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ABSTRACT

The inability to naturally enforce safety in Reinforcement Learning (RL), with
limited failures, is a core challenge impeding its use in real-world applications.
One notion of safety of vast practical relevance is the ability to avoid (unsafe) re-
gions of the state space. Though such a safety goal can be captured by means of
an action-value-like function, a.k.a. safety critics, the associated operator lacks
the desired contraction and uniqueness properties that the classical Bellman op-
erator enjoys. In this work, we overcome the non-contractiveness of safety critic
operators by leveraging the fact that safety is a binary property. To that end, we
study the properties of the binary safety critic associated with a deterministic dy-
namical system that seeks to avoid reaching an unsafe region. We formulate the
corresponding binary Bellman equation (B2E) for safety and study its properties.
While the resulting operator is still non-contractive, we provide a full character-
ization of the fixed points representing–except for a spurious solution–maximal
persistently safe regions of the state space that can always avoid failure. Interest-
ingly, while maximality is often a desired notion for performance, in the context
of safety, it means that the learned classification boundary is dangerously close
and often crosses the region where failure is unavoidable. We thus further pro-
pose a one-sided version of the B2E that allows for more robust fixed points that
are non-maximal. Finally, we provide an algorithm that, by design, leverages ax-
iomatic knowledge of safe data points to avoid spurious fixed points. We provide
initial empirical validation of our theory, showing how the proposed safety critic
outperforms existing solutions, particularly regarding the number of samples (and
failures) needed to secure safe policies.

1 INTRODUCTION

The last decade has witnessed a resurgence of Reinforcement Learning (RL) as a core enabler of
Artificial Intelligence (AI). Today, RL algorithms can provide astonishing demonstrations of super-
human performance in multiple settings, such as Atari (Mnih et al., 2015), Go (Silver et al., 2016),
StarCraft II (Vinyals et al., 2017), and even poker (Nichols et al., 2019). However, this super-human
success in RL is overwhelmingly limited to virtual domains (particularly games), where not only one
has a vast amount of data and computational power, but also there is little consequence to failure
in achieving a task. Unfortunately, physical domain applications (autonomous driving, robotics,
personalized medicine) lack most of these qualities and are particularly sensitive to scenarios where
the consequences of poor decision-making are catastrophic Yu et al. (2021),Brunke et al. (2022).

Guaranteeing safety in an RL setting is a challenging task, as agents often lack a priori knowledge
of the safety of states and actions (Gu et al., 2022). Inspired by these challenges, numerous methods
have been proposed to imbue RL methods with safety constraints, including expectation constraints
(Paternain et al., 2022; Castellano et al., 2023), probabilistic/conditional value at risk constraints
(Chow et al., 2017; Chen et al., 2023), and stability constraints (Li & Bastani, 2020; Taylor et al.,
2020), among others. Such methods naturally lead to different safety guarantees, some of which can
be theoretically characterized (Robey et al., 2020; Castellano et al., 2022). However, the majority of
these methods fail to capture the safety-critical nature of some types of events that must be avoided
at all costs, i.e., with probability one.

One type of safety constraint of practical relevance in safety-critical applications is reachability
constraints (e.g.Bertsekas (1972); Sontag (2013), Ch. 3; Bansal et al. (2017)), wherein one seeks
to avoid regions of the state space that are associated with failure events by computing sets that
are either, persistently safe (a.k.a. control invariant safe sets (Gurriet et al., 2018)), i.e., regions of
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the state that can avoid failure regions for all times by proper choice of actions, or unsafe regions
(a.k.a. as backward reachable tubes (Mitchell, 2007)) where failure is unavoidable irrespectively
of the actions taken. Recent research efforts incorporating such constraints in RL problems have
shaped the notion of safety critics (Fisac et al., 2019; Srinivasan et al., 2020; Thananjeyan et al.,
2021), which aim to compute action value-like functions that, based on information about either the
(signed) distance to failure or a logical fail/not fail feedback, predict whether certain state-action
pair is safe to take or is likely to lead to catastrophic failures.

Unfortunately, the computation and learning of safety critics is a challenging task since their corre-
sponding Bellman-like equations (and associated operators) lack typical uniqueness (resp. contrac-
tion) properties that guarantee the validity of the solution (and convergence of RL algorithms). As
a result, most works seek to compute approximate safety critics by introducing an artificial discount
factor (Fisac et al., 2019; Hsu et al., 2021). This approximation, however, can have drastic effects
on the accuracy of the critic, as approximately safe sets are not, by design, safe.

Contributions of our work In this work, we seek to overcome the difficulties in computing accu-
rate safety critics by developing supporting theory and algorithms that allow us to learn accurate and
more robust safety critics directly from the original non-contractive safety critic operator. Precisely,
we consider a setting with deterministic, continuous state dynamics that are driven by stochastic
policies on discrete action spaces, and model safety as a binary (safe / unsafe) quantity. Build-
ing on the literature of risk-based safety critics, we develop a deeper theoretical understanding of
the properties of the corresponding binary safety (action-)value function and how to exploit them to
learn accurate safety critics. In doing so, we make the following contributions.

• Characterization of solutions to the binary Bellman equations for safety We study the prop-
erties of the action-value function associated with the binary safe/unsafe feedback and formulate
a binary Bellman equation (B2E) that such function must satisfy. This binary Bellman equation
is undiscounted and has a non-contractive operator with multiple fixed points. Nevertheless, we
show (Theorem 1) that all (but one) of the possibly infinite solutions to the B2E represent regions
of the state space that are: (i) persistently safe regions that can avoid failure for all future times
and (ii) maximal, in the sense that no state that is declared to be unsafe can reach the declared
safe region.

