total tokens in the data are captured by the top 0.01% of tokens. This indicates that the vast majority
of tokens appear infrequently, while a small set of tokens dominates, creating a substantial imbalance.
Additionally, the proportion of low-frequency tokens tends to increase as the vocabulary expands.
This raises a critical question:

Can regularization techniques, such as weight decay, typically used to promote generalization,
ensure fairness across tokens when applied to LLMs trained on imbalanced token distributions?

Contributions. In order to study that question, we investigate the influence of weight decay on the
token-level prediction performance of large language models, uncovering critical insights that are
often overlooked when relying solely on aggregated performance metrics. Our study provides several
key contributions:

• The next-token classification task suffers from severe class imbalance. Figures 3 demonstrate
that the class distribution follows a heavy-tailed pattern, with the vast majority of classes being
low-frequency and only a small portion being high-frequency.

• We trained the Apple OpenELM models with 270M and 3B parameters, as well as Qwen2 models
with 0.5B and 1.5B parameters, on both the IMDB dataset and its extended version IMDB-xl,
using varying levels of weight decay that yielded acceptable training losses. As observed in
Figure 1, the models’ performance on low-frequency tokens significantly degrades as weight decay
increases.

• We observe that higher-frequency tokens are consistently learned faster than low-frequency tokens
across multiple random seeds, with the gap in learning speed widening as weight decay increases,
suggesting that regularization may disproportionately disadvantage rare tokens.

These findings expose a critical dilemma. Practitioners often use aggressive weight decay to train
LLMs—intended to stabilize training—but unintentionally and silently degrade the model’s perfor-
mance on low-frequency tokens, which make up the majority of the data. While conventional wisdom
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advocates for increased weight decay to promote generalization, in language modeling, this strategy
results in the unintended consequence of “neglecting” low-frequency tokens. This introduces harmful
biases, favoring more common tokens, often reflecting the language patterns of majority groups. Our
results emphasize the need for regularization techniques that explicitly address token imbalances.

2 RELATED WORK

Weight Decay and Generalization. L2 regularization was initially introduced to stabilize solutions
to ill-posed problems (Tikhonov, 1943) and later adopted to enhance the generalization of neural
networks (Krogh & Hertz, 1991). While many studies have linked low-norm solutions to improved
generalization (Neyshabur et al., 2015; Golowich et al., 2020; Bartlett & Mendelson, 2001; Bartlett
et al., 2017; Arora et al., 2018; Galanti et al., 2023c; Wei & Ma, 2019; Li et al., 2018), the pre-
cise relationship between L2 regularization and generalization remains a topic of debate. Several
works (Zhang et al., 2017; Jiang* et al., 2020) argue that norm-based measures alone are insufficient
to fully explain generalization in deep learning. For example, Zhang et al. (2017) found that although
weight decay can improve test accuracy, the overall effect is typically modest—around 1− 2% on
ImageNet. Nonetheless, other studies have demonstrated that weight decay helps alleviate (Nakki-
ran et al., 2021; Pezeshki et al., 2022) the double descent phenomenon (Belkin et al., 2019; Nakkiran
et al., 2020) and is critical for achieving Grokking in mathematical reasoning tasks (Power et al.,
2022; Varma et al., 2023).

Weight Decay, Optimization, and Inductive Biases. Despite its modest impact on generalization,
weight decay is widely employed in many state-of-the-art language models, including GPT-3 (Brown
et al., 2020), Chinchilla (Hoffmann et al., 2024), and LLaMA (Touvron et al., 2023a;b; Dubey
et al., 2024). These models are typically trained using a “one-pass” stochastic gradient descent (SGD)
regime, where the optimizer directly minimizes the population error.

