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ABSTRACT

Diffusion models achieve state-of-the-art results across multiple tasks. However,
in inverse problems, standard initialization from pure Gaussian noise misaligns
the generative process with real-world degradations. More recent methods such as
diffusion bridges impose strict endpoint constraints and often require long reverse
processes that are prone to hallucinations. Alternative consistency models provide
noise-invariant, one-step mappings but lack inherent variance modeling and can de-
grade under severe corruption. Hence, residual diffusion implicit models (RDIMs)
are proposed, constituting a generalized framework that explicitly models the resid-
uals between high-quality (HQ) and low-quality (LQ) images, aligning the forward
process with the actual degradation. A non-Markovian implicit reverse sampler
is derived, which can skip intermediate timesteps, enabling accurate few-step or
even single-step reconstruction, while mitigating the hallucinations inherent to long
diffusion chains. RDIM also introduces a controllable variance mechanism that
interpolates between deterministic and stochastic sampling, balancing fidelity and
diversity. Furthermore, it enables the straightforward use of perceptual losses, when
needed. Experiments on denoising and super-resolution benchmarks demonstrate
that RDIMs consistently outperforms the state of the art, including bridge and
consistency models, in terms of PSNR, SSIM, and LPIPS, reducing halucinations
while requiring only a few sampling steps (often just one). The results position
RDIMs as an efficient solution for a broad range of image restoration tasks.

1 INTRODUCTION

Image reconstruction is a fundamental problem in computer vision and signal processing, aiming
to recover high-quality (HQ) images from corrupted observations. Tasks such as image denoising
and super-resolution (SR) are crucial for numerous real-world applications, including medical and
biological imaging, satellite imagery, and consumer photo enhancement (Sagheer & George, 2020;
Wang et al., 2022; Delbracio et al., 2021).

Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) have emerged as a powerful
class of models for image synthesis and have been successfully adapted for image reconstruction.
Their probabilistic formulation and iterative refinement enable them to handle challenging tasks
by progressively improving predictions through small corrective updates (Saharia et al., 2022b).
Moreover, their stochasticity enables the exploration of multiple plausible paths, promoting output
diversity and often leading to better solutions (Lugmayr et al., 2022; Whang et al., 2022). These
properties make diffusion models well-suited to deal with severe noise and information loss (Chung
et al., 2023).

However, these strengths also introduce practical challenges. Although stochasticity is beneficial
for capturing diversity and avoiding poor generalization (Lugmayr et al., 2022; Whang et al., 2022;
Dhariwal & Nichol, 2021), excessive and uncontrolled variability can hinder convergence in inverse
problems, destabilizing the reconstruction process and leading to inconsistent outputs. Therefore, bal-
ancing stochasticity is crucial (Chung et al., 2022). More critically, the standard DDPM formulation
initializes the reverse process from pure noise, which is misaligned with reconstruction tasks where a
degraded input already provides valuable information (Chung et al., 2022; Yue et al., 2023; Wu et al.,
2024). Additionally, the recursive formulation of diffusion models leads to an inefficient reverse
process requiring to traverse all diffusion timesteps, often hundreds (Shih et al., 2023; Liu et al.,
2024), making them computationally expensive and impractical in latency-sensitive settings. Notably,
techniques based on denoising diffusion bridge models (DDBMs) (Zhou et al., 2024) alleviate the
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Figure 1: Overview of RDIM, a diffusion framework tailored for inverse problems, such as image
reconstruction. The reverse process can accurately reconstruct back the data in S ≤ T steps.

noise–data mismatch by explicitly conditioning on degradation endpoints, but they also typically re-
quire iterating through all timesteps. While recent works tried to address this issue (Pan et al., 2025),
we aim to further improve the reconstruction quality using a minimal number of diffusion steps.

To tackle these challenges, we revisit ResShift (Yue et al., 2023) and introduce a principled theoretical
generalization, which we refer to as residual diffusion implicit model (RDIM). Our framework can
be interpreted as a bridge-like approach as it constructs a process connecting a starting-point (low-
quality (LQ) image) to an ending-point (HQ image) while preserving sample-level correspondences
between the two domains, an essential property for SR and denoising tasks. A key feature of RDIM
is its ability to introduce controlled stochasticity into the transportation between the two domains
by relaxing the terminal constraint. This can be achieved by controllable variance mechanism that
interpolates between deterministic and stochastic reconstructions. This provides greater modeling
flexibility compared to the fixed terminal states typically imposed in diffusion bridge methods,
allowing to obtain state-of-the-art results in SR and denoising applications. Moreover, an implicit
sampling mechanism in the style of denoising diffusion implicit models (DDIMs) (Song et al., 2021)
is introduced to allow skipping intermediate steps and improving the efficiency of the reconstruction
process through few-step or even single-step HQ reconstructions. In summary, the main contributions
of this paper are:

• A novel diffusion framework for inverse problems that generalizes ResShift, offering a
bridge-like alignment, and provides an implicit formulation with efficient sampling, enabling
reconstructions in a few or even on a single step.

• A controllable variance mechanism that interpolates between deterministic and stochastic
reconstructions, balancing fidelity and diversity depending on degradation severity.

• Evidence that reducing the number of reverse steps accelerates inference and yields more
faithful reconstructions by limiting hallucinations that arise in long diffusion chains.

• State-of-the-art results on denoising and SR benchmarks, showing that RDIMs outperforms
existing methods while reducing the number of inference steps by up to 100×.

2 METHODOLOGY

RDIM is a diffusion framework tailored for inverse problems (herein focused on image reconstruction)
where the forward process gradually degrades the original data into an informed corrupted version.
The reverse process is efficient, allowing for a minimal number of steps (see Figure 1).

2.1 PROBLEM DEFINITION

Inverse problems are concerned with the recovery of a signal, x0 ∈ X , from a corrupted observation,
y0 ∈ Y . Particularly, the forward model that degrades the original signal can be expressed as:

y0 = F (x0) , (1)
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where F : X → Y is a known or unknown forward operator that often entails information loss (e.g.,
blurring, downsampling, masking, or noise). Accordingly, such problems are often ill-posed.