• One-sided binary Bellman equations to compute non-maximal, persistently safe regions
While non-spurious solutions to the B2E represent valid, persistently safe regions, the maximal-
ity property ensures that the classification boundary often lies exactly at the edge of the unsafe
region, making such a solution non-robust. This motivates the introduction of a one-sidded B2E
(O-B2E) that only requires solutions to satisfy the persistently safe property (and not maximal-
ity) (Theorem 2). The novel O-B2E induces a set-valued operator that drastically increases the
number of fixed points and allows for solutions whose classification boundary has a larger margin
from the truly unsafe boundary.

• Algorithm for learning fixed points of a non-contractive set-valued operator Finally, we
provide an algorithm that is able to find a fixed point of the novel set-valued operator despite
the lack of contraction. Our algorithm has two distinctive features that make this possible. First,
it uses axiomatic data points, i.e., points of the state space that are a priori known to be safe.
Secondly, it uses a classification loss that enforces self-consistency of the one-sided Bellman
equation across samples. Preliminary numerical evaluations indicate that our proposed method-
ology outperforms a well-known safety critic (Fisac et al., 2019) in a simple setup, and show
good performance in a 32-dimensional environment.

2 PROBLEM FORMULATION

Environment We consider a Markov Decision Process ⟨S,A, F,G, i, ρ⟩ where the state space S
is continuous and compact, the action space A is discrete and finite, the map F : S × A → S is a
deterministic transition function. The set G represents a set of “failure” states to be avoided. At each
time step the agent receives as feedback the insecurity of state st, that is i(st) = 1{st ∈ G} ∈ {0, 1}.
Episodes start at a state s0 ∼ ρ and run indefinitely or end when the system enters G.

Policies We consider stochastic, stationary policies π : S → ∆A, and denote π(a|s) the probabil-
ity of picking a ∈ A when at state s ∈ S. SinceA is discrete and finite, and the transition dynamics
are deterministic, the set of reachable states starting from any s is finite as well, as defined next.
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Figure 1: The optimal b⋆ describes different regions of the state space. The set G (solid, dark red) is
the one to be avoided at all times. Due to the system dynamics, there is a region of the state space
R(G) (shaded red) such that any trajectory starting there (e.g., from s0) will inevitably enter G. For
any point in its complement Ssafe (e.g. s1), the optimal policy avoids G at all times.

Definition 1 (t-step reachable sets) For any policy π and any state s ∈ S , the t-step reachable set
from s under π is Fπ

t (s) ≜
{
s′ ∈ S : Pπ (st = s′ | s0 = s) > 0

}
. Similarly, for any a ∈ A we

define Fπ
t (s, a) ≜

{
s′ ∈ S : Pπ (st = s′ | s0 = s, a0 = a) > 0

}
.

Given these notions of reachable sets, we can define the binary safety value functions for any policy.

Definition 2 (Binary safety value functions) The binary safety (action-)value function of policy π
at state s (and action a) is:

vπ(s) ≜ sup
t≥0

max
st∈Fπ

t (s)
i(st) ,

(
bπ(s, a) ≜ sup

t≥0
max

st∈Fπ
t (s,a)

i(st)

)
(1)

We choose the notation b(·, ·) instead of the usual Q to emphasize that it is a binary action-value
function. Note that bπ(s, a) = 1 if and only if starting from (s, a) and following π, there is positive
probability of entering G. The optimal (action-)value functions are then defined.

Definition 3 (Optimal binary value functions) For all s ∈ S and a ∈ A, the optimal value and
action-value functions are v⋆(s) ≜ minπ v

π(s) and b⋆(s, a) ≜ minπ b
π(s, a).

Relationship between safety and the optimal binary functions These optimal value functions
fully characterize the logical safe/unsafe nature of each state or state-action pair, and have nice
interpretations in terms of how they partition the state-space, as illustrated in Fig. 1. Recall that the
safety goal is to avoid G. However, due to the MDP dynamics, this might not be possible for every
state outside G1. A state s is persistently safe if trajectories from s can avoid G at all times—in other
words, if ∃a ∈ A : b⋆(s, a) = 0. Conversely, a state s is doomed to fail if b⋆(s, a) = 1 ∀a ∈ A. We
useR(G) to denote this set of “unsafe states” that are doomed to fail. The complement of this set is
the set of persistently safe states, and the “safe” actions for each state are given by:

Ssafe =
{
s ∈ S : min

a∈A
b⋆(s, a) = 0

}
Asafe(s) =

{
a ∈ A : b⋆(s, a) = 0

}
. (2)

Just like in the standard RL setup, each (action-)value function has associated Bellman equations.

Proposition 1 (Binary Bellman Equations) For any policy π, the following set of Bellman equa-
tions hold for all s ∈ S , for all a ∈ A: bπ(s, a) = i(s) +

(
1 − i(s)

)
vπ(s′), where bπ(s, a) =

i(s) +
(
1− i(s)

)
vπ(s′). In particular, any optimal policy satisfies:

b⋆(s, a) = i(s) +
(
1− i(s)

)
min
a′∈A

b⋆(s′, a′). (3)

Proof: See Appendix A.2. □

Unsafety as a logical OR The Bellman equation for the optimal b⋆ can be understood as: “an (s, a)
pair is unsafe (b⋆(s, a) = 1) if either: the current state is unsafe (i(s) = 1), OR it leads to an unsafe
state later in the future (mina′ b⋆(s′, a′) = 1).”