As shown in (Andriushchenko et al., 2023), the training and validation losses remain closely aligned
across different levels of weight decay. While weight decay’s effect on generalization is limited, it
plays a crucial role in improving optimization. For example, both the Chinchilla paper (Hoffmann
et al., 2024) (see Figure A7) and (Andriushchenko et al., 2023) (see Figure 4) demonstrate that weight
decay in AdamW leads to lower training loss compared to Adam, particularly toward the end of
training. Other studies (van Laarhoven, 2017; Zhang et al., 2019; Li & Arora, 2019; Li et al., 2020;
Lewkowycz & Gur-Ari, 2020) have shown that weight decay enhances training stability by controlling
the “effective learning rate” in scale-invariant neural networks. Additionally, other works (Galanti
et al., 2023b; Rangamani & Banburski-Fahey, 2022; Pan & Cao, 2024; Beneventano et al., 2024)
reveal that weight decay contributes to various inductive biases, such as rank minimization and neural
collapse, which are beneficial for network compression (Denton et al., 2014; Alvarez & Salzmann,
2017; Tukan et al., 2021; Yu et al., 2017) and downstream performance (Galanti et al., 2022; 2023a).

Training with Imbalanced Classes and Minority Collapse. Training with imbalanced classes
presents a significant challenge in machine learning. Empirical studies consistently show that the
weight vectors associated with the more frequent classes tend to have larger norms, which pushes
the decision boundary toward the minority classes. As a result, the feature space allocated to less
frequent classes shrinks, leading to a notable drop in performance (Kim & Kim, 2020; Kang et al.,
2019; Cao et al., 2019; Ye et al., 2020; Liu et al., 2023; Kang et al., 2020; Balestriero et al., 2022).
For instance, (Balestriero et al., 2022) showed that when training neural networks for classification
of visual data, higher levels of weight decay introduce a stronger bias for the model to prioritize
higher-probability classes over lower-probability ones.

To gain deeper insights into this issue, several works have investigated this phenomenon from a
theoretical perspective. Fang et al. (2021) proposed the unconstrained features model (UFM) as a
simplified framework for exploring the geometric properties of the global minima in cross-entropy
loss with regularization, particularly in overparameterized neural networks. In the case of a balanced
dataset, they demonstrated that neural collapse (NC) occurs at any global minimizer of the loss
function combined with regularization. However, in the case of class imbalance, neural networks
exhibit distinct geometric patterns, and some of the NC properties no longer hold (Dang et al., 2023;
Thrampoulidis et al., 2022; Hong & Ling, 2023; Dang et al., 2024). While last-layer features for
samples in the same class still collapse to their respective class means (NC1), the class means and
classifier weights no longer form a Simplex Equiangular Tight Frame (ETF), violating NC2 (Fang
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et al., 2021). In more extreme cases, when the imbalance becomes severe, the classifier weights
for minority classes can collapse onto each other, rendering them indistinguishable from other
classes (Fang et al., 2021). This phenomenon, referred to as “Minority Collapse,” explains the sharp
decline in accuracy for minority classes in imbalanced settings.

Building on these finding, we explore whether similar behavior arises in next-token prediction tasks,
where the problem can be viewed as a (very noisy) classification task, with the next token acting as
the “class” for a given sequence.

3 EXPERIMENTAL SETTINGS

Problem Setup. We focus on the task of next-token prediction in autoregressive language modeling,
a self-supervised learning problem central to natural language processing. Given a sequence of tokens
xi = (xi,1, ..., xi,n), the objective is to model the conditional probability distribution p(xi,t|xi,<t) for
each token position t. Formally, let D = {xi}mi=1 be a text corpus, where each xi = (xi,1, ..., xi,n) ∈
S = Vn is a sequence of n tokens, and xi,t ∈ V belongs to a fixed vocabulary V of size V . We train
different transformer-based models fθ : S → [V ] mapping from sequence to logits to minimize the
regularized empirical risk:

Lλ
D(f) =

1

m

m∑
i=1

(
1

n− 1

n−1∑
t=1

ℓ(fθ(xi,≤t), xi,t+1)

)
+ λ||θ||22,

where ℓ denotes the cross-entropy loss, λ is the weight decay coefficient, ||θ||2 is the L2 norm of the
model parameters, xi,≤t the sequence up to position t in the i-th sample, and xi,t+1 is the next token
to be predicted.

