Under review as a conference paper at ICLR 2026

RESIDUAL DIFFUSION IMPLICIT MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have recently achieved state-of-the-art results in image generation
and reconstruction, yet their initialization on pure Gaussian noise makes them
poorly aligned with inverse problems such as denoising and super-resolution.
This mismatch leads to inefficiency, often requiring hundreds of sampling steps,
and induces hallucinations that drift away the reconstruction from the ground
truth. To overcome these challenges, residual diffusion implicit models (RDIMs)
are proposed, constituting a generalized framework that explicitly models the
residuals between high-quality (HQ) and low-quality (LQ) images. RDIMs align
the forward process with the actual degradation, enabling reconstructions that are
faster and more accurate. Inspired by implicit sampling, the reverse process can skip
intermediate timesteps, allowing for few-step or even single-step reconstructions
while mitigating the hallucinations inherent to long diffusion chains. Furthermore,
RDIMs introduce a controllable variance mechanism that interpolates between
deterministic and stochastic sampling, balancing fidelity and diversity depending on
degradation severity. Experiments on denoising and super-resolution benchmarks
demonstrate that RDIMs consistently outperform conventional DDPMs and match
or surpass ResShift, while reducing the number of sampling steps by up to 100x.
The results position RDIMs as an efficient solution for a broad range of image
restoration tasks.

1 INTRODUCTION

Image reconstruction is a fundamental problem in computer vision and signal processing, aiming
to recover high-quality (HQ) images from corrupted observations. Tasks such as image denoising
and super-resolution (SR) are crucial for numerous real-world applications, including medical and
biological imaging, satellite imagery, and consumer photo enhancement (Sagheer & Georgel 2020;
Wang et al.| 2022; Delbracio et al., [2021]).

Denoising diffusion probabilistic models (DDPMs) (Ho et al., [2020) have emerged as a powerful
class of models for image reconstruction. Their probabilistic formulation and iterative refinement
enable them to handle challenging degradations by progressively improving predictions through small
corrective updates (Saharia et al., 2022)). Moreover, their stochasticity allows exploration of multiple
plausible reconstruction paths, which promotes output diversity and often leads to better solutions
(Lugmayr et al., 2022;|Whang et al.||2022)). These properties make diffusion models well-suited to
deal with severe noise and information loss (Chung et al., [2022a)).

However, these strengths also introduce practical challenges. Although stochasticity is beneficial
for capturing diversity and avoiding poor generalization (Lugmayr et al.| 2022; Whang et al., 2022
Dhariwal & Nichol, 2021}, excessive and uncontrolled variability can hinder convergence in inverse
problems, destabilizing the reconstruction process and leading to inconsistent outputs. Therefore,
balancing stochasticity is crucial (Chung et al.||2022b). More critically, the standard DDPM formula-
tion initializes the reverse process from pure noise, which is misaligned with reconstruction tasks
where a degraded input already provides valuable information (Chung et al.,[2022b; [Yue et al., [2023]
Wu et al.|, 2024). Additionally, the recursive formulation of diffusion models leads to an inefficient
reverse process requiring to traverse all diffusion timesteps, often hundreds (Shih et al., [2023; [Liu
et al.,[2024)), making them computationally expensive and impractical in latency-sensitive settings.

To address these challenges, residual diffusion implicit models (RDIMs) are proposed, constituting a
new diffusion framework tailored for inverse problems. Instead of diffusing images into noise, the



Under review as a conference paper at ICLR 2026

T steps

Forward Process (Degradation) q(¢n|l': 1 %o, A) Ty ~ N (Yo, ’Y

O e O GO

e

Reverse Process (Reconstruction)
Se{1,2 T} steps
{ e

(@ [T v0)
Figure 1: Overview of RDIM, a diffusion framework tailored for inverse problems, such as image
reconstruction. The reverse process can accurately reconstruct back the data in S < T steps.

RDIM forward process gradually removes the structured residuals between an HQ image and its
low-quality (LQ) counterpart (similar to ResShift [2023)), thereby producing a corrupted
version closely aligned with the observed input (see Figure [I). The reverse process then learns
to reconstruct the HQ image from the degraded version, effectively undoing the degradation step
by step. The framework inherently incorporates variance due to its diffusion nature, which can be
controlled via a hyperparameter, thus allowing to interpolate between stochastic and deterministic
reconstructions. This leads to improved versatility and greater exploration of solutions. Moreover, the
proposed reverse process formulation adopts an implicit sampling in the style of denoising diffusion
implicit model (DDIM) 2021), allowing to skip intermediate steps, thus significantly
improving the efficiency of the reconstruction process through few-step or even single-step HQ
reconstructions. In summary, the main contributions of this paper are:

* A novel diffusion framework for inverse problems that generalizes ResShift and provides an
implicit formulation with efficient sampling, enabling reconstructions in a few or even on a
single step.

* A controllable variance mechanism that interpolates between deterministic and stochastic
reconstructions, balancing fidelity and diversity depending on degradation severity.

 Evidence that reducing the number of reverse steps not only accelerates inference but also
yields more faithful reconstructions by mitigating the hallucination effects inherent to long
diffusion chains, which otherwise cause outputs to drift away from the degraded input.

* State-of-the-art results on denoising and SR benchmarks, showing that RDIMs outperforms
existing methods while reducing the number of inference steps by up to 100x.

The implementation is available at https://anonymous.4open.science/r/RDIM/.

2 METHODOLOGY

RDIM is a diffusion framework tailored for inverse problems (herein focused on image reconstruction)
where the forward process gradually degrades the original data into an informed corrupted version.
The reverse process is efficient, allowing for a minimal number of steps (see Figure ).

2.1 PROBLEM DEFINITION

Inverse problems are concerned with the recovery of a signal, ¢ € &, from a corrupted observation,
Yo € Y. Particularly, the forward model that degrades the original signal can be expressed as:

Yo = F (zo), (H
where F : X — ) is a known or unknown forward operator that often entails information loss (e.g.,
blurring, downsampling, masking, or noise). Accordingly, such problems are often ill-posed.
Meanwhile, deep learning (DL) techniques can be leveraged to learn a parametric reconstruction
model R : Y — X, with trainable parameters ©, that invert the forward model:

xo ~ R (Y0;0). @



Under review as a conference paper at ICLR 2026

Traditional diffusion models reconstruct the signal o through a parameterized Markov chain with
length T', which starts from pure noise and progressively denoises latent variables, x;, at each step
t € {1,2,...,T}. Hence, they first derive a diffusion process that transforms x¢ into pure noise.
Subsequently, they learn to reverse this process by training a parametric model, pg, which can recon-
struct o back from pure noise, 1 ~ N (0, I'), while conditioning on the corresponding degraded
observation, yo. However, this diffusion process is fundamentally misaligned with the degradation
model in Equation|[I] since it maps a¢ to pure noise rather than to the corrupted observation yo. In
contrast, the RDIM forward process is explicitly designed to align with the degradation mechanism
by progressively removing the residuals between the clean and corrupted signals while optionally
injecting a controllable amount of noise. This stochastic component introduces variability that
improves generalization, enabling the model to balance fidelity and diversity during reconstruction
and better capture the uncertainty inherent in inverse problems.

2.2 MARKOVIAN FORWARD PROCESS

Considering that g and yo denote the original data and its corrupted versimﬂ respectively, the RDIM
forward process (degradation) intends to gradually remove fractions of the residual, A = x¢ — yo,
from xg over a series of timesteps ¢t € {1,2,...,T}. For that purpose, a forward process fixed
to a Markov chain is first defined, which converts the distribution of the original data, ¢(x¢), into
the last latent variable distribution, g(@r|xo, A) = q(x7|yo) (see Appendix [A.1). Subsequently,
the Markovian formulation is relaxed to derive a non-Markovian process that preserves the same
marginal distributions. Following, the whole Markovian forward process is defined as:

T
q(@17lwe, A) = [ [ a(aelwe—1, A), 3
t=1
where all latent variables @1, . .., 1 have the same dimensionality as the original data, o ~ ¢(xo).
The residual is removed from x¢ according to a fixed weighting schedule A1, Ao, ..., Ap, which is

also used to parameterize the variance in each diffusion transition distribution, defined as a Gaussian.
Consequently, at each timestep ¢, the latent variable x, is expressed in terms of the latent variable at
the previous timestep, x;_1, and the residual, A, as follows:

Q(iL't|iL't—17 A) = N($t|wt—1 - )\tA7’72)\tI)7 4

where v € [0, 00) is a constant hyperparameter introduced to control the strength of the variance,
thus allowing interpolation between a deterministic (when v = 0) and a stochastic (v > 0) forward
process. Moreover, each weight A, used to control the amount of residual to be removed between each
diffusion step, is computed in terms of small non-negative constant hyperparameters 3y, 51, ..., Br
as Ay = By — Bi_1 (see Sectionfor details on the B-schedule).

Furthermore, to avoid a computationally expensive diffusion process, the cumulative forward transi-
tions are expressed in closed form by relying on the reparameterization trick (see Appendix [A.1I)):

q(zt|To, A) = N(xt|T0 — »BtA,WQﬂtI)~ ®)

Although this forward process matches ResShift (Yue et al., 2023), the corresponding recursive
formulation yields an inefficient reverse process that must iterate over many timesteps (particularly
for HQ inverse problems). Therefore, a DDIM-inspired non-Markovian forward process is derived,
which preserves the marginal in Eq. (3 while still allowing a Markovian reverse process.

2.3 NON-MARKOVIAN FORWARD PROCESS

The forward process is implicitly constructed to ensure consistency with the marginal ¢(x¢|zo, A)
and the reverse process. As a result, each forward transition becomes additionally conditioned on
x¢ rather than just on the immediate previous timestep, ;—1, and the residual, A. This introduces
explicit dependency on the initial data xg, decoupling the forward process from strict Markovian
constraints. Moreover, the forward process is expressed in terms of the forward transition posterior,
q(xi—1|Te, To, A), further reflecting the non-Markovian behavior and preservation of q(x¢|xg, A).

'To match dimensionalities, o is upsampled for SR tasks and its channels are replicated for colorization.



Under review as a conference paper at ICLR 2026

Therefore, although the RDIM forward process is still a distribution over trajectories that start at x¢
and end at x, it is defined as a joint distribution that is factored in reverseﬂ!

T

q(@1.7|w0, A) = g(w7|T0, A) [ [ 9@t —1|8, 0, A). (6)
t=2

The non-Markovian nature of the forward process enables designing a reverse process that can
be deterministic and simulated with a reduced number of transitions due to the conditioning on
To. In addition, since the ResShift training objective only depends on the marginal distribution,
q(xt|xo, A), which is preserved, then RDIM optimization (see Section will lead to the same
training objective as ResShift. Consequently, already trained ResShift models can be leveraged for
RDIM sampling without requiring additional retraining.

2.4 REVERSE PROCESS

The reverse process (reconstruction) intends to revert the forward process, thus sampling back the
data, xo. This is achieved by starting from &7 ~ N(yo,y*I) and iteratively refining the latent
variables x4 until xq is reached. Accordingly, the reverse process involves computing the forward
transition posterior q(x¢—1 |+, To, A) (reverse transition), defined as a Gaussian distribution:

q(ze—1|me, o, A) = N (@4—1|ite, 571), @)

where 14 is the mean of the Gaussian distribution and &fI = it is the isotropic covariance matrix.
Particularly, the reverse transition is designed to preserve the marginal g(a¢|xo, A) (see Appendix

. Considering &f matches the ResShift variance, \; = 72 B ;3:1 ¢, the mean, fi¢, is given as:

xo — fi-14, ify=0,
oy = ~ Ti—T . 8
He xo — 1A+ \/2Bi—1 — 5F (ﬁ) . ify #0, ®)

where, for v = 0, the reverse process essentially becomes a linear interpolation between the corrupted
and original data, which underscores that the RDIM forward process is aligned with a forward model
(degradation process) that converts xg into yg.

