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ABSTRACT

The performance of embodied agents has been shown to improve by increasing
model parameters, dataset size, and compute. This has been demonstrated in do-
mains from robotics to video games, when generative learning objectives on of-
fline datasets (pre-training) are used to model an agent’s behavior (imitation learn-
ing) or their environment (world modeling). This paper characterizes the role of
scale in these tasks more precisely. Going beyond the simple intuition that ‘bigger
is better’, we show that the same types of power laws found in language modeling
also arise in world modeling and imitation learning (e.g. between loss and opti-
mal model size). However, the coefficients of these laws are heavily influenced by
the tokenizer, task & architecture – this has important implications on the optimal
sizing of models and data.

1 INTRODUCTION

Much progress in AI in the early 2020’s has been driven by increasing model size, dataset size, and
training compute. Whilst conceptually simple, the importance of this practice has led to an emerging
subfield studying the science of scaling. This field answers questions such as how to estimate the
benefit of increased compute investment, or how to optimally trade-off model and dataset size.

The role of scale in pre-training is so far best understood in large language models (LLMs). Fol-
lowing the observation that the empirical relationship between loss and key scaling quantities can
be accurately described by power laws (Kaplan et al., 2020), works studied the precise trade-off
between model and dataset size (Hoffmann et al., 2022), as well as considering inference compute
(Sardana & Frankle, 2023), repeated epochs (Muennighoff et al., 2024), parameter counting (Pearce
& Song, 2024) etc. (Section A).

In comparison, less is understood about scaling in embodied AI. Recent high-impact works show
increasing model and dataset size can lead to ever more capable agents for two pre-training objec-
tives; behavior cloning (BC) (Reed et al., 2022; Baker et al., 2022; Brohan et al., 2023) and world
modeling (WM) (Hafner et al., 2020; Hu et al., 2023; Yang et al., 2023; Bruce et al., 2024). Such
works typically demonstrate the benefit of scale through ablations over a few model sizes, shown
in terms of downstream agent performance, confirming the intuition that ‘bigger is better’ (Sartor
& Thompson (2024) provide an aggregated analysis). However, this leaves a large gap to the pre-
cise understanding of scale in LLMs, where for a given increase in compute, models can be sized
optimally, and their performance accurately predicted.

This paper helps close this gap. Similar to the study of scale in LLMs, we focus on the effect of
scaling on a generative pre-training loss (rather than on downstream agent performance, or reward-
or representation-centric objectives), in the infinite data regime, on a fixed offline dataset. Under this
setting, we train families of transformers on next-token prediction tasks using architectures popular
in both world modeling and BC tasks. This leads to several contributions, summarized in Figure 1.

• For the first time, we show scaling laws similar to those in LLMs can be observed in world
modeling with tokenized observations and actions (Section 4.1, Figure 1a).

• The optimal trade-off between model and dataset size in world modeling is influenced by the
tokenizer’s compression rate (number of tokens per observation) (Section 4.1, Figure 1a & b).

• Scaling laws for BC with tokenized observations are harder to observe under modest compute
budgets. The optimal trade-off favors smaller models and more data (Section 4.2, Figure 1c).
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Figure 1: This paper observes that scaling laws, as originally found in LLMs, also emerge in the
tasks of world modeling and BC, when studying the pre-training loss on large datasets of human
behavior. (a, b) For world modeling, the power law coefficient determining optimal model size is
affected by the compression rate of the tokenizer. (c) In BC with tokenized image observations
(BC-Token), small models need a large FLOPs budget to saturate, making these scaling laws less
clear cut. (d) Moving to a single continuous embedding per observation remedies this (BC-CNN),
producing prototypical scaling laws and a more balanced optimal model size coefficient.

• Scaling laws similar to those in LLMs can once again be observed in BC with one continuous
encoding per observation (Section 4.2, Figure 1d).

• Our findings can be understood through small-scale language modeling experiments (Section 5).

Organization. Section 2 provides arguments and justification for utilizing pre-training loss as a
proxy for online reward. Section 3 introduces details for our main experiments, including the ar-
chitectures & datasets considered, and details of scaling laws analyses. Section 4 presents our main
results in world modeling and BC. Section 5 presents insights behind our main results, including
a set of tiny-scale language experiments mimicking aspects of our main experiments. Section 6
discusses our findings and notes limitations.
2 BACKGROUND

This section outlines arguments and evidence supporting using pre-training loss to study scaling in
embodied AI. Please see A for related work.

2.1 PRE-TRAINING LOSS AS A PROXY FOR PERFORMANCE

A major difference between scaling research in LLMs and embodied AI is that LLM research uses
pre-training loss as the main variable of interest, while embodied AI has focused on downstream
online task performance. This handicaps embodied AI scaling research – measuring online perfor-
mance for a single model checkpoint in complex environments like robotics or modern video games
is expensive in time and hardware, requiring multiple repeated runs to allow statistically significant
comparisons. Furthermore, models may first require a period of fine-tuning before evaluation. By
contrast, pre-training loss is available for free at any point of a model’s training.
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Figure 2: Our meta-analysis of Tuyls et al. (2023) evidences that pre-training loss is strongly corre-
lated with reward in BC tasks when in the infinite data regime.

We believe embodied AI’s focus stems from reports that validation loss is only weakly correlated
with online performance Hussenot et al. (2021); Li et al. (2024). However, such observations have
been made with fixed-sized training datasets and held out validation sets, where effects of overfitting
may be slightly beneficial. In contrast, scaling law studies are conducted in an infinite data regime,
where datapoints are not trained on more than once, making train and test losses equivalent, and
overfitting effects not applicable.