Model Architecture. For our experiments, we train multiple models, including the Apple OpenELM
models with 270M and 3B parameters (Mehta et al., 2024), as well as the Qwen Qwen2 models
with 0.5B and 1.5B parameters (Yang et al., 2024). The small models (< 1B parameters) were
configured with a context length of 128 whereas the large ones with a context length of 64. These
architectures’s moderate size allows us to conduct multiple training runs with different λ values,
enabling a comprehensive exploration of weight decay’s impact on token-level dynamics across
various regularization choices.

Dataset and Tokenizer. We trained our models on the IMDB dataset (Maas et al., 2011), a widely
used benchmark due to its balanced sentiment-labeled data. The IMDB training split contains 25000
samples. For the scope of this study, we discarded the labels, focusing solely on the raw text data
to analyze the impact of hyperparameters on token-level generation performance. Additionally, we
created an extended version of the dataset, termed IMDB-xl, by incorporating all the unsupervised
samples from IMDB, which increased the training set to a total of 75000 samples. We used Byte Pair
Encoding (BPE) (Gage, 1994; Sennrich et al., 2016) as our tokenization method, training a tokenizer
on the IMDB dataset’s training set with a target vocabulary size of 32005 tokens. BPE ensures that
both frequent and infrequent tokens are well represented, providing a suitable basis for analyzing
token-level learning. This choice allows us to examine how different tokens, particularly rare ones,
are influenced by various weight decay values throughout the training process.

Hyperparameters and Training. We conducted experiments across a range of weight decay values
λ ∈ (0.0, 2.0). To account for the stochastic nature of training, each configuration was run with
the same 5 different random seeds, with results averaged and presented with confidence intervals.
The models were trained using the AdamW optimizer (Loshchilov & Hutter, 2019) to decouple the
weight decay from gradient updates, with a learning rate of 5e−5 and a cosine decay schedule. A
warm-up period of 10 training steps was used for stabilization during early training. We trained each
LLM for a total of 10000 steps, evaluating token-level metrics every 100 steps to understand how
different tokens are learned and represented under varying weight decay values. For small models
(less than 1B parameters), we used a batch size of 64 per device on a single NVIDIA A100 32GB
GPU, whereas for large models, we used a batch size of 16 with a gradient accumulation step of 4 on
a single NVIDIA A100 80GB GPU. Additionally, mixed precision training (fp16) was employed to
optimize GPU memory usage, reduce computational load, and accelerate convergence.

Evaluation Metrics. Our evaluation used token-level metrics to assess how individual tokens were
generated under varying weight decay configurations. Unlike traditional metrics like perplexity, we
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focused on whether specific tokens were under-represented during inference, revealing how certain
configurations induce bias in token representation, even when aggregate performance appears stable.
The average training loss, computed with cross-entropy loss over all tokens in a batch, is given by:

Lavg = − 1

BC

B∑
b=1

C∑
c=1

V∑
v=1

yb,c,v log pb,c,v,

where yb,c,v and pb,c,v are the ground truth and predicted probabilities, respectively. This method
implicitly favors frequent tokens, as they appear more often, leading the model to prioritize them
over low-frequency tokens. To counter this imbalance, we also used a token-balanced training loss,
ensuring each token contributes equally, regardless of frequency. First, we compute the cross-entropy
loss for each token ℓb,c = −

∑V
v=1 yb,c,v log pb,c,v. We then average these losses by token type,

yielding the final token-balanced loss:

Ltok-bal =
1

V

V∑
v=1

1

|{(b, c) : yb,c,v = 1}|
∑

{(b,c):yb,c,v=1}

ℓb,c.

This approach ensures that low-frequency tokens contribute equally to the loss, leading to a more
balanced optimization process, though it may challenge the model’s handling of rare tokens, especially
under strong regularization. The computation of per-token metrics is summarized in Algorithm 1.