Furthermore, fixing 67 to the ResShift variance, \;, also results in fi; matching the mean of the
ResShift reverse transition (see Appendix [A.3). Hence, RDIM becomes ResShift for this specific
variance, revealing that ResShift is a particular case of RDIM. Subsequently, a constant hyperparame-
ter, € [0, 1], can be introduced to interpolate between a deterministic (n=0) and a stochastic (17>0)
reverse process when v # 0, allowing control over the variability in the RDIM reverse trajectory:

~ T [Ty —xo + A . <
Btlyzo = To — Bi—1A +\/V?Bi—1 — 1* A (t()@) N Y )

v2 Bt
where, 7 = 1 makes the RDIM reverse process identical to ResShift. Meanwhile, setting v = 0
converts RDIM into a strictly deterministic model (y=0 = A\;=0), avoiding sampling random noise.

However, during inference, &g and A are unknown, thus sampling from the true reverse transition
distribution is not possible. Therefore, a learnable parametric model, pg(1—1|x¢, Yo), defined as a
Gaussian distribution, is introduced to approximate the true reverse transition g(¢—_1|x¢, o, A):

po(Te—1l@e, yo) = N (@i—1|po (x¢,y0,t) , 07 (x¢, 90, 1) I), (10)

where pg (4, Yo, t) is the mean of the Gaussian distribution and 05 (xt,yo,t) I = Xg (xt, Yo, 1)
is the isotropic covariance matrix. In particular, the variance of the true reverse transition, 6?, does
not have any learnable parameters because it is defined in terms of constant hyperparameters, which
are known. Therefore, the variance of pg(xt—1|®t, Yo) can be fixed to equal exactly the variance of
q(mt—l |'1:t7 Zo, A)

o5 (x4, Yo, t) = 2. (11)

2The forward transition, q(x¢|xt—1, 0, A), can be derived via Bayes’ rule.



Under review as a conference paper at ICLR 2026

Meanwhile, g (¢, Yo, t) approximates the mean of the true reverse transition, fi;. Considering that
xg and A are the only unknown terms and A can be estimated from ¢ and yg, then the model
solely needs to predict xq (see Appendix|A.4). Accordingly, the mean pg (¢, yo, t) is defined as:

&0 — Bi1A, if vy =0,

Lt, 7t = -, A 3 —& A i 12
He (Tt, Yo, t) &0 — Bi1A + /2Bt — 2N <mtw$\/2i£‘A>7 ify #0, (12

where &9 = fo(x+, Yo, t) denotes the xg prediction from a neural network given @, Yo, and timestep

t. The neural network is parameterized by weights 6 and A =G — Yo represents the A estimation.
Hence, the whole approximate reverse process is expressed by the following joint distribution:

T

Po(To:T|Yo) :p(mT|y0)Hpg(:ct_ﬂmt,yo). 13)
t=1

2.5 LONG-RANGE REVERSE TRANSITION

Particularly, the derived reverse transition structurally matches the reparameterized form of the
marginal ¢(x¢—1|xo, A) (see Appendix , which models the cumulative transitions from xg to
x_1 in the forward process. Therefore, the reverse transition formulation aligns with the concept
of cumulative transitions, allowing the reverse process to efficiently sample any state at an arbitrary
timestep 7,1 € {0,1,...,T — 1} by skipping intermediate latent variables in the reverse trajectory.
Accordingly, the reverse process can be simulated with fewer timesteps, thereby accelerating sampling.
Using the reparameterization trick, __, ~ pg (slr:,.k_1 |Zr, yo) can be sampled as follows:

$o — Br,_, A, ify =0,
Lrp_1 =93 . ~ ~ . > .
1T @0 - B At 280, — A e+ Az iy 20,

where (7,—1,7c) € {(t',¢) e NG |/ +1 <t < T}, z ~ N (0,1), and € is expressed by the follow-
ing relationship when « # 0 (see Equation in Appendix [A.2):

Ly, — iO + ﬂ‘rkA
\/ 7267']@

Essentially, each iteration of the reverse process involves predicting the original data sample, x. This
estimate is then used to compute the residual A and the noise component €, which together guide the
update to the next less-degraded state, x-,_,. As the reverse process progresses, the model gradually
refines its prediction of ¢ at each step, leveraging the increasingly accurate intermediate states. This
iterative refinement culminates in an accurate prediction of xo. Moreover, the ability of the reverse
process to skip intermediate steps not only enables few-step generation but also allows one-step
predictions, thus demonstrating the efficiency and flexibility of the RDIM sampling procedure. Here,
the number of sampling timesteps along the reverse trajectory, S € {1,2,..., T}, is set arbitrarily.
For each case, a uniform schedule is used, as detailed in Appendix@}

(14)

15)

€=

2.6 RESIDUAL 3-SCHEDULE

The residual -schedule employed is defined by a circular curve (similar to the fourth quadrant
p-norm shape), ensuring a smooth and adjustable transition between xg and x7:

t
TT+p-D(T -1

where p € (0, 00) is a parameter that allows controlling the steepness of the curve. As it increases
the 5-schedule exhibits a slower initial progression, followed by a rapid increase to larger and more
pronounced updates. This design allows for a gentle removal of the residual and injection of noise in
the early timesteps of the forward process, which become progressively more aggressive throughout
the diffusion trajectory. Figure 2] illustrates the impact of the parameter p on the diffusion process.

B

(16)

Furthermore, this choice for the 3-schedule ensures that 55 = 0 and 87 = 1, such that the residual, A,
is fully removed from x¢ after exactly 7" timesteps. As a result, the last latent variable, 7, converges



Under review as a conference paper at ICLR 2026

Forward Process
halhdb ddh £ a0 Al &1 i d ¢ BN
= Tl Vo ol Vol Dol Vil ol bl ool
o [N [N [N/ O [NV [V SN [N PPN ..
= TN 7N TN o TN bl i bl bl o+
:NTINTINVIWINVIVI I e
.0 t(]/; 1.0 0.0 t()/; 1.0

Figure 2: Progression of weights 5; and \; across timesteps and impact of p on the diffusion process.

to a noisy sample centered at the corrupted data, yo. Additionally, since 3y = 0, it follows that when
~ # 0 the variance of any reverse transition distribution from -, to &g is 1 )\Tk = n%y? ﬁﬂ “ N, =0.

Therefore, pg(xo|®+,,Yo) 20 degenerates into a J-distribution centered at &o. Loglcally, under
these conditions,  does not have any impact on the last transition of the reverse process.

2.7 OPTIMIZATION

At each step of the sampling process, the neural network parameterized by weights 6 yields an
estimate of xo. During training, these parameters are learned to assure that the model marginal
po(@o|yo) fits the true posterior distribution ¢(x¢|ye) via:

T

d(olyo) ~ po(zolyo) = [ plezlvo) [[po(@islar.yo) darr. a7
t=1

which ensures, during inference, that the data, x¢, can be sampled back accurately given yq. Ac-
cordingly, pg(@1—1|®+, Yo) is required to closely approximate the true forward transition posterior,
q(xt—1|Tt, Lo, A). This is achieved by minimizing the Kullback-Leibler (KL) divergence between
both distributions, while accounting for all timesteps. In fact, this objective can be reduced for
simplicity to (see Appendix [A.4):

[:simple(e) - E:EO,A,t [||-’Bo - i0||2] . (18)
Notably, ResShift shares the same training objective as RDIM, further highlighting that ResShift is a

particular case of RDIM and that its trained models can be used for RDIM sampling without retraining.
The RDIM training and sampling procedures are described in Algorithms[T]and 2} respectively.

: end for
. return xo

10: until convergence
11: return fy

Algorithm 1 Training Algorithm 2 Sampling
1: repeat I: Y={rs=T,75-1,...,71,70 = 0}
2: ®o,yo ~ q(®o,Yo) = q(x0)q(yo|To) 2 wp ~ N(yo7’)/21)
3 A=z0—1yo 3 fork=25,5—1,...,1do
4 t~ULT) o do= fua :
5: e~ N(0,I) 0 = Jok®me, Yo, Th
6: @t~ q(xt|To, A) 5 A=do-uo 20+6-, A
7: &o = fo(wt, yo,t) 6 ify £ 0thené =220 "2
8- — HwO _ 5:0“2 \/Wzﬁrk
9: Take gradient descent step on VgL 7 Try_y ~ Do (Try_y1|®1,, Yo)
8
9

3 EXPERIMENTS

RDIM is evaluated on image denoising and single image SR using the FMD 2019),
SIDD (Abdelhamed et al 2018} [2019), and DIV2K (Agustsson & Timofte, 2017} [Timofte et al
datasets. Two RDIM variants with v = 3.0, n=1.0, and p = 5.0 are considered, differing only
in the number of sampling timesteps, S. RDIM-1 corresponds to single-step deterministic inference




Under review as a conference paper at ICLR 2026

(S =1), while RDIM-10 denotes sampling with .S = 10 steps. The deterministic nature of RDIM-1
results from the final reverse transition degenerating into a d-distribution when v % 0 and By = 0 (see
Sections[2.5]and 2.6). Moreover, RDIM is compared against DDPM and ResShift with S =7 = 100.
Although ResShift is often employed with S =" = 10, there is a significant performance improvement
when using longer diffusion chains. This effect is evident in the experiments shown in Appendix [C.7}
where ResShift improves peak signal-to-noise ratio (PSNR) from 39.363 dB for 7= 10 to 43.599
dB for T'=100. Additional qualitative results on image inpainting, colorization, and deblurring are
provided on FFHQ (Karras et al.,|2019). Experimental details are in Appendixg including RDIM
assessment when varying .S (Figure [11)).

Image Denoising. RDIM is compared against BM3D (Dabov et al.,|2007), DnCNN (Zhang et al.,
2017), DDPM, and ResShift. Diffusion models were trained with the same network architecture
(detailed in Appendix [C.2) and number of diffusion timesteps (" = 100). The only distinction lies in
the diffusion framework employed. Results are listed in Table[Ta} On FMD-Confocal-BPAE-Raw,
RDIM-10 achieves the best results in terms of PSNR and structural similarity index measure (SSIM),
followed by RDIM-1. On FMD-Confocal-Zebrafish-Raw, ResShift attains the best PSNR score, but
is 10x slower than RDIM-10, which obtains comparable PSNR performance and the best SSIM
score. On SIDD-Medium, RDIM-1 yields superior results. Diffusion models, which inherently
capture richer structures than DnCNN, have their gains diminished on SIDD-Medium due to a small
patch size employed (kept the same across all experiments for consistency). Figure [3] presents a
qualitative comparison, further illustrating the enhanced denoising achieved by RDIM.

SIDD

SIDD

(a) Reference (b) Noisy (c) DnCNN (d) DDPM (e) ResShift (f) RDIM-1 (g) RDIM-10 (h) Ground Truth

Figure 3: Qualitative denoising analysis on cropped regions from the SIDD dataset. Since SIDD
contains noisy images captured under challenging lighting conditions, brightness-adjusted crops of
the marked regions are shown in the bottom row for enhanced visualization.