Meanwhile, deep learning (DL) techniques can be leveraged to learn a parametric reconstruction
model R : Y → X , with trainable parameters Θ, that invert the forward model:

x0 ≈ R (y0; Θ) . (2)

Traditional diffusion models reconstruct the signal x0 through a parameterized Markov chain with
length T , which starts from pure noise and progressively denoises latent variables, xt, at each step
t ∈ {1, 2, . . . , T}. Hence, they first derive a diffusion process that transforms x0 into pure noise.
Subsequently, they learn to reverse this process by training a parametric model, pθ, which can recon-
struct x0 back from pure noise, xT ∼ N (0, I), while conditioning on the corresponding degraded
observation, y0. However, this diffusion process is fundamentally misaligned with the degradation
model in Equation 1, since it maps x0 to pure noise rather than to the corrupted observation y0. In
contrast, the RDIM forward process is explicitly designed to align with the degradation mechanism
by progressively removing the residuals between the clean and corrupted signals while optionally
injecting a controllable amount of noise. This stochastic component introduces variability that
improves generalization, enabling the model to balance fidelity and diversity during reconstruction
and better capture the uncertainty inherent in inverse problems.

2.2 MARKOVIAN FORWARD PROCESS

Considering that x0 and y0 denote the original data and its corrupted version1, respectively, the RDIM
forward process (degradation) intends to gradually remove fractions of the residual, ∆ = x0 − y0,
from x0 over a series of timesteps t ∈ {1, 2, . . . , T}. For that purpose, a forward process fixed to a
Markov chain is first defined, which converts the distribution of the original data, q(x0), into the last
latent variable distribution. Following, the whole Markovian forward process is defined as:

q(x1:T |x0,∆) =

T∏
t=1

q(xt|xt−1,∆), (3)

where all latent variables x1, . . . ,xT have the same dimensionality as the original data, x0 ∼ q(x0).

The residual is removed from x0 according to a fixed weighting schedule λ1, λ2, . . . , λT , which is
also used to parameterize the variance in each diffusion transition distribution, defined as a Gaussian.
Consequently, at each timestep t, the latent variable xt is expressed in terms of the latent variable at
the previous timestep, xt−1, and the residual, ∆, as follows:

q(xt|xt−1,∆) = N (xt|xt−1 − λt∆, γ2λtI), (4)

where γ ∈ [0,∞) is a constant hyperparameter introduced to control the strength of the variance,
thus allowing interpolation between a deterministic (when γ = 0) and a stochastic (γ > 0) forward
process. Moreover, each weight λt, used to control the amount of residual to be removed between each
diffusion step, is computed in terms of small non-negative constant hyperparameters β0, β1, . . . , βT

as λt = βt − βt−1 (see Section 2.6 for details on the β-schedule).

Furthermore, to avoid a computationally expensive diffusion process, the cumulative forward transi-
tions, q(xt|x0,∆) = q(xt|y0), are expressed in closed form by relying on the reparameterization
trick (see Appendix A.1):

q(xt|x0,∆) = N (xt|x0 − βt∆, γ2βtI). (5)

Although this forward process matches ResShift (Yue et al., 2023), the corresponding recursive
formulation yields an inefficient reverse process that must iterate over many timesteps (particularly
for HQ inverse problems). Therefore, a DDIM-inspired non-Markovian forward process is derived,
which preserves the marginal in Eq. (5) while still allowing a Markovian reverse process.

1To match dimensionalities, y0 is upsampled for SR tasks and its channels are replicated for colorization.
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2.3 NON-MARKOVIAN FORWARD PROCESS

The forward process is implicitly constructed to ensure consistency with the marginal q(xt|x0,∆)
and the reverse process. As a result, each forward transition becomes additionally conditioned on
x0 rather than just on the immediate previous timestep, xt−1, and the residual, ∆. This introduces
explicit dependency on the initial data x0, decoupling the forward process from strict Markovian
constraints. Moreover, the forward process is expressed in terms of the forward transition posterior,
q(xt−1|xt,x0,∆), further reflecting the non-Markovian behavior and preservation of q(xt|x0,∆).
Therefore, although the RDIM forward process is still a distribution over trajectories that start at x0

and end at xT , it is defined as a joint distribution that is factored in reverse2:

q(x1:T |x0,∆) = q(xT |x0,∆)

T∏
t=2

q(xt−1|xt,x0,∆). (6)

The non-Markovian nature of the forward process enables designing a reverse process that can
be deterministic and simulated with a reduced number of transitions due to the conditioning on
x0. In addition, since the ResShift training objective only depends on the marginal distribution,
q(xt|x0,∆), which is preserved, then RDIM optimization (see Section 2.7) will lead to the same
training objective as ResShift. Consequently, already trained ResShift models can be leveraged for
RDIM sampling without requiring additional retraining.

2.4 REVERSE PROCESS

The reverse process (reconstruction) intends to revert the forward process, thus sampling back the
data, x0. This is achieved by starting from xT ∼ N (y0, γ

2I) and iteratively refining the latent
variables xt until x0 is reached. Accordingly, the reverse process involves computing the forward
transition posterior q(xt−1|xt,x0,∆) (reverse transition), defined as a Gaussian distribution:

q(xt−1|xt,x0,∆) = N (xt−1|µ̃t, σ̃
2
t I), (7)

where µ̃t is the mean of the Gaussian distribution and σ̃2
t I = Σ̃t is the isotropic covariance matrix.

Particularly, the reverse transition is designed to preserve the marginal q(xt|x0,∆) (see Appendix
A.2). Considering σ̃2

t matches the ResShift variance, λ̃t = γ2 βt−1

βt
λt, the mean, µ̃t, is given as:

µ̃t =

x0 − βt−1∆, if γ = 0,

x0 − βt−1∆+
√
γ2βt−1 − σ̃2

t

(
xt−x0+βt∆√

γ2βt

)
, if γ ̸= 0,

(8)

where, for γ = 0, the reverse process essentially becomes a linear interpolation between the corrupted
and original data, which underscores that the RDIM forward process is aligned with a forward model
(degradation process) that converts x0 into y0.