To evidence that pre-training loss can be a good proxy for online return in the infinite data regime,
we conducted a meta-analysis of Tuyls et al. (2023), who were able to roll out a large number of
checkpoints for two reasons. 1) They used simple lightweight environments (Atari & NetHack). 2)
Their demonstration policy was high-skill, removing any need for fine-tuning. Figure 2 plots online
environment return vs. pre-training loss for several environments (computed by tabulating pairs of
points from Figure 6 & 10 in Tuyls et al. (2023)). The correlation coefficient for all environments
is stronger than -0.94. Figure 16 shares evidence from our experiments that pre-training loss is well
correlated with the video-generation quality of world models – providing correlation coefficients
around 0.8. Further details in Appendix E.

More intuitively, improving a next-token prediction loss in BC and WM requires models to ‘know
more’ about behaviors and the environment, creating more useful pre-trained checkpoints for spe-
cialization to downstream tasks. In BC, better predicting the next action in a dataset of human
behavior requires understanding the objectives humans are trying to complete, alternative social
behaviors they might choose to perform, as well as making in-context inferences about the skill
level and mental state of individuals. In WM, decreasing next-token prediction loss might follow a
curriculum, first requiring a model to capture basic shapes and colors, then textures and physics, fol-
lowed by rare object interactions, and finally even complex stochastic elements in the environment
such as other intelligent agents.

3 METHODOLOGY

This section provides details for our main experiments. We describe the pre-training tasks, archi-
tectures, and datasets considered. We also detail the methodology used in the scaling law analyses.

3.1 TASKS

We consider trajectories constructed as sequences of alternating observations ot and actions at for
timestep t ∈ N. In this work, observations are always images, ot ∈ R3×w×h and any continuous
actions are discretized during preprocessing leaving, at ∈ {0, 1}da .

Given this data format, we consider two tasks. World modeling (WM) (Ha & Schmidhuber, 2018)
predicts future observations from previous observations and actions. This allows an agent to ex-
plicitly understand how its environment works, which can be used for planning, or dyna-style RL
(Sutton, 2018). Behavior cloning (BC) predicts the future actions that the dataset’s demonstrators
take (Bakker et al., 1996). This creates a policy that can be directly used to act in the environ-
ment, either as-is or following further fine-tuning. Concretely, these two tasks require modeling the
following quantities,

World modeling: P (ot+1|ot . . .ot−k,at . . .at−k), (1)
Behavior cloning: P (at|ot . . .ot−k,at−1 . . .at−k−1). (2)
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Figure 3: The World Modelling (WM) and Behavior Cloning (BC) tasks & architecture combi-
nations considered in this work. The fire symbol signifies trainable components, the ice symbol
signifies frozen pre-trained components.

This work focuses on generative pre-training aiming to model this full conditional probability dis-
tribution. We leave a study of scaling laws for alternative objectives, e.g., explicitly targeting repre-
sentation learning (Nair et al., 2022) or reward-centric models (Hafner et al., 2020), to future work.

3.2 ARCHITECTURES

All experiments revolve around GPT-2 style causal transformers (Radford et al., 2019) as the core
of the model. However we consider two different methods for inputting image observations, sum-
marized in Figure 3. Section 3.4 details how we measure the model size of each.

Tokenized architecture. Our first architecture tokenizes each image observation into multiple
discrete tokens. This is done with a frozen VQGAN encoder Encθ(ot) → zt, where zt ∈
{1, 2, ..., Vo}dz , for vocabulary size Vo and latent dimension dz . Discretized actions are mapped
to a non-overlapping vocabulary. Following tokenization, training sequences take the form,

[z1t , ..., z
dz
t , a1t , ..., a

da
t , z1t+1, ...z

dz
t+1, a

1
t+1, ...], (3)

where each item of the sequence is an integer within our vocabulary. A transformer is then trained to
maximize the likelihood of either the latent image tokens (world modeling), or action tokens (BC).

This tokenized architecture is widely used both in world modeling (Micheli et al., 2022) and BC
tasks (Bousmalis et al., 2023). Gato (Reed et al., 2022) used a similar design but with continuous
patches rather than discrete tokens. Our implementation tests both a ‘small’ (28M parameters, dz =
256) and ‘large’ (150M parameters, dz = 540) VQGAN – further details in Appendix B.

CNN architecture. Our second architecture differs in two ways. 1) Each image observation is
input into the transformer as a single continuous embedding, extracted from a small trainable con-
volutional neural network (CNN). 2) Action dimensions are predicted independently (rather than in
series), assuming P (at| . . . ) ≈

∏da

i=1 P (ait| . . . ). One transformer forward pass produces an action
prediction.

This produces an architecture similar to Baker et al. (2022) (VPT additionally used a transformer-
XL and a refined hierarchical action space). Our implementation uses an Impala-style (Espeholt
et al., 2018) CNN with 0.6M parameters for embedding image observations.

3.3 DATASETS

This paper focuses on the effect of scaling on the pre-training loss over an offline dataset. To study
this cleanly, datasets must meet two criteria.

1. Dataset size. Repeated training on the same data alters the effect of scaling – datasets
should be large enough that training is done in the infinite data regime.

2. Dataset diversity. The behavior and environment must contain enough richness and variety
that pre-training loss does not saturate across model sizes tested.