Super-Resolution. A comparative analysis with x2 and x4 downsampling factors evaluates
RDIM against ESRGAN (Wang et al.} 2018)), DDPM, and ResShift. Diffusion models were trained
under the same constraints and number of diffusion timesteps (7' = 100), differing only in the
diffusion framework employed. Results are shown in Table[Tb] On both DIV2K-Unknown-x2 and
DIV2K-Unknown-x4, RDIM-1 performs the best, followed by RDIM-10, highlighting that RDIM
consistently surpasses ResShift and DDPM. Figure ] showcases qualitative results, demonstrating
the high-fidelity reconstruction by RDIM, while other methods often hallucinate details.

Table 1: Comparative analysis of RDIM against relevant state-of-the-art techniques for (a) denoising
and (b) SR. Green color highlights the best score overall and Blue color the second best.

(a) Denoising on images from the FMD (BPAE and zebrafish  (b) X2 and x4 SR on images from the DIV2K
confocal fluorescence microscopy images) and SIDD datasets.  dataset.

Denoising FMD-BPAE ~ FMD-Zebrafish  SIDD-Medium SR s DIV2K-x2 DIV2K-x4
Method v PSNRT SSIMT PSNRT SSIMf PSNRT SSIMt Method PSNRT SSIMt PSNRT SSIMT
Noisy - 3159 0812 26732 0603 27797 0515 LR (Bicubic) - 25.112 0.704 21.742 0.574
BM3D — 35862 0933 35289 0918 35880 0.906 ESRGAN - 30017 0.857 24957 0.690
DnCNN - 37609 0950 37.169 0941 39.838 0.957 DDPM 100 31949 0.893 26446 0.739
DDPM 100 41775 0981 43214 0974 39329 0.945 ResShift 100 32368 0903 26.627 0.750
ResShift 100 43.599 0.984  45.167 0976  39.663  0.949 ROV | 33.887 0924 28280 0798
RDIM-1 1 43987 0985 44229 0976 40.335 0.962 RDIM-10 10 33.019 0914 27266 0.770

RDIM-10 10  44.147 0.986  45.027 0.978 39979 0.958




Under review as a conference paper at ICLR 2026

T

|-51"'\-4—l —-’_’J— "ﬁ»l_l-l— =/ =

F’fifp‘ -—‘—— _‘E.:,
e P — .cl il 3

b - F

(a)Reference  (b) LR (Bicubic)  (c) ESRGAN (d) DDPM (e) ResShift (f) RDIM-1 () RDIM-10  (h) Ground Truth

x4 SR

x4 SR

Figure 4: SR qualitative comparison on cropped regions from the DIV2K dataset.

Additional Image Restoration Tasks. Further evaluation on image inpainting, colorization, and
deblurring tasks demonstrates the generalization capabilities of RDIM. Figure 3] presents qualitative
results obtained with RDIM-10. Additional qualitative results are provided in Appendix [C]

(a) Original (b) Inpainting (c) Colorization (d) Deblurring

Figure 5: RDIM-10 results in image inpainting, colorization, and deblurring on the FFHQ dataset. In
(b), (c) and (d), the left side represents the input image and the right side the output.

Discussion of results. RDIM and ResShift consistently outperform DDPM, emphasizing that
their diffusion process is more closely aligned with these inverse problems. Moreover, RDIM
demonstrates performance comparable to ResShift, often surpassing it, while requiring significantly
fewer sampling timesteps. Since DDPM and ResShift require a reverse process with the same number
of timesteps as their forward diffusion process, reducing their diffusion steps to match the RDIM
sampling time would result in a degradation in performance [2023). This effect is evident
in the experiments conducted in Appendix [C.7, where ResShift with a reduced number of diffusion
timesteps underperforms compared to its higher-timestep configurations.

Furthermore, FMD-Confocal-Zebrafish-Raw contains noisier images than FMD-Confocal-BPAE-
Raw. As shown in Table@, RDIM-1 outperforms ResShift on FMD-Confocal-BPAE-Raw, whereas
ResShift performs better on FMD-Confocal-Zebrafish-Raw. This suggests that in the presence of
stronger degradations a more stochastic approach is advantageous, as variability promotes output
diversity. Conversely, when degradations are mild, a more deterministic method ensures consistent
and accurate restoration. Therefore, balancing stochasticity is crucial to adapt the method effectively
to varying noise levels and degradation strengths. Notably, RDIM-10 achieves comparable results to
ResShift in FMD-Confocal-Zebrafish-Raw while requiring only 10 sampling steps instead of 100,
rendering inference 10 x faster. Further demonstrating its efficiency, RDIM accelerates sampling up
to 100x compared to ResShift and DDPM on FMD-Confocal-BPAE-Raw. Additionally, experiments
on SIDD highlight that RDIM effectively supports high-resolution (HR) image reconstruction even
when operating on relatively small patches (e.g., 64 x 64) compared to the full image size, which here
reach resolutions of up to =~ 5300 x 3000 pixels. Naturally, increasing the patch size will improve
performance and could enable restoration of images at even higher resolutions.

In SR, standard diffusion models and ResShift, often exhibit a tendency to hallucinate details that
deviate from the ground truth, particularly when employing long diffusion chains. As illustrated
in Figure [ while iterative refinement encourages the generation of natural-looking textures, it
frequently trades off fidelity for perceptual quality, leading to reconstructions that drift away from the
original structure (see Appendix [C.7|for further evidence). Furthermore, the deterministic RDIM-1



Under review as a conference paper at ICLR 2026

outperforms all methods, suggesting a more deterministic approach to SR is beneficial, as too
much stochasticity can introduce unwanted variability in the output and the iterative refinement of
long-chain diffusion can become detrimental.

4 RELATED WORK

Recently, several strategies have been proposed to accelerate the sampling process of the DDPMs,
broadly divided into training-based distillation methods (Salimans & Ho, [2022; Luhman & Luhman),
2021;|Song et al.,|2023) and training-free solver-based approaches. Within the first category, trajectory
distillation techniques (Salimans & Ho} [2022; Meng et al.| 2023} L1 et al.| [2023)) aim to fine-tune a
student model, effectively reducing the number of sampling steps in a multi-stage manner. Similarly,
consistency distillation methods, inspired by the consistency model (Song et al., [2023), encourage
denoising outputs along the sampling trajectory to remain coherent. Notable examples include latent
consistency models for text-to-image generation (Luo et al.,|2023)) and consistency trajectory models
for image generation (Kim et al.,[2024). While these approaches demonstrate the ability to produce
HQ samples with relatively few steps, they often involve substantial training costs, and some degree
of information compression from the original model may occur. On the other hand, training-free
samplers provide a complementary direction, typically offering greater flexibility since no additional
training is required. Most of these methods build upon the ODE formulation of DDPMs, enabling
HQ generation in as few as 20 steps (Song et al., 2020; [Popov et al.| 2022} |Bao et al., [2022; |Song
et al.,|2021;|Lu et al., 2025} |Zheng et al.| 2023)). For example, DPM-Solver-v3 (Zheng et al.| 2023)
introduces additional coefficient refinements, reformulating the original ODE solution in a way that
consistently improves sample quality, even within 5—10 steps. Nonetheless, DPM-Solver++ has been
primarily tailored for image synthesis and is not explicitly optimized for inverse problems such as
denoising or SR, where the input already contains partial but degraded information. Its effectiveness
in residual modeling or across different degradation modes is therefore less clearly established. In
contrast, our proposed method is designed to extend across a broader spectrum of tasks, including
denoising, SR, inpainting, and colorization, while retaining efficiency.

Building on the progress of accelerated sampling strategies, another active research direction has
focused on adapting diffusion models specifically for image reconstruction tasks. For instance, SR3
(Saharia et al., |2022) extended DDPMs for SR by conditioning on low-resolution (LR) inputs, while
SRDiff (Li et al.||2022) incorporated residual prediction to accelerate convergence. Similarly, |[Whang
et al.| (2022) leveraged residual-based refinement on top of deterministic deblurring networks, generat-
ing diverse reconstructions. Although effective, these methods rely on iterative denoising trajectories
from Gaussian noise to images, which are not optimally suited for reconstruction problems (Chung
et al.| 2022b). To overcome this limitation, alternative formulations have emerged. Denoising diffu-
sion restoration models (DDRMs) (Kawar et al.,2022) introduced unsupervised posterior sampling
with pre-trained diffusion models to address linear inverse problems, and ResShift (Yue et al., [2023))
explored residual modeling between HR and LR images. Yet, their inference procedures remain
computationally demanding, as they iterate sequentially through all timesteps. In this context, the pro-
posed RDIM offers a new perspective. It provides flexible control over the reverse trajectory through
step skipping and interpolation between stochastic and deterministic reconstructions, achieving both
efficiency and versatility. This makes RDIM well suited for a wide range of image reconstruction
tasks, including denoising, SR, inpainting, and colorization.

5 CONCLUSION

RDIMs constitute a diffusion framework tailored for inverse problems that explicitly models the
residuals between HQ and LQ images. Aligning the forward process with the actual degradation and
leveraging implicit sampling enables RDIMs to produce accurate reconstructions with significantly
fewer steps than conventional DDPMs. Furthermore, RDIM achieves superior results compared
to DDPM, reducing hallucinations while maintaining fidelity, highlighting that starting the reverse
process closer to the LQ images offers a more informed and effective initialization. Experiments on
denoising and SR demonstrate consistent improvements over DDPMs and performance comparable
to or exceeding ResShift, achieving HQ results with single or few step inference. These results
establish RDIMs as an efficient and versatile approach for a wide range of image reconstruction tasks.



Under review as a conference paper at ICLR 2026

REFERENCES

Abdelrahman Abdelhamed, Stephen Lin, and Michael S Brown. A high-quality denoising dataset
for smartphone cameras. In Proceedings of the IEEE conference on computer vision and pattern

recognition (CVPR), pp. 1692-1700, 2018.

Abdelrahman Abdelhamed, Radu Timofte, and Michael S Brown. NTIRE 2019 challenge on real
image denoising: Methods and results. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2019.

Eirikur Agustsson and Radu Timofte. NTIRE 2017 challenge on single image super-resolution:
Dataset and study. In Proceedings of the IEEE conference on computer vision and pattern
recognition workshops (CVPRW), pp. 126-135, 2017.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. In International Conference on Learning
Representations (ICLR), 2022.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022a.

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-Closer-Diffuse-Faster: Accelerating
conditional diffusion models for inverse problems through stochastic contraction. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 12413-12422,
2022b.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image denoising by
sparse 3-d transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16
(8):2080-2095, 2007.

Mauricio Delbracio, Damien Kelly, Michael S Brown, and Peyman Milanfar. Mobile computational
photography: A tour. Annual review of vision science, 7(1):571-604, 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. Advances
in neural information processing systems (NeurIPS), 34:8780-8794, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems (NeurlPS), 33:6840-6851, 2020.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (CVPR), pp. 4401-4410, 2019.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. Advances in Neural Information Processing Systems (NeurIPS), 35:23593-23606, 2022.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. In International Conference on Learning Representations
(ICLR), 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun Feng, Zhihai Xu, Qi Li, and Yueting Chen.
SRDiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing, 479:
47-59, 2022.

Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. SnapFusion: Text-to-image diffusion model on mobile devices within two seconds.
Advances in Neural Information Processing Systems (NeurIPS), 36:20662—-20678, 2023.

10



Under review as a conference paper at ICLR 2026

Jiawei Liu, Qiang Wang, Huijie Fan, Yinong Wang, Yandong Tang, and Liangqiong Qu. Residual
denoising diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2773-2783, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver++: Fast
solver for guided sampling of diffusion probabilistic models. Machine Intelligence Research, pp.
1-22, 2025.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 11461-11471,
2022.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (CVPR), pp. 14297-14306, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems (NeurlPS),
32,2019.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, Mikhail Sergeevich Kudinov, and
Jiansheng Wei. Diffusion-based voice conversion with fast maximum likelihood sampling scheme.
In International Conference on Learning Representations (ICLR), 2022.

Sameera V Mohd Sagheer and Sudhish N George. A review on medical image denoising algorithms.
Biomedical signal processing and control, 61:102036, 2020.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(4):4713-4726, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations (ICLR), 2022.

Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling of
diffusion models. Advances in Neural Information Processing Systems (NeurlIPS), 36:4263-4276,
2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations (ICLR), 2021.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations (ICLR), 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Proceedings
of the 40th International Conference on Machine Learning, ICML’'23. JMLR.org, 2023.

Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. NTIRE 2017
challenge on single image super-resolution: Methods and results. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops (CVPRW), pp. 114-125, 2017.

Peijuan Wang, Bulent Bayram, and Elif Sertel. A comprehensive review on deep learning based
remote sensing image super-resolution methods. Earth-Science Reviews, 232:104110, 2022.

11



Under review as a conference paper at ICLR 2026

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy.
ESRGAN: Enhanced super-resolution generative adversarial networks. In Proceedings of the
European conference on computer vision (ECCV) workshops, 2018.

Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G Dimakis, and Pey-
man Milanfar. Deblurring via stochastic refinement. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (CVPR), pp. 16293-16303, 2022.

Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network for
real-world image super-resolution. Advances in Neural Information Processing Systems (NeurIPS),
37:92529-92553, 2024.

Zongsheng Yue, Jianyi Wang, and Chen Change Loy. ResShift: Efficient diffusion model for
image super-resolution by residual shifting. Advances in Neural Information Processing Systems
(NeurlPS), 36:13294-13307, 2023.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a Gaussian denoiser:
Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26
(7):3142-3155, 2017.

Yide Zhang, Yinhao Zhu, Evan Nichols, Qingfei Wang, Siyuan Zhang, Cody Smith, and Scott
Howard. A poisson-gaussian denoising dataset with real fluorescence microscopy images. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 11710-11718, 2019.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. DPM-Solver-v3: Improved diffusion ODE
solver with empirical model statistics. Advances in Neural Information Processing Systems
(NeurlIPS), 36:55502-55542, 2023.

A DERIVATIONS

This section presents detailed mathematical derivations to support this work. All intermediate steps
and calculations omitted for brevity in the main text are included here for completeness and reference.

A.1 FORWARD PROCESS CUMULATIVE TRANSITION DISTRIBUTION ¢(x¢|Zo, A)

The RDIM forward process is designed to align with a forward model that converts the data, xg,
into the corresponding corrupted version, yg. To achieve this, the Gaussian transition distribution
in Equation @]) is derived for a Markovian version of the RDIM forward process. However, when
generating a latent variable x4 starting from ¢, the sequential formulation of the diffusion process
can become computationally expensive, particularly as the timestep ¢ increases. To address this
problem, the reparameterization trick can be leveraged, allowing the cumulative Gaussian transitions
of the forward process to be expressed in closed form. As a result, + can be computed at an arbitrary
timestep ¢ as a function of x¢, the fraction of residual between xg and yo, \¢ A (with \; determining
the amount of residual to be removed between each diffusion step), and optional forward variance
parameter ~y:

Ty =1 — MA+ V2N E

=X 2 — M1 A+ VPP No1€1 — MA +H VP e

(19)
=zo— A+ X2+ +N) Ve + VA2 hoez + -+ V2 he
Xe
where €1, €2, ..., € ~ N(0,I). Hence:
ze ~ N (2o — MB, (M + X+ + M) T) (20)

~ N ((EO - j\tA,’)/QXtI) s

Therefore, the cumulative Gaussian transition in the forward process can be defined as in Equation
(5) and, when ~ = 0, it collapses into a Dirac delta function.

12



Under review as a conference paper at ICLR 2026

Cumulative sum of weights \; Each weight \;, used to control the variance and amount of residual
to be removed in each diffusion step, is computed as A\; = §; — B;—1, with [3; representing the
transition at forward step ¢ between original and corrupted data in the Markov chain. Consequently,
the cumulative sum of weights \; from the initial timestep ¢ = 1 up to timestep ¢ = 7 is given as

follows:

A=Y M= (Bi—Bi1)=B-—Bo 1)
t=1

t=1

Distribution of the last latent variable ¢(xr|xo, A) = g(xT|yo). Given that the RDIM forward
process is designed to align with a forward model that converts the data, x¢, into the corresponding
corrupted version, Yo, the residual, A, should be fully removed from x at the end of the forward
process, i.e., after exactly T timesteps. This ensures that the last latent variable, 7, will coincide
exactly with the corrupted data, yo, when the forward process is deterministic, and will converge to a
noisy sample centered at yo when the forward process is stochastic. Hence, considering Equation
@]), the last latent variable, 7, of the forward process can be sampled as:

xrr ~ N (330 — S\TA,’}/Q;\TI)
~ N (330 - j\T (CBO — yg) ,725\'1“1) (22)
~N (330 (1 — 5\T> + E\Tyo,’yQ;\TI) .
Logically, to ensure the aforementioned condition of centering the distribution ¢(xr |z, A) on the

corrupted data, yo, the cumulative sum of weights \; over the 7" timesteps must satisfy Ay = 1. This
imposes that 5y = 0 and B8y = 1, since Ay = B — 5y, as mentioned above. Accordingly:

xr ~ N (yo,7°I). (23)

This formulation assures that the residual A is fully removed after exactly T timesteps (A; = 1 only
when ¢ = T') and that the distribution g(xT|xo, A) is centered at the corrupted data, yo. As a result
of this deliberate design choice, ¢(zr|xo, A) = q(x1|yo) holds exactly at ¢ = T'. In addition, when
v = 0, the Gaussian collapses into a Dirac delta function centered at yq, thereby the final latent
variable, x, coincides exactly with the corrupted data, i.e., x1 = yo.

Additionally, the 5-schedule defined in Equation is designed to impose 5y = 0 and S = 1,
thus satisfying the aforementioned requirements. In particular, the camulative sum of weights )\, is
At = B¢ when By = 0 (see Equation ). Figureshowcases the progression of the weights [3;
and \; across timesteps. If p = 1.0, the S-schedule is linear and ); is constant, resulting in uniform
fractions of A removed along the forward process.

Accordingly, under this condition of Sy = 0, the cumulative forward transition distribution,
q(x¢|To, A), expressed in Equation can be further simplified to:
xy ~ N (270 - ﬂtAﬁzﬁtI) . (24)

A.2 REVERSE PROCESS TRANSITION DISTRIBUTION ¢(&¢—1|®¢, o, A)

The reverse process involves computing the reverse transition, which is defined as the Gaussian
distribution in Equation (7)) and is designed to preserve the marginal ¢(x¢|xo, A) in Equation .
Considering that Gaussian distributions exhibit the property that their conditional means are linear
combinations of the conditioning variables (see Lemma , then the mean fi; of g(x1—1|x¢, To, A)
can be expressed as a linear interpolation between x¢, g, and A. Particularly, to match the form
of the forward process cumulative transition, ¢(x¢|zo, A), the mean fi; is assumed to be a linear
combination between (xog — $:A) and xy:

e = a(xo — St A) + by, (25)
where a and b are constants.

Following, given ¢(x¢|xo,A) and the formulation assumed for ¢(xi—1|x¢,xo,A), then
q(x¢—1|To, A) can be defined by leveraging a property of marginal and conditional Gaussians

(see Lemma [B.T):
q(wi—1]xo, A) = N (24—1|b (20 — Bt A) + a (w0 — BiA) , 57T + by B 1b)

26
=N (wt_l‘ (Lo — BiA) (a+D), (67 +¥*Beb*) I) . (20)

13



Under review as a conference paper at ICLR 2026

Recalling that g(x¢|@o, A) = N (x¢|wo — B A, 7?81 ) is being enforced, the cumulative Gaussian
transition to obtain x;_7 given &g and A is also defined as:

q(@i—1|wo, A) = N (T4—1|m0 — Bio1A, 7B 1) . (27

Accordingly, to ensure that the designed reverse transition preserves the marginal ¢(x¢|xo, A), the
following equality must be satisfied:

N (th—1| (xo — BtA) (a+D), (5,52 + ’yzﬁtb2) I) =N (wt—1|f'30 - 5t71A7725t—1I) , (28)
and thus a and b can be computed by solving the following system of equations:

A A 2Be—1-57
{(moﬂtm (at+b)=wo—fraA | Ja=14 g 5x — /g

07 +72Bb* = 2B b= 7725;55:5?

(29)

Consequently, the mean of each reverse transition, fis, is given as:

[y = a(xo — Bt A) + by

At A [v2Bi—1 — 77 V2Bi_1 — G2
=(1+— | —————— | (g —BtA)+ | —————=x
To — fLtA 725:& ( 0= 5iA) 2By ¢
[V2Bi-1 — 67 V2Bi—1 — &%
= XTo — BtA + )\tA — W (170 — 6,5A> + Wﬁct (30)

Y2 Be—1 — &7:2
2By

o [ Tt —x0 + BA
=xo — fr 1A+ /Y B -6 | ——F— | »
' V’Yzﬁt

where, in particular, singularities can occur for v = 0. Therefore, for v # 0, the mean of the reverse
process transition distribution that preserves the marginal ¢(x¢|xo, A) is given as:

- - Ty — L + BtA
Bitjyro = To — B A +\/V2Bi1 — 67 | ——F——— | - (31)
! ' V 2B

Essentially, the mean, fi, is chosen to ensure that q(z¢|@o, A) = N (x¢|wo — A, ¥?B ) is
satisfied for all ¢ € {1,2,...,T}. Meanwhile, the variance 57 is set equal to the variance of the
ResShift reverse transition (see Appendix , thus 67 = ~2 %/\t = A

=xo — BtA+ (B — fi—1) A+ (xy — x0 + tA)

Relationship between x;, xo, A, and €. Considering the marginal g(x¢|xo, A) and v # 0, a
relationship between x4, g, A, and € ~ N (0, I') can be derived from the reparameterization trick:

q(@i|@o, A) = N (m¢|@o — B A, 7> BT
= Ty = T — 6tA + V 725256 (32)
Ty —x0 + BA
V 2B

This expression exactly matches the term between parentheses in the mean of the reverse process
transition distribution for  # 0, in Equation (3T)). Accordingly, the mean can be rewritten as:

gy 20 = To — Bro1A 4+ \/¥2Bi-1 — G, (33)

which structurally matches the reparameterized form of the marginal ¢(x¢—1|®o, A), exhibiting the
same functional form and differing only in the variance term. This highlights that, when v # 0, the
reverse transition is aligned with cumulative transitions and can be leveraged to efficiently sample
any state at an arbitrary timestep.