Furthermore, fixing σ̃2
t to the ResShift variance, λ̃t, also results in µ̃t matching the mean of the

ResShift reverse transition (see Appendix A.3). Hence, RDIM becomes ResShift for this specific
variance, revealing that ResShift is a particular case of RDIM. Subsequently, a constant hyperparame-
ter, η ∈ [0, 1], can be introduced to interpolate between a deterministic (η=0) and a stochastic (η>0)
reverse process when γ ̸= 0, allowing control over the variability in the RDIM reverse trajectory:

µ̃t|γ ̸=0 = x0 − βt−1∆+

√
γ2βt−1 − η2λ̃t

(
xt − x0 + βt∆√

γ2βt

)
, σ̃2

t|γ ̸=0 = η2λ̃t. (9)

where, η = 1 makes the RDIM reverse process identical to ResShift. Meanwhile, setting γ = 0
converts RDIM into a strictly deterministic model (γ=0 ⇒ λ̃t=0), avoiding sampling random noise.

However, during inference, x0 and ∆ are unknown, thus sampling from the true reverse transition
distribution is not possible. Therefore, a learnable parametric model, pθ(xt−1|xt,y0), defined as a
Gaussian distribution, is introduced to approximate the true reverse transition q(xt−1|xt,x0,∆):

pθ(xt−1|xt,y0) = N
(
xt−1|µθ (xt,y0, t) , σ

2
θ (xt,y0, t) I

)
, (10)

2The forward transition, q(xt|xt−1,x0,∆), can be derived via Bayes’ rule.
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where µθ (xt,y0, t) is the mean of the Gaussian distribution and σ2
θ (xt,y0, t) I = Σθ (xt,y0, t)

is the isotropic covariance matrix. In particular, the variance of the true reverse transition, σ̃2
t , does

not have any learnable parameters because it is defined in terms of constant hyperparameters, which
are known. Therefore, the variance of pθ(xt−1|xt,y0) can be fixed to equal exactly the variance of
q(xt−1|xt,x0,∆):

σ2
θ (xt,y0, t) = σ̃2

t . (11)

Meanwhile, µθ (xt,y0, t) approximates the mean of the true reverse transition, µ̃t. Considering that
x0 and ∆ are the only unknown terms and ∆ can be estimated from x0 and y0, then the model
solely needs to predict x0 (see Appendix A.4). Accordingly, the mean µθ (xt,y0, t) is defined as:

µθ (xt,y0, t) =

x̂0 − βt−1∆̂, if γ = 0,

x̂0 − βt−1∆̂+

√
γ2βt−1 − η2λ̃t

(
xt−x̂0+βt∆̂√

γ2βt

)
, if γ ̸= 0,

(12)

where x̂0 = fθ(xt,y0, t) denotes the x0 prediction from a neural network given xt, y0, and timestep
t. The neural network is parameterized by weights θ and ∆̂ = x̂0 − y0 represents the ∆ estimation.
Hence, the whole approximate reverse process is expressed by the following joint distribution:

pθ(x0:T |y0) = p(xT |y0)

T∏
t=1

pθ(xt−1|xt,y0). (13)

2.5 LONG-RANGE REVERSE TRANSITION

Particularly, the derived reverse transition structurally matches the reparameterized form of the
marginal q(xt−1|x0,∆) (see Appendix A.2), which models the cumulative transitions from x0 to
xt−1 in the forward process. Therefore, the reverse transition formulation aligns with the concept
of cumulative transitions, allowing the reverse process to efficiently sample any state at an arbitrary
timestep τk−1 ∈ {0, 1, . . . , T − 1} by skipping intermediate latent variables in the reverse trajectory.
Accordingly, the reverse process can be simulated with fewer timesteps, thereby accelerating sampling.
Using the reparameterization trick, xτk−1

∼ pθ
(
xτk−1

|xτk ,y0

)
can be sampled as follows:

xτk−1
=

{
x̂0 − βτk−1

∆̂, if γ = 0,

x̂0 − βτk−1
∆̂+

√
γ2βτk−1

− η2λ̃τk ϵ̂+
√

η2λ̃τkz, if γ ̸= 0,
(14)

where (τk−1, τk) ∈
{
(t′, t) ∈ N2

0 | t′ + 1 ≤ t ≤ T
}

, z ∼ N (0, I), and ϵ̂ is expressed by the follow-
ing relationship when γ ̸= 0 (see Equation (32) in Appendix A.2):

ϵ̂ =
xτk − x̂0 + βτk∆̂√

γ2βτk

. (15)

Essentially, each iteration of the reverse process involves predicting the original data sample, x0. This
estimate is then used to compute the residual ∆ and the noise component ϵ, which together guide the
update to the next less-degraded state, xτk−1

. As the reverse process progresses, the model gradually
refines its prediction of x0 at each step, leveraging the increasingly accurate intermediate states. This
iterative refinement culminates in an accurate prediction of x0. Moreover, the ability of the reverse
process to skip intermediate steps not only enables few-step generation but also allows one-step
predictions, thus demonstrating the efficiency and flexibility of the RDIM sampling procedure. Here,
the number of sampling timesteps along the reverse trajectory, S ∈ {1, 2, . . . , T}, is set arbitrarily.
For each case, a uniform schedule is used, as detailed in Appendix C.4.

2.6 RESIDUAL β-SCHEDULE

The residual β-schedule employed is defined by a circular curve (similar to the fourth quadrant
p-norm shape), ensuring a smooth and adjustable transition between x0 and xT :

βt =
t

T + (p− 1) (T − t)
, (16)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Forward Process

Figure 2: Progression of weights βt and λt across timesteps and impact of p on the diffusion process.

where p ∈ (0,∞) is a parameter that allows controlling the steepness of the curve. As it increases
the β-schedule exhibits a slower initial progression, followed by a rapid increase to larger and more
pronounced updates. This design allows for a gentle removal of the residual and injection of noise in
the early timesteps of the forward process, which become progressively more aggressive throughout
the diffusion trajectory. Figure 2 illustrates the impact of the parameter p on the diffusion process.

Furthermore, this choice for the β-schedule ensures that β0 = 0 and βT = 1, such that the residual, ∆,
is fully removed from x0 after exactly T timesteps. As a result, the last latent variable, xT , converges
to a noisy sample centered at the corrupted data, y0. Additionally, since β0 = 0, it follows that when
γ ̸= 0 the variance of any reverse transition distribution from xτk to x0 is η2λ̃τk = η2γ2 β0

βτk
λτk = 0.

