
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PARTINSTRUCT: PART-LEVEL INSTRUCTION FOLLOW-
ING FOR FINE-GRAINED ROBOT MANIPULATION

Anonymous authors
Paper under double-blind review

Pick up the bottle and
show me the cap

Grasp the left
body of the bottle

Move the bottle
upwards

Rotate the bottle so
the cap faces front

Figure 1: An example fine-grained robot manipulation task in PartInstruct. To successfully per-
form the task described in the instruction (e.g., showing the cap without occluding it), the robot
needs to reason about what object parts are relevant, ground the parts to its 3D visual perception,
and plan for a sequence of part-level manipulation skills (e.g., the bottom sequence).

ABSTRACT

Fine-grained robot manipulation, such as lifting and rotating a bottle to display the
label on the cap, requires robust reasoning about object parts and their relation-
ships with intended tasks. Despite recent advances in training general-purpose
robot manipulation policies guided by language instructions, there is a notable
lack of large-scale datasets for fine-grained manipulation tasks with part-level in-
structions and diverse 3D object instances annotated with part-level labels. In this
work, we introduce PartInstruct, the first large-scale benchmark for both train-
ing and evaluating fine-grained robot manipulation models using part-level in-
structions. PartInstruct comprises 513 object instances across 14 categories, each
annotated with part-level information, and 1302 fine-grained manipulation tasks
organized into 16 task classes. Our training set consists of over 10,000 expert
demonstrations synthesized in a 3D simulator, where each demonstration is paired
with a high-level task instruction, a chain of basic part-based skill instructions,
and ground-truth 3D information about the object and its parts. Additionally, we
designed a comprehensive test suite to evaluate the generalizability of learned
policies across new states, objects, and tasks. We evaluated several state-of-the-
art robot manipulation approaches including end-to-end vision-language policy
learning and bi-level planning models for robot manipulation on our benchmark.
The experimental results reveal that current models struggle to robustly ground
part concepts and predict actions in 3D space, and face challenges when manipu-
lating object parts in long-horizon tasks.

1 INTRODUCTION

There has been an increasing interest in training general-purpose vision-language policies for robot
manipulation guided by language instructions (Mees et al., 2022; Jiang et al., 2023; Zhang et al.,
2023; James et al., 2020; Rahmatizadeh et al., 2018; Zhang et al., 2018), particularly with the recent
advances in large generative models (Brohan et al., 2022; Team et al., 2024b). Prior works on
language-guided robot manipulation have been mainly focused on high-level manipulation tasks

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

involving simple objects (such as rearranging blocks). However, in the real world, robots often need
to perform fine-grained manipulation of diverse everyday objects, in which the robots need to not
only identify the target object but also understand and interact with specific parts of that object to
perform the intended task as instructed. For instance, to successfully perform the manipulation task
defined in the instruction as shown in Figure 1, the robot needs to identify crucial parts of the object
relevant to the task (such as the label on the cap of the bottle) and reason about a chain of basic
part-based skills that would lead to the desired goal state implied by the instruction, which is to
display the label clearly to the human user without occlusion.

Despite the importance of part-level perception and reasoning for robot manipulation, existing robot
manipulation benchmarks on instruction following lack comprehensive integration of part-level se-
mantics in both task instructions and object ground-truth annotations (e.g., James et al., 2020; Jiang
et al., 2023; Mees et al., 2022; Xiang et al., 2020b; Zhang et al., 2023). These benchmarks focus
on object instance-level manipulation tasks but do not include fine-grained, part-level manipulation
tasks like the example in Figure 1. There have been recent benchmarks that evaluate fine-grained,
part-level manipulation tasks, but they either lack language instructions (e.g., Mu et al., 2021; Geng
et al., 2023a) or do not provide training data for policy learning (e.g., Ding et al., 2024).

We introduce PartInstruct, the first large-scale benchmark for vision-language policy learning in
fine-grained robot manipulation with part-level semantics. Our core idea is to develop part-level
skills that enable robots to perform complex, fine-grained object manipulation tasks, including those
requiring long-horizon motion plans. To support this, we built PartGym, a robot manipulation sim-
ulator for part-level instruction following. Built on PartGym, PartInstruct provides a rich set of
3D object assets with detailed part annotations, along with a large-scale dataset of expert demon-
strations. Additionally, we developed a comprehensive evaluation suite consisting of five test sets,
each corresponding to a different type of generalization test. Together, these tests assess how well a
learned policy performs in unseen scenarios, including new states, objects, and tasks.

We evaluated multiple state-of-the-art vision-language policy learning methods designed for
language-guided robot manipulation. We also combined recent learning-based low-level action pol-
icy planning models and VLM-based high-level task planners to create strong bi-level planning
baselines for fine-grained manipulation tasks, which explicitly reasons object parts relevant to a task
and how to interact with them to achieve the final goal. Our experimental results demonstrate that
state-of-the-art methods still struggle with complex fine-grained manipulation tasks.

In summary, our main contribution includes (1) the first part-level instruction following benchmark
for both training and evaluating fine-grained robot manipulation models’ capacity for part-level
grounding, reasoning, and planning; (2) a large training dataset with diverse assets and detailed
annotations; (3) a comprehensive evaluation of state-of-the-art vision-language policy learning and
bi-level planning baselines, revealing limitations of current robot manipulation models.

2 RELATED WORK

2.1 INSTRUCTION FOLLOWING BENCHMARKS FOR TABLE-TOP ROBOT MANIPULATION

Early benchmarks like CALVIN (Mees et al., 2022), RLbench (James et al., 2020), and VIMAbench
(Jiang et al., 2023) focused on object-level manipulation but lacked part-level semantics. ManiSkill
(Mu et al., 2021), PartManip (Geng et al., 2023a), and Open6DOR (Ding et al., 2024) introduced
finer object part interactions, with Open6DOR incorporating spatial semantic instructions but rely-
ing on an oracle planner. Recent methods like Composable Part-based Manipulation (CPM) (Liu
et al., 2024), RoboPoint (Yuan et al., 2024), and SAGE (Geng et al., 2023b) emphasize precise part
interactions and semantic grasping, highlighting the need for detailed part-level understanding in
manipulation tasks.

2.2 VISION-LANGUAGE POLICIES FOR ROBOT MANIPULATION

Vision-language integration in robot manipulation has led to generalist policies like RT-1 (Brohan
et al., 2022), OpenVLA (Kim et al., 2024), and Octo (Team et al., 2024b), which leverage large-scale
vision-language models for versatile instruction execution. Key-pose-based methods, including Per-
Act (Shridhar et al., 2023), Act3D (Gervet et al., 2023), and RVT (Goyal et al., 2023; 2024), focus

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Rotate the mug for
its handle to face the
opposite direction

Reorient the front part
of the mug to face right

Grasp the mug by its
back

Reorient the right part
of the mug to face back

Grasp the handle of
the kettle Move to the right Release gripper

Push the bucket’s left
part, then release

Grasp the kettle
by its handle

Touch the bucket
by its left part

Grasp the mug by
its left part Release gripper

Figure 2: Example tasks and expert demonstrations in the dataset. Each task is defined by a task
instruction. Each demonstration is annotated with a chain of base skills and the corresponding
skill instructions (the instructions following the task instructions). Specifically, in this figure, the
demonstrations for the three tasks have 1, 3, and 5 annotated skill instructions respectively.

on identifying crucial poses to simplify manipulation. Diffusion-based frameworks such as DP (Chi
et al., 2023) and DP3 (Ze et al., 2024) employ DDPMs to model multimodal action distributions,
generating flexible and expressive robot actions.

2.3 ROBOT PLANNING WITH LLMS AND VLMS.

The integration of LLMs and Vision-Language Models has enhanced robotic planning by improving
understanding, reasoning, and task execution. TaPA (Wu et al., 2023) and LLM-Planner (Song et al.,
2023) decompose high-level instructions into actionable sub-tasks, while SayCan (Ahn et al., 2022)
grounds linguistic instructions in physical affordances to ensure feasible actions. These methods
enable robots to interpret and execute multi-step tasks through structured action planning.