Many existing benchmark datasets fail to fulfill these criteria – either due to limited size, or because
behavior is generated from a fixed policy, or the environment is too simple.

Our work primarily focuses on a dataset of human behavior collected in a video game Bleeding
Edge. This is a fast-paced 4 vs 4 multiplayer game, with a range of characters, abilities and maps.
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Game play is highly complex due to cooperative and competitive dynamics. Success requires good
high-level strategies (e.g. choosing which map regions to fight for), as well as fine-grained reactive
control during combat. Figure 11 shows example dataset sequences.

Supported by the game’s developer Ninja Theory, we compiled a dataset of over 7 years of
anonymized game play, containing both image observations and controller actions. We refer to
this as the 7 map dataset. We also use a subset of this for some experiments, of around one year
from a single map, which we name the Sky Garden dataset. Appendix B.3 provides further details.

As a secondary dataset we use RT-1 (Brohan et al., 2022), comprising 14 days of humans operating
a robotic arm on a range of manipulation tasks such as ‘pick banana from white bowl’. Using this
smaller dataset allows us both to verify that conclusions on the large-scale video games dataset hold
in a real-world robotics domain, and also allows us to run several small scale ablations in WM.
Appendix D provides further details about the dataset and tokenizers used.

3.4 SCALING ANALYSIS METHODOLOGY

We study the relationship between several quantities.

• Model size N , the total number of trainable parameters (ignoring VQGAN parameters
for WM-Token & BC-Token, but including the fixed-size CNN for BC-CNN). Embedding
parameters are included in the count following Pearce & Song (2024).

• Dataset size D, the total number of inputs the transformer sees during training. For WM-
Token and BC-Token this is dz + da per observation & action pair, for BC-CNN this is one
per observation & action pair.

• Compute C, the number of floating point operations (FLOPs) used during training. The
common approximation of C = 6ND (Kaplan et al., 2020) is used.

• Loss L, the standard classification cross-entropy loss (all targets are discretized). Note
training loss is an accurate proxy for test loss when in the infinite data regime (Appendix
B.3.1 analyzes further).

More specifically, we are interested in ‘compute-optimal’ versions of each quantity. For loss, this is
defined as the minimal loss possible for a given FLOPs budget: Loptimal(C) = min

s.t. C=6ND
L(N,D),

where L(N,D) is the empirical loss achieved with an N parameter model trained on D tokens. We
further define optimal model and dataset sizes as the configuration that produce this minimal loss
given a FLOPs budget,

Noptimal(C), Doptimal(C) = argmin
N,D s.t. C=6ND

L(N,D). (4)

Scaling analysis. Scaling law analyses fit power law relationships predicting these compute-optimal
quantities. For predicting optimal model and dataset size, we use,

N̂optimal(C) = a0C
a D̂optimal(C) = b0C

b, (5)

with fitted constants a0, a, b0, b.1 We consider two methods to fit these relationships, introduced
by Hoffmann et al. (2022). Their Method 1, which we term Frontier fit, classifies efficient models
as those falling on the efficient frontier (see Figure 1). Coefficients can then be estimated straight-
forwardly through a line of best fit on a plot of FLOPs vs parameters or data for these efficient
models.

Frontier fit is our preferred method when available – it avoids making any assumptions about the
training curves, directly fitting the best models observed. However, it requires training models past
the point where they are the optimal configuration (seen on a loss-FLOPs plot as overlapping curves).
In some of our experiments (BC-Token and Section 5.1), this was not possible.

In these situations, we resort to Method 3 of Hoffmann et al. (2022), which we term Parametric fit.
This fits the coefficients α, β,Nc, Dc, E to a parametric loss form,

L̂(N,D) =
Nc

Nα
+

Dc

Dβ
+ E, (6)

1Note that by subscribing to C = 6ND we find a = 1− b; N ∝ Ca =⇒ C/D ∝ Ca =⇒ D ∝ C1−a.
Hence, at times we only describe relationships in terms of N ∝ Ca, with N ∝ D1−a implied.

5



ICLR 2025 Workshop on World Models

Table 1: Summary of fitted scaling coefficients for our main experiments. Note that we favor the
Frontier fit when available, and only use the Parametric fit for BC-Token-540 (see Section 3.4).

Frontier fit Parametric fit
Experiment Noptimal ∝ Ca Doptimal ∝ Cb Noptimal ∝ Ca Doptimal ∝ Cb

WM-Token-256 0.49 0.51 0.52 0.48
WM-Token-540 0.62 0.37 0.78 0.22
BC-Token-540 N/A N/A 0.32 0.68
BC-CNN 0.66 0.34 0.47 0.53

to the empirical training curves. In our implementation, we use SciPy’s curve_fit function. We
find a = β/(α+β), b = α/(α+β). This makes a very strong assumption about the training curves,
but allows coefficients to be estimated at a smaller compute budget.

For loss prediction we use the form recommended by Pearce & Song (2024): L̂optimal(N,D) =
c0C

−c + E. We again use the curve_fit function, fitted to models along the efficient frontier.
During fitting, we set bounds on the variables: c0 ∈ [0,∞], c ∈ [−1, 1], E ∈ [0.1,∞].