Per-Token Learning Speed. To quantify how quickly the model learns individual tokens during
training, we introduce the per-token learning speed metric, which measures how rapidly the model
minimizes the cross-entropy loss for each token. Specifically, we compute the area under the curve
(AUC) of the token’s normalized loss trajectory over time, where a smaller AUC indicates faster
learning. For each token, we normalize its cross-entropy losses across all training steps to the
range [0, 1], ensuring comparability between tokens with different loss scales. Let ℓt represent the
cross-entropy loss for a token at training step t, and let L = {ℓ1, ℓ2, . . . , ℓT } be the set of losses over
T steps. We define the normalized loss at each step as: ℓ̃t =

ℓt−min(L)
max(L)−min(L) . The area under the

normalized loss curve is calculated as: AUC(L) =
∫ T

0
ℓ̃tdt. The learning speed S is then defined as:

S = 1− AUC(L)
T . This ensures that S ranges from 0 to 1, with higher values indicating faster learning.

If the range of losses is zero (i.e., max(L) = min(L)), we set S to zero, as no learning occurs.

4 EMPIRICAL RESULTS

4.1 TEXTUAL DATA IS HIGHLY IMBALANCED

As a preliminary step in our study, we investigated how imbalanced textual data actually is. For this
purpose we conducted several statistical evaluations of the IMDB dataset in order to verify that indeed
the vast majority of tokens are of low-frequency and a small minority of the tokens appear very often
in the data as predicted by the Zipf law.

Token Frequency Percentiles. Figure 3(a) highlights the extreme token frequency imbalance in
the IMDB dataset, tokenized using a BPE tokenizer with a vocabulary size of 32005. The vast
majority of the token frequency mass is concentrated in a very small portion of high-frequency
tokens. Specifically, 95% of the total tokens in the data is captured by the top 0.01% of tokens,
which demonstrates the steep distribution of token frequencies, where very few tokens dominate. To
illustrate the calculation: suppose we have a dataset with 100 samples, each consisting of 10 tokens.
If a set of 1% of the tokens in the vocabulary appear 800 times across those 1000 tokens, we say that
80% of the total tokens in the data is captured by the top 1% of tokens. Figure 3(b) further emphasizes
this imbalance, showing how the proportion of low-frequency tokens (those below the 95th percentile
in the data) grows as the vocabulary size increases. This suggests that token imbalance is inherent to
language and further amplified as the vocabulary size expands with larger tokenizers.

4.2 PERFORMANCE IMPAIRMENT IN LOW-FREQUENCY TOKENS

Average vs. Token-Balanced Training Loss. To highlight the effect of weight decay on low-
frequency tokens, we compared the average training loss with the token-balanced training loss.
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Figure 3: Comparison of token frequency distribution and the ratio of low-frequency tokens across
varying vocabulary sizes for the IMDB dataset. The left plot shows the token frequency distribution
with cumulative frequency thresholds (50%, 80%, and 95%) marked. The right plot illustrates how
the ratio of tokens below the 95th percentile increases with vocabulary size, converging to ≈ 0.85.
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Figure 4: Impact of Weight Decay on Cross-
Entropy. Average training loss (blue) and class-
balanced loss (orange) increase with weight decay.
The class-balanced loss is more sensitive due to
its focus on low-frequency tokens.

Figure 5: Token Learning Speed. Token learning
speed (0−1) plotted against frequency (log-scale)
for λ = 1.0. Colors represent token groups by
frequency bins, highlighting variation across to-
ken frequencies.

Figure 4 presents both metrics at the end of training for models trained with varying weight decay
values (λ ∈ {0.0, 0.1, 0.3, 0.5, 1.0}). As shown, the token-balanced loss rises sharply with increasing
weight decay, while the average training loss shows only a slight increase as λ moves from 0.0 to 1.0.
This discrepancy occurs because weight decay disproportionately affects low-frequency tokens, which
are given equal importance in the token-balanced loss. In contrast, the average training loss places
much less emphasis on low-frequency tokens, making the effects of weight decay less noticeable. For
exact values, including per-token perplexity and training accuracy, see Table 1.