Therefore, pθ(x0|xτk ,y0)γ ̸=0 degenerates into a δ-distribution centered at x̂0. Logically, under
these conditions, η does not have any impact on the last transition of the reverse process.

2.7 OPTIMIZATION

At each step of the sampling process, the neural network parameterized by weights θ yields an
estimate of x0. During training, these parameters are learned to assure that the model marginal
pθ(x0|y0) fits the true posterior distribution q(x0|y0) via:

q(x0|y0) ≈ pθ(x0|y0) =

∫
p(xT |y0)

T∏
t=1

pθ(xt−1|xt,y0) dx1:T , (17)

which ensures, during inference, that the data, x0, can be sampled back accurately given y0. Ac-
cordingly, pθ(xt−1|xt,y0) is required to closely approximate the true forward transition posterior,
q(xt−1|xt,x0,∆). This is achieved by minimizing the Kullback–Leibler (KL) divergence between
both distributions, while accounting for all timesteps. In fact, this objective can be reduced for
simplicity to (see Appendix A.4):

Lsimple(θ) = Ex0,∆,t

[
∥x0 − x̂0∥2

]
. (18)

Notably, ResShift shares the same training objective as RDIM, further highlighting that ResShift is a
particular case of RDIM and that its trained models can be used for RDIM sampling without retraining.
The RDIM training and sampling procedures are described in Algorithms 1 and 2, respectively.

Algorithm 1 Training
1: repeat
2: x0,y0 ∼ q(x0,y0) = q(x0)q(y0|x0)
3: ∆ = x0 − y0

4: t ∼ U(1, T )
5: ϵ ∼ N (0, I)
6: xt ∼ q(xt|x0,∆)
7: x̂0 = fθ(xt,y0, t)
8: L = ∥x0 − x̂0∥2
9: Take gradient descent step on ∇θL

10: until convergence
11: return fθ

Algorithm 2 Sampling

1: Υ = {τS = T, τS−1, . . . , τ1, τ0 = 0}
2: xT ∼ N (y0, γ

2I)

3: for k = S, S − 1, . . . , 1 do
4: x̂0 = fθ(xτk ,y0, τk)

5: ∆̂ = x̂0 − y0

6: if γ ̸= 0 then ϵ̂ =
xτk

−x̂0+βτk
∆̂√

γ2βτk

7: xτk−1
∼ pθ

(
xτk−1

|xτk ,y0

)
8: end for
9: return x0

6
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3 EXPERIMENTS

RDIM is evaluated on image denoising and single image SR using the FMD (Zhang et al., 2019),
SIDD (Abdelhamed et al., 2018; 2019), and DIV2K (Agustsson & Timofte, 2017; Timofte et al.,
2017) datasets. Several RDIM variants with γ=3.0, η=1.0, and p=5.0 are considered, differing
only in the number of sampling timesteps and loss targets. RDIM-PQ stands for RDIM trained
with a perceptual quality (PQ) objective. RDIM-S and RDIM-PQ-S denote sampling with S steps.
Particularly, RDIM-1 and RDIM-PQ-1 correspond to single-step deterministic inferences (S=1).
Their deterministic nature results from the final reverse transition degenerating into a δ-distribution
when γ ̸= 0 and β0 = 0 (see Sections 2.5 and 2.6). Moreover, RDIM is compared against multiple
state-of-the-art methods, including ResShift with S=T =100. Although ResShift is often employed
with S=T =10, there is a significant performance improvement when using longer diffusion chains.
This effect is evident in the experiments shown in Appendix C.7, where ResShift improves peak signal-
to-noise ratio (PSNR) from 39.363 dB for T =10 to 43.599 dB for T =100. Additional qualitative
results on image inpainting, colorization, and deblurring are provided on FFHQ (Karras et al., 2019).
Experimental details are in Appendix C, including RDIM assessment when varying S (Figure 10).

Image Denoising. RDIM is compared against BM3D (Dabov et al., 2007), DnCNN (Zhang et al.,
2017), DDPM (Ho et al., 2020), DDIM (Song et al., 2021), and ResShift (Yue et al., 2023). For
fairness, all diffusion models use the same network architecture (see Appendix C.2) and diffusion
timesteps (T = 100). Results are listed in Table 1a. On FMD-Confocal-BPAE-Raw, RDIM-10
achieves the best results in terms of PSNR and structural similarity index measure (SSIM), followed
by RDIM-1. On FMD-Confocal-Zebrafish-Raw, ResShift attains the best PSNR score, but is 10×
slower than RDIM-10, which obtains comparable PSNR performance and the best SSIM score. On
SIDD-Medium, RDIM-1 yields superior results. Diffusion models, which inherently capture richer
structures than DnCNN, have their gains diminished on SIDD-Medium due to the use of a small
64×64 patch size (which is kept the same across all experiments for consistency). Meanwhile,
DnCNN performs full-image processing at inference, giving it a slight unfair advantage. Figure 12,
Appendix C.11, presents a qualitative comparison.

Super-Resolution. A comparative analysis with ×2 and ×4 downsampling factors evaluates RDIM
against ESRGAN (Wang et al., 2018), DDPM, DDIM, and ResShift. As before, diffusion models
were trained under the same conditions, including architecture and diffusion timesteps (T = 100).
Results are shown in Table 1b. On both DIV2K-Unknown-×2 and DIV2K-Unknown-×4, RDIM-1
performs the best, followed by RDIM-10, highlighting that RDIM consistently surpasses ResShift
and DDPM. Figure 13, in Appendix C.11 showcases qualitative results.

An additional analysis is conducted on ×4 bicubic downsampled images from the DIV2K dataset,
comparing RDIM against DDRM (Kawar et al., 2022), ResShift, IR-SDE (Luo et al., 2023b), DDBM
(Zhou et al., 2024), GOUB (Yue et al., 2024), UniDB (Zhu et al., 2025), CTMSR (You et al., 2025),
MaRS (Li et al., 2025), DBIM (Zheng et al., 2024), and UniDB++ (Pan et al., 2025). Results are
presented in Table 2. RDIM-1 achieves the highest PSNR and SSIM among all methods, with
RDIM-PQ-1 following closely. This suggests that RDIM offers an advantage for applications where

Table 1: Comparative analysis of RDIM against relevant state-of-the-art techniques for (a) denoising
and (b) SR. Green color highlights the best score overall and Blue color the second best.