= €=

14



Under review as a conference paper at ICLR 2026

Reverse transition with v = 0. Particularly, for v = 0, the forward process cumulative transition,
defined as a Gaussian distribution, degenerates into a Dirac delta function (see also Appendix [A.T).
Consequently, for v = 0, Lemma [B.1]is not applicable. In fact, in this case, the forward process
effectively becomes a linear interpolation between ¢ and yo. Logically, when v = 0, it follows that
the reverse process simply needs to invert this deterministic process. However, the continuity of the
mean, fit, should be assured at v = 0, i.e., fig)y—0 = limy 0 fi¢|y20-

Considering Equation (24) in Appendix it follows lim,_,o ; = To — Bt A, which implies
that z; — xo + B A — 0 as vy — 0. Accordingly, given 67 = 72%/\,5, then lim,, o fi)20 =
xo — P:—1A. As aresult, to ensure the continuity of the mean fi4 at v = 0, the Gaussian transition
q(xt—1|Tt, Lo, A) is assumed to collapse into a Dirac delta function centered at g — ;1 A.
Hence, for v = 0, the mean of the reverse process transition distribution is defined as:

BPjy=0 = To — Bi-1A. (34)

Notably, this formulation of fi;,—o matches the mean of the cumulative forward transition,
q(x¢—1|To, A) (see Appendix , showing that the reverse process, when v = 0, reduces to
a linear interpolation between yo and ¢ (inverse of the deterministic forward process). Additionally,
it aligns with the concept of cumulative transitions, which is paramount for long-range transitions
(see Section [2.5)). In essence, the mean, fis, is expressed as in Equation (§) and is continuous at
~ = 0. Nonetheless, the y constant hyperparameter is immutable in practice, i.e., set only once for
each model instance, thereby no discontinuity issues would ever arise due to y (see Appendix [A.4).

A.3 REVERSE TRANSITION WITH &f = 72%& (RESSHIFT VARIANCE, 5\,5)

In particular, if the reverse process transition variance, &f, is set to be the same as in ResShift,
A =72 ﬂtﬁzl At, then the mean, ﬁth#o, reduces to:

- [ Ty —xo + G A
Btjy20 = To — Br-1A + \/72@5—1 — o} #
Vr* B
_ Ty — g + LA
:$0_ﬁt1A+\/725t1_'725t S | = 02 Be
Bi Vi

o Y BeBe—1 — ¥ Be—1 (Bt — Bi—1) [ @t —x0 + BA
=z 5751A+\/ 25, ( o )

A/ YAB2_ 1 (x4t — o + BrA)
(35)

=X — _ A +
0o~ Bi-1 5,
—1%¢ — Py + 1A
— w0 — B 1A+ Bi—1xe — P10 + LS
B
Bi1 ( 5t1>
= Te+xo(1-—
B ‘ ° Bt
Bi—1 At
= xi + — g,
B B
and thus the distribution g(x¢—1|@¢, To, A)~0 becomes:
_ A -
q(@r—1|me, TO, A)yto = N <ﬂ3t—1 %mt + Etmo, )\tI> ) (36)
t t

which is exactly the ResShift reverse transition distribution. In essence, if the RDIM reverse transition
variance, 6?, is set to be the same as in ResShift, then f1; will match the mean of the ResShift reverse
transition. Accordingly, RDIM reduces to ResShift for this specific variance, revealing that ResShift

is a particular case of RDIM.

Alternatively, for v # 0, if the variance is set to G2 = 0, then there are no stochastic terms involved
when traversing the reverse trajectory, as q¢(@¢—1 |+, €o, A), 0 degenerates into a J-distribution

15



Under review as a conference paper at ICLR 2026

and avoids sampling random noise (given Equations (7) and (31))). Consequently, the reverse process
becomes deterministic. Therefore, a constant hyperparameter, € [0,1], can be introduced to
interpolate between a deterministic and stochastic reverse process when «y # 0, thus allowing control
over the variability in the reverse trajectory (see Equation (9)). Specifically, when 1 = 0, the Gaussian
collapses into a Dirac delta function.

Absence of non-real square roots. From Equation (9), it follows that to avoid a non-real square
root, when  # 0, the condition 423;_; > n?); must be satisfied. Considering \; = 72 B 2; ¢, then:

B
Recalling that € [0, 1], then 0 < 7% < 1. Moreover, since 0 < 3;_1 < f3, it follows that
0<? fﬁ L < 1, which in turn ensures that the term inside parentheses meets the condition 1— B ;3 L <1

Consequently, the product of these two terms is always less than or equal to 1, and thus the Inequality
is satisfied for all p € [0,1] and t € {1,2,...,T}.

- A _
72@_12772At<:>12n26t<:>1zn2<1—5t 1>. (37)
t

A.4 TRAINING OBJECTIVE

During inference, ¢ and A are unknown, thus sampling from the true reverse transition distribution,
q(x¢—1|Tt, Lo, A), is not possible. Therefore, a learnable parametric model, pg(Ts—1|Tt, Yo),
defined as a Gaussian distribution, is introduced to approximate q(xs—1|x¢, o, A). Particularly,
an accurate estimation is required to ensure precise reconstruction of the data, x¢, at inference.
This approximation is achieved by minimizing the KL divergence between both distributions, while
accounting for all timesteps:

0" = arg;nin Dxw(q(z1:7|To, A)l[pe(z1:7|Y0)) (38)
where 0* denotes the optimal parameters. In fact, this objective of minimizing the KL divergence

in Equation (38) is equivalent to minimizing the negative variational lower bound (VLB) on the
conditional log-likelihood. This is the RDIM objective function and it can expanded further:

q(ml:TﬁcmA))]
L(O)=E T1:.T |0 ! “pe(Tor|vo)
(9) a(z1.r|20,A) [og( Po(To:T|Yo)

T
q(xr|To, A)[[;_s ¢(t—1|Ts, T0, A
:E‘I(wlzT‘w07A) [log< ( Tl L )Ht : ( : 1‘ — )>]

T
p(xT|Yo) Ht:l Po(Tt—1]T¢, Yo)

q(xT|xo, A
= Eq@irleo.a) llog <(T|°))

p(xT|yo)

A
+10g (H q Tt— l‘wtax07 )) _ log (pe(:l:0|w1,yo))]

i—o Po(Te—1]T¢, Yo)

q(wT|ﬂ30,A))]

= EQ(wT\wmA) [log < p($T|y0)

(g, o, A)
+]E ‘ 10 ( t—1 ty L0 >
e(@rieo,A) LZ:; & po(Ti—1]|Te, Yo)
- ]Eq(w:llfco,A) [log (pe(xolT1, Yo))] (39)
= DxL(q(zr|z0, A)||p(TT|Y0))

T
Q(wt—l\wuwoaA)
+ ZEq(mt—lvmt‘m07A) |:10g <

=2 po(@t—1|Tt, Yo)

- ]EQ(mllmo,A) [log (pe(xo|x1,Yo0))]
= Dxw(q(zr|To, A)l|p(xT|Y0))

= q(xt—1|z, T0, A)
SN B Eye 1o a o ( t—1|T¢, To, )”
Z: q(zt|To,A) [ q(zt—1|Tt,T0,A) [ g p9($t—1|wt7y0)

16



Under review as a conference paper at ICLR 2026

- ]Eq(mllmo,A) [log (pg(xolx1,Y0))]
= Dxr(q(zr|To, A)llp(xT|Y0))
Lt

T

+ Z Eq(wtkcg,A) [DxL(q(xt—1]|Tt, To, A)||pe(Tt—1]|Tt, Yo))]
t=2

Li_1
—Eg (1 ]x0,a) [10g (po(xo|21,Y0))] = L7 + L1.7-1 + Lo.

Lo

Hence, analogous to DDPMs, the RDIM objective function, £(#), decomposes into L1 (prior
matching term), £1.7_1 (consistency terms), and L (reconstruction term).

Prior matching term L£y. The term L7 is minimized when the prior, p(xT|yo), matches the
true distribution of the last latent variable, ¢(xr|To, A) = ¢(xT|yo) = N (yo,7?I). Accordingly,
p(xT|yo) is fixed to such a Gaussian distribution, which is parameterized by constants and involves
no learnable parameters. Therefore, L is constant with respect to the model parameters, 6, and is
minimized, i.e., L7 = 0. Consequently, this term can be excluded from the optimization objective,
unlike the terms Lo.7—1, which explicitly depend on 6 through the parameterized distribution py.

Consistency terms £q.7_1. The terms £q.7_; enforce that the learnable parametric model,
po(Te—1|xt, Yo), accurately approximates the true reverse transition, ¢(x¢—1|®¢, o, A). This
fundamentally ensures that the model learns to refine the data at intermediate timesteps, leading to
consistency in the reconstruction.

The true reverse transition distribution is known in closed form (see Section[2.4]along with Appendices
[A.2]and[A3)), having mean and variance parameterized as:

To — fr14, ify=0,
by = 3 Ti—T : 40
P o Bad e e (3B ) iy 20, @
and _
)\t7 1f’Y = 07
62 = . (41)
A, ify #0,
where \; = 72%)\25.

Given that py(ax¢—1|Tt,yo) is defined as a Gaussian distribution with mean pg (x4, yo,t) and
variance 03 (z+, Yo, t), to minimize the KL divergence of each term £;.7_1, the mean and variance
of the parametric model should approximate fi; and 77, respectively. Particularly, the variance of
q(xt—1|Tt, Lo, A) does not have learnable parameters because it is defined in terms of constant
hyperparameters, which are known. Therefore, o3 (¢, Yo, ) can be fixed to equal exactly 57, as
expressed in Equation (TI). Following, each term £.p_1 is computed by applying the closed-form
expression for the KL divergence between two d-dimensional multivariate Gaussian distributions,
yielding:

Dxr(q(xe—1|xe, o, A)||po(Ti—1|2¢, Y0))

1 |O' m,yv)I| 5
e t}’, —d+ (o3 (@ove ) 1) 520)

-1 ~
+ Heo (whyO? T (U T, yOa ) (IJ’O (xtay07t) - l"’t))

(v
(
(1 ( )—d+tr( fI)
(

+ (mo (x¢, Yo, t) — T(ﬁf ) (1o (Cﬂt,yoﬂf)—ﬁt)) (42)

l\D\»—t

17



Under review as a conference paper at ICLR 2026

1

= 5( () (o v~ )" (s (0. 0)— ) )

1 ~ 112
2~2 e (xt,yo,t) — e,
where | - | denotes the determinant of a matrix, and tr(-) is the trace of a matrix. Notably, minimizing
the KL divergence effectively reduces to decreasing the difference between the means pg (¢, Yo, t)
and fis.

However, this is only valid with v # 0 and 7 # 0. In contrast, when either v = 0 or = 0, the true
reverse transition Gaussian collapses into a Dirac delta function:

§ (Te—1 — figjy=0) , ify=0, (A)
q(ze—1|ze, To, A) = < 8 (Tp—1 — figy20) ify # 0andn =0, 43)
N(@e—1|fer20, 0, 20T), ify#0andn#0, (O

where A, B, and C correspond to the cases of v = 0, (v # 0 and n = 0), and (v # 0 and 5 # 0),
respectively.