1A car heading to a wall (G) one meter away at 100mph will hit it, regardless of the actions taken.
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Non-contractive Bellman operator The optimal binary function of equation 3 has an associated
operator, acting on the space of functions B = {b : S ×A → {0, 1}}:

T : B → B : (T b)(s, a) = i(s) + (1− i(s)) min
a′∈A

b(s′, a′) ∀(s, a) ∈ S ×A (4)

One of the key features in the standard (discounted) Bellman equations for infinite-horizon prob-
lems is that it has an associated operator that is contractive (Bertsekas, 2015, p.45), and as such, it
admits a unique fixed point (the optimal value function). This is crucial for the application of value
iteration procedures or for methods reliant on temporal differences (Schwartz, 1993). Surprisingly,
the operator defined in equation 4 is non-contractive, and as such, it admits more fixed points than
the optimal b⋆. In particular, there are even fixed points of equation 4 that have no physical meaning.
We will soon see, however, that all–except for one–of them do have a physical interpretation.

2.1 CLOSELY RELATED WORK

Control-theoretic approaches for computing Ssafe Standard tools from Control Theory exist to
approximate the safe regions corresponding to b⋆(·, ·), both for linear (Girard et al., 2006) and non-
linear dynamics (Mitchell & Templeton, 2005). The latter requires knowledge of the transition map
F (·, ·) along with the signed distance to the unsafe region (Mitchell et al., 2005). This amounts to
solving partial differential equations (PDEs) of the Hamilton-Jacobi-Isaacs (HJI) type (Bansal et al.,
2017), and yields value functions whose zero super-level sets correspond to Ssafe.

Risk-based vs Reachability-based safety critics The binary action-value function b⋆ defined
in equation 3 is closely related to recent work on Risk-based safety critics (Srinivasan et al.,
2020; Thananjeyan et al., 2021), which use binary information to indicate the risk of unsafe
events. However, unlike risk-based critics, which seek to measure a cumulative expected risk
b⋆risk(s, a) = maxπ Eπ[

∑∞
k=t γ

k−ti(st)|st = s, at = a] ∈ [0, 1], our binary critic only takes
values b∗(s, a) ∈ {0, 1}, and outputting 1 whenever unavoidable failure has positive probability.
Reachability based safety critics, build on the literature of HJI equations and seek to measure
the largest (signed) distance h(st) that one can sustain from the failure set G, i.e., b⋆reach(s, a) =
supπ inft≥0 h(st) almost surely (Fisac et al., 2019). Our binary critic b⋆ is indeed related to b⋆reach,
when the signed distance h(s) is replaced with the binary signal −i(s). We will soon show that
this particular choice of safety measure allows for a precise characterization of the fixed points of
equation 4.

To contract or not to contract Despite the diversity of safety critics present in the literature, a
common practice in both risk-based critics (Srinivasan et al., 2020; Thananjeyan et al., 2021) and
reachability-based critics (Fisac et al., 2019; Chen et al., 2021) is the introduction of a discount
factor γ < 1. While this leads to desired uniqueness and contraction properties for the operator, it
comes with trade-offs: it degrades the accuracy, requiring the introduction of conservative thresholds
Srinivasan et al. (2020); Chen et al. (2021), which further limits exploration. Notably, such an
approach is particularly worrisome when seeking to guarantee persistent safety (the ability to avoid
failure for all future times), as such property is not preserved for finite accuracy approximation, even
for thresholded ones. In this work, we overcome this limitation by seeking to learn directly using
the non-contractive operator, thus guaranteeing, by design, the correctness of the solution.

3 BINARY CHARACTERIZATION OF SAFETY

The fixed points b⋆ of the binary Bellman operator have a meaningful interpretation in terms of the
topology of the state-space, and can be used to derive persistently safe policies. This connection will
be better understood once we define the notion of control invariant safe sets.

Definition 4 (Control invariant safe (CIS) set) A set C ⊂ S is a control invariant safe (CIS) set if
there exists a policy π such that:

i) (Control invariance): ∀s0 ∈ C,∀t ≥ 0, Fπ
t (s0) ⊂ C

ii) (Safety): ∀s0 ∈ C,∀t ≥ 0, Fπ
t (s0) ∩ G = ∅.

In essence, (i) means that there exists a controller that guarantees that trajectories starting in C can
be made to remain in C forever, which is a standard notion in control theory (Bertsekas, 1972;
Blanchini, 1999). Property (ii) means this can be done while also avoiding the unsafe region G!
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Figure 2: An illustration of Thm. 1 and Thm. 2 Left: a valid fixed point b̃ of T and its corresponding
safe control invariant set. Trajectories starting in C can be made to remain in C. Middle: a function
b̃ that is not a fixed point. A state sint in the intersection will inevitably lead to the unsafe region
G, so b̃(s, a) should be 1 for all states in the trajectory (which would mean sint /∈ C). Similarly, a
state sout outside C cannot reach inside. If it could, b̃(sout, a) = 1 for some a ∈ A, but it would
transition to a state where mina′ b̃(s′, a′) = 0, violating equation 3. Right: a valid fixed point of
the one-sided operator O of Thm. 2. States starting in C can be made to remain there; there is no
guarantee that a state in C∁ cannot enter C. This set is CIS, and a subset from the fixed point of T .

With these definitions in place, we are ready for the main result of this section.

Theorem 1 (Fixed points and control invariant safe sets) Let b̃ : S×A → {0, 1} be a fixed point
of equation 4. Then either b̃(s, a) = 1 ∀(s, a) (spurious fixed point), or:

i) C ≜
{
s ∈ S : mina b̃(s, a) = 0

}
is control invariant safe (CIS).

ii) C is unreachable from outside, i.e., Fπ
t (s0) ∩ C = ∅ ∀s0 ∈ S \ C,∀π,∀t ≥ 0.

iii) Any policy π that satisfies equation 5 renders C CIS.

b̃(s, a) = 1 ⇒ π(a|s) = 0, ∀s ∈ C. (5)

Proof: The proof is in Appendix A.3. □

The first statement proclaims that, starting in C, the system can be made to remain in C forever (thus
ensuring safety). The contrapositive of property (ii) sheds light on a notion of maximality of C:

Corollary 1 (Maximality of the CIS set) Let X be a strict subset of C. If X is reachable2 from
C \ X , then X cannot be associated3 with any fixed point of equation 4.