3 PARTINSTRUCT BENCHMARK

3.1 PROBLEM SETUP

As shown in Figure 1, a natural language instruction Itask describes a part-level instruction following
task if it requires that a robot perform a fine-grained manipulation where the robot must interact
with a list of object parts in a certain manner to achieve the intended goal g. Critically, the relevant

Table 1: Comparison of PartInstruct with existing tabletop robot manipulation benchmarks based
on: the number of distinctive part-level instructions, the number of part labels, the number of fine-
grained part-level tasks, availability of training demonstrations, and whether these demonstrations
include part-level annotations such as 2D and 3D segmentation masks.

Name # Part Instruct # Parts # Part Tasks Demo 2D Part Mask 3D Part Mask

CALVIN 6 - 6 ! % %

RLbench 136 - 64 % % %

VIMAbench - - - ! % %

LoHoRavens - - - ! % %

ManiSkill (SAPIEN) - 14,068 - ! % %

PartManip - 8,489 1,432 % % %

Open6DOR 2,447 - 1,419 % % %

PartInstruct (ours) 4,043 4,653 1,302 ! ! !

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

RGB Depth Scene PCD Obj Mask Part Mask Part PCDObj PCD

Figure 3: PartGym supports multimodal observations, including RGB images, depth maps, and
scene point clouds (PCDs). It also provides object and part annotations, including object segmenta-
tions, 2D part segmentation for each object part (part mask), 3D object instance segmentation (obj
PCDs), and 3D part segmentations on point clouds (part PCDs) for each object.

Table 2: Definitions of base skills.

Skill Description
grasp obj(obj, part) Robot grasps obj at part.
move gripper(dir,
dis=UNIT,
grasping=false)

Robot moves gripper along dir dis.

rotate obj(obj,
part, dir)

Robot rotates obj, such that part is fac-
ing dir.

touch obj(obj, part) Robot touches obj at part.
release gripper(obj) Robot releases the gripper and moves

away from obj.

object parts and how the robot needs to interact with them are often not explicitly described in the
instructions. Thus the robot must learn to reason about relevant parts and plan how to manipulate
them to perform the task successfully. To define g, we first establish a set of goal predicates that
specify the states of the object, its parts, the robot’s end effector, and their relationships. For exam-
ple, ON (obj, part, surface) represents physical contact between an object part and a given surface;
FACING (obj, part, dir) indicates the orientation of an object part from a third-person perspective;
and GRASPING (obj, part) denotes a ”grasp” interaction between the object part and the robot’s end
effector. Given these goal predicates, each task goal is defined by a set of goal predicates. Examples
of tasks are presented in Table 3. In the task illustrated in Figure 1, the goal is represented by the
predicate set {GRASPING (bottle, ∼cap), FACING (bottle, cap, front), AT POSITION (bottle,
INIT POS+VEC(UP))}, where ∼cap is any part other than the cap. Note that some tasks consist of
multiple phases, where the next phase can only begin after completing the previous one, as the order
of interactions is crucial for these tasks. For full task definitions, refer to Appendix A.1.3.

To develop an embodied agent capable of executing tasks defined by g, we hypothesize that it would
be beneficial to start with a set of base skills that can be combined to handle a wide range of fine-
grained manipulation tasks. In particular, we consider five types of base skills: grasp part,
touch part, rotate obj, move gripper, and release gripper. As detailed in Table 2
and Appendix A.1.2, each skill is parameterized by (1) the object part it interacts with and the type
of interaction (e.g., touching or grasping), (2) the degree of rotation required for the part, and (3)
the distance and direction in which the gripper or object should be moved. This information is
summarized in a skill instruction Iskill associated with that skill. As illustrated in Figure 2, a task
given by an overall task instruction can be decomposed into a sequence of base skill executions.
We hypothesize that structuring fine-grained manipulation tasks into sequences of base skills can
facilitate the training of hierarchical planning models to compose complex plans with base skills for
long-horizon tasks that a end-to-end vision-language policy would struggle with.

3.2 SIMULATION ENVIRONMENT

To train and evaluate language-guided part-level manipulation models, we introduce PartGym, a re-
alistic robot simulator for fine-grained manipulation tasks requiring part-level understanding. Part-
Gym provides (1) rich 3D assets of everyday objects, (2) part-level 3D ground-truth annotations,
and (3) a large task set for fine-grained robot manipulation with natural language instructions. We
used Pybullet (Coumans & Bai, 2016–2021) as the backbone physics engine to simulate the physical

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 3: Example task instructions and goal states. Row A corresponds to the task illustrated in
Figure 1, while rows B to D correspond to the three tasks shown in Figure 2.

Task Instruction Goal States
A Rotate the part of the object to face

direction while lifting it
GRASPING(obj), FACING(part, dir),
AT POSITION(obj, POS INIT OBJ+VEC(UP))

B Grasp the object by the part GRASPING(gripper, part), ON(obj, table)

C Move the object to direction by
pushing it at the part, then free it

Phase1: TOUCHING(part),
AT POSITION(obj, POS INIT OBJ+VEC(dir))
Phase2: MIN DISTANCE(gripper, obj),
GRIPPER OPEN()

D Rotate the part of the object to face
the opposite direction

FACING(part, ∼DIR INIT(part)), ON(obj,
table)

interactions between a robot arm and different objects and their parts. Specifically, the environment
includes a 7-DoF Franka Emika Panda robot with a two-finger parallel gripper. Built upon the Part-
Net Mobility dataset (Xiang et al., 2020a; Mo et al., 2019; Chang et al., 2015), PartGym can simulate
manipulation tasks for 14 types of table-top everyday objects annotated with different part labels. In
total, there are 513 object instances and 4,653 part labels.

Observations. As shown in Figure 3, we provide multimodal observations for a robot, including
RGB images, depth maps, and scene point clouds. Additionally, we provide object and part annota-
tions. Lastly, proprioception robot states like joint states and end-effector poses are also available as
part of the observations.

Action Space. The Panda robot takes a 7D action vector at each step. The first 6 dimensions
represent the end-effector’s absolute Cartesian pose, parameterized by a 3D coordinate as well as
the roll, pitch, and yaw angles. The final dimension controls the gripper’s position.

We provide more details about PartGym in Appendix A.2.

3.3 DATASET

As mentioned in Section 3.1, each fine-grained manipulation task in PartInstruct is accompanied by
a natural language description of the overall task, referred to as the task instruction Itask. Addi-
tionally, we provide a sequence of skill instructions Iskill that specify the part-level manipulation
subgoals sg to complete the task. It is important to note that skill instructions are provided only
during training. For evaluation, models receive only the task instruction as the language input.

3.3.1 TASK CATEGORIES

PartInstruct has 16 task categories, —10 seen and 6 unseen—each requiring specific part-level in-
teractions. Some tasks involve direct part manipulation (e.g.“Hold the part of the object and shift it
in a certain direction”), requiring the agent to ground the part in visual data and predict necessary
actions. Other task categories require the agent to change the state of a part (e.g. “Rotate the object
such that a given part is facing a certain direction”), demanding inference of the final state of the
object part and indirect manipulation when needed.

In the 6 test task categories, we have also designed more challenging part-level manipulation tasks.
One focus is on long-horizon tasks that require the manipulation of multiple parts in sequence.
For instance, “Push the object toward [direction] while touching [part], lift the object by holding
[part], then rotate [part] to face [direction].” Another focus is on tasks that demand more complex
reasoning about parts, the environment, and their spatial relationships. For example, consider the
task, “Rotate a part of the object on the table so that it points to the opposite direction.” Here, instead
of explicitly naming the final state (e.g., a specific direction), the task requires the robot to have
additional knowledge about the current direction of a certain part, identify its opposite direction,
and manipulate the object so that the part points in that direction.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(1)
(2)

Figure 4: (1) Number of object instances in each object category; (2) Annotated parts grouped by
object categories. The horizontal axis stands for different part names and the vertical axis gives
different object categories. The value in the heatmap indicates the frequency of each part for an
object category in PartInstruct. A darker color shows a higher frequency. Spatial part names are
highlighted in light gray to distinguish them from semantic part names.