Training details. While early scaling studies conducted sweeps over multiple cosine decays of
differing lengths (Kaplan et al., 2020; Hoffmann et al., 2022), follow up work found this redundant
(Pearce & Song, 2024; Hägele et al., 2024; Porian et al., 2024). We follow the approach of using
a constant learning rate per model, so each requires only one training run. We aim to train models
until they have passed their compute efficient FLOPs budget. We only modify the parameters of the
transformer, following the configurations documented in Appendix B.

4 SCALING ANALYSIS IN EMBODIED AI
This section presents our main results. We begin by considering the scaling laws for the task of
world modelling in Section 4.1 with two different tokenizers (turning image observations into 256
and 540 tokens for the small and large variants respectively). Section 4.2 then considers the task of
BC both with tokenized and CNN architectures. Finally, Section 4.3 tests the extrapolation capability
of these scaling laws for the task of world modeling.

4.1 SCALING ANALYSIS IN WORLD MODELING
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Figure 4: WM-Token scaling with dz =256 tokens per image observation. Left shows the paramet-
ric fit. Middle & right show the frontier fit estimating optimal model & dataset size respectively.
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Figure 5: WM-Token scaling with dz =540 tokens per image observation. Layout as in Figure 4.
Compared to the results for WM-Token-256, the power law coefficient for Noptimal increases from
0.49 to 0.62.

Figures 4 & 5 present our results for the task of world modeling, with the scaling law coefficients
summarized in Table 1. For WM-Token-256 we find that the optimal coefficients for model and
dataset size are both ≈ 0.5, e.g. one should increase both model and dataset size in the same
proportions. This matches the scaling laws observed in LLMs (Hoffmann et al., 2022). Increasing
the number of tokens per image to 540 for WM-Token-540 changes the optimal trade-off between
model and dataset size, skewing towards model size; Noptimal = 0.62, Doptimal = 0.37. We discuss
this further in Section 5.3.
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Appendix Figure 15 visualizes the power law fits for the RT-1 robotics dataset, confirming that this
predictable scaling behavior is not specific to human behavior in video games, and also emerges on
real-world robotics tasks with high-skill human operators.

4.2 SCALING ANALYSIS IN BEHAVIOR CLONING
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Figure 6: BC-Token scaling with dz = 540 tokens per image observation. Layout as in Figure 4.
Models above 2M parameters do not saturate over the FLOPs range considered and coefficients can
not be inferred using the frontier fit method.
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Figure 7: BC-CNN scaling. Layout as in Figure 4. Compared to the results for BC-Token the model
sizes considered compute-optimal are considerably larger. The power law coefficient for Noptimal
also increases from 0.32 to 0.66 skewing towards scaling model size as opposed to dataset size
when scaling up compute.

We present our results on the scaling law coefficients for BC-Token in Figure 6. Despite sharing an
architecture with WM-Token-540 we now observe the opposite dependence on model and dataset
sizes. The coefficients skew heavily towards dataset size; Noptimal = 0.32, Doptimal = 0.68 (com-
pared to Noptimal = 0.62, Doptimal = 0.37 – explained in Section 5.1). Furthermore, under the same
compute budget the compute-optimal model sizes are significantly smaller. For a compute budget of
1018 and 1019 FLOPs we find that model sizes of 2M and 11M are compute-optimal for BC-Token-
540 compared to 27M and 110M for WM-Token-540. In our experiments, we observe the losses
for the BC-Token models take much longer to plateau leading to less overlap between model sizes.
Hence, the frontier fit is not suitable for accurately estimating the scaling law coefficients, and we
rely on the parametric fit for these results.

To better understand the change in the scaling law coefficients, we now consider the BC-CNN ar-
chitecture for the task of BC in Figure 7. For this architecture, we observe that the coefficients
now skew towards model size (similarly to those in (Tuyls et al., 2023)), with Noptimal = 0.66, and
Doptimal = 0.34. Section 5.2 provides more intuition on the differences between the WM-Token
and BC-Token setups that lead to this change. Further to studying the differences in scaling law
coefficients between tasks and architectures, we also study the accuracy of extrapolation.

4.3 EXTRAPOLATION IN WORLD MODELING
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Figure 8: Testing the extrapolation capability of our derived scaling law for WM-Token-256 by
training an 894M parameter model with an order of magnitude more compute than was used for
the scaling law analyses. We observe good agreement between our predicted optimal loss/model
size/number of training tokens (dotted lines) and our actual training run marked by ‘x’.

To test the extrapolation accuracy of our derived scaling laws, we train a 894M parameter WM-
Token-256 model with an order of magnitude more compute than used for the scaling law analy-
ses. Figure 8 presents both the learning curve as well as the extrapolated lines derived from the

7



ICLR 2025 Workshop on World Models

Frontier fit method. We take the point with the loss value closest to our extrapolated loss curve
(∼ 1.58 × 1021FLOPS), and mark it on the Frontier fit extrapolations. We observe very good
agreement between that point and our compute-optimal predictions for both model and dataset size,
demonstrating the accuracy of our derived scaling laws. The gap between our prediction and the
actual training run suggests we could further optimize the hyperparameters (learning rate and batch
size in particular) for the 894M parameter model, which was not extensively tuned due to compute
requirements.