We refer the reader to Fig. 2 for an illustration of valid and nonvalid fixed points. By means of
Theorem 1 and Corollary 1 we achieve our goal of identifying the fixed points of the binary Bellman
operator to maximal persistently safe states. In the next section, we relax the binary Bellman opera-
tor to increase the number of fixed points and safe regions associated with them, making it simpler
to find safe policies.

4 SAFETY THROUGH A ONE-SIDED OPERATOR

Theorem 1 states that any non-spurious fixed point of equation 4 yields a CIS set, along with a
policy that guarantees said invariance. This set is maximal (in the sense of Corollary 1), and cannot
be reached from outside. While maximality is a desired property, trying to learn the boundary
of such maximal CIS sets C under limited data and with high fidelity is challenging. Moreover,
overestimating C with an approximate set Ĉ would make the unsafe region U = Ĉ\C to be declared
safe. To prevent this problem, we will avoid the boundary, aiming for inner safe sets included in C.
Thus, we will sacrifice the maximality given by property (ii) in Theorem 1, and focus on the safety
property (i).

2i.e. if ∃π,∃t ≥ 0, ∃s0 ∈ C \ X : Fπ
t (s0) ∩ X ̸= ∅

3that is to say: ∀b̃ : b̃ = T b̃,X ≠
{
s ∈ S : mina b̃(s, a) = 0

}
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In this direction, we relax the binary Bellman equations equation 3 to yield fixed points that only
certify property (i). As such, for any (s, a) ∈ S×A and s′ = F (s, a), we want a function satisfying:

b(s, a) ≥ i(s) + (1− i(s)) min
a′∈A

b(s′, a′), (6)

This inequality has an associated set-valued operator mapping functions into sets of functions.

Definition 5 (One-sided operator) Let N (B) denote the class of non-empty subsets of B =
{b : S ×A → {0, 1}} . We define the set-valued, one-sided operator O : B → N (B) as:

(Ob) =
{
b′ ∈ B : b′(s, a)− i(s)− (1− i(s)) min

a′∈A
b(s′, a′) ≥ 0 ∀(s, a) ∈ S ×A

}
(7)

A binary function b̃ is a fixed point of equation 7 iff b̃ ∈ (Ob̃).

Given a fixed point b̃ of the one-sided operator O, the pair (s, a) could be declared unsafe by b̃ even
if s is safe (i(s) = 0) and the next state s′ can be driven to safety as well, i.e., b̃ can be potentially
conservative in describing the persistently safe region. As the next theorem shows, the fixed points
of this operator have, indeed, the desired CIS property. Moreover, as shown in Fig. 2 and stated
next, the set may no longer be maximal as it could potentially be reached from outside.

Theorem 2 (Fixed points of the one-sided operator) Let b̃ : S × A → {0, 1} be a fixed point of
equation 7. Then either b̃(s, a) = 1 ∀(s, a) (spurious fixed point), or:

i) C ≜
{
s ∈ S : mina b̃(s, a) = 0

}
is control invariant safe (CIS).

ii) Any policy π that satisfies equation 5 renders C CIS.

Proof: The proof is in Appendix A.4 □

Theorem 2 proves that the fixed points of equation 7 and their associated sets retain the desired
CIS property. In addition, the one-sided operator can accommodate more fixed points, allowing for
inner approximations of the maximal sets whose classification boundaries have a larger margin from
the truly unsafe boundary. In the following section, we leverage these results using the one-sided
operator to build an algorithm that aims to find fixed points of O.

Algorithm 1: Pseudocode for learning the binary value function
Input: Safe dataset Dsafe;
Output: Binary value function bθ(·, ·);

1 Initialize bθ(·, ·) using Dsafe andM = [ ] ; ▷ Transition buffer.
2 repeat
3 for i=0,. . .NUM EPISODES-1 do
4 Run episodes, store

(
sk, ak, i(sk), s

′
k

)K
k=1

transitions inM;
5 end
6 Dunsafe ← build unsafe dataset(bθ,M) ; ▷ Use bθ to compute labels.
7 Build D = Dsafe ∪ Dunsafe ; ▷ Complete dataset.
8 repeat
9 Run gradient steps on Ltrain ; ▷ Update bθ

10 until Accuracy(bθ,D) = 1;
11 Dunsafe ← build unsafe dataset(bi,M) ; ▷ bθ has changed w.r.t.6
12 Build D = Dsafe ∪ Dunsafe ; ▷ New dataset
13 if Accuracy(bθ,D) ̸= 1; ▷ Check consistency of B2E
14 then
15 go to Line 8 ; ▷ Not self-consistent ⇒ Re-train the network
16 end
17 until termination;
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4.1 ALGORITHM

We propose learning fixed points of O in equation 7 by training a neural network classifier. We will
denote the learned function by bθ(·, ·) where θ collects the parameters of the network. The network
takes as input each state and outputs the value bθ(s, a) for each of the possible actions. The last
layer is a point-wise sigmoid activation function ensuring bθ(s, a) lies in the unit interval. We use
b̂θ(s, a) ≜ Round

(
bθ(s, a)

)
to denote the predicted label. Note that our threshold (at 1/2) will be

fixed during training and testing. The pseudocode for the main algorithm can be found in Alg. 1.
We provide a comprehensive breakdown of its main components next.