Table 4: Summary of the five test sets and the type of generalization each one addresses.

Test Set Type of Generalization

Test 1 (OS) Novel object positions and rotations
Test 2 (OI) Novel object instances within the same category
Test 3 (TP) Novel part combinations within the same task

categories
Test 4 (TC) Novel part-level manipulation task categories
Test 5 (OC) Novel object categories

3.3.2 TRAJECTORY GENERATION

We leverage a motion planner (use Breyer et al. (2021) for grasping point detection) with oracles
to generate a large-scale dataset of demonstrations for vision-language imitation learning. Each
demo contains an observation set with different modalities, an expert action trajectory, an overall
task instruction that describes the part-level manipulation task in natural language, as well as a
chain of skill instructions. See Figure 2 for several example episodes in PartInstruct. Each skill
level instruction contains zero or one part that the robot is manipulating with. PartInstruct includes
10,000 demonstrations for training and over 1,800 annotated episodes for testing. Object instance
distribution across object categories and the distribution of annotated parts for each object category
is shown in Figure 4.

3.3.3 EVALUATION PROTOCOL

Each task defined in Section 3.1 has a binary success criterion. A task is considered complete when
every action predicate in its defined predicate set has been satisfied. To systematically evaluate
the performance of the learned policy, we designed a five-level evaluation protocol (see Table 4).
Each test set evaluates a policy in one type of generalization condition. Specifically, they focus on
generalizability over object initial states (OS), novel object instances (OI), novel part combinations
in the same task type (TP), novel task categories (TC), and novel object categories (OC). Detailed
visualization can be viewed in Appendix A.2.4.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

RGB Image Point Cloud

Robot States Part Seg

Env

Low-Level Action
Policy

Pour out the water in the mug,
then put it back on table

Grasp the mug by its handle

Skill Instruction

Human Instruction

High-Level Task
Planner

Actions

RGB+Robot State

Selected Obs

Observation

Figure 5: Overview of the bi-level planning framework. The High-Level Task Planner generates a
skill instruction as a subgoal for the low-level action policy based on the task instruction and the
current observation. Given the subgoal described in the skill instruction, the low-level action policy
then generates actions for achieving that subgoal. The high-level task planner updates the skill
instruction once every n steps, while the low-level action policy updates the action at every step.

4 EXPERIMENTS

To achieve general-purpose robot manipulation, there have been two common types of approaches:
(1) end-to-end policy learning that directly maps observation and instruction to actions (e.g., Zare
et al., 2024; Florence et al., 2019; Mandlekar et al., 2020; Rahmatizadeh et al., 2018; Team et al.,
2024b; Gervet et al., 2023; Goyal et al., 2024; Chi et al., 2023; Ze et al., 2024) and (2) bi-level
planning that first generates high-level plans (typically subgoals), then compute and execute the low-
level action plans to achieve the subgoals (e.g., Wu et al., 2023; Song et al., 2023; Ahn et al., 2022;
Geng et al., 2023b; Wong et al., 2023). In our benchmark, we evaluate both types of approaches.

4.1 END-TO-END POLICY LEARNING

4.1.1 BASELINES

We evaluate the following state-of-the-art end-to-end robot manipulation policy learning methods:

Octo (Team et al., 2024b) is a transformer-based generalist robot policy pretrained in diverse large-
scale robotic episodes.

Act3D (Gervet et al., 2023) is a 3D feature field transformer for multi-task 6-DoF robotic manipu-
lation. Unlike Octo, it employs a key-frame-based approach to complete tasks. During a rollout, the
Act3D policy is used to predict the next key pose, which is then executed by commanding the robot
to the target key pose using a motion planner.

RVT2 (Goyal et al., 2024) is a multi-task transformer-based 3D manipulation model. Similar to
Act3D, it also applies key-frame based manipulation.

Diffusion Policy (DP) (Chi et al., 2023) represents a visuomotor policy as a conditional denois-
ing diffusion process in the action space, which allows it to effectively handle multimodal action
distributions and high-dimensional action sequences.

3D Diffusion Policy (DP3) (Ze et al., 2024) combines 3D visual representations with diffusion-
based policies, leveraging compact 3D point cloud data for efficient visuomotor policy learning.

Note that the original DP and DP3 models do not support language instruction inputs. To fit the setup
of PartInstruct, we modify them to incorporate language inputs. Specifically, we use a pre-trained
T5 language encoder to get the language embedding (Raffel et al., 2020). The embedding is then
concatenated with other features and used as the observation condition for the denoising process.

We trained the baselines DP, DP3, Act3D, and RVT2 from scratch and fine-tuned the pretrained
baseline Octo on our training data. Our hypothesis is that fine-tuning Octo will improve its perfor-
mance on our benchmark by leveraging its large-scale pretraining on Open X-Embodiment (et al.,
2024). The implementation details can be found in Appendix A.4.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

End-to-End Bi-Level0

5

10

15

20

25

30

35

Su
cc

es
s

Ra
te

 (
%

)

Average Success Rate

Octo
Act3D
RVT2
DP
DP3

GPT4o+DP3-S
Gemini-1.5 Flash+DP3-S
Gemini-2.0 Flash+DP3-S

Figure 6: Success Rates of all baselines. The left group represents end-to-end learning policies,
while the right group corresponds to bi-level planning models. Error bars denote the standard errors
calculated across all evaluation rollouts.

4.1.2 RESULTS

To evaluate each learned policy, we follow the common practice outlined in recent works (Jiang
et al., 2023; Chi et al., 2023; Ze et al., 2024). Specifically, we select the top two checkpoints for
each baseline and conduct approximately 20 rollouts per object class across all test splits, resulting
in over 1,000 rollouts per baseline. We report the Success Rate (SR, %) for all end-to-end policy
baselines in the left part of Figure 6 and in the top block of Table 5. The low success rate across all
baselines suggests that it remains challenging to train an end-to-end generalist policy for fine-grained
object manipulation tasks given part-level instructions. They particularly struggle with long-horizon
tasks (Test 4) and generalizing to unseen object types (Test 5).

Table 5: Success Rates (%) of baselines across all test sets. The top block includes end-to-end policy
learning baselines, and the bottom block includes bi-level planning baselines. The best results are
highlighted in blue.

Baselines OS OI TP TC OC All
End-to-End Policy Learning
Octo 1.82±1.3 0.0 0.91±0.1 0.0 3.33±3.2 1.11±1.5

Act3D 6.25±1.8 5.68±1.7 4.55±1.6 0.0 2.08±2.1 3.88±1.8

RVT2 4.55±2.0 4.55±2.0 6.36±2.3 0.91±0.9 3.33±3.3 4.04±2.1

DP 7.27±1.8 8.64±1.9 8.18±1.8 3.75±2.1 6.67±3.2 5.96±2.2

DP3 23.18±2.8 23.18±2.8 18.18±2.6 7.73±1.8 6.67±3.2 15.40±2.6

Bi-Level Planning
GPT4o+DP3 33.64±3.2 32.73±3.2 25.91±3.0 10.00±2.0 23.33±5.5 25.12±3.4

Gemini-1.5 Flash+DP3 30.48±4.5 25.45±4.2 27.62±4.4 1.82±1.8 26.67±8.1 22.41±4.6

Gemini-2.0 Flash+DP3 40.58±4.2 34.56±4.1 33.33±4.1 11.90±2.9 38.24±8.3 31.72±4.7

4.2 BI-LEVEL PLANNING

4.2.1 BASELINES

We hypothesize that it would be easier to train action policies with skill instruction annotations
compared to directly training a policy for the whole task. Such low-level action policies can then
be combined with a high-level planner that generates skill instructions given a task instruction to
solve the manipulation task intended by the user. To evaluate the efficacy of bi-level planning on our
benchmark, we extend common bi-level planning frameworks (e.g., Geng et al. (2023b)) as shown

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Performance of low-level action policies when paired with ground-truth high-level plans.