(a) Denoising on images from the FMD (BPAE and zebrafish
confocal fluorescence microscopy images) and SIDD datasets.

Denoising
Method S↓

FMD-BPAE FMD-Zebrafish SIDD-Medium

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
Noisy – 31.596 0.812 26.732 0.603 27.797 0.515
BM3D – 35.862 0.933 35.289 0.918 35.880 0.906
DnCNN – 37.609 0.950 37.169 0.941 39.838 0.957
DDPM 100 41.775 0.981 43.214 0.974 39.329 0.945
DDIM-25 25 35.168 0.953 39.060 0.960 28.627 0.855
DDIM-50 50 38.608 0.972 41.211 0.969 34.665 0.912
ResShift 100 43.599 0.984 45.167 0.976 39.663 0.949

RDIM-1 1 43.987 0.985 44.229 0.976 40.335 0.962
RDIM-10 10 44.147 0.986 45.027 0.978 39.979 0.958

(b) ×2 and ×4 SR on images from the DIV2K
dataset under unknown degradations.

SR
Method S↓

DIV2K-×2 DIV2K-×4

PSNR↑ SSIM↑ PSNR↑ SSIM↑
LR (Bicubic) – 25.112 0.704 21.742 0.574
ESRGAN – 30.017 0.857 24.957 0.690
DDPM 100 31.949 0.893 26.446 0.739
DDIM-25 25 29.003 0.839 20.894 0.504
DDIM-50 50 31.150 0.879 24.949 0.687
ResShift 100 32.368 0.903 26.627 0.750

RDIM-1 1 33.887 0.924 28.280 0.798
RDIM-10 10 33.019 0.914 27.266 0.770
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distortion fidelity is critical (e.g., medical imaging). Notably, RDIM-PQ-1 explicitly optimizes for
LPIPS and attains the lowest score on this metric while attaining high PSNR and SSIM. Overall, a
clear perception–distortion trade-off emerges, as further illustrated in Appendix C.8, where RDIM
demonstrates a more favorable balance than state-of-the-art alternatives.

A qualitative comparison in Figure 3 further demonstrates that RDIM yields sharper and more faithful
reconstructions, particularly in areas rich in fine textures and structural detail. Other methods introduce
noticeable artifacts and deformations. More results are shown in Figures 14 and 15 (Appendix C.11).

(e) UniDB (f) CTMSR

(b) LR (Bicubic) (c) ResShiftSR

(a) Reference (g) RDIM-1

(d) GOUB

(e) UniDB (f) CTMSR

(b) LR (Bicubic) (c) ResShiftSR

(a) Reference (g) RDIM-1

(d) GOUB

Figure 3: Qualitative ×4 SR results on DIV2K-Bicubic-×4.

Table 2: ×4 SR on bicubic downsam-
pled images from the DIV2K dataset.

SR
Method S↓

DIV2K-×4

PSNR↑ SSIM↑ LPIPS↓
DDRM† 100 24.350 0.592 0.364
ResShift 100 27.455 0.780 0.153
IR-SDE† 100 25.900 0.657 0.231
DDBM‡ 100 24.210 0.581 0.384
GOUB-SDE† 100 26.890 0.748 0.220
GOUB-ODE† 100 28.500 0.807 0.328
UniDB-SDE† 100 25.460 0.686 0.179
UniDB-ODE† 100 28.640 0.807 0.323
UniDB++-50‡ 50 26.610 0.754 0.159
UniDB++-20‡ 20 27.380 0.777 0.179
UniDB++-5‡ 5 28.400 0.805 0.235
MaRS-5‡ 5 27.730 0.783 0.286
DBIM-5‡ 5 28.050 0.795 0.260
CTMSR-1 1 27.087 0.759 0.130

RDIM-1 1 29.180 0.824 0.257
RDIM-5 5 28.408 0.806 0.197
RDIM-10 10 27.963 0.795 0.178
RDIM-20 20 27.636 0.786 0.166
RDIM-50 50 27.427 0.779 0.154

RDIM-PQ-1 1 29.004 0.817 0.114
† Retrieved from Zhu et al. (2025).
‡ Retrieved from Pan et al. (2025).

Additional Image Restoration Tasks. Further evaluation on image inpainting, colorization, and
deblurring tasks demonstrates the generalization capabilities of RDIM. Figure 4 presents qualitative
results obtained with RDIM-10. Additional details and results are provided in Appendix C.

(a) Original (b) Inpainting (c) Colorization (d) Deblurring

Figure 4: RDIM-10 results in image inpainting, colorization, and deblurring on the FFHQ dataset. In
(b), (c) and (d), the left side represents the input image and the right side the output.

Discussion of results. RDIM and ResShift consistently outperform DDPM, emphasizing that their
diffusion process is more closely aligned with these inverse problems. Moreover, RDIM demonstrates
performance comparable to ResShift, often surpassing it, while requiring significantly fewer sampling
timesteps. This stands in contrast with the DDIM behavior when applied to a pretrained DDPM.
DDIM incurs noticeable degradation when reducing the sampling count from S = 100 to S = 50, and
does not support reliable single-step inference. This suggests that the residual modeling dynamics are
intrinsically well aligned with implicit sampling, enabling acceleration factors (up to ×100) that are
not achievable by applying DDIM to DDPM. Moreover, since DDPM and ResShift require a reverse
process with the same number of timesteps as their forward diffusion process, reducing their diffusion
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steps to match the RDIM sampling time would result in a degradation in performance (Shih et al.,
2023). This effect is evident in the experiments conducted in Appendix C.7, where ResShift with a
reduced number of diffusion steps underperforms compared to its higher-timestep configurations.