Dataset: The dataset D consists of (s, a, y) tuples, where y is a {0, 1} label, and has two com-
ponents. A prescribed 4 safe set Dsafe (for which y = 0) and a dynamically updated Dunsafe of
unsafe transitions detected during data collection. We have observed empirically that the addition
of Dsafe helps prevent the collapse to the trivial fixed point described in Theorem 1. The algorithm
iterates over the following three loops:

Environment interaction: Episodes start from a state s0 sampled from the initial distribution
ρ. To collect (s, a, s′, i(s)) transitions and store them in a memory bufferM we run episodes by
following a policy that satisfies equation 5, for example the uniform safe policy, which takes actions
uniformly over the presumed-safe ones:

πθ(a|s) =

{
0 if b̂θ(s, a) = 1

1/
∑

a′∈A 1{b̂θ(s, a′) = 0} if b̂θ(s, a) = 0
(8)

Building the dataset: After collecting transitions, the binary value function is used to compute
labels via the right hand side of equation 3, that is, yθk = i(s) + (1 − i(s))mina′ bθ(s′k, a

′) for all
(sk, ak, i(sk), s

′
k) ∈ M. Note that these are “soft” labels yθk ∈ [0, 1]. Those that satisfy yθk ≥ 1

2 are
added to Dunsafe. This procedure is dubbed build unsafe dataset(b,M) in Algorithm 1.

Training the network: The network is trained by running mini-batch gradient descent on the
binary cross-entropy loss until it can correctly predict all the labels in D := Dsafe ∪ Dunsafe.
Once that is achieved, the labels in Dunsafe are re-computed (some might have changed since bθ

was updated during this process), and the program checks whether it can correctly predict the labels
again. It repeats this process until all labels are predicted correctly, yielding a binary function that is
self-consistent across the whole dataset.

5 NUMERICAL EXPERIMENTS

We present numerical validations of our algorithm on two different environments. We contrast our
method first against SBE (Fisac et al., 2019), a well-known safety-critic, and against PPO (Schulman
et al., 2017), a state-of-the-art RL algorithm.

5.1 INVERTED PENDULUM

We begin by showcasing our algorithm on a modified version of the inverted pendulum problem
(Towers et al., 2023). We choose this environment because it allows easy visualization of the
learned control invariant safe sets, and because these can be compared against numerically obtained
“grounds truth” references.

Environment The state of the system s = [θ, ω]⊤ is the angular position and angular velocity of
the pendulum with respect to the vertical. The action a ∈ [−amax, amax] is the torque applied on the
axis, which we discretize in 5 equally spaced values. The goal in this task is to avoid falling past the
horizontal, i.e. G = {(θ, ω) : |θ| ≥ π

2 }.

4e.g. (s, a) pairs close to the equilibrium of the system, or sampled trajectories from a known, safe policy.
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Figure 3: Learned safe regions for the inverted pendulum problem during early (left, middle) and
latter (right) stages of training. The white area corresponds to states classified as safe. The solid
maroon lines show the boundary of the unsafe region G (falling past the horizontal). The green
region shows the set of states that can avoid G at all times, and the purple region shows the set
of safe states reachable from Dsafe. These two sets were computed numerically using an optimal
control toolbox (Mitchell & Templeton, 2005). As learning progresses, the classifier learns a control
invariant safe set inside the green region. Animations at https://tinyurl.com/6u8fvaux.

0 1000 2000 3000 4000 5000
Episodes

0

100

200

300

400

500

Cu
m

ul
at

iv
e 

fa
ilu

re
s

Ours
SBE

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Threshold η

0.0

0.2

0.4

0.6

0.8

1.0
En

tro
py

 &
 S

af
et

y 
ra

te
OursOurs

SBESBE

Entropy
Safety rate

Figure 4: Left: cumulative failures during training of our algorithm (red) and SBE (blue) for the
inverted pendulum. Solid lines represent the means across 5 seeds, shaded areas are 95% confidence
intervals. Our algorithm is 5 times safer. Right: safety rate (fraction of safe episodes) and entropy of
each learned model. Our algorithm (shaded lines) always uses the uniform safe policy. SBE is tested
for different threshold values η. Our policy is 100% safe and is exploratory (high entropy). Only the
most conservative SBE policies (large η) are 100% safe, but have low entropy (limited exploration).

Training protocol We take Dsafe to be a small grid of (s, a)-pairs near the unstable equilibrium.
Episodes are started from Dsafe and end whenever the pendulum reaches the unsafe region, or
after 200 steps. The behavioral policy is the “uniform safe” as defined in equation 8. We alternate
between collecting data for 10 episodes, building the dataset and training the network as explained
in Sec. 4.1. Details on network architecture and hyperparameters are relegated to the Appendix A.5.

Ground truth We compare the safe region learned by our algorithm against ground truths com-
puted numerically with optimal control tools (Mitchell & Templeton, 2005). Fig. 3 shows in green
(resp. light gray) the maximum CIS set in the entire state (resp. the maximum CIS for trajectories
that start in the support of ρ). The learned safe region (in white) at different stages of training is also
shown. At the beginning, the network is only fit to Dsafe. As episodes run and it collects unsafe
transitions, it effectively learns a CIS set included in the true safe region for the problem.

Training performance We benchmark our proposed methodology against the Safety Bellman
Equation (SBE) of Fisac et al. (2019). This algorithm learns a safety-critic q(s, a) and considers
“safe” those actions that have q(s, a) ≥ η, for a threshold η. Hyperparameters for that algorithm are
taken from Hsu et al. (2021) and can be seen in Appendix A.5. Fig. 4 (left) shows the cumulative
failures during training; (a failure is an episode that touched the unsafe region G). Our algorithm is
clearly safer during training.
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Figure 5: Left: autonomous driving environment (Leurent, 2018). Right: Average episode length
during training, for our algorithm and PPO. Results are averaged over 5 seeds. Solid line represents
the mean, shaded area corresponds to ± the standard deviation.