The KL divergence between two Dirac delta functions is not defined in the conventional sense due to
their singular nature, but it can be analyzed through limiting behavior. Two delta functions centered
at different points have infinite divergence, thereby the KL divergence of each term £,.7_; tends to
infinity, when v = 0 or n = 0, unless pg (¢, Yo, t) = [

(xt—1]xt, Yo))

Dxi1,(q(xe—1|xe, 0, A)

. if (A and pg|y—o (¢, Yo, 1) = /:f thy=0)
, or (15 and pg |20 (Tt; Yo, ) = fgjy-20),
=1 0 if (A and Ho|y=0 (zt, Yo, t) # /1 |7:0) 9
, or (15 and pg |20 (Tt; Yo, t) # fejys£0),
Tinto 357 Iltto1y20 (Te; Yo, 1) — frejy 0], if C.

For the Dirac delta cases, where either v = 0 or = 0, to avoid an infinite loss, the only choice is to
force pg (4, Yyo,t) = fiz. However, directly optimizing under such a hard constraint is infeasible
in practice, as it provides no gradient information unless the condition is already satisfied. To
circumvent this, a relaxed proxy objective is adopted, mirroring the approach used in the Gaussian
case. Specifically, it minimizes half of the squared Euclidean distance between pg (¢, yo,t) and
f¢. This mean-matching proxy loss serves as a differentiable surrogate that naturally encourages the
model to align the means and can be interpreted as the limiting case of the KL divergence when the
variance tends to zero. Consequently, the reduction of the KL divergence to mean matching holds for
all scenarios of ~y and 7.

Moreover, considering the formulation of f1; given in Equation and since at every timestep, ¢,
in the reverse process, only the exact values of &g and A are unknown, then g (2, Yo, t) can be
defined as in Equation . In this definition of g (¢, Yo, t), the only components dependent on
the parameters 6 are £o and A. Since, A can be estimated from x and Yo, then the model solely
needs to predict xg. Hence, £o = fy(x+, Yo, t) denotes the xq prediction from a neural network
given x¢, Yo, and timestep t. Meanwhile, A= &g — Yo represents the A estimation, computed
from the x¢ prediction and the known yg. The remaining components are fixed hyperparameters
and x;, which are known for every reverse transition from x; at any timestep, t. In essence, the
approximate reverse transition, pg(¢—1|®¢, Yo ), is modeled as a Gaussian whose mean is computed
using a neural network that predicts xo. Accordingly, the KL divergence of each term £;.7_1 can be
further expanded as:

Dxr(q(Ti—1|Ts, To, A)||po(xs—1|Tt, Y0))

2oy =0 (@4, Yo, t) — fgjy=oll?, if A,
= { $ll1opy20 (@4, Yo, t) — fepyz0ll?, if B,
%f‘i”/‘BI#O (¢, Yo, t) — figly20ll?, if C,

18



Under review as a conference paper at ICLR 2026

3o — Bio1A — (&0 — Bi1A)|, if A,
3llmo = Br1A +/72Bi1 — e (M %[?A)
) 2, if B,
_ - <§70 — B 1A +\/V2B_1 — 2N “3\6—0:‘/315A>)
- Y2 B¢
22, ||T0 ~ Bi 1A 4+1/v2Bi-1 — n2 X\ ‘“_m::jﬁlj’A)
. 2, ifC,
— (&0 - Brah + /126, — ), (moteznd
<w0 ﬁt1+75t177t<m
%”330 — &0 — fi—1(x0 — @0)“27 if A,
3l|zo — ®0 — Bi—1(w0 — ®o)
2, if B,
— + %(io — @0 + fi(xo — Zo))
2”;75% xo — o — Pr—1(x0 — Xo)
N < 2, 1if C,
+ \/W@O — o + Bi(xo — o))
sl(@o —20)(1 = Bi- 1), if A,
31[(xo — o) (1 — Be-1)
2, if B,
_ + %(C&o — o + ,Bt(ilio — :fio))
5% || (@0 — 20)(1 = Bi)
— 2, ifC,
+ \/%7(530 — g + ﬁt(wo — SEO))
1—B¢—1 - .
=t o — ol ?, 2 if A,
_ ) 3|[@o — 20)(1 = Bio1) — /5 (w0 — #0)(1— By)]| if B,
2
28,1 —n2X A .
271;5\1 (o — 2o)(1 — Bi—1) — \/%(wo —Zo)(1 =B , ifC,
=0 | — do2, if A,
_ ) 5o —0) (1- 81 — /2201 -8)) || i,
2
~ 28, 41— 2~t 3
2772% (o — ®o) (1 =B — \/@(1 - ﬂﬂ) , ifC,
120t |y — dol|?, ify=0,
1-Br—1—1/ ﬁtgzl(lfﬁt) .12 .
= 2 lxo — Zol|*, ify#0andn =0,
Y2Be_1—n%X¢
17ﬂt717 T(liﬁt) ~ .
2n25\f |zo — Zoll*, ify#0andn #0,

= wi(,m,1)||lwo — Zol|*.

(45)

Therefore, irrespective of the specific values of y and 7, each consistency term £1.7_1 ultimately
reduces to the expectation of a weighted squared Euclidean distance between the original data ¢

and its prediction, where the expectation is taken over g(x¢|xg, A):
Li 1= Eq(mt\mo,A) [wt(’Yv U t)HmO - :%0”2] )

19

(46)



Under review as a conference paper at ICLR 2026

with weights w;(-) defined as a function of +, 7, and ¢. Essentially, approximating &g to the original
data effectively ensures that pg (¢, yo,t) converges to fi. As aresult, pg(@x¢—1 |2, Yo) accurately
models g(x¢_1|x¢, o, A), which is the primary purpose of the consistency terms L1.7_1.

In particular, due to the relationship between xo and € given in Equation (32), the objective derived
in Equation (@3] could be converted to predicting noise € similar to DDPMs (Ho et al. [2020).
However, this reformulation of the objective would not be possible with a deterministic forward
process (7 = 0), as it works only for cases where noise was added during the forward process
(v # 0). Hence, having the neural network predict xq directly is preferred for broader applicability
and improved generalizability.

Notably, the mean is continuous at v = 0 (see Appendix [A.2)), thus there are no problems during
gradient computation, such as taking gradients where a function is not differentiable. Nonetheless,
for each specific value of ~, the mean is continuous and the ~ constant hyperparameter is immutable,
i.e., set only once for each model instance, thereby no discontinuity issues would ever arise due to .

Reconstruction term £y. The £, term is essentially the expectation of the negative log-likelihood
(NLL) of the original data, &g, conditioned on the first latent variable, 1, and the corrupted version,
Yo, where the expectation is taken over 1 ~ ¢(x1|zo,A). In essence, it quantifies how well
the model can reconstruct o given 1 and yg. Since minimizing the NLL encourages the model
to output high-probability (accurate) reconstructions, it can be interpreted as a reconstruction loss.
Conceptually, this term acts as a final quality check, ensuring that after practically all the diffusion
degradation is remove(ﬂ iteratively, the model can accurately reconstruct the original clean data, xg,
from the almost degradation-free input, ;. It assures that the model not only learns to refine the
data at intermediate timesteps, but also produces outputs consistent with the underlying real data
distribution conditioned on yg. As a result, it contributes to aligning the model marginal py(xo|yo)
with the true posterior distribution g(xo|yo) as given in Equation . Nonetheless, similar to
DDPMs, this term is omitted in practice, since it is implicitly included in a simplified training
objective.

Simplified objective function. Since the term L can be excluded from the optimization objective,
the loss function in Equation (39) becomes:

T
= L7+ Lir+Lo=Y Li1+ Lo

t=2

(47)

T
Z a(@elzo,A) [DKL(q(xs—1|T8, To, A)||po(xs—1 |28, Y0))] + Lo-
P

Following, the term L can be omitted, as it is implicitly included by extending the sum to encompass
all timesteps, t € {1,2,...,T}, thereby accounting for the transition from x1 to xg:

T
) = ZEq(mt\mo,A) [Dkr(q(xt—1]|Tt, o, A)l|po(Tt—1]Tt, Y0))] 5 (48)
=1

and given Equation (43), then:

T

E(G) Eq(mt\wg,A) [DKL(Q(th—ﬂiBt, Lo, A)Hpe(iﬂt—ﬂwt,yo)ﬂ
1

~
Il

(49)

Il
[M]=

Eq(mt\ZO,A) [wt(’yarht)”w() - j:OHQ] .

~
Il

1

Qﬂt 1

Considering A = ¥ A¢, the weights w, only depend on the predefined ~, 7, and -schedule
constant hyperparameters In many practical implementations, such as DDPMs, this weighting is

3The forward process progressively incorporates degradation and removes A. The reverse process removes
degradation and reintroduces A.

20



Under review as a conference paper at ICLR 2026

often omitted for all timesteps, finding that this still produces excellent results (Ho et al.,[2020; Yue
et al.,[2023)). Therefore, the loss function can be further simplified by excluding the scaling:

T
L(0) = Eq(ajzo,a) [[To — Zol*] . (50)

t=1

and since evaluating the full sum over all time steps is computationally expensive, a single time step
can be sampled per training example. This yields an unbiased estimator of the full objective and
significantly improves training efficiency:

Esimple(a) = Emo,A,t [Hwﬂ - QOHz} 5 (51

where @t ~ q(xt|xo, A), t ~ U(1,T), and the case ¢ = 1 corresponds to L. Consequently, the
objective function of RDIMs simplifies to a squared Euclidean distance between the original data and
its prediction. Notably, RDIM and ResShift lead to the same training objective, further highlighting
that ResShift is a particular case of RDIM. This follows from the objective depending only on the
marginal distribution g(x¢|zo, A), which both models share. It does not strictly require the forward
process to be a Markov chain.

B LEMMAS

This section presents lemmas that support this work. These lemmas provide foundational results and
properties that support the main arguments and proofs.

Lemma B.1 (Bishop & Nasrabadi| (2006)) Given a marginal Gaussian distribution for random
variable x and a conditional Gaussian distribution for random variable y given x in the form:

p(x) =N (z|pe) Be)

52
p(ylz) = N (yCz + ¢, Sya) 2

where po, C, and c are parameters governing the means, while 3o, and 3|, denote covariance
matrices. Then the marginal distribution of y and the conditional distribution of x given y are in the
form:

p(y) =N (y|Clia + ¢,y + CZC ),

Tl 1 (53)
p(aly) =N ([Say (CTZ,h (= 0) + 55 112 )  Zapy )
with 3.4, representing the conditional covariance matrix of x given y, defined as:
-1
—1 Ty—1
Sy = (Z'+CTELC) (54)

Lemma B.2 (Bishop & Nasrabadi (2006)) Given a joint Gaussian distribution over random vari-

ables x and y of the form:
xT o Mz Yow ZD:z:y
P (M) =N (L‘y] ’ {EW Eny 7 >

where 1, and [y, are the mean vectors of T and y, respectively, while Xpz, Xgy, Xiye, and 3y,

denote covariance matrices. Then the conditional distribution of x given y is Gaussian:

p(zly) =N (:v K|y, Em|y) 7 (56)

with the conditional mean and covariance given by:

. (57)
2:m|y = wa - Ewyzyyzyma

where the expressions follow from the Schur complement. This result shows that the conditional mean
of x given y is a linear function of y.

21



Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

This section presents experimental details and additional results that complement those discussed in
the main text.