5 FURTHER ANALYSIS

Section 4 made several observations about the effect of scale in the pre-training of embodied agents.
This section aims to understand these results further, and provide intuition for why they occur.
Specifically we target three questions:
Q1: Why does BC-Token produce training curves that do not plateau, while WM-Token does, given
an identical architecture and dataset? (Section 5.1)
Q2: Why does moving from BC-Token to BC-CNN resolve this issue? (Section 5.2)
Q3: Why does increasing the tokens per image observation (256 to 540) lead to an increase in the
optimal model size coefficient (0.49 to 0.62)? (Section 5.3)

5.1 Q1: BC-TOKEN VS. WM-TOKEN

The lack of saturation of BC-Token models compared to WM-Token models can be attributed to two
factors. The first is a sparser loss. A single observation-action pair is discretized into dz + da total
tokens. With the large VQGAN tokenizer, world modeling receives supervision for dz/(dz + da) =
540/556 ≈ 97% tokens, while BC is supervised for da/(dz + da) = 16/556 ≈ 3% of tokens.

The second factor is the granularity of the targets. The large tokenizer creates a world modeling
vocabulary size of 4096. Each vocabulary item roughly corresponds to a specific color and texture
for an image patch. Many vocabulary items may only be used to model specific map regions or
special abilities. Hence, the world modeling loss is very granular. On the other hand, a player can
take the same action in multiple different situations – continue straight could be used to escape an
enemy, chase an enemy, or navigate to a checkpoint. Hence, the supervision for BC is more vague
and abstracted. We can think of this as a super-classed label.

To demonstrate the effect of these two factors on optimal model size coefficients, we run a set of
tiny-scale experiments in language modeling. Transformers are trained on next-character prediction,
on a dataset of Shakespeare text2 using a single character for each token. Model sizes are varied from
4k parameters to 17M parameters. Context length is fixed at 16 characters/tokens.

Figure 9 (left) shows training curves over all 16 tokens, followed by a sparse loss where supervision
is only provided from the final token (middle), and then additionally under a super-classed setting
(right). This super-classes the final target – rather than using all 128 ASCII characters, they are
randomly shuffled into one of two macro classes.

These modifications are intended to mirror the effect of moving from WM-Token to BC-Token. We
compute optimal model size coefficients using the parametric fit as most models are not trained long
enough for the frontier fit method. Indeed, we see that the coefficient drops from 0.63 to 0.15 with
both the sparse and super-classed loss. This matches the magnitude of decrease seen in Table 1 from
0.66 to 0.32, indicating that the proposed mechanisms explain our findings.

5.2 Q2: BC-TOKEN VS. BC-CNN

Despite the same non-granular loss signal, why does switching architecture from BC-Token to BC-
CNN makes the loss of similar model sizes plateau under a much smaller compute budget?

Consider each architecture using a transformer with 1M parameters. Observe from Figure 3 that
BC-Token receives dz + da = 556 inputs for every action ât it predicts, while BC-CNN receives
just one input for every action predicted. Hence, BC-Token uses around 556 times more compute in
its action prediction (556 × 2 × 1M ≈ 1 × 109 FLOPs) than BC-CNN (1 × 2 × 1M ≈ 2 × 106

FLOPs). This means that even with the same number of parameters, BC-Token can learn a far

2Shakespeare character dataset from: https://github.com/karpathy/nanoGPT
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Figure 9: Training curves and parametric fit for character modeling experiments. The standard
dense LLM loss has been modified to reflect properties of BC – a sparse loss (1/16 tokens), and
then additionally super-classing the targets into two classes. The combination of these mechanisms
explains our BC observations.

more expressive function than BC-CNN. Hence, BC-Token requires far more tokens to match this
expressivity, and training curves for a given model size plateau much later.

5.3 Q3: WM-TOKEN-256 VS. WM-TOKEN-540

Finally, we seek to understand why the optimal model size coefficient increases when moving from
the 256 to the 540 token VQGAN. As the number of tokens per image observation are increased, the
compression rate of the tokenized representation decreases. We would expect that each individual
token becomes easier to predict in this less compressed representation. This would mean a less
expressive function is needed (smaller model size), but also a smaller number of examples would
need to be seen (smaller dataset size). It is less clear what ratios these ingredients decrease in, and
hence what effect a lower compression rate has on the optimal model size coefficient.

Using the small scale RT-1 dataset, we conduct a more thorough investigation of the effect of
tokens-per-image observation on scaling coefficients. First we train a range of image tokenizers
with zo ∈ [16, 36, 64, 100, 256], visualized in Appendix Figure 14. For each VQVAE, we then
train a range of WM-Token model sizes N ∈ [0.08M, 0.2M, 0.28M, 0.54M, 0.99M ], and measure
scaling coefficients using the frontier fit method, repeating three times.

Figure 10 plots all coefficient vs. tokens-per-image – we observe that the optimal parameter scaling
coefficient increases with decreasing compression.

102

Tokens per image

0.56

0.58

0.60

0.62

0.64

a 
w

he
re

 N
C

a

Efficient frontier method
Fit

Figure 10: RT-1 ex-
periments. Optimal
parameter coefficient
vs. number of to-
kens per observation,
with three repeated
runs per VQVAE.

To investigate whether compression affects the optimal model size coef-
ficient outside of embodied domains, we ran a small scale experiment in
language modeling using two text representations; 1) ASCII character-level
tokenization. (low compression) 2) GPT-2 tokenizer (high compression).
We used the BookCorpus dataset (Zhu et al., 2015), and trained models
past their compute-optimal point, so the Frontier fit method could be used
for coefficient estimation.

Appendix C shows results. Under the character-level tokenizer (low com-
pression), we find Noptimal ∝ C0.66. For the GPT-2 tokenizer (high com-
pression), we find Noptimal ∝ C0.44. Hence, in language the more com-
pressed representation also leads to a lower optimal model size coefficient.