Post-training evaluation We evaluate the performance of each model after training and show it
in Fig. 4 (right). We test the uniform safe policy of our model against the safety critic for SBE. In
the latter, we consider—for varying threshold η—the safe policy that maximizes exploration, i.e.,
the uniform policy taking actions a such that q(s, a) ≥ η. We illustrate the safety rate, defined as
the proportion of safe episodes, and the average entropy of each policy H̃π ≜ Es∼RA [H (π(· | s))],
where RA is the set of safe states reachable from the origin (see ‘reach-avoid’ set in Fig. 3). Our
algorithm obtains perfect safety rate, while SBE only achieves it for safer policies (large enough
η). These latter policies, though safe, are less exploratory—i.e. smaller entropy—than ours. In
summary, our achievements are twofold: we learn a persistently safe family of policies that is more
exploratory than the SBE counterpart. As argued in Section 2.1, for traditional safety critics, there is
no straightforward connection between the threshold η and discount factor γ < 1 needed to achieve
safe policies, and safety comes at the expense of less exploration, which is undesired and difficult
to balance. The solution found with our algorithm strikes a good balance between safety and the
richness of the class of policies guaranteed to be safe.

5.2 AUTONOMOUS DRIVING

We finish the experiment section by showing the applicability of our method in a high-dimensional,
autonomous driving environment (Leurent, 2018), comparing against PPO (Schulman et al., 2017).

Environment The observation space is 25 dimensional, corresponding to the position and relative
velocities of vehicles on the highway. The goal is to drive the car while avoiding crashes with other
vehicles (see Fig. 5, left). Further details of the environment in A.5.

Performance comparison We set the horizon of this environment to 100, more than doubling its
default value (Leurent, 2018). In this context, a safer policy is one that runs for longer without
crashing. Fig. 5 on the right shows the episode length as a function of environment steps for our
algorithm and PPO. Results are averaged over five runs. After 700.000 steps, our algorithm slightly
outperforms PPO in terms of safety. This warrants special merit, since our algorithm learns a family
of safe policies, while PPO only learns one.

6 CONCLUSION

In this work we proposed a framework for obtaining correct-by-design safety critics in RL, under the
goal of always avoiding a region of the state space. Our framework exploits the logical safe/unsafe
nature of the problem and yields binary Bellman equations with multiple fixed points. We argue
that all these fixed points are meaningful, by characterizing their structure in terms of guaranteeing
safety and maximality. We circumvent the challenge of obtaining a maximal one by introducing a
one sided operator, whose solutions possess the desired safety properties. Numerical experiments
vallidate our theory and show that we can safely learn safer, more exploratory policies.
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A APPENDIX

A.1 SOME IDENTITIES

The t-step reachable set from s is the union of the (t − 1)-step reachable set from all the successor
states of s:

Fπ
t (s) =

⋃
s′∈Fπ(s)

Fπ
t−1(s

′) (9)

Furthermore, the t-step reachable set from (s, a) is the t− 1 set from the successor s′ = F (s, a):

Fπ
t (s, a) = Fπ

t−1(s
′) ∀t ≥ 1 (10)

A.2 PROOF OF PROPOSITION 1

We will show:
bπ(s, a) = i(s) +

(
1− i(s)

)
vπ(s′) where s′ = F (s, a).

The following identities hold, as explained below.

bπ(s, a) = sup
t≥0

max
st∈Fπ

t (s,a)
i(st) (11)

= max

{
i(s), sup

t≥1
max

st∈Fπ
t (s,a)

i(st)

}
(12)

= max

{
i(s), sup

t≥1
max

st∈Fπ
t−1(s

′)
i(st)

}
(13)

= max

{
i(s), sup

t≥0
max

st∈Fπ
t (s′)

i(st)

}
(14)

= max {i(s), vπ(s′)} (15)

The first identity is the definition of bπ . In equation 12 unroll the first step in sup{·}. Next use the
identity of equation 10. Finally introduce the change of variables t← t− 1 and recognize vπ(s′).

Recall bπ(s, a), i(s) and vπ(s′) are binary. We consider two cases.

If i(s) = 1:
i(s) = 1 ≥ bπ(s, a) ≥ i(s) =⇒ bπ(s, a) = i(s) (16)

If i(s) = 0:
bπ(s, a) = max{0, vπ(s′)} = 1 · vπ(s′) = (1− i(s))vπ(s′) (17)

Hence:
bπ(s, a) = i(s) +

(
1− i(s)

)
vπ(s′),

which completes the first part of the proof.

Before proceeding to the last part of the proof, we note that a similar Binary Bellman equation holds
for the value function (which we omitted in the manuscript for brevity):

Proposition 2 (Binary Bellman equation for vπ) For all π, for all s ∈ S, a ∈ A:

vπ(s) = i(s) +
(
1− i(s)

)
max

s′∈Fπ(s)
vπ(s′) where s′ = F (s, a) . (18)

Proof: We omit the proof since it is virtually identical to equations 11–15. □

Now, going back to the proof of Proposition 1, remains to be shown:

b⋆(s, a) = i(s) +
(
1− i(s)

)
min
a′∈A

b⋆(s′, a′) .