Baselines OS OI TP TC OC All
Octo 3.64 5.50 5.90 0.00 6.67 4.34
Act3D 0.45 2.80 3.33 0.00 0.00 1.32
RVT2 1.82 3.64 1.82 0.00 3.33 1.91
DP 6.47 11.42 16.53 0.06 6.94 8.28
DP3 19.34 13.61 17.89 0.00 12.08 12.58
DP-S 20.00 16.36 25.45 0.00 6.67 13.70
DP3-S 23.64 29.09 23.64 1.82 26.67 20.97

in Figure 5. Specifically, the bi-level planner consists of two modules: (1) a high-level task planner
and (2) a low-level action policy. We describe each module below.

High-level Task Planner. We leverage a VLM for high-level task planning. At step t, we prompt the
VLM with the task instruction Itask to generate the skill instruction for the current step as the subgoal
sgt, i.e., πVLM(sgt|ot, Itask), where ot is the observation at step t. We constrain the skill instructions
to the space of base skills defined in Table 2 and Appendix A.1.2, which is also specified in the
prompt for the VLM. To facilitate decision-making, we also provide additional observations when
prompting the VLM, such as RGB images, robot states, etc. See Appendix A.4.3 for the detailed
prompt. sgt will be passed to the low-level action policy for execution and will be updated every n
step. Here, n is estimated by the typical length of a skill execution in the training set.

Low-level Action Policy. The low-level action policy is a vision-language policy that generates
low-level manipulation actions based on a subgoal and the current observation, i.e., π(at|ot, sgt),
where at is the action at step t. We can train such policies using the skill instructions annotated for
training demonstrations in our dataset. We trained the end-to-end policy learning models evaluated
in Section 4.1 on skill instructions as low-level action policies.

Additionally, we hypothesize that an explicit visual understanding of object parts can facilitate part-
level instruction grounding. A general vision presentation containing all parts is difficult to obtain
since object parts can be overlapped with each other. However, given our benchmark setup as
described in Section 3.3.2, the robot interacts with at most one part for the subgoal sgt defined in
each skill instruction, making it possible to give additional vision inputs about the target object part
to the low-level action policies. We select the best-performing end-to-end policy learning baselines,
DP and DP3, to train the low-level action policies with object part segmentation as part of the input.

For DP, we provide a part segmentation mask as an extra vision input. Given the advanced capability
of current general-purpose segmentation models like Segment Anything Model 2 (SAM 2) (Ravi
et al., 2024a) in segmenting and tracking object parts, we adopt the approach of Grounded-SAM-2
(Ren et al., 2024). Specifically, given an RGB image and language input, we first utilize a VLM,
e.g. Florence-2 (Ravi et al., 2024b) to ground the language onto the target part, then prompt SAM
2 to generate segmentation masks and track the object part in real-time. At each step, we add the
obtained part segmentation mask as an extra channel on top of the original RGB, make the input a
4-channel image. We refer to this model as DP-S.

For DP3, we use a part point cloud as an additional vision input. Since there has not been a general-
purpose object part segmentation model on 3D point cloud (Sun et al., 2024; Sarker et al., 2024), we
obtain the 3D part segmentation using a lift-to-3D method. In detail, we first apply the same method
in DP to obtain a 2D part mask tracked using SAM2. We then lift the 2D mask into 3D with the
depth map and camera intrinsics. To represent a 3D part mask, we append a binary mask channel to
the original point cloud observation. We refer to this action policy as DP3-S.

The implementation details of bi-level planning baselines can be found in Appendix A.4.3.

4.2.2 RESULTS

We adopt the same evaluation protocol described in Section 4.1.2 for bi-level planning baselines. To
evaluate different low-level action policies without considering the effect of high-level task planners,
we first pair each low-level action policy with ground-truth skill instructions. As shown in Table 6,
DP3-S has the highest success rate across all test sets.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Given this result, we then adopt DP3-S as the low-level action policy and pair it with different high-
level planners to create bi-level planning baselines. The results are reported in the right part of
Figure 6 and the bottom block of Table 5. We can see from the results that the bi-level planning
baselines outperform the end-to-end learning in every test set by a large margin. This demonstrates
the effectiveness of training a separate low-level action policy for base skills and using VLM as
high-level task planner. Among all high-level planning baselines, Gemini-2.0 Flash paired with
DP3-S performs the best. However, bi-level planning still struggles with many tasks, particularly
when the tasks require longer chains of base skills (e.g., Test 4). In these longer-horizon tasks, there
is a higher chance for the high-level task planner to make mistakes. Errors from the low-level action
policy are also more likely to be accumulated.

4.3 ABLATION STUDIES

In Section 4.2, we demonstrate that bi-level planning models with low-level action policies informed
by part segmentation perform significantly better than state-of-the-art end-to-end policies. To eval-
uate the effect of each component of the high-level planning models, we conduct the following
ablation studies.

Table 7: Impact of high-level task planners on bi-level planning models. We pair each high-level
task planner with an oracle motion planner to execute the skill instructions.

Baselines OS OI TP TC OC All
GPT4o 33.12 32.42 34.14 14.42 42.13 31.25
Gemini-1.5 Flash 20.41 19.07 19.36 0.15 29.24 17.65
Gemini-2.0 Flash 27.73 25.94 26.75 0.00 32.70 22.62

4.3.1 EFFECTS OF HIGH-LEVEL PLANNERS

To evaluate different VLMs as high-level planners, we build bi-level planners by combining each
VLM with an oracle motion planner—the same one used for training demonstrations—to execute
the generated skill instructions. Unlike the full bi-level planning baselines where skill instructions
update at fixed intervals, here the oracle planner determines when a subgoal is reached, prompting
the high-level planner to issue the next instruction only upon subgoal completion.

Table 7 shows that the bi-level planner using GPT-4o as the high-level task planner improves perfor-
mance compared to Table 5 when paired with an oracle low-level planner. In contrast, Gemini-based
planners perform worse with an oracle, likely because the oracle completes an incorrect skill instruc-
tion before Gemini can update it. In such cases, Gemini-based high-level task planners struggle with
recovering mistakes made in the previous steps. In contrast, an incorrect skill instruction often leads
to the robot arm being stuck in a pose when a learned low-level action policy is trying to perform it.

Table 8: Impact of various vision inputs on low-level action policies. We pair low-level action
policies using different vision inputs with ground-truth high-level plans.

Baselines OS OI TP TC OC All
DP 6.47 11.42 16.53 0.06 6.94 8.28
DP-S GT 15.45 20.91 26.36 0.91 13.33 15.39
DP-S SAM2 20.00 16.36 25.45 0.00 6.67 13.70

DP3 19.34 13.61 17.89 0.00 12.08 12.98
DP3-S GT 45.45 36.36 36.36 1.82 40.00 32.00
DP3-S SAM2 23.64 29.09 23.64 1.82 26.67 20.97

4.3.2 EFFECTS OF DIFFERENT VISUAL INPUTS

To examine the impact of different visual representations, particularly 2D and 3D part masks, on
policy learning, we conduct another ablation study, where we evaluate the low-level action poli-
cies with various visual inputs. Specifically, in addition to DP-S SAM2 and DP3-S SAM2, we also
trained low-level action policies using ground-truth mask information, DP-S GT and DP3-S GT, as
well as the vanilla models without any part-level mask, DP and DP3. The results are summarized

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

in Table 8. With part segmentations, either 2D or 3D, the low-level action policies can achieve sig-
nificantly better performance. The performance gap between the policies trained with ground-truth
part segmentation and SAM2-based part segmentation also suggests that there improvement in both
the VLM’s ability to ground fine-grained parts and in the capacity of state-of-the-art segmentation
methods to accurately segment object parts.

4.4 ANALYSIS

4.5 POLICY PERFORMANCE ON PART-LEVEL TASKS

Current vision-language policies perform well on object-level tasks and can follow simple com-
mands such as “grasp” or “touch”. However, they struggle with precise part-level instructions like
“touch the left part”, which require fine-grained spatial reasoning. Zero-shot inference using pre-
trained generalist policies fails to achieve success (see Appendix A.4.2), likely because these models
have not been trained with detailed part-level data. Our dataset and PartGym simulator are valuable
because they provide the detailed part annotations and fine-grained tasks for effective training.