C.1 DATASETS

Experiments were performed across eight subsets, derived from four public data collections, namely
(i) Fluorescence Microscopy Denoising (FMD) dataset (Zhang et al.,|[2019), (ii) DIVerse 2K Res-
olution High Quality Images (DIV2K) dataset (Agustsson & Timofte, 2017; Timofte et al.,[2017),
(ii1) Smartphone Image Denoising Dataset (SIDD) (Abdelhamed et al.,2018;2019), and (iv) Flickr—
Faces-HQ (FFHQ) dataset (Karras et al., 2019).

The FMD dataset is specifically designed for Poisson-Gaussian denoising tasks and consists of 12,000
real images acquired from representative biological samples, including bovine pulmonary artery
endothelial (BPAE) cells, zebrafish embryos, and mouse brain tissues, using confocal, two-photon,
and wide-field modalities. The dataset contains images with multiple noise levels, resulting in several
subsets, but only the strongest noise level (labeled raw in|Zhang et al.|(2019)) subsets are considered,
thus prioritizing the most challenging conditions. Solely confocal images were used and mouse
images are excluded. Accordingly, the two FMD dataset partitions used are Confocal-BPAE-Raw
with 1,000 noisy-clean image pairs and Confocal-Zebrafish-Raw with 1,000 pairs. Moreover, each
subset was randomly partitioned into training, test and validation splits, corresponding to 80%, 10%,
and 10% of the data, respectively.

DIV2K is a publicly available benchmark dataset originally introduced for the NTIRE 2017 Challenge
on Single Image Super-Resolution. It is specifically designed for SR tasks and comprises a collection
of 1,000 HR images along with their corresponding LR counterparts. Each HR image in the dataset
is paired with several downscaled versions, generated through different degradation operations and
scaling factors of 2, 3, and 4. Particularly, only two subsets of DIV2K with unknown degradation
operators are used, namely DIV2K-Unknown-x2 with 1,000 LR-HR image pairs and DIV2K-
Unknown-x4 with 1,000 pairs. Each subset is divided into 800 images used for training, 100 for
validation, and 100 for testing. The validation split will be employed to evaluate the performance of
the models as the testing split is not available.

The SIDD dataset is specifically designed for image denoising tasks, particularly focusing on real-
world noisy images captured with smartphone cameras. The dataset consists of ~ 30,000 noisy
images with their corresponding clean ground truth, from 10 scenes under different lighting conditions
and using five representative smartphone cameras, hence spanning a wide range of image types and
noise levels. Only images from the SIDD-Medium subset are used, comprising 320 noisy-clean
image pairs. Ultimately, SIDD-Medium was randomly partitioned into training, test and validation
splits, corresponding to 80%, 10%, and 10% of the data, respectively.

The FFHQ dataset consists of 70,000 HQ human face images, originally created as a benchmark
for generative adversarial networks (GANSs). It contains faces with considerable variation in terms
of age, ethnicity, and image background. In this work, it is used for image inpainting, colorization,
and deblurring. For computational efficiency, images were downsampled to a quarter of the original
resolution using bicubic interpolation. Subsequently, corrupted-original image pairs were generated,
resulting in three task-specific subsets, namely FFHQ-Inpainting, FFHQ-Colorization, and FFHQ-
Deblurring. For image inpainting, pixels in the original images are randomly masked and set to
zero with probability pmask = 0.5. For colorization, grayscale inputs are obtained by converting the
original RGB images to luminance. For deblurring, synthetic blurred images are generated from
ground truth images by applying a Gaussian blur with kernel size 15 x 15 and standard deviation
o = 3.0. Each subset was randomly partitioned into training, validation, and test splits corresponding
to 80%, 10%, and 10% of the data, respectively.

C.2 NETWORK ARCHITECTURE
RDIM employs a U-Net-based architecture to predict &¢ at each iteration of the reverse process.

As illustrated in Figure @, the network is composed of encoder, bottleneck, and decoder blocks,
with skip connections linking encoder and decoder blocks at matching spatial resolutions. For

22



Under review as a conference paper at ICLR 2026

SR tasks, an upsample block transforms yo to match the dimensionality (number of channels and
resolution) expected by the network. For other tasks, this layer simplifies to a projection layer. At each
iteration, the network is conditioned on a timestep embedding, which is computed with sinusoidal
positional encoding and transformed through a small multilayer perceptron (MLP) consisting of a
fully connected layer, a Swish activation, and a second fully connected layer. This embedding encodes
the current diffusion step, providing information about the position within the reverse process.

Sinusoidal ]
Positional Encoding

Timestep (£) S

H
a
=
£
g
(3]
=

Conv
[Encoder Block
[Encoder Block
[Encoder Block
@r Block
[(Bottle. Block
[Decoder Block
[Decoder Block
@r Block
@r Block
Group Norm

(c: In) (c: In)

Yo
(c: Tn)

[Up. Block x5 ]

Figure 6: U-Net-based network. In the convolutional layers, the parameters k, st, and pd represent
the kernel size, stride, and padding, respectively. Additionally, (x/s) denotes (W /s, H/s), where s
is a scale factor (s > 1 for SR tasks and s = 1 otherwise).

Figure [7 shows the core blocks of the network. Each encoder block consists of multiple residual
blocks, each optionally followed by a self-attention block, and concludes with a downsample block
to reduce spatial resolution. Bottleneck blocks operate at the lowest spatial resolution and consist of
multiple residual blocks interleaved with self-attention blocks. Decoder blocks consist of multiple
residual blocks, each optionally followed by a self-attention block, and conclude with an upsample
block to increase spatial resolution. Notably, all residual blocks incorporate the timestep embedding.
Self-attention blocks are included only at the two lowest spatial resolution levels of the encoder and
decoder blocks due to computational constraints at higher resolutions.

(c: EmbDim) (c: EmbDim) (c: EmbDim)
t. te te

Self-Attention I
Self-Attention I

Self-Attention

(c: In) (c: Out) (c: Out) (c: In) (c: In)

Residual Block
Residual Block
Self-Attention
Residual Block
Residual Block]
Self-Attention
Up. Block X2
Residual Block
Residual Block
Self-Attention

(a) Encoder Block (b) Decoder Block (¢) Bottleneck Block

Figure 7: Core blocks of the U-Net-based network. (a) Encoder Block, (b) Decoder Block, and (c)
Bottleneck Block.

The building blocks of the network are illustrated in Figure [8] Each residual block applies two
convolutional layers with group normalization and Swish activation. They also contain a projection
layer for the timestep embedding, composed of a Swish activation followed by a fully connected layer.
Moreover, if the number of input channels (In) does not match the number of output channels (Out),
an additional convolutional layer is included in the skip connection to project the input to the expected
number of channels (Out), ensuring that the element-wise addition is well-defined. Self-attention
blocks model long-range dependencies and incorporate group normalization both before and after
the attention mechanism, operating over flattened spatial dimensions. Upsample and downsample
blocks perform spatial resizing. Upsample blocks first perform bilinear interpolation (trilinear in case
of 3D settings) to increase spatial resolution, followed by a convolutional layer, while downsample
blocks perform convolution with stride greater than 1 (st > 1) to reduce spatial resolution. In the
current implementation, activations are omitted, although the generalized block design can optionally
include them.

23



Under review as a conference paper at ICLR 2026

(c: EmbDim)
te E

(c:In) (c: Out) (c:In) > (c: Out) (c:In) |5|=| (c:0up)

g
S| (c:n)
Z(Lﬂ
=
g
2
€]

w
X
S
]
8
=
2

£ £
£|E
S|
a2
5=
2=
Oz

Group Norm

£
=
S
z
B
=
£l
£
1<)

(a) Residual Block (b) Self-Attention Block (c) Upsample Block (d) Downsample Block

Figure 8: Building blocks. (a) Residual Block, (b) Self-Attention Block, (c) Upsample Block, and (d)
Downsample Block.

C.3 IMPLEMENTATION DETAILS

RDIM is implemented in PyTorch 2.5.1 (Paszke et al.,[2019) and trained using the Adam optimizer
(Kingma & Ba, [2014) with 3; = 0.9 and 35 = 0.999. The learning rate was initialized at 1.0 x 10~*
and decayed following a cosine annealing schedule with minimum value 7,;,. All experiments
were conducted with a batch size of 64 and an effective patch resolution of 64 x 64. For SR, this
corresponds to LR patch sizes of 32 x 32 and 16 x 16 for X2 and x4 scale factors, respectively.

All diffusion models were trained with the same number of diffusion timesteps (1" = 50 for FFHQ
and T" = 100 for experiments on FMD, SIDD, and DIV2K) and network architecture with 128 base
channels (detailed in Appendix [C.2). The only difference lies in the diffusion framework employed.
ResShift is a specific case of RDIM, thus a single network was trained for both. For DDPM, following
SR3 (Saharia et al., [2022), the model learns to approximate a reverse process, starting from pure
Gaussian noise and iteratively denoising x+ toward the HQ image, xo, by predicting noise at each
step, while conditioned on the LQ input, yo. Training was conducted for 4,000,000 iterations
on FMD-Confocal and DIV2K datasets, 2,947,000 iterations on SIDD, and 4,375,000 iterations
on FFHQ. For SR tasks in RDIM and ResShift, the LR input, yg, is upsampled to the target HR
resolution using bilinear interpolation, ensuring compatibility with the resolution employed in the
diffusion framework (i.e., the size of g, x1,...,xT).

All other techniques used in the comparative analysis of Section [3]strictly followed the reference
papers and the official source codes. BM3D was applied with noise standard deviations of 10 for
FMD-Confocal-BPAE-Raw, 30 for Confocal-Zebrafish-Raw, and 50 for SIDD-Medium. DnCNN
was trained for 2,500,000 iterations on FMD-Confocal and SIDD datasets. ESRGAN was trained for
a total of 1,400,000 iterations, with 1,000,000 iterations used to train a PSNR-oriented model that
serves as initialization for the adversarial model, which was optimized for the remaining 400,000
iterations.

C.4 UNIFORM SAMPLING TIMESTEP SCHEDULE

At inference, RDIM intends to reconstruct the original data, xq, starting from the degraded final
latent variable, 7. Unlike DDPMs and ResShift, where the sampling process requires iterating over
all diffusion timesteps, 7', the RDIM reverse process can be simulated with fewer timesteps. This
results from the formulation of the RDIM reverse transition, which allows skipping intermediate
timesteps during sampling (see Section [2.5)). Accordingly, this flexibility motivates the selection of a
subset, YT, of S < T sampling timesteps to traverse the reverse trajectory.

A simple yet effective approach is to adopt a linear sampling schedule, where the selected timesteps
are uniformly spaced. Geometric schedules with denser allocation toward earlier or later stages of the
reverse process were empirically evaluated, but they underperformed against a uniform alternative or
yielded marginal improvements. As a result, the following uniform scheduler is devised:

T:{Tk:t’;.TJ‘ke{o,L...,S}}, (58)

where, during sampling, T is iterated from 7¢ = 7' to 71, resulting in the order of sampling points
Ts — Ts—1 — - -+ — T1. Reverse transitions occur exclusively at these selected timesteps, from each
T¢ to T4—1, with all intermediate timesteps being skipped. The exception is the target timestep 79 = 0,

24



Under review as a conference paper at ICLR 2026

which marks the end of the reverse trajectory and does not produce a further transition. Moreover, all
adjacent sampling timestep pairs, (7x_1, Tk ), satisfy the following condition:

(Th—1,me) € {(t',t) ENG |/ +1 <t <T}. (59)
In essence, only the latent variables associated with these timesteps are sampled, enabling a more

efficient inference process. Figure [J]illustrates the sampling points (where reverse transitions occur)
along the reverse trajectory, contextualized with the corresponding values of the 3-schedule.