Per-Token Performance vs. Weight Decay. Beyond comparing the average and token-balanced
training losses, we also investigated how increasing weight decay influences performance on low-
and high-frequency tokens separately. In this experiment, we examine how increasing weight decay
affects the per-task loss function for tokens of different frequencies. To this end, we trained multiple
versions of the same model (e.g., Apple OpenELM 270M) with varying degrees of weight decay
on a given dataset (e.g., IMDB) and compared the average loss function for low-frequency and
high-frequency tokens. As shown in Figure 1, the performance on high-frequency tokens remains
largely unaffected by the increase in weight decay, in contrast to the loss for low-frequency tokens,
which increases significantly with higher weight decay. Here, low-frequency tokens are those that
appear between 30 and 31 times as the next token in the data, while the highest-frequency tokens
appear between 39 and 310 times as the next token.

Per-Token Performance vs. Frequency. As a next step, we would like to visualize the distribution
of per-token losses and accuracies across tokens of varying frequencies. In Figure 6, tokens are
grouped into bins, where the ith bin contains tokens with frequencies between 3i−1 and 3i. For each
token, we plotted in Figure 6 (a) its average per-token cross-entropy and in Figure 6 (b) the per-token
accuracy, averaging over all sequences where that token is predicted and over all random seeds. As
shown, model performance improves significantly and consistently as token frequency increases,
with high-frequency tokens benefiting the most. In Figure 5, we replicated this analysis for per-token
learning speed, which also monotonically improves as token frequency increases, following the same
pattern observed for loss and accuracy.
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Weight Decay λ 0.0 0.1 0.3 0.5 1.0
Training Loss 0.051±0.000 0.052±0.000 0.054±0.000 0.056±0.000 0.068±0.001
Per-Token Loss 0.066±0.001 0.070±0.001 0.078±0.001 0.090±0.002 0.163±0.004
Per-Token PPL 1.069±0.003 1.073±0.003 1.081±0.003 1.095±0.003 1.177±0.003
Per-Token Accuracy (%) 98.798±0.031 98.781±0.029 98.778±0.032 98.759±0.028 98.714±0.029

Table 1: Impact of weight decay (λ) on model performance metrics (mean±std).

(a) Per-Token Cross Entropy (b) Per-Token Accuracy

Figure 6: (a) The relationship between token frequency (log-scale) and per-token cross entropy
(symlog-scale) across frequency bins, representing powers of 3. Lower-frequency tokens exhibit
significantly higher cross entropy, indicating weaker learning. (b) The relationship between token
frequency and accuracy across frequency bins. Higher-frequency tokens achieve higher accuracy,
while lower-frequency tokens demonstrate more variability in performance. Both plots are λ = 1.0.

High-Frequency Tokens are Learned Faster. In Figure 7 (b), tokens are divided into bins, selected
in the same way as before, to compare the average token learning speed (as defined earlier) and its
standard deviation for two models: one trained without weight decay (λ = 0, blue) and the other
with weight decay (λ = 1, orange). The percentage of tokens in each bin is also shown, with the
majority concentrated in the low-frequency bins. As observed, less frequent tokens are learned
more slowly by both models. Notably, the gap in learning speed between the models widens for
lower-frequency tokens but diminishes for higher-frequency tokens. This indicates that increasing
weight decay disproportionately deprioritizes low-frequency tokens.