4.6 CHALLENGES IN PART-LEVEL INSTRUCTION FOLLOWING

The PartInstruct benchmark shows that part-level instruction following is particularly challenging
for state-of-the-art vision-language policies. These models must recognize and track object parts
despite variations in appearance—for example, a “lid” may look different on a bottle, pot, stapler, or
mug. Moreover, task instructions often do not specify which parts to interact with, forcing the policy
to infer the target, while fine-grained tasks demand higher precision and detailed spatial awareness.

Bi-level planning helps address these challenges by decomposing complex tasks into simpler sub-
goals that each focus on a single object part. This approach simplifies the training of low-level action
policies by reducing the need to track dynamic part-level details and enables the use of pretrained
vision-language models for high-level reasoning and planning. Robust visual representations are
also crucial for fine-grained manipulation. Our ablation study reveals that 3D representations, such
as point clouds, are more effective than 2D images because they provide precise shape and loca-
tion information. Additionally, explicit object part segmentation—particularly in 3D—significantly
boosts performance, with DP3-S outperforming DP3 by approximately 20% (see Table 8).

5 CONCLUSION

In this work, we introduced PartInstruct, a large-scale benchmark designed to advance fine-grained
robot manipulation using part-level instructions. By curating a diverse set of objects, tasks, and
expert demonstrations, PartInstruct provides a foundation for training and evaluating robot manip-
ulation models that require reasoning about object parts and their relationships with tasks. Our
evaluations of state-of-the-art models highlight critical challenges in grounding part concepts and
executing long-horizon tasks. With comprehensive experiments, our work provides key insights for
future research, highlighting the need for further innovation in perception, reasoning, and planning
to enable robots to effectively perform fine-grained, part-aware manipulation.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Michel Breyer, Jen Jen Chung, Lionel Ott, Roland Siegwart, and Juan Nieto. Volumetric grasping
network: Real-time 6 dof grasp detection in clutter. In Conference on Robot Learning, pp. 1602–
1611. PMLR, 2021.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2021.

Yufei Ding, Haoran Geng, Chaoyi Xu, Xiaomeng Fang, Jiazhao Zhang, Songlin Wei, Qiyu Dai,
Zhizheng Zhang, and He Wang. Open6dor: Benchmarking open-instruction 6-dof object rear-
rangement and a vlm-based approach. In First Vision and Language for Autonomous Driving and
Robotics Workshop, 2024.

Embodiment Collaboration et al. Open x-embodiment: Robotic learning datasets and rt-x models,
2024. URL https://arxiv.org/abs/2310.08864.

Peter Florence, Lucas Manuelli, and Russ Tedrake. Self-supervised correspondence in visuomotor
policy learning. IEEE Robotics and Automation Letters, 5(2):492–499, 2019.

Haoran Geng, Ziming Li, Yiran Geng, Jiayi Chen, Hao Dong, and He Wang. Partmanip: Learning
cross-category generalizable part manipulation policy from point cloud observations. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2978–2988,
2023a.

Haoran Geng, Songlin Wei, Congyue Deng, Bokui Shen, He Wang, and Leonidas Guibas. Sage:
Bridging semantic and actionable parts for generalizable articulated-object manipulation under
language instructions. arXiv preprint arXiv:2312.01307, 2023b.

Theophile Gervet, Zhou Xian, Nikolaos Gkanatsios, and Katerina Fragkiadaki. Act3d: 3d feature
field transformers for multi-task robotic manipulation. In 7th Annual Conference on Robot Learn-
ing, 2023.

Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter Fox. Rvt: Robotic view
transformer for 3d object manipulation. In Conference on Robot Learning, pp. 694–710. PMLR,
2023.

Ankit Goyal, Valts Blukis, Jie Xu, Yijie Guo, Yu-Wei Chao, and Dieter Fox. Rvt-2: Learning precise
manipulation from few demonstrations. arXiv preprint arXiv:2406.08545, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Raisa Islam and Owana Marzia Moushi. Gpt-4o: The cutting-edge advancement in multimodal llm.
Authorea Preprints, 2024.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 5(2):3019–
3026, 2020.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: Robot manipulation with multimodal
prompts. 2023.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Weiyu Liu, Jiayuan Mao, Joy Hsu, Tucker Hermans, Animesh Garg, and Jiajun Wu. Composable
part-based manipulation. arXiv preprint arXiv:2405.05876, 2024.

12

http://pybullet.org
https://arxiv.org/abs/2310.08864

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ajay Mandlekar, Danfei Xu, Roberto Martı́n-Martı́n, Silvio Savarese, and Li Fei-Fei. Learn-
ing to generalize across long-horizon tasks from human demonstrations. arXiv preprint
arXiv:2003.06085, 2020.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics
and Automation Letters, 7(3):7327–7334, 2022.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao
Su. PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object
understanding. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhi-
wei Jia, and Hao Su. Maniskill: Generalizable manipulation skill benchmark with large-scale
demonstrations. arXiv preprint arXiv:2107.14483, 2021.

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space, 2017. URL https://arxiv.org/abs/1706.
02413.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Bölöni, and Sergey Levine. Vision-based
multi-task manipulation for inexpensive robots using end-to-end learning from demonstration. In
2018 IEEE international conference on robotics and automation (ICRA), pp. 3758–3765. IEEE,
2018.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos. arXiv preprint arXiv:2408.00714,
2024a. URL https://arxiv.org/abs/2408.00714.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos, 2024b. URL https://arxiv.
org/abs/2408.00714.

Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
Yukang Chen, Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang, Hongyang Li, Qing
Jiang, and Lei Zhang. Grounded sam: Assembling open-world models for diverse visual tasks,
2024. URL https://arxiv.org/abs/2401.14159.

Sushmita Sarker, Prithul Sarker, Gunner Stone, Ryan Gorman, Alireza Tavakkoli, George Bebis,
and Javad Sattarvand. A comprehensive overview of deep learning techniques for 3d point cloud
classification and semantic segmentation. Machine Vision and Applications, 35(4):67, 2024.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Conference on Robot Learning, pp. 785–799. PMLR, 2023.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2998–3009,
2023.

13

https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2401.14159

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuliang Sun, Xudong Zhang, and Yongwei Miao. A review of point cloud segmentation for under-
standing 3d indoor scenes. Visual Intelligence, 2(1):14, 2024.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024a.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024b.

Lionel Wong, Jiayuan Mao, Pratyusha Sharma, Zachary S Siegel, Jiahai Feng, Noa Korneev,
Joshua B Tenenbaum, and Jacob Andreas. Learning adaptive planning representations with natu-
ral language guidance. arXiv preprint arXiv:2312.08566, 2023.

Zhenyu Wu, Ziwei Wang, Xiuwei Xu, Jiwen Lu, and Haibin Yan. Embodied task planning with
large language models. arXiv preprint arXiv:2307.01848, 2023.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. SAPIEN: A
simulated part-based interactive environment. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020a.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11097–
11107, 2020b.

Wentao Yuan, Jiafei Duan, Valts Blukis, Wilbert Pumacay, Ranjay Krishna, Adithyavairavan Murali,
Arsalan Mousavian, and Dieter Fox. Robopoint: A vision-language model for spatial affordance
prediction for robotics. arXiv preprint arXiv:2406.10721, 2024.

Maryam Zare, Parham M Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation
learning: Algorithms, recent developments, and challenges. IEEE Transactions on Cybernetics,
2024.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy. arXiv preprint arXiv:2403.03954, 2024.

Shengqiang Zhang, Philipp Wicke, Lütfi Kerem Şenel, Luis Figueredo, Abdeldjallil Naceri,
Sami Haddadin, Barbara Plank, and Hinrich Schütze. Lohoravens: A long-horizon language-
conditioned benchmark for robotic tabletop manipulation. arXiv preprint arXiv:2310.12020,
2023.

Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and Pieter Abbeel.
Deep imitation learning for complex manipulation tasks from virtual reality teleoperation. In
2018 IEEE international conference on robotics and automation (ICRA), pp. 5628–5635. IEEE,
2018.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PDDL DEFINITIONS

A.1.1 PREDICATE DEFINITIONS

This subsection gives the definition of the basic predicates utilized by the motion planner.