6 DISCUSSION & CONCLUSION

This paper establishes a deeper understanding of scaling laws for world
modeling and behavior cloning, two tasks that underpin embodied AI ap-
plications in domains such as video games and robotics. Focusing on gen-
erative pre-training of such models, we show that it is possible to recover

scaling laws similar to those established for LLMs. Establishing this link is key to making efficient
use of available resources in training compute-optimal models.

In world modeling, we show models can be smoothly scaled following best practices and insights
from the LLM literature. We further establish that scaling coefficients are affected by the tokenizer’s
compression rate. In BC, the choice of architecture greatly impacts scaling coefficients. For archi-
tectures with tokenized image observations, dataset size should be increased much more rapidly
than model size. Meanwhile, for BC-CNN architectures, model size should be increased faster than
dataset size.

9



ICLR 2025 Workshop on World Models

REFERENCES

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. Proceedings of the National Academy of Sciences, 121(27):e2311878121, 2024.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,
2022.

Paul Bakker, Yasuo Kuniyoshi, et al. Robot see, robot do: An overview of robot imitation. In
AISB96 Workshop on Learning in Robots and Animals, volume 5, pp. 3–11, 1996.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X Lee, Maria Bauza,
Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, et al. Robocat: A self-improving
foundation agent for robotic manipulation. arXiv preprint arXiv:2306.11706, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative inter-
active environments. In Forty-first International Conference on Machine Learning, 2024.
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The appendix is organized as follows.

• Appendix A contains a related work section.

• Appendix B contains details on the training of the model configurations, hyperparameters,
and a description of the datasets used.

• Appendix C contains results from Section 5.3.

• Appendix D contains further details on training world models on robotics.

• Appendix E contains further results demonstrating the link between pre-training loss and
performance.

A RELATED WORK

Scaling laws origin. The term scaling laws is used throughout the engineering and physical sciences
to denote power law relationships between two quantities, e.g. duration of a volcanic eruption and
the probability of it continuing (Cannavò & Nunnari, 2016). The name derives from the scale-
invariant3 property of power laws. While early work suggested that power laws could be good
empirical descriptors of pre-training loss in deep learning (Hestness et al., 2017; Rosenfeld et al.,
2019), Kaplan et al. (2020) provided a comprehensive study of power laws in transformer LLMs,
and popularized the usage of scaling laws in this context.

Scaling laws in LLMs. As the real-world value of LLMs was understood, scaling in LLMs became
a high-priority research topic. Hoffmann et al. (2022) conducted a precise analysis into the trade-off
of model and dataset size, finding they should be increased in equal proportions. This conflicted with
the suggestion that model size should be prioritized Kaplan et al. (2020) – an incorrect conclusion
that Pearce & Song (2024) showed largely arose from counting only non-embedding parameters.

Many other aspects of LLM scaling analyses are beginning to be refined. Su et al. (2024) revisited
the methodology for finding scaling coefficients. Hägele et al. (2024) found that multiple indepen-
dent cosine schedules could be reproduced more efficiently through a constant learning rate with
multiple short decays, or stochastic weight averaging. Pearce & Song (2024) & Porian et al. (2024)
found that well-tuned constant learning rates were sufficient to recover certain coefficients. Bi et al.
(2024) study the effect of various hyperparameters on scaling. Muennighoff et al. (2024) looked
at repeated epochs, finding up to four epochs produce negligible departures from the infinite data
regime. Sardana & Frankle (2023) factored in inference compute to the definition of compute-
optimal. Isik et al. (2024) study the link between pre-training loss and downstream performance. A
further line of research aims to explain why power laws are such a good descriptor of empirical deep
learning (Hutter, 2021; Maloney et al., 2022; Bahri et al., 2024).

Scaling laws in image and video generation. Scaling laws have also been observed in auto-
regressive modeling of video and images Henighan et al. (2020); Tian et al. (2024). Henighan et al.
(2020) found the optimal trade off between model and dataset size to match their reported LLM
coefficient (Noptimal ∝ C0.7) and was not affected by tokenizer. Our experiments offer different
findings in the domain of world modeling – using updated methodologies to measure this trade-off,
we find it is affected by the tokenizer.

Scaling in embodied AI. Compared to LLMs, an understanding of scale in embodied settings is less
advanced. Early successes in competitive games showed that reinforcement learning (RL) at scale
could surpass human performance (Silver et al., 2017; Berner et al., 2019). In self-play RL, power
laws were observed between certain quantities by Neumann & Gros (2022). Meanwhile, Hilton et al.
(2023) noted that reward signals do not generally follow power laws, and defined a transformation
of reward (intrinsic performance) that create self-consistent scaling laws.

Inspired by the effectiveness of scaling in LLMs, embodied AI research has recently begun to ex-
plore the effectiveness of generative pre-training objectives on offline datasets, when executed at
scale. This includes behavior cloning objectives in video games (Baker et al., 2022; Raad et al.,
2024), robotics (Brohan et al., 2022; 2023; Padalkar et al., 2023; Bousmalis et al., 2023), or multiple

3For two variables x & y, the power law y = axb is invariant to scaling x by a constant c.
Formally: a(cx)b = cbaxb =⇒ cby = cbaxb =⇒ y = axb.
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domains (Reed et al., 2022), as well as world modeling objectives (Hu et al., 2023; Yang et al., 2023;
Bruce et al., 2024). In these studies, the benefit of scale is generally shown through increasing model
size on a specific downstream task of interest (e.g. measured by completion rate) – an aggregated
survey is provided by Sartor & Thompson (2024).