5 THEORETICAL DISCUSSION

It is well known that the class frequency is positively correlated with the norm of the top layer
classifier of the given class (Kang et al., 2019; Huang et al., 2016; Kim & Kim, 2020). For instance,
Dang et al. (2024) considered a variant of unconstrained features model (UFM) (Fang et al., 2021), in
which the features are constrained to be non-negative, motivated by the fact that features are usually
the output of ReLU activations in many common architectures. We use their framework to analyze
the influence of the token frequency and the weight decay on the per-token loss function. Formally,
suppose we have a set of possible tokens V (one-hot encodings of the numbers in [V ]) and a dataset
D = ∪Vk=1{xk,i}nk

i=1 of sequences xk,i = (xk,i,1, . . . , xk,i,n) of tokens with the next token being
k ∈ [V ] (whose one-hot encoding is yk). Within the model proposed in (Dang et al., 2024), for each
sequence xk,i we learn an unconstrained feature representation hk,i ∈ Rd together a linear layer
W ∈ RV×d using the Cross-Entropy loss:

min
W,H

1

N

V∑
k=1

nk∑
i=1

ℓCE(Whk,i, yk) +
λW

2
∥W∥2F + λH∥H∥2F ,

s.t. H ≥ 0, λW > 0, λH > 0,

(1)

where ℓCE(z, yk) = − log
(

exp(zk)∑V
i=1 exp(zi)

)
, H := [h1,1, . . . , h1,n1 , h2,1, . . . , hV,nV

] ∈ Rd×N (where

N =
∑V

k=1 nk) are the learned representations for each sample (k, i) and H ≥ 0 denotes entry-wise
non-negativity. In addition, W = [w1, w2, . . . , wV ]

⊤ ∈ RV×d to be the last-layer weight matrix,
with wk ∈ Rd being the k-th row of W .
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(a) Token Cross Entropy (b) Token Learning Speed

Figure 7: We compare the (a) per-token cross-entropy loss and (b) learning speed across token
frequencies when training an LLM with weight decay λ = 0.1 and λ = 1.0, on the IMDB and
IMDB-xl datasets using a BPE tokenizer with a vocabulary size of 32005. As weight decay
increases, the model disproportionately disregards low-frequency tokens, which make up the vast
majority of tokens in language datasets. Low-frequency tokens suffer from higher cross-entropy
loss and reduced learning speed, while high-frequency tokens remain largely unaffected. Critically,
the degradation of low-frequency token performance happens silently, as the average training loss,
monitored by practitioners, remains largely unchanged across different levels of weight decay.

While the above formulation does not exactly match the practice (since H is a matrix of free
parameters instead of the outputs of a neural network), this abstraction can help understand how the
per-token frequency nk and the regularization parameters λW and λH influence the per-token loss
and classifier. For instance, according to Theorem 4.1 and Proposition 4.3 in (Dang et al., 2024), if
d ≥ V then any global minimum of Eq. 1 satisfies:

(a) Within-class feature collapse: ∀ k ∈ [V ], i ̸= j ∈ [nk] : hk,i = hk,j = µk.

(b) Class-mean orthogonality: ∀ k ̸= l : µ⊤
k µl = 0.

(c) Class-mean norm: ∥µk∥2 =
√

λW (V−1)
λHV nk

Mk.

(d) Weight norms: ∥wk∥2 =
√

λH

λWV 3(V−1)

(
(V − 1)2

√
nkMk +

∑V
j=1

√
njMj

)
.
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Here, Mk =

[
log

(
(V − 1)

( √
nk

N
√

V −1
V λWλH

− 1

))]
⋄
, where the function [x]⋄ returns x if x is

defined and is positive and 0 otherwise.

The above series of observations imply that µk = 0 if and only if Mk = 0. As a result (summarized
in Corollary 4.6 in (Dang et al., 2024)), if nk ≤ λWλHN2 V−1

V (which implies Mk = 0) the model
avoids learning the kth token. In particular, the number of tokens that are neglected by the model
increased when increasing the level of weight decay.
Proposition 5.1. Suppose d ≥ V , then any global minimizer (W,H) of the problem obeys

ℓCE(Whk,i, yk) = log
(∑V

j=1 exp
(

Mj

V 2

))
−Mk.