Table 9: Definition of Predicates

Predicate Description
ON(obj, part,
contact)

Whether obj is on the
contact.

TOUCHING(obj,
part)

Whether the gripper is in
contact with obj at part;
part can be empty to indi-
cate a general touch on any
parts.

GRASPING(obj,
part)

Whether the gripper is carry-
ing obj at part; part can
be empty to indicate a gen-
eral grasp with any parts.

FACING(obj,
part, dir)

Whether part of obj is
facing or pointing dir.

AT POSITION(obj,
pos)

Whether obj is at position
pos = [x,y,z].

A.1.2 SKILL DEFINITIONS

This subsection shows the detailed definition of the five skills.

Table 10: Definition of Base Skills

Skill Description Preconditions Effects
grasp obj(obj,
part)

Robot grasps obj
at part.

ON(table, obj);
∼GRASPING(obj);
∼TOUCHING(obj)

GRASPING(obj,
part)

move gripper
(dir,dis=UNIT,
grasping=false)

Robot moves
gripper along dir
dis.

If grasping==True:
GRASPING(obj)

AT POSITION(
gripper,
last gripper pos
+
vec(dir)×dis);
If grasping==True:
GRASPING(obj)

rotate obj(obj,
part, dir)

Robot rotates
obj, such that
part is facing dir.

GRASPING(obj) GRASPING(obj);
FACING(part,
dir)

touch obj(obj,
part)

Robot touches
obj at part.

ON(table, obj);
∼GRASPING(obj);
∼TOUCHING(obj)

TOUCHING(obj,
part)

release gripper
(obj)

Robot releases
the gripper and
moves away
from obj.

ON(table, obj);
GRASPING(obj)
or
TOUCHING(obj)

ON(table, obj);
∼GRASPING(obj);
∼TOUCHING(obj)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.1.3 TASK DEFINITIONS

This subsection shows the detailed definition of different task types in PartInstruct.

Table 11: Seen Task Instructions and Goal States

Seen (10)
Order Example Task Instruction Goal States
1 Grasp the object by the part GRASPING(gripper, part), ON(obj, table)

2 Touch the object at the part TOUCHING(part), ON(obj, table)

3 Hold the part of the object
and move it to direction

GRASPING(part), AT POSITION(obj,
POS INIT OBJ+VEC(dir))

4 Push the object towards di-
rection by touching part

TOUCHING(part), AT POSITION(obj, POS INIT OBJ
+VEC(dir))

5 Slide the object on the ta-
ble towards direction while
keeping hold of part, then
release it

Phase1: GRASPING(part),
AT POSITION(obj, POS INIT OBJ+VEC(dir))
Phase2: GRIPPER OPEN, MIN DISTANCE(gripper,
obj)

6 Move the object to direc-
tion by pushing it at part,
then free it

Phase1: TOUCHING(part),
AT POSITION(obj, POS INIT OBJ+VEC(dir))
Phase2: GRIPPER OPEN, MIN DISTANCE(gripper,
obj)

7 While keeping hold of part,
move the object towards di-
rection in the air

GRASPING(part), AT POSITION(obj, POS INIT OBJ
+VEC(dir)+VEC(UP))

8 Rotate part of the object to
face direction while lifting
it

GRASPING(obj), FACING(part, dir),
AT POSITION(obj, POS INIT OBJ+VEC(UP))

9 Move the object towards
direction after raising it,
while keeping hold of part,
then put it down

Phase1: GRASPING(part), AT POSITION(obj,
POS INIT OBJ+VEC(dir)+VEC(UP))
Phase2: GRASPING(part), AT POSITION(obj,
POS INIT OBJ+VEC(dir))

10 Move the object towards di-
rection1 in the air, then ro-
tate part to point towards
direction2

GRASPING(obj), AT POSITION(obj,
POS INIT OBJ+VEC(UP)+VEC(dir1)), FACING(part,
dir2)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 12: Unseen Task Instructions and Goal States

Unseen (6)
Order Example Task Instruction Goal States
11 Rotate part in the air so it points

towards direction, then put it
down

Phase1: GRASPING(obj), FACING(part, dir),
AT POSITION(obj, POS INIT OBJ+VEC(UP))
Phase2: GRASPING(obj), FACING(part, dir),
AT POSITION(obj, POS INIT OBJ)

12 Shift the object towards direc-
tion1 in the air while grasping
part1, turn part2 to direction2,
then set it down

Phase1: GRASPING(part1), FACING(part, dir),
AT POSITION(obj,POS INIT OBJ+VEC(dir1)
+VEC(UP))
Phase2: GRASPING(part1), FACING(part, dir),
AT POSITION(obj, POS INIT OBJ+VEC(dir1))

13 Turn part of the object to point
to direction1 while keeping it
on the table, then push it to-
wards direction2

Phase1: ON(obj, table), FACING(part, dir1);
Phase2: ON(obj, table), AT POSITION(obj,
POS INIT OBJ+VEC(dir2))

14 While keeping it on the ta-
ble, push the object towards di-
rection1 while touching part1,
then rotate part2 to face direc-
tion2

Phase1: ON(obj, table), TOUCHING(part1),
AT POSITION(obj, POS INIT OBJ+VEC(dir1))
Phase2: ON(obj, table), FACING(part2, dir2)

15 Rotate part of the object to face
the opposite direction

FACING(part, ∼DIR INIT(part)), ON(obj,
table)

16 Push the object to direction1
and rotate part to point to-
wards direction2 in the air, fi-
nally place it down

Phase1: FACING(part, dir2),
AT POSITION(obj,POS INIT OBJ+ VEC(dir1)+
VEC(UP))
Phase2: FACING(part, dir2),
AT POSITION(obj,POS INIT OBJ+VEC(dir1))

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.2 BENCHMARK

A.2.1 OBSERVATION AND ACTION SPACE

Table 13 shows the observation and action space available in PartGym.

Table 13: Observation and Action Space details.

Observation Space

Static View - RGB 300× 300× 3
Static View - Depth 300× 300
Static View - PCD 3× 1024
Static View - Semantic 300× 300
Static View - Traget Part PCD 3× 1024
Static View - Traget Part Mask 300× 300
Wrist View - RGB 300× 300× 3
Wrist View - Depth 300× 300
Wrist View - PCD 3× 1024
Wrist View - Semantic 300× 300
Wrist View - Traget Part Mask 300× 300
Wrist View - Traget Part PCD 3× 1024
Proprioceptive state EE position (3)

EE orientation (3)
Joint positions (7)
Gripper action (1)

Action Space

Absolute cartesian pose (w.r.t. world frame) EE position (3)
EE orientation (3)
Gripper action (1)

A.2.2 TABLE-TOP OBJECTS IN PARTGYM

PartGym provides in total 513 object instances across 14 categories. Some objects and their textures
are shown in Figure 7.

Figure 7: Different object instances in PartGym.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

RGB

Semantic

Touch the mug at
its left

Push the mug to the right,
then rotate it so that the
bottom faces to the left. Move to the right

Grasp the mug at its
left

Reorient the top of
the mug to face right

Part Mask

Depth

Scene PCD

Part PCD

Figure 8: Different visual modalities in PartGym.

A.2.3 DETAILS OF PARTGYM

The aim of PartGym is to boost embodied AI research related to interaction with table-top object
parts. PartGym support real-time rendering of different visual modalities (see Figure 8). In addi-
tional to the typical modalities like RGB, depth and object segmentation, PartGym also provides
part-related visions like part masks and part point cloud, including spatial parts and semantic parts
of an object. These part-related vision modalities are renderred by PyBullet (Coumans & Bai, 2016–
2021) simulation engine using the ground-truth part assets given by PartNet Mobility (Xiang et al.,
2020a; Mo et al., 2019; Chang et al., 2015).

Additionally, PartGym provides a framework to implement bi-level planning models for part-level
manipulation tasks in simulation environments. It provides a template skill instruction generator, an
oracle skill execution checker, as well as a systematical way to render part-related modalities shown
in any skill instruction.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.2.4 VISUALIZATION OF DIFFERENT TEST SPLITS

We provide the visualization of all 5 test sets in this section.