Tuyls et al. (2023) offer a valuable initial investigation into scaling laws for BC. They fit power laws
to both BC pre-training loss and online return, when scaling width of single-layer LSTM models
on datasets generated by fixed high-reward policies. We extend this line of investigation by study-
ing transformer models trained on datasets of human behavior, discovering effects of architecture
choices on scaling coefficients. In addition we study scaling laws in world models for the first time.

B SCALING EXPERIMENTS FURTHER DETAILS

This section provides experimental details for all experiments on the primary Bleeding Edge dataset.

B.1 HYPERPARAMETERS

We trained two VQGANs from scratch with reconstruction losses.

• BE-Small. Based on Esser et al. (2021), uses dz = 256, Vo = 4096, h = w = 128, with
28M parameters, and a CNN design. It was trained on a single SkyGarden Bleeding Edge
map.

• BE-Large. Based on Yu et al. (2022), uses dz = 540, Vo = 4096, h = 180, w = 300, with
150M parameters, and a vision transformer design. It was trained on all seven Bleeding
Edge maps.

We selected the numbers of tokens per image based on qualitative assessment of reconstructions. We
found that 256 tokens per image was the minimum that still allowed a reconstruction to capture the
majority of salient gameplay details. However certain details still were lacking, such as an enemy
player’s health bars – hence we also considered a 540 token version that provided a higher quality
reconstruction.

BC-CNN details. We use h = w = 128. The 0.6M paramter CNN is similar to that used by (Baker
et al., 2022), however it uses ConvNext blocks (Liu et al., 2022). The CNN produces an embedding
of size 1024 which is then put through a linear layer to obtain a vector matching the transformer’s
embedding dimension.

Transformer configurations are given in Table 2. We describe the parameters for the WM-Token
architecture. Note that MLP layers are four times the width of embed dim. Model configurations
roughly followed the model configurations used in Table A9 of Hoffmann et al. (2022), where resid-
ual stream dimension, number of layers, and number of heads were roughly increased proportionally.

Table 2: Transformer configurations. Here N is listed for the tokenized architectures. Parameter
count varies slightly for BC-CNN due to inclusion of the embedding CNN and differing numbers of
embedding parameters sizes.

N Layers Num heads Embed dim

2M 3 3 180
4M 4 4 240
11M 6 6 360
15M 4 4 512
27M 8 8 512
52M 10 10 640
110M 15 12 768
206M 16 16 1024
894M 23 14 1792
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B.2 TRAINING DETAILS

All transformers are trained with a variant of nanoGPT (Karpathy, 2022) using PyTorch Lightning
(Falcon & The PyTorch Lightning team, 2019).

This section lists key hyperparameters. Note that it was important to find optimization settings that
produced the lowest possible loss for a given model size. In general larger models require smaller
learning rates. Our approach first optimized the smallest model through a grid sweep, we would
then sequentially run a sweep over the next largest model, starting at the smaller model’s optimized
learning rate. Table 3-6 provide final settings.

Table 3: Hyperparameters for WM-Token with dz =256 tokens per image observation.

N Seq len Context length Tokens per update Learning rate

15M 10 2,720 522,240 0.0007
27M 10 2,720 522,240 0.0007
52M 10 2,720 522,240 0.0007
110M 10 2,720 522,240 0.0007
206M 10 2,720 522,240 0.00057
894M 10 2,720 2M 0.00028

Table 4: Hyperparameters for WM-Token with dz =540 tokens per image observation.

N Seq len Context length Tokens per update Learning rate

4M 10 5,560 533,760 0.005
11M 10 5,560 533,760 0.001
27M 10 5,560 533,760 0.001
52M 10 5,560 533,760 0.001
110M 10 5,560 533,760 0.0005
206M 10 5,560 533,760 0.0005

Table 5: Hyperparameters for BC-Token with dz =540 tokens per image observation.

N Seq len Context length Tokens per update Learning rate

2M 10 5,560 533,760 0.0005
4M 10 5,560 533,760 0.0005
11M 10 5,560 533,760 0.0001
27M 10 5,560 533,760 0.0001

Table 6: Hyperparameters for BC-CNN.

N Seq len Context length Items per update Learning rate

2M 10 10 2560 0.0003
3M 10 10 2560 0.0003
10M 10 10 2560 0.0003
26M 10 10 2560 0.0003
51M 10 10 2560 0.0003
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Figure 11: Example trajectories from a dataset of 8.6 years of human gameplay in the video game
Bleeding Edge across 7 maps.

B.3 DATASET DETAILS

Image observations were stored in MP4 format at 60fps, alongside binary files containing the asso-
ciated controller actions. A time code extracted from the game was stored for each frame, to ensure
actions and frames remained in sync at training time.

The 7 Maps dataset comprised 60,986 matches, yielding 530,713 individual player trajectories (each
around 9 minutes), totaling 27.89 TiB on disk. This amounted to around 8.6 years of gameplay. After
downsampling to 10Hz (the frequency models are trained on), this equated to 1.63B frames. This
was then divided into training / validation / test sets by dividing the matches with an 80:10:10 split.

Our filtered Sky Garden dataset used the same 80:10:10 split and 10Hz downsampling, but focused
on just one map, yielding 71,940 individual player trajectories, or 355.5M frames (around 1.12 years
of game play).