We observe that the loss function ℓij = ℓCE(Whk,i, yk) can be decomposed into two components: the
first part, ℓ′, is independent of both k and i, while the second part depends on −Mk. Consequently,
tokens k associated with larger values of Mk incur a smaller per-token loss. Since Mk increases with
nk, it follows that the per-token loss is smaller for tokens of higher frequency. This aligns with the
results in Fig. 7 (a), where the loss function decreases monotonically for higher-frequency tokens
when training with weight decay.

Now, suppose we set λW = λH = λ. The derivative of the per-token loss ℓk,i with respect to λ is

given by: ∂ℓk,i

∂λ = ∂ℓ′

∂λ +
(

1
λ + N

√
V−1√

nkV−λN
√
V−1

)
· I
[
nk > λ2N2 V−1

V

]
. We note that the first term

of the derivative, ∂ℓ′

∂λ , is independent of nk, while the second term is monotonically decreasing with
respect to nk, provided that nk > λ2N2 V−1

V (k is a non-neglected token). Therefore, the derivative
of the loss for non-neglected tokens k is higher for smaller values of nk. In particular, the loss for
low-frequency tokens grows at a faster rate compared to high-frequency tokens when increasing λ.
This can be observed in Fig. 7 (a) and Fig. 4, where, although the losses generally increase across all
types of tokens as a function of λ, they increase more significantly for low-frequency tokens.

As a final note, although one might think that the observations made in Sec. 4 could be due to poor
training, these theoretical results emphasize that they are actually caused by a fundamental issue
when training next-token predictors. The results above apply to the global minima of the objective,
indicating that they pertain to situations where the training was in fact optimal.

6 CONCLUSION

We investigated the impact of weight decay on token-level learning dynamics in large language models.
Our findings reveal critical insights into how weight decay affects the learning process of individual
tokens—effects that are hidden when relying solely on aggregated metrics. We demonstrated that
increasing weight decay disproportionately harms the performance of low-frequency tokens, even
when the overall average loss remains largely unchanged. Additionally, we observed that higher-
frequency tokens are generally learned faster than their low-frequency counterparts. This interplay
between token frequency, performance, and regularization highlights the nuanced effects of training
techniques on different parts of the model’s vocabulary.

These results expose a significant oversight in current LLM training practices. Weight decay is
commonly employed to reduce overfitting and enhance optimization. While this seems beneficial at
first—due to improved convergence and stability in overall loss metrics—our analysis uncovers a
hidden pitfall: weight decay can severely compromise the model’s ability to handle low-frequency
tokens. Crucially, this degradation goes unnoticed when only aggregated loss metrics are considered.
This discrepancy between aggregated performance and token-specific learning underscores the
need for fine-grained, token-level evaluations. Without such assessments, models risk sacrificing
performance on rare or specialized vocabulary, potentially limiting their effectiveness in domains that
require precise handling of low-frequency terms.

As illustrated in Figure 3, the imbalance becomes more pronounced as vocabulary sizes increase.
This is particularly concerning as vocabulary sizes are continuously expanded to improve model
performance and broaden capabilities (Takase et al., 2024; Tao et al., 2024; Toraman et al., 2023).
For example, while LLaMA-v1 (Touvron et al., 2023a) and LLaMA-v2 Touvron et al. (2023b) used
a vocabulary of 32000 tokens, LLaMA-v3 (Dubey et al., 2024) expanded this to 128256 tokens,
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Qwen2 (Yang et al., 2024) further extended it to 151936 tokens, and Gemma-2 (Team et al., 2024)
increased the size to 256128 tokens.

Broader Impact. Our work enhances understanding of how weight decay affects token-level
performance in LLMs while remaining undetected by aggregated metrics. This is crucial for ensuring
fairness and reliability in real-world applications. While our societal impact is indirect, it underscores
the need for more granular evaluation metrics to detect and mitigate potential biases on low-frequency
tokens. These findings contribute to the development of more equitable and robust AI systems.
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A PROOF OF PROPOSITION 5.1

Proposition 5.1. Suppose d ≥ V , then any global minimizer (W,H) of the problem obeys

ℓCE(Whk,i, yk) = log
(∑V

j=1 exp
(

Mj

V 2

))
−Mk.