Figure 9: Left: Training set. Right: Test 1(OS).

Figure 10: Left: Training set. Right: Test 2(OI).

Figure 11: Above: Training set. Below: Test 3(TP).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 12: Above: Training set. Below: Test 4(TC).

Figure 13: Left: Training set. Right: Test 5(OC).

A.2.5 STATISTICS OF PARTINSTRUCT EPISODES

We provided detailed statistics about parts within each object type.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Top Righ
t

Lef
t Lid Fro

nt
Back

Bott
om

0

50

100

150

200

250

300

350

400

Co
un

t

Box

Back Lef
t

Righ
t

Top
Han

dle Fro
nt

Bott
om

0

100

200

300

400

500

600

Co
un

t

Mug

Lid Top Righ
t

Neck Lef
t

Mou
th

Back Fro
nt

Bott
om

0

100

200

300

400

500

Co
un

t

Bottle

Top Lef
t Lid Back Hea

d
Righ

t
Fro

nt

Outl
ier

Bott
om

Han
dle

0

50

100

150

200

250

300

350

400

Co
un

t
Dispenser

Top Blad
e

Righ
t

Lef
t

Fro
nt

Back

Bott
om

0

25

50

75

100

125

150

175

Co
un

t

Knife

Top Lid Righ
t

Lef
t

Back Fro
nt

Bott
om

0

100

200

300

400

Co
un

t

Stapler

Top Lef
t

Righ
t

Back Fro
nt

Base
Scr

ee
n

Bott
om

Su
rfa

ce
0

100

200

300

400

500

600

Co
un

t

Display

Righ
t

Lef
t

Top Fro
nt

Back
Han

dle

Bott
om

0

50

100

150

200

250

300

350

400

Co
un

t

Bucket

Top Righ
t Lid Back Lef

t
Fro

nt

Bott
om

0

50

100

150

200

250

Co
un

t

Kitchenpot

Top Leg Righ
t

Fro
nt Lef

t
Back

Bott
om

0

50

100

150

200

250

300

350

400

Co
un

t

Pliers

Scr
ew

Righ
t

Top Lef
t

Blad
e
Han

dle Back Fro
nt

Bott
om

0

50

100

150

200

Co
un

t

Scissors

Counts for Parts in the Seen Objects

Figure 14: Parts in PartInstruct episodes, grouped by seen object types.

lef
t

ba
ck

rig
ht top fro

nt leg
bo

tto
m

0

20

40

60

80

100

120

Co
un

t

Eyeglasses

ha
nd

le lef
t

top rig
ht

ba
ck lid fro

nt

bo
tto

m
0

10

20

30

40

50

60

Co
un

t

Kettle

scr
ee

n lef
t

top rig
ht

ba
ck

fro
nt

key
bo

ard
0

20

40

60

80

Co
un

t

Laptop

Counts for Parts in the Unseen Objects

Figure 15: Parts in PartInstruct episodes, grouped by unseen object types.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.3 SKILL AND OBJECT PART IMPACT STUDY

Here, we selected the rollout logs of the best-performing policy and analyzed the impact of different
skill types and object parts. Specifically, we evaluated the success rate and failure causes for each
skill and part.

The Success Rate was calculated by dividing the number of successful executions of each skill or
part by the number of times it appeared in the skill chain. The Failure Cause was calculated by
dividing the number of times a skill chain failed because of a specific skill or part by the total
number of skill chain failures.

Table 14: Average success rate and failure cause for the three part-level skills

Skill Grasp Object Rotate Object Touch Object
Success Rate (%) 53.55 18.18 54.55
Failure Cause (%) 43.51 6.11 16.79

Table 15: Average success rate and failure cause for selected parts.

Part Blade Left Neck Top Screen Mouth Bottom
Success Rate (%) 46.67 45.10 66.67 52.78 60.00 66.67 30.00
Failure Cause (%) 4.60 13.79 1.15 24.14 2.30 0.00 0.00

Part Handle Leg Lid Front Right Back Screw Head
Success Rate (%) 64.29 33.33 63.64 29.03 36.49 41.03 0.00 16.67
Failure Cause (%) 4.60 2.30 4.60 5.75 21.84 9.20 1.15 3.45

A.4 IMPLEMENTATION DETAILS

A.4.1 TRAINING DETAILS IN END-TO-END POLICY LEARNING

We trained the baseline models, including Diffusion Policy (DP) (Chi et al., 2023), 3D Diffusion
Policy (DP3) (Ze et al., 2024), and Act3D (Gervet et al., 2023), from scratch. For RVT2 (Goyal
et al., 2023) and Octo (Team et al., 2024b), we implemented both fine-tuning of the pretrained
models and training from scratch on our dataset. All trained models are using vision modalities
from a static-view camera put with the same extrinsics in the workspace, as well as the real-time
robot states information. Experiments were conducted on cluster nodes of A100 or H100 using
Distributed Data Parallel (DDP). Training from scratch generally took about two days, while fine-
tuning required one day.

DIFFUSION POLICY (DP)

We train CNN-based DP from scratch on our dataset. The action prediction horizon is set to 16 steps,
with an observation horizon of 2 steps and action steps of 8. The input RGB images are cropped
to a size of 76 × 76. For language instructions, we use a pre-trained T5-small language encoder to
obtain a language embedding of 512 dimensions. This language embedding is then concatenated
with other features to form the final feature representation.

3D DIFFUSION POLICY (DP3)

The DP3 model is trained under a similar setup as DP, with an action prediction horizon of 16 steps,
an observation horizon of 2 steps, and action steps of 8. For the point cloud observations, we use an
input size of 1024 points, which are downsampled from the original point cloud using the Iterative
Farthest Point Sampling algorithm (Qi et al., 2017). The language instructions are processed in DP3
following the same approach as in DP.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

ACT3D

Act3D takes an image input size of 256×256. The action prediction horizon is set to 6 steps, and the
observation horizon is 1 step. Following the raw work (Gervet et al., 2023), we use ResNet50(He
et al., 2016) as the vision encoder, and use CLIP (Radford et al., 2021) embeddings for vision-
language alignment. For 3D action map generation, the number of ”ghost” points is set to be 10,000,
with a number of sampling level of 3.

OCTO

For fine-tuning, we use the released checkpoint of the octo-base-1.5 model and fine-tune its
output head for 20,000 iterations. We use both the static view camera and the wrist view camera.
The input image sizes are 256 × 256 for the static view and 128 × 128 for the wrist view. The
window size is set to 2 steps, and the action horizon is set to 16 steps.

RVT2

To adapt RVT2 in our benchmark settings, we first convert the depth map from the static camera
view into a point cloud in the camera coordinates, then apply camera extrinsic to transfer the point
cloud into the world coordinates, where the action heat maps will be generated and apply supervision
in. The action prediction horizon is chosen to be 6 steps, and the observation horizon is set to be 1
step.

A.4.2 RESULTS OF PRE-TRAINED GENERALIST POLICIES

We selected several popular generalist policy, including RT-1, Octo and OpenVLA, and evaluated
their zero-shot performance on our test sets. For RT-1, we followed the implementation of Open X-
Embodiment project and used the released rt 1 x tf trained for 002272480 step check-
point for inference. For Octo, we used octo-base-1.5 model, following the same setup as de-
scribed in A.4.1. For OpenVLA, we used the pretrained model openvla-7b. We followed the
same evaluation protocol as other baselines, and our results shows that these generalist policies fail
to achieve any success on our test sets.