Furthermore, FMD-Confocal-Zebrafish-Raw contains noisier images than FMD-Confocal-BPAE-
Raw. As shown in Table 1a, RDIM-1 outperforms ResShift on FMD-Confocal-BPAE-Raw, whereas
ResShift performs better on FMD-Confocal-Zebrafish-Raw. This suggests that in the presence of
stronger degradations a more stochastic approach is advantageous, as variability promotes output
diversity. Conversely, when degradations are mild, a more deterministic method ensures consistent
and accurate restoration. Therefore, balancing stochasticity is crucial to adapt the method effectively
to varying noise levels and degradation strengths. Notably, RDIM-10 achieves comparable results to
ResShift in FMD-Confocal-Zebrafish-Raw while requiring only 10 sampling steps instead of 100,
rendering inference 10× faster. Further demonstrating its efficiency, RDIM accelerates sampling up
to 100× compared to ResShift and DDPM on FMD-Confocal-BPAE-Raw. Additionally, experiments
on SIDD highlight that RDIM effectively supports high-resolution (HR) image reconstruction even
when operating on relatively small patches (e.g., 64×64) compared to the full image size, which here
reach resolutions of up to ≈ 5300× 3000 pixels. Naturally, increasing the patch size will improve
performance and could enable restoration of images at even higher resolutions.

In SR under unknown degradations, standard diffusion models and ResShift, often exhibit a tendency
to hallucinate details that deviate from the ground truth, particularly when employing long diffusion
chains. As illustrated in Figure 13, while iterative refinement encourages the generation of natural-
looking textures, it frequently trades off fidelity for perceptual quality, leading to reconstructions
that drift away from the original structure (see Appendix C.7 for further evidence). Furthermore,
the deterministic RDIM-1 outperforms all methods, suggesting a more deterministic approach to
SR is beneficial, as too much stochasticity can introduce unwanted variability in the output and the
iterative refinement of long-chain diffusion can become detrimental. A similar trend is observed
on the DIV2K-Bicubic-×4 benchmark. As shown in Table 2, RDIM again achieves the highest
PSNR and SSIM scores while operating with far fewer sampling steps. It maintains sharper and more
faithful textures, as illustrated in Figure 3. These results confirm that the advantages of residual-based
implicit sampling carry over to classical SR settings.

4 RELATED WORK

Diffusion Models (DMs) (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2020)
generate images by iteratively denoising latent variables sampled from a Gaussian prior. For image-
to-image tasks, conditioning mechanisms such as classifier guidance (Dhariwal & Nichol, 2021)
or classifier-free guidance (Ho & Salimans) enable the generation of target images given source
observations (Saharia et al., 2022a; Sasaki et al., 2021; Zhao et al., 2022). However, because
DMs start from pure noise, they remain misaligned with inverse problems where the input already
contains meaningful structure. Hence, several diffusion-based reconstruction approaches adapt the
generative process to low-quality inputs. SR3 (Saharia et al., 2022b) and SRDiff (Li et al., 2022)
condition DDPMs on low-resolution inputs, while Whang et al. (2022) use residual-based refinements
to improve deblurring. DDRM (Kawar et al., 2022) addresses general linear inverse problems via
posterior sampling with a pre-trained DM, and ResShift (Yue et al., 2023) leverages residual modeling
between high-resolution and low-resolution images. Despite their effectiveness, these methods still
require traversing all diffusion steps sequentially. RDIM generalizes residual modeling while enabling
DDIM-style long-range sampling and controllable stochasticity, significantly reducing the number of
steps needed for high-quality reconstruction.

Accelerating DM Sampling have become an attractive research area, usually focusing on reducing
the number of steps to a dozen or fewer. Within the body of work, training-based distillation
approaches (Salimans & Ho, 2022; Luhman & Luhman, 2021; Song et al., 2023; Meng et al., 2023;
Li et al., 2023b; Luo et al., 2023a; Kim et al., 2024) compress long trajectories into few-step solvers,
while training-free methods leverage ordinary differential equations (ODEs), e.g. DDIM (Song et al.,
2021), DPM-Solver (Popov et al., 2022; Bao et al., 2022; Lu et al., 2025; Zheng et al., 2023). These
methods enable fast sampling but remain primarily designed for unconditional synthesis and do not
explicitly align the forward dynamics with the degradation process. In contrast, RDIM targets paired
inverse problems by explicitly modeling residuals and allowing few-step implicit updates.
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Flow Models (FMs) (Albergo et al., 2023; Do et al., 2024; Lipman et al., 2023; Liu et al., 2023b) learn
deterministic ODE flows between arbitrary distributions using the flow matching objective (Lipman
et al., 2023), which is closely related to DM’s score matching (Song et al., 2020). They can be
understood as zero-variance limits of diffusion bridges, producing transport maps for unpaired or
cross-domain translation. However, the deterministic nature of these flows restricts their capacity to
capture uncertainty, an important property for restoration tasks involving strong degradations. RDIM
differs by maintaining stochastic residual modeling with controllable variance, which empirically
improves robustness and generalization.

Bridge Models (BMs) can be categorized into Schrödinger bridges (SB) and diffusion bridges
(DB). The former constructs a stochastic process connecting two arbitrary marginal distributions
(De Bortoli et al., 2021; Chen et al., 2022; Liu et al., 2023a), while the later conditions a stochastic
differential equation (SDE) on fixed endpoints (Heng et al., 2025; Li et al., 2023a; Zhou et al., 2024).
Both methods have been exploited for image-to-image translation. In particular, Zhou et al. (2024)
(DDBM) learn to simulate the time-reversal of a DB based on a learned score matching. Li et al.
(2023a) (BBDM) instead focus on constructing a Brownian bridge. SBALIGN (Somnath et al., 2023)
and Ω-Bridge (Liu et al., 2023c) use Doob’s h-transform to guide trajectories toward prescribed
terminal states, and GOUB (Yue et al., 2024) incorporates a mean-reverting Ornstein–Uhlenbeck
(OU) bridge to improve stability.

Although BM are powerful, SBs operate in unpaired settings, not enforcing or learning correspon-
dences between samples. DBs impose strict boundary conditioning on endpoints, which can bias
trajectories toward smoother transitions, blurring high-frequency details (Kieu et al., 2025). In
contrast, RDIM is bridge-like in that its forward process defines a stochastic interpolation between
x0 and y0, but it differs fundamentally from SB/DB frameworks: RDIM operates in paired settings,
relaxes endpoint constraints, and uses an implicit DDIM-style sampler that supports step skipping.