1.0
— B

084 @ Sampling Points

0.6 9
<&

04+

0.2+

0.0 q
0.0 0.5 1.0
t/T

Figure 9: Residual 3-schedule (p = 5.0) overlaid with red markers indicating the 3; value at each
sampling point. The schedule adopted selects timesteps uniformly spaced. In this illustration, the
forward process involves 7" = 100 timesteps and the number of sampling steps, where reverse
transitions occur, is S = 10.

C.5 IMPACT OF 3-SCHEDULE PARAMETER p

Experiments were conducted to determine an appropriate value for the 3-schedule parameter p
(see Section[2.6). In these experiments, RDIM employs 7" = 10 diffusion timesteps and a forward
variance hyperparameter v = 9.0. During inference, the reverse variance hyperparameter is set to
1 = 1.0 and multiple reverse trajectory lengths were evaluated. All other implementation details
follow those described in Appendix [C.3]

Table 2] presents the results for p = 1, p = 5, and p = 15. It follows that on denoising images from
the FMD-Confocal-BPAE-Raw dataset, RDIM with 7" = 10 and y = 9.0 achieves the best overall
performance when p = 5.0. Moreover, irrespective of the steepness of the S-schedule, skipping
timesteps and using fewer reverse timesteps (S < T') consistently yields superior results in terms of
PSNR and SSIM compared to iterating through all diffusion steps (S = T'). Particularly, Figure[2)in
Section [2.6]illustrates the 3-schedule curves and the effect on the diffusion process corresponding to
these parameter values.

Table 2: Impact of parameter p, which controls the steepness of the curve in the S-schedule. All
RDIM configurations were trained using a forward process with 7' = 10 timesteps and variance
hyperparameter v = 9.0. During inference, the reverse process variance hyperparameter is fixed to
n = 1.0. rows highlight ResShift scenarios, corresponding to particular cases where
RDIM reduces to ResShift under the conditions 7 = 1.0and S = T..

FMD-Confocal-BPAE-Raw
PSNRT SSIMtT  LPIPS|
1 40.0836 0.9678 0.0205

1.0 5 40.0772  0.9678 0.0205
10 40.0565  0.9677 0.0205
1 40.1100  0.9681 0.0202
5.0 5 40.0436  0.9679 0.0202
10 399524  0.9674 0.0202
1 39.4014  0.9639 0.0238
15.0 5 39.1177  0.9624 0.0236
10 38.8951 0.9609 0.0236

25



Under review as a conference paper at ICLR 2026

C.6 IMPACT OF VARIANCE PARAMETER ~y

The diffusion process variance is controlled with a constant hyperparameter v € [0, 00), which allows
interpolation between a deterministic (Y = 0 = Gaussian collapses into a d-distribution) and a
stochastic (y > 0) forward process. Figureillustrates the impact of - on the forward process.

Forward Process >

o T

Figure 10: Impact of «y on the diffusion process with 3-schedule parameter fixed to p = 5.0.

C.7 COMPARATIVE ANALYSIS OF MULTIPLE RDIM CONFIGURATIONS IN IMAGE DENOISING

To identify the best RDIM configuration, several setups were compared on denoising of BPAE
confocal images from the benchmark dataset FMD. The experiments explore the impact of the
diffusion chain length (7), the number of sampling timesteps (.5), and the variance controlled by
the constant hyperparameters -y and 7. Setups with 7' = 100 followed the implementation details
described in Appendix [C.3] For configurations with a different number of diffusion timesteps, the
number of iterations (and consequently the training time) was adjusted linearly in proportion to
the number of diffusion steps, 7'. This ensures that each timestep undergoes a similar number of
weight updates across all configurations, thereby preventing imbalanced training between timesteps in
configurations with different chain lengths. All other implementation details follow those described

in Appendix [C.3]

Table |3| summarizes the results. The RDIM configuration with v = 3.0, T = 100, and S = 10
achieves the best performance in terms of PSNR and SSIM. Overall, the results suggest that increasing
the number of diffusion timesteps improves denoising performance. Meanwhile, reducing the number
of sampling timesteps (S < T') often yields better results. In contrast, learned perceptual image patch
similarity (LPIPS) scores show that fewer sampling timesteps lead to worse perceptual quality. This
highlights a trade-off between content fidelity (measured by PSNR and SSIM) and perceptual realism
(measured by LPIPS). Iterative refinement enhances fine-grained details and promotes the recovery
of natural textures. Logically, more sampling timesteps allow greater refinement, producing highly
realistic outputs. However, results may diverge slightly from the ground truth in terms of pixel-wise
similarity, resulting in lower PSNR and SSIM.

Moreover, results further indicate that controlled stochasticity in the forward process is beneficial.
Setting v = 0.0 leads to poor results, indicating that some variance is necessary. Conversely, v = 3.0
and v = 9.0 achieve significantly superior performance. Particularly, v = 9.0 outperforms v = 3.0
for configurations with few diffusion timesteps, but its relative performance gains diminish as T'
increases, whereas v = 3.0 continues to improve with longer diffusion chains, ultimately surpassing
~v = 9.0 for larger T'. These observations underline the importance of carefully balancing variance.

Figure [[T|showcases PSNR, SSIM, and LPIPS scores for different numbers of sampling timesteps,
using the configuration with 7' = 100 and v = 3.0, which obtained the best results in denoising
BPAE confocal images from the FMD dataset. The number of sampling timesteps evaluated includes
a single-step prediction and then ranges from 10 to 100 in increments of 10. It follows that PSNR
and SSIM performances peak around S = 10, while LPIPS achieves the best scores between S = 90

26



Under review as a conference paper at ICLR 2026

Table 3: Denoising performance comparison of several RDIM configurations on BPAE confocal
images from the benchmark dataset FMD. It exhibits the impact of the constant hyperparameter
that controls the variance in the forward process and the impact of the number of diffusion timesteps
during training (7°) and inference (.5). The constant hyperparameter that controls the variance in the
reverse process is fixed to n = 1.0. rows highlight ResShift scenarios, corresponding to
cases where RDIM reduces to ResShift (n = 1.0 and S = T)).

FMD-Confocal-BPAE-Raw

T s v =0.0 v =3.0 ¥ =9.0
PSNRT  SSIM? LPIPS, PSNR{ SSIM{ LPIPS| PSNRt SSIM{  LPIPS|
1 383703 09575  0.0296  40.0998 09686  0.0196  40.1100 09681  0.0202
10 10 383487 09572 00299 393632 09644 00187  39.9524 09674  0.0202
1 384181 09578  0.0293 425354 09803 00093  43.1161 09821  0.0079
50 10 384162 09578  0.0295 424566 09802  0.0079 432029 09824  0.0077
50 383198 09564  0.0299 420566 09785  0.0071  43.1970 09824  0.0074
1 383758 09575  0.0295 439872 09851 00056 433040 09828  0.0075
100 10 383752 09575  0.0295  44.1468 09855  0.0047  43.3743 09830  0.0073
100 38.1775 09548  0.0298 435990 09837  0.0042 432484 09826  0.0068

and S = 100, showing that more sampling timesteps result in higher perceptual quality but reduced

reconstruction fidelity.

IS
ER

PSNR (dB)

£
=

IS
&
%

0.0056

0.0052 4

LPIPS

0.0048 -

0.0044

°
\
v
\
\
\
\
\
\
\
\

\,
\,

»

IS
&
9

\
\54—&00 o oo0-0
50 100 1

hgp PP,
50 100

Figure 11: PSNR, SSIM, and LPIPS performance as a function of .S (number of sampling timesteps)
on denoising of BPAE confocal images from the FMD dataset. RDIM is trained with 7" = 100 and
v = 3.0. The constant hyperparameter that controls the variance in the reverse process is fixed to
n = 1.0. The number of sampling timesteps evaluated includes a single-step prediction and then
ranges from 10 to 100 in increments of 10.

Table [d] demonstrates the effect of varying the constant hyperparameter 7, which controls the variance
in the reverse process. Looking at Table[d] the parameter ) manifests marginal impact on denoising
of BPAE confocal images from the FMD dataset. Additionally, when v = 0, the parameter 7 does not
affect performance, as 7 is absent in the reparameterized form of pg(+—1 |2+, Yo)v=0 (see Equations

(TT) and (12)).

Table 4: Impact of the constant hyperparameter 7, which controls the variance in the reverse process,
on denoising BPAE confocal images from the benchmark dataset FMD.

FMD-Confocal-BPAE-Raw

T S n v =0.0 v =3.0 v=9.0
PSNRT  SSIMt  LPIPS|  PSNRt  SSIMT LPIPS|] PSNRfT  SSIMt  LPIPS)
0.0 383752  0.9575 0.0295 44.1429  0.9855 0.0047 433732 0.9830 0.0073
100 10 05 383752  0.9575 0.0295 44.1440  0.9855 0.0047  43.3738  0.9830 0.0073
1.0 383752 0.9575 0.0295 44.1468  0.9855 0.0047 433743 0.9830 0.0073

27



Under review as a conference paper at ICLR 2026

C.8 ADDITIONAL QUALITATIVE RESULTS

Noisy

Clean

]
=
=)
=~

RDIM-10

(b) FMD-Zebrafish

RDIM-10

(c) SIDD-Medium

Figure 12: Denoising results of RDIM-10 on images from the FMD and SIDD datasets. For improved
visualization, only cropped regions are shown. RDIM is trained with 7" = 100 and v = 3.0. Inference
is conducted with S = 10 and = 1.0.



Under review as a conference paper at ICLR 2026

(a) Original (b) x2 SR

(c) x4 SR

Figure 13: x2 and x4 SR results of RDIM-10 on images from the DIV2K dataset. RDIM is trained
with "= 100 and v = 3.0. Inference is conducted with S = 10 and = 1.0. In (b) and (c), the left
side represents the input image and the right side the output.

29



Under review as a conference paper at ICLR 2026

(a) Original (b) Inpainting (c) Colorization (d) Deblurring

Figure 14: Image inpainting, colorization, and deblurring results of RDIM-10 on images from the
FFHQ dataset. For inpainting, pixels in the original images are randomly masked and set to zero with
probability pn.sk = 0.5. For colorization, grayscale inputs are obtained by converting the original
RGB images to luminance. For deblurring, synthetic blurred images are generated from ground truth
images by applying a Gaussian blur with kernel size 15 x 15 and standard deviation o = 3.0. RDIM
is trained with 7' = 50 and v = 3.0. Inference is conducted with .S = 10 and n = 1.0. In (b), (c) and
(d), the left side represents the input image and the right side the output.

30



	Introduction
	Methodology
	Problem Definition
	Markovian Forward Process
	Non-Markovian Forward Process
	Reverse Process
	Long-Range Reverse Transition
	Residual Beta-Schedule
	Optimization

	Experiments
	Related Work
	Conclusion
	Derivations
	Forward process cumulative transition distribution
	Reverse process transition distribution
	Reverse transition with ResShift variance
	Training objective

	Lemmas
	Experimental Details and Additional Results
	Datasets
	Network Architecture
	Implementation Details
	Uniform Sampling Timestep Schedule
	Impact of Beta-schedule parameter p
	Impact of parameter gamma
	Comparative analysis of multiple RDIM configurations in image denoising
	Additional Qualitative Results