In light of what we have just proved, it suffices to show the following Bellman optimality condition:

min
a∈A

b⋆(s, a) = v⋆(s) . (19)

We again consider two cases.
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If i(s) = 1:

∀π,∀a ∈ A, 1 = vπ(s) = bπ(s, a) =⇒ v⋆(s) = min
a

b⋆(s, a),

so the result holds trivially.
If i(s) = 0:
Let π⋆ be an optimal policy. Then by Proposition 2:

v⋆(s) =

=0︷︸︸︷
i(s) +

=1︷ ︸︸ ︷(
1− i(s)

)
max

s′∈Fπ⋆ (s)
v⋆(s′) (20)

= max
s′∈Fπ⋆ (s)

v⋆(s′) (21)

= max
a∈Supp[π(·|s)]

v⋆(F (s, a)) (22)

≥ min
a∈Supp[π(·|s)]

v⋆(F (s, a)) (23)

≥ min
a∈A

v⋆(F (s, a)) (24)

= min
a∈A

[
i(s) +

(
1− i(s)

)
v⋆(F (s, a))

]
(25)

= min
a∈A

b⋆(s, a) (26)

where the first inequality follows from max ≥ min, and the second one for optimizing over a larger
set.
Thus:

v⋆(s) ≥ min
a∈A

b⋆(s, a) ∀s ∈ S, (27)

and we want to show that the result holds with equality. By contradiction, assume the inequality is
strict for some s ∈ S, that is to say:

∃a† ∈ A : v⋆(s) > b⋆(s, a†). (28)

Since the inequality is strict, it must be that v⋆(s) = 1 and b⋆(s, a†) = 0.

Now consider a policy π† similar to π⋆, but that only takes action a† at state s:

π† :

{
π†(a1|s) = 1

π†(·|s′) = π⋆(·|s′) ∀s′ ̸= s
(29)

We then have:

vπ
†
(s) = max

s′∈Fπ†
(s)

vπ
†
(s′) = vπ

† (
F (s, a†)

)
= bπ(s, a†) < v⋆(s), (30)

hence vπ
†
(s) < v⋆(s) which means π⋆ is not optimal. This is a contradiction. It must then be that

equation 27 holds with equality, as was claimed.

A.3 PROOF OF THM. 1

Proof: Throughout this proof, we will make use of the following alternative representation of fixed
points of the binary Bellman operator T .

Lemma 1 b̃ is a fixed point of T if and only if it satisfies, for all s ∈ S, for all a ∈ A:

b̃(s, a) = max

{
i(s), min

a′∈A
b̃(s′, a′)

}
where s′ = F (s, a) . (31)

Proof: The proof follows from equations 11–15 in Proposition 1 applied to π⋆. □

Now, to the main proof.
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Spourious fixed point Firstly, note that b̃ ≡ 1 is indeed one possible fixed point of equation 3:

∀(s, a) ∈ S ×A, 1 = b̃(s, a) = i(s) +
(
1− i(s)

)
min
a′

b̃(s′, a′) ≥ min
a′

b̃(s′, a′) = 1

C is CIS Now suppose b̃ is non-trivial.

We begin by showing (i). By contradiction, assume C is not control invariant, i.e.:

∀π,∃s0 ∈ C,∃t ≥ 0 : Fπ
t (s0) ̸⊂ C.

We consider the “safest” policy that stems from b̃, only taking actions such that b̃(s, a) = 0. More
generally, we consider any policy π̃ that satisfies:

π̃(s) : ∀s ∈ S, Supp [π̃(·|s)] ⊆ argmin
a∈A

b̃(s, a). (32)

We have F π̃
t (s0) ̸⊂ C for some t ≥ 0. Hence there is a transition (s, a, s′) such that s ∈ C, a ∈

argmina′∈A b̃(s, a′) and s′ = F (s, a) /∈ C. Therefore:

0
(s∈C)
= b̃(s, a) = max

{
i(s),min

a′
b̃(s′, a′)

}
≥ min

a′
b̃(s′, a′)

(s′ /∈C)
= 1,

which is a contradiction. Hence C is control invariant—and moreover, the policy defined above
renders it invariant (this shows (iii)).
Now to show that C is safe, again assume by contradiction C is not safe, i.e.:

∀π,∃s0 ∈ C,∃t ≥ 0 : Fπ
t (s0) ∩ G ̸= ∅.

Consider once again a “safest” policy as defined in equation 32 (that renders C invariant). This
policy along with the non-empty intersection in the previous equation implies that:

∃s ∈ C, a ∈ Supp [π(·|s)], t ≥ 0 : s′ = F (s, a) ∈ Fπ
t (s0) ∩ G =⇒

0
(s∈C)
= b̃(s, a) = max

{
i(s), min

a′∈A
b̃(s′, a′)

}
≥ min

a′∈A
b̃(s′, a′) = min

a′∈A
max

{
i(s′), min

a′′∈A
b̃ (F (s′, a′), a′′)

}
= max

{
i(s′), min

a′,a′′∈A
b̃ (F (s′, a′), a′′)

}
≥ i(s′)

(s′∈G)
= 1,

which is a contradiction. Hence C is safe.

Maximality of the CIS We finish by showing (ii). Assume (by contradiction) C is unreachable
from outside. Assume furthermore i(s) = 0 (if i(s) = 1, this would mean s ∈ G).
C reachable from outside means:

∃s /∈ C,∃a ∈ A : s′ ≜ F (s, a) ∈ C =⇒

1
(s/∈C)
= min

a
b̃(s, a) ≤ b̃(s, a) = max

{
i(s),min

a′
b̃(s′, a′)

} i(s)=0
= min

a′
b̃(s′, a′)

(s′∈C)
= 0

□
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A.4 PROOF OF THM. 2

Proof: Throughout this proof, similar to the proof of Theorem 1, we will make use of the following
alternative representation of fixed points of the binary Bellman operator O.

Lemma 2 b̃ is a fixed point of O if and only if it satisfies, for all s ∈ S, for all a ∈ A:

b̃(s, a) ≥ max

{
i(s), min

a′∈A
b̃(s′, a′)

}
where s′ = F (s, a) . (33)

Proof:

b̃(s, a) ≥ i(s) +
(
1− i(s)

)
min
a′

b̃(s′, a′) =

{
i(s), i(s) = 1

mina′ b̃(s′, a′), i(s) = 0

= max

{
i(s), min

a′∈A
b̃(s′, a′)

}
□

Now, to the main proof.