Stochastic optimal control (SOC) has recently been adopted to steer diffusion trajectories.
DIS (Berner et al., 2023) formalized the connection between SOC and diffusion, while RB-
Modulation (Rout et al., 2024) applied SOC principles for training-free style transfer. UniDB (Zhu
et al., 2025) integrates SOC with diffusion bridges using penalty terms to guide forward trajectories
toward terminal states, improving perceptual quality. RDIM differs by requiring neither fixed end-
points nor SOC penalties, instead relying on a flexible residual-based forward process that remains
aligned with practical degradations.

Alternative methods to standard diffusion processes have also been explored. Inversion-by-direct-
iteration (IDI) (Delbracio & Milanfar, 2023) replaces the stochastic denoising trajectory with a
fixed-point iterative scheme, offering competitive restoration without a diffusion process. DiracDif-
fusion (Fabian et al., 2024) proposes a deterministic, data-consistent update rule that incrementally
reconstructs images using Dirac-like propagation rather than probabilistic diffusion. Residual De-
noising Diffusion Models (RDDM) (Liu et al., 2024) incorporate residual learning into the diffusion
process to accelerate convergence and reduce the dependency on long sampling chains. Iterative
α-(de)blending (Heitz et al., 2023) introduces a minimalist deterministic diffusion variant based on
recursive blending operations, enabling efficient incremental reconstruction. These approaches share
with RDIM the motivation of improving reconstruction fidelity and reducing sampling cost, but differ
fundamentally in that RDIM preserves the generative diffusion structure while aligning the forward
process with the degradation model and enabling DDIM-style long-range sampling.

5 CONCLUSION

RDIMs constitute a diffusion framework tailored for inverse problems that explicitly models the
residuals between HQ and LQ images. Aligning the forward process with the actual degradation and
leveraging implicit sampling enables RDIMs to produce accurate reconstructions with significantly
fewer steps than conventional DDPMs. Furthermore, RDIM achieves superior results compared
to DDPM, reducing hallucinations while maintaining fidelity, highlighting that starting the reverse
process closer to the LQ images offers a more informed and effective initialization. Experiments on
denoising and SR demonstrate consistent improvements over DDPMs and performance comparable
to or exceeding ResShift, achieving HQ results with single or few step inference. These results
establish RDIMs as an efficient and versatile approach for a wide range of image reconstruction tasks.
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A DERIVATIONS

This section presents detailed mathematical derivations to support this work. All intermediate steps
and calculations omitted for brevity in the main text are included here for completeness and reference.

A.1 FORWARD PROCESS CUMULATIVE TRANSITION DISTRIBUTION q(xt|x0,∆)

The RDIM forward process is designed to align with a forward model that converts the data, x0,
into the corresponding corrupted version, y0. To achieve this, the Gaussian transition distribution
in Equation (4) is derived for a Markovian version of the RDIM forward process. However, when
generating a latent variable xt starting from x0, the sequential formulation of the diffusion process
can become computationally expensive, particularly as the timestep t increases. To address this
problem, the reparameterization trick can be leveraged, allowing the cumulative Gaussian transitions
of the forward process to be expressed in closed form. As a result, xt can be computed at an arbitrary
timestep t as a function of x0, the fraction of residual between x0 and y0, λt∆ (with λt determining
the amount of residual to be removed between each diffusion step), and optional forward variance
parameter γ:

xt = xt−1 − λt∆+
√
γ2λtϵt

= xt−2 − λt−1∆+
√
γ2λt−1ϵt−1 − λt∆+

√
γ2λtϵt

= · · ·

= x0 −∆ (λ1 + λ2 + · · ·+ λt)︸ ︷︷ ︸
λ̄t

+
√
γ2λ1ϵ1 +

√
γ2λ2ϵ2 + · · ·+

√
γ2λtϵt

(19)

where ϵ1, ϵ2, . . . , ϵt ∼ N (0, I). Hence:

xt ∼ N
(
x0 − λ̄t∆, γ2 (λ1 + λ2 + · · ·+ λt) I

)
∼ N

(
x0 − λ̄t∆, γ2λ̄tI

)
,

(20)

Therefore, the cumulative Gaussian transition in the forward process can be defined as in Equation
(5) and, when γ = 0, it collapses into a Dirac delta function.

Cumulative sum of weights λt Each weight λt, used to control the variance and amount of residual
to be removed in each diffusion step, is computed as λt = βt − βt−1, with βt representing the
transition at forward step t between original and corrupted data in the Markov chain. Consequently,
the cumulative sum of weights λt from the initial timestep t = 1 up to timestep t = τ is given as
follows:

λ̄τ =

τ∑
t=1

λt =

τ∑
t=1

(βt − βt−1) = βτ − β0 (21)
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Distribution of the last latent variable q(xT |x0,∆) = q(xT |y0). Given that the RDIM forward
process is designed to align with a forward model that converts the data, x0, into the corresponding
corrupted version, y0, the residual, ∆, should be fully removed from x0 at the end of the forward
process, i.e., after exactly T timesteps. This ensures that the last latent variable, xT , will coincide
exactly with the corrupted data, y0, when the forward process is deterministic, and will converge to a
noisy sample centered at y0 when the forward process is stochastic. Hence, considering Equation
(20), the last latent variable, xT , of the forward process can be sampled as:

xT ∼ N
(
x0 − λ̄T∆, γ2λ̄T I

)
∼ N

(
x0 − λ̄T (x0 − y0) , γ

2λ̄T I
)

∼ N
(
x0

(
1− λ̄T

)
+ λ̄Ty0, γ

2λ̄T I
)
.

(22)

Logically, to ensure the aforementioned condition of centering the distribution q(xT |x0,∆) on the
corrupted data, y0, the cumulative sum of weights λt over the T timesteps must satisfy λ̄T = 1. This
imposes that β0 = 0 and βT = 1, since λ̄T = βT − β0, as mentioned above. Accordingly:

xT ∼ N
(
y0, γ

2I
)
. (23)

This formulation assures that the residual ∆ is fully removed after exactly T timesteps (λ̄t = 1 only
when t = T ) and that the distribution q(xT |x0,∆) is centered at the corrupted data, y0. As a result
of this deliberate design choice, q(xT |x0,∆) = q(xT |y0) holds exactly at t = T . In addition, when
γ = 0, the Gaussian collapses into a Dirac delta function centered at y0, thereby the final latent
variable, xT , coincides exactly with the corrupted data, i.e., xT = y0.