A.4.3 IMPLEMENTATION DETAILS IN BI-LEVEL PLANNING

IMPLEMENTATION OF THE HIGH-LEVEL TASK PLANNER

The high-level task planner features a skill inference mechanism that leverages comprehensive con-
textual information—including user task instructions, previously executed skill chains, and real-time
state data such as vision and pose information—to determine the next appropriate action. Recall
that the high-level task planner updates the skill instruction once every n steps. Here n is de-
termined by the average number of steps typically required for each skill in the training dataset.
Specifically, we use 130 for grasp obj, 30 for move gripper, 68 for touch obj, 40 for
release obj, and 22 for rotate obj. Once the execution counter reaches these average val-
ues, the VLM is prompted to infer the subsequent skill based on the current state. This design
ensures that the decisions are grounded in both historical and real-time data. In addition, the plan-
ner incorporates an exception handling measure to maintain output consistency and reliability. Any
unacceptable terms generated by the VLM—such as directional indicators that out of our defini-
tion, will be normalized to their prescribed equivalents. Also, despite embedding all acceptable part
names within the prompt, a dedicated mechanism cross-references any inferred part names against
a stored list of valid part names. For VLM baselines, we use gemini-1.5-flash-002 and
gemini-2.0-flash-exp for Gemini models Team et al. (2024a), and GPT4o for the OpenAI
model Islam & Moushi (2024).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

TRAINING OF THE LOW-LEVEL ACTION POLICIES

We trained the low-level action policy using skill instructions retrieved from our training data, as-
suming the presence of an oracle planner that decomposes the overall task. Apart from the skill
instructions, the training setup remains identical to the end-to-end learning approach described in
A.4.1

PART GROUNDING AND TRACKING

We selected sam2 hiera small as our mask generation and tracking model due to its
fastest tracking time among all configurations of SAM 2. For language grounding, we chose
Florence-2-large as our Vision-Language Model. To evaluate the performance, we used the
rollout logs of DP-S SAM2.

The performance was assessed using two key metrics: Grounding Success, Intersection over Union
(IoU). Grounding Success is calculated as the ratio of successfully grounded parts to the total number
of parts during a task. A grounding is considered successful if: 1) after language grounding, the
prompt points given by the VLM consist of one positive and one negative point (to prompt SAM
2), and 2) the IoU of the generated mask is greater than zero. If either of these conditions is not
met, the grounding is deemed a failure. The IoU measures the overlap between the predicted mask
genrated by SAM 2 and the ground-truth mask retrieved from PartGym environment, it is defined
as the area of intersection divided by the area of union of the predicted and true regions. The results
across different test sets are summarized in Table 16.

Table 16: Performance of part grounding and tracking across different test sets.

Metric Test1 Test2 Test3 Test4 All
Grounding Success (%) 25.26 35.73 36.87 15.06 27.58
IoU 0.15 0.18 0.19 0.25 0.20

VLM PROMPTS

We provide implementation details on high-level task planner in this section. Below is the VLM
prompts.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Prompt Example

You are an expert at planning manipulation tasks. You will be
given one task instruction for each manipulation task. Each task
instruction can be divided into a chain of skill instructions. Your
job is to infer the next skill instruction (you only need to output
one immediate next skill instruction each time, even if the entire
task requires multiple skills) for the robot to execute, based on
the following information and the attached image (current rgb frame)
without outputting any intermediate inference and explanation:
- Task Instruction: {user input}
- Executed Skill Instructions: {executed skill instructions}
- Gripper State: gripper state (The gripper is open when the value
is around 0.04 and it is closed when the value is less or around
0.018.)
- First and Last TCP Pose: This is the tcp pose of the first
frame: first tcp pose and this is the tcp pose of the last frame:
last tcp pose. (The tcp format is np.r [self.rotation.as quat(),
self.translation] where the first four elements are the rotation
quaternion and the last three are the translation element. You can
use the tcp poses difference to infer if the move gripper skill is
complete (the Euclidean distance of two tcp positions should be at
least 0.05). Please analyze the images and determine whether the
task is completed between the first and last frames. Focus on the
position of the object relative to the gripper. A small gap between
the gripper and the object can be allowed.)

Here is more relevant information about the task.

Skill Descriptions:
1. grasp obj:
- Description: This skill grasps an object by a specific part.
- Parameters:

part grasp: The exact part of the object to be grasped. Must
match the user’s input (e.g., ’blade’, ’lid’).
- Format: Grasp the {obj class} at its {part grasp}
2. move gripper:
- Description: This skill moves the gripper in a specified
direction while optionally keeping an object grasped.
- Parameters:

dir move: Direction to move the gripper. Can only be ’top’,
’bottom’, ’left’, ’right’, ’front’, or ’back’.
- Format: Move {dir str}, where ’dir str’ is mapped from ’dir move’
by: - ’front’ → ’forwards’ - ’back’ → ’backwards’ - ’top’ →
’upwards’ - ’bottom’ → ’downwards’ - ’left’ → ’to the left’ -
’right’ → ’to the right’
3. rotate obj:
- Description: This skill rotates an object in a specific direction
based on a given part.
- Parameters:

dir rotate: Direction to rotate the object. Must be one of
’top’, ’bottom’, ’left’, ’right’, ’front’, ’back’.

part rotate: The part of the object that should be rotated.
- Format: Reorient the {part rotate} of the {obj class} to face
{dir str}, where ’dir str’ is mapped from ’dir rotate’.
4. touch obj:
- Description: This skill touches a part of an object.
- Parameters:

part touch: The part of the object to be touched.
- Format: Touch the {obj class} at its {part touch}
5. release obj:
- Description: This skill releases an object from the gripper.
- Parameters: None.
- Format: Release

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Prompt Example (Continued)

Part Names:
- Scissors: blade, handle, screw, left, right, top, bottom, front,
back
- Kitchen Pot: base body, lid, left, right, top, bottom, front,
back
- Laptop: base frame, screen, touchpad, keyboard, screen frame,
left, right, top, bottom, front, back
- Eyeglasses: base body, leg, left, right, top, bottom, front, back
- Bucket: handle, base body, left, right, top, bottom, front, back
- Display: base support, surface, frame, screen, left, right, top,
bottom, front, back
- Pliers: base body, leg, outlier, left, right, top, bottom, front,
back
- Bottle: mouth, lid, body, neck, left, right, top, bottom, front,
back
- Knife: base body, translation blade, rotation blade, left, right,
top, bottom, front, back
- Stapler: base body, lid, body, left, right, top, bottom, front,
back
- Kettle: handle, base body, lid, left, right, top, bottom, front,
back
- Mug: handle, body, containing things, left, right, top, bottom,
front, back
- Box: rotation lid, base body, left, right, top, bottom, front,
back
- Dispenser: base body, pressing lid, head, handle, outlier, left,
right, top, bottom, front, back

Task Splitting Example:
Break down the task: Split the task instruction into individual
steps. Example: "Move the box in the air towards the right while
keeping touch of right, then put it down." Steps: (1) Grasp the
box at its right, (2) Move upwards, (3) Move to the right, (4) Move
downwards. Return only the next skill instruction in the specified
format.

Notes:
- Do not modify or assume alternate names for object parts.
- The task sequence should follow the user’s input as strictly as
possible.
- Do not replace object parts with similar or inferred names.
- Only bucket, mug, and scissors have a part called handle. Do not
infer the handle part name for other objects.

27

	Introduction
	Related Work
	Instruction Following Benchmarks for Table-Top Robot Manipulation
	Vision-Language Policies for Robot Manipulation
	Robot Planning with LLMs and VLMs.

	PartInstruct Benchmark
	Problem Setup
	Simulation Environment
	Dataset
	Task Categories
	Trajectory Generation
	Evaluation Protocol

	Experiments
	End-to-End Policy Learning
	Baselines
	Results

	Bi-level Planning
	Baselines
	Results

	Ablation Studies
	Effects of High-level Planners
	Effects of Different Visual Inputs

	Analysis
	Policy Performance on Part-Level Tasks
	Challenges in Part-Level Instruction Following

	Conclusion
	Appendix
	PDDL Definitions
	Predicate Definitions
	Skill Definitions
	Task Definitions

	Benchmark
	Observation and Action Space
	Table-Top Objects in PartGym
	Details of PartGym
	Visualization of Different Test Splits
	Statistics of PartInstruct Episodes

	Skill and Object Part Impact Study
	Implementation Details
	Training Details in End-to-End Policy Learning
	Results of Pre-trained Generalist Policies
	Implementation Details in Bi-Level Planning