Proof. By combining (a-d) in Theorem 4.1 in (Dang et al., 2024), we have:
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Similarly, we can show that w⊤
j hk,i =

Mj

V 2 . Hence, the loss function is equal to:

ℓCE(Whk,i, yk) = − log

(
exp(w⊤

k hk,i)∑V
j=1 exp(w⊤

j hk,i)

)
= log

(
V∑

j=1

exp
(
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V 2

))
−Mk.

B PER-TOKEN METRICS

This appendix presents Algorithm 1, which details our method for computing per-token metrics
used throughout this paper. This algorithm is central to our analysis, enabling the calculation of
fine-grained token-level performance measures that underpin our study’s findings.

Algorithm 1: Token-level Metric Computation Algorithm
Input: Logits L, Labels y, Tokenizer T
Output: Token-level metricsM

1 Initialize token metrics dictionaryM;
2 foreach step do
3 Get logits L and labels y;
4 Shift logits L′ ← L[:, : −1];
5 Shift labels y′ ← y[:, 1 :];
6 Compute predictions ŷ← argmax(L′);
7 foreach token t in y′ do
8 Compute per-token loss ℓt ← CrossEntropyLoss(Lt,y

′
t);

9 Update metricsM[t]←M[t] + {loss : ℓt, correct : (ŷt = y′
t)};

10 end
11 end

C IMDB TOKEN DISTRIBUTION

As an additional evaluation, we examine the token frequency distribution of the IMDB dataset,
as shown in Figure 8. Using a BPE tokenizer with a 32005-token vocabulary, we illustrate the
distribution of high-frequency and low-frequency tokens. The histogram reveals a striking imbalance
typical of natural language datasets: a few tokens occur extremely frequently, while most unique
tokens appear rarely. This long-tail distribution is a fundamental characteristic of language data.

D CLASS IMBALANCE IN VISION

In order to show that the behavior reported in the main text is not specific to LLMs but holds also
for other types of domains, we experimented with image classification. We present an analysis of
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High frequency tokens.
the (136k), , (108k), . (99k),
a (71k), and (67k), of (63k)
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pilgr (1), gna (1), cron (1),
theorists (1), vicki (1)

Figure 8: Token frequency distribution of the IMDB dataset Maas et al. (2011) using a BPE
tokenizer (vocab size 32005). y-axis: number of unique tokens per frequency bin. x-axis: token
frequency bins (logarithmic scale). Rightmost bin shows 3 tokens (the, punctuation) appearing 39 to
310 times each. This highlights high-frequency tokens (the, punctuation) and rare tokens ("pilgr",
"cron") in lower bins, illustrating the long-tail distribution typical in natural language datasets.

how dataset balance and weight decay affect the performance of a ResNet9 model (He et al., 2016)
trained for CIFAR10 (Krizhevsky & Hinton, 2009) classification with imbalanced classes. This
highlights the interplay between data distribution, regularization, and model performance. To obtain
the imbalanced CIFAR10 dataset, we target a number of samples per class of [91, 142, 222, 347, 541,
845, 1317, 2055, 3205, 5000]. We randomly subsampled the corresponding classes in order to obtain
those number of images per class.
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(a) Balanced Dataset (b) Imbalanced Dataset

Figure 9: Performance comparison of ResNet9 on balanced (left) and imbalanced (right) CIFAR10
datasets. The x-axis represents the 10 CIFAR10 classes, while the y-axis shows the test accuracy
for each class. Different lines correspond to various weight decay values used during training. In
the balanced dataset, performance is relatively uniform across classes, with overall homogenous
degradation at high weight decay. The imbalanced dataset reveals a clear trend where less frequent
classes perform worse, with this effect exacerbated by stronger weight decay values.
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