Additionally, the β-schedule defined in Equation (16) is designed to impose β0 = 0 and βT = 1,
thus satisfying the aforementioned requirements. In particular, the cumulative sum of weights λt is
λ̄t = βt when β0 = 0 (see Equation (21)). Figure 2 showcases the progression of the weights βt

and λt across timesteps. If p = 1.0, the β-schedule is linear and λt is constant, resulting in uniform
fractions of ∆ removed along the forward process.

Accordingly, under this condition of β0 = 0, the cumulative forward transition distribution,
q(xt|x0,∆), expressed in Equation (20) can be further simplified to:

xt ∼ N
(
x0 − βt∆, γ2βtI

)
. (24)

A.2 REVERSE PROCESS TRANSITION DISTRIBUTION q(xt−1|xt,x0,∆)

The reverse process involves computing the reverse transition, which is defined as the Gaussian
distribution in Equation (7) and is designed to preserve the marginal q(xt|x0,∆) in Equation (5).
Considering that Gaussian distributions exhibit the property that their conditional means are linear
combinations of the conditioning variables (see Lemma B.2), then the mean µ̃t of q(xt−1|xt,x0,∆)
can be expressed as a linear interpolation between xt, x0, and ∆. Particularly, to match the form
of the forward process cumulative transition, q(xt|x0,∆), the mean µ̃t is assumed to be a linear
combination between (x0 − βt∆) and xt:

µ̃t = a (x0 − βt∆) + bxt, (25)

where a and b are constants.

Following, given q(xt|x0,∆) and the formulation assumed for q(xt−1|xt,x0,∆), then
q(xt−1|x0,∆) can be defined by leveraging a property of marginal and conditional Gaussians
(see Lemma B.1):

q(xt−1|x0,∆) = N
(
xt−1

∣∣b (x0 − βt∆) + a (x0 − βt∆) , σ̃2
t I + bγ2βtIb

)
= N

(
xt−1

∣∣ (x0 − βt∆) (a+ b) ,
(
σ̃2
t + γ2βtb

2
)
I
)
.

(26)

Recalling that q(xt|x0,∆) = N
(
xt|x0 − βt∆, γ2βtI

)
is being enforced, the cumulative Gaussian

transition to obtain xt−1 given x0 and ∆ is also defined as:

q(xt−1|x0,∆) = N
(
xt−1|x0 − βt−1∆, γ2βt−1I

)
. (27)
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Accordingly, to ensure that the designed reverse transition preserves the marginal q(xt|x0,∆), as
guaranteed by Lemma B.1, the following equality must be satisfied:

N
(
xt−1

∣∣ (x0 − βt∆) (a+ b) ,
(
σ̃2
t + γ2βtb

2
)
I
)
= N

(
xt−1

∣∣x0 − βt−1∆, γ2βt−1I
)
, (28)

and thus a and b can be computed by solving the following system of equations:

{
(x0 − βt∆) (a+ b) = x0 − βt−1∆

σ̃2
t + γ2βtb

2 = γ2βt−1
⇔

a = 1 + λt∆
x0−βt∆

−
√

γ2βt−1−σ̃2
t

γ2βt

b =
√

γ2βt−1−σ̃2
t

γ2βt

. (29)

Consequently, the mean of each reverse transition, µ̃t, is given as:

µ̃t = a (x0 − βt∆) + bxt

=

1 +
λt∆

x0 − βt∆
−

√
γ2βt−1 − σ̃2

t

γ2βt

 (x0 − βt∆) +

√
γ2βt−1 − σ̃2

t

γ2βt
xt

= x0 − βt∆+ λt∆−

√
γ2βt−1 − σ̃2

t

γ2βt
(x0 − βt∆) +

√
γ2βt−1 − σ̃2

t

γ2βt
xt

= x0 − βt∆+ (βt − βt−1)∆+

√
γ2βt−1 − σ̃2

t

γ2βt
(xt − x0 + βt∆)

= x0 − βt−1∆+
√

γ2βt−1 − σ̃2
t

(
xt − x0 + βt∆√

γ2βt

)
,

(30)

where, in particular, singularities can occur for γ = 0. Therefore, for γ ̸= 0, the mean of the reverse
process transition distribution that preserves the marginal q(xt|x0,∆) is given as:

µ̃t|γ ̸=0 = x0 − βt−1∆+
√
γ2βt−1 − σ̃2

t

(
xt − x0 + βt∆√

γ2βt

)
. (31)

Essentially, the mean, µ̃t, is chosen to ensure that q(xt|x0,∆) = N
(
xt|x0 − βt∆, γ2βtI

)
is

satisfied for all t ∈ {1, 2, . . . , T}. Meanwhile, the variance σ̃2
t is set equal to the variance of the

ResShift reverse transition (see Appendix A.3), thus σ̃2
t = γ2 βt−1

βt
λt = λ̃t.

Relationship between xt, x0, ∆, and ϵ. Considering the marginal q(xt|x0,∆) and γ ̸= 0, a
relationship between xt, x0, ∆, and ϵ ∼ N (0, I) can be derived from the reparameterization trick:

q(xt|x0,∆) = N
(
xt|x0 − βt∆, γ2βtI

)
⇒ xt = x0 − βt∆+

√
γ2βtϵ

⇔ ϵ =
xt − x0 + βt∆√

γ2βt

,

(32)

This expression exactly matches the term between parentheses in the mean of the reverse process
transition distribution for γ ̸= 0, in Equation (31). Accordingly, the mean can be rewritten as:

µ̃t|γ ̸=0 = x0 − βt−1∆+
√

γ2βt−1 − σ̃2
t ϵ, (33)

which structurally matches the reparameterized form of the marginal q(xt−1|x0,∆), exhibiting the
same functional form and differing only in the variance term. This highlights that, when γ ̸= 0, the
reverse transition