Spourious fixed point Firstly, note that b̃ ≡ 1 is indeed one possible fixed point of equation 3:

∀(s, a) ∈ S ×A, b̃(s, a) = 1 ≥ i(s) +
(
1− i(s)

)
= i(s) +

(
1− i(s)

)
min
a′

b̃(s′, a′)

C is CIS Now suppose b̃ is non-spourious.

We begin by showing (i). By contradiction, assume C is not control invariant, i.e.:

∀π,∃s0 ∈ C,∃t ≥ 0 : Fπ
t (s0) ̸⊂ C.

We consider the “safest” policy that stems from b̃, only taking actions such that b̃(s, a) = 0. More
generally, we consider any policy π̃ that satisfies:

π̃(s) : ∀s ∈ S, Supp [π̃(·|s)] ⊆ argmin
a∈A

b̃(s, a). (34)

We have F π̃
t (s0) ̸⊂ C for some t ≥ 0. Hence there is a transition (s, a, s′) such that s ∈ C, a ∈

argmina′∈A b̃(s, a′) and s′ = F (s, a) /∈ C. Therefore:

0
(s∈C)
= b̃(s, a) ≥ max

{
i(s),min

a′
b̃(s′, a′)

}
≥ min

a′
b̃(s′, a′)

(s′ /∈C)
= 1,

which is a contradiction. Hence C is control invariant—and moreover, the policy defined above
renders it invariant (this shows (iii)).
Now to show that C is safe, again assume by contradiction C is not safe, i.e.:

∀π,∃s0 ∈ C,∃t ≥ 0 : Fπ
t (s0) ∩ G ̸= ∅.

Consider once again a “safest” policy as defined in equation 34 (that renders C invariant). This
policy along with the non-empty intersection in the previous equation implies that:

∃s ∈ C, a ∈ Supp [π(·|s)], t ≥ 0 : s′ = F (s, a) ∈ Fπ
t (s0) ∩ G =⇒

0
(s∈C)
= b̃(s, a) ≥ max

{
i(s), min

a′∈A
b̃(s′, a′)

}
≥ min

a′∈A
b̃(s′, a′) ≥ min

a′∈A
max

{
i(s′), min

a′′∈A
b̃ (F (s′, a′), a′′)

}
= max

{
i(s′), min

a′,a′′∈A
b̃ (F (s′, a′), a′′)

}
≥ i(s′)

(s′∈G)
= 1,

which is a contradiction. Hence C is safe. □
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Remark 1 Although not completely formal, we can argue that the set C associated with a fixed point
b̃ ofO is a subset of some set C̃ associated with a fixed point b of T : Starting from C0 = C, we define

Ck = Ck−1 ∪ {s : s ̸∈ Ck−1,∃a ∈ A, F (s, a) ∈ Ck−1} , (35)

and let C̃ = ∪∞k=0Ck. Let

b(s, a) =

{
0, s ∈ C̃, F (s, a) ∈ C̃
1, o. w.

(36)

then this b function is a fixed point of T , corresponding to a CIS set C̃ that is a superset of C. As a
result, whenever C is not maximal, it is always possible to find a superset that is also a fixed point.
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A.5 NUMERICAL EXPERIMENTS

INVERTED PENDULUM

Table 1: Hyperparameters for inverted pendulum experiment

B2E (Ours) SBE
State space dimension 3
Action space cardinality 5
NN hidden layers [256, 256] [256,256]
NN activation [Tanh, Tanh, Sigmoid] [Tanh, Tanh]
Learning rate† (1− p)× 10−4 + p× 10−6

Optimizer Adam
Discount γ N/A 0.9999
Exploration factor 1 max{0.95× 0.6p, 0.05}
DDQN update N/A Hard every 10 episodes
Buffer size 50000

†p ≜ progress, the fraction between the current episode and the total episodes.

SBE safety critic For Safety Bellman equation (SBE) (Fisac et al., 2019), the MDP at each step
returns the signed distance to the unsafe set h(s) = π

2 − |θ|. The algorithm learns q(s, a), and in
principle any (s, a) such that q(s, a) ≥ 0 is safe.

A more conservative safety-critic is one such that q(s, a) ≥ η for some η > 0. When evaluating the
learned models (Fig. 4, right) we consider different policies πη , defined as the uniform-safe over the
presumed safe actions (similar to our case):

πη(a|s) =
{
0 if qη(s, a) < η

1/
∑

a′∈A 1{qθ(s, a′) ≥ η} if qθ(s, a) ≥ η

AUTONOMOUS DRIVING

The observation space is 25 dimensional and has the position (x, y) and velocities in each axis,
relative to the ego vehicle, plus an extra binary value representing whether that vehicle is on the
screen. The action space is discrete and corresponds to five meta-actions: slower, faster,
left lane, right lane, idle. More details at .

Table 2: Hyperparameters for inverted pendulum experiment

B2E (Ours) SBE
State space dimension 25
Action space cardinality 5
NN hidden layers [256, 256, 256] [256, 256, 256]
NN activation [Tanh, Tanh, Tanh, Sigmoid] [Tanh, Tanh, Tanh, Tanh]
Learning rate† (1− p)× 10−4 + p× 10−6

Optimizer Adam
Discount γ N/A 0.98
Exploration factor N/A max{0.95× 0.6p, 0.05}
Buffer size 100000

Our algorithm We take as Dsafe 100 initial states with the corresponding action slower.

PPO Additional hyperparameters are the standard ones taken from (Raffin et al., 2021)
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