For discretizing the controller actions, while the buttons are natively discrete, we discretize the x
and y values of the left and right joysticks into eleven buckets.

B.3.1 INFINITE DATA REGIME ALLOWED FLOPS

We wish to study scaling in the infinite data regime, where training loss is not significantly effected
by models repeatedly training on the same datapoints which can lead to overfitting effects. This
section calculates the number of training tokens allowed for each model family trained in this work.
Viewing Figure 1 alongside these numbers confirms that models remain in the infinite data regime
for all our experiments.

WM-Token-540, BC-Token-540. We trained on the 7 maps dataset, with 1.63B observation-action
pairs. Models used the tokenized architecture with the large VQGAN, so each observation-action
pair creates 540 + 16 = 556 transformer inputs, for a total of 1.63B×556 = 906B training tokens.
Muennighoff et al. (2024) observe that tokens may be reused up to four times with negligible de-
parture from the infinite data regime. This produces 3.6T tokens. For a 200M parameter model the
compute allowed by the infinite data regime is C = 6ND = 6×200M×3.6T = 4.3×1021 FLOPs.

WM-Token-256. This is trained on the Sky Garden dataset, with 355M observation-action pairs.
Each pair is split into 256 + 16 = 272 tokens, for 97B training tokens, or 97B×4 = 386B effective
tokens. For a 200M parameter model the compute allowed by the ‘infinite data regime’ is C =
6ND = 6× 200M × 386B = 4.6× 1020 FLOPs.
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BC-CNN. Trained on 7 maps dataset, but now with one token per observation-action pair, this
creates a possible 1.63B × 4 = 6.52B effective tokens. A 50M parameter model uses C = 6ND =
6× 50M × 6.52B = 2.0× 1018 FLOPs.

C FURTHER ANALYSIS DETAILS

Experimental results supporting Section 5.3.
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Figure 12: Relating to Section 5.3, character-level (low compression). Utilising the frontier fit
(middle and right) we derive the power law coefficient for Noptimal as 0.66 and Doptimal as 0.34.
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Figure 13: Relating to Section 5.3, GPT-2 tokenizer (high compression). Utilising the frontier fit
(middle and right) we derive the power law coefficient for Noptimal as 0.44 and Doptimal as 0.56, an
increase from 0.66 in Figure 12 found when utilising a lower compression character-level tokenizer.
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D WORLD MODELING FOR ROBOTICS EXPERIMENTAL DETAILS

This section provides experimental details for WM experiments on the secondary RT-1 dataset.

D.1 DATASET

We resized the RT-1 dataset to 128x128 pixels per image. For action labels, we take the 3D
world_vector coordinates, combined with the 1D gripper_closedness_action vector,
to make an action vector with four dimensions. All are in the range -1 to 1, and these are discretized
into 500 evenly spaced buckets.

D.2 VQVAES

We trained a set of five VQVAEs using the implementation from https://github.com/
nadavbh12/VQ-VAE. We set zo ∈ [16, 36, 64, 100, 256] and Vo = 4096, training each VQVAE
for 40,000 updates on batches of 128. Reconstructions are visualized in Figure 14.

Figure 14: VQVAE reconstructions on the RT-1 dataset for differing numbers of tokens per obser-
vation, zo ∈ [16, 36, 64, 100, 256].

D.3 TRANSFORMER TRAINING DETAILS

Table 7 provides training details for the model sizes tested. Figure 15 shows one example set of
training curves per VQVAE.

Table 7: Hyperparameters for WM-Token in RT-1 experiments.

N Seq len Context length Tokens per update Learning rate

0.08M 2 2(zo + 4) 34,000 0.01
0.2M 2 2(zo + 4) 34,000 0.005
0.28M 2 2(zo + 4) 34,000 0.004
0.54M 2 2(zo + 4) 34,000 0.0027
0.99M 2 2(zo + 4) 34,000 0.002
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zo = 16, Noptimal ∝ C0.56, Noptimal ∝ D0.44
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zo = 36, Noptimal ∝ C0.60, Noptimal ∝ D0.40
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zo = 64, Noptimal ∝ C0.61, Noptimal ∝ D0.39
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zo = 100, Noptimal ∝ C0.60, Noptimal ∝ D0.40
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zo = 256, Noptimal ∝ C0.65, Noptimal ∝ D0.34
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Figure 15: RT-1 experiments. Note that the optimal parameter coefficient increases with the number
of tokens per observation.

E PRE-TRAINING LOSS VS. WORLD MODELING METRICS

This section presents evidence for pre-training loss correlating with WM performance. We use
metrics commonly used to assess the quality of the world models (Yang et al., 2023), originally
developed in the video generation literature. Conditioned on an initial real frame and a sequence of
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real actions, we compare the observations generated by a world model, with the real sequence of
observations, measuring FVD and LPIPS. Specifically, we generate 1024 videos each of 10 seconds.
We perform this for various checkpoints on each size in our WM-Token-256 set of models. This
allows a plot of the checkpoint pre-training loss vs video generation metric to be assessed.

Figure 16 shows results. We find correlations of 0.77, 0.83 for LPIPS and FVD respectively. Two
early checkpoints from the 894M model are the only significant anomalies to trend of metrics im-
proving with loss. This evidences the strong relationship between pre-training loss and world model
quality.
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Figure 16: Our experiments suggest pre-training loss is a good proxy for generation quality of the
world model, here FVD and LPIPS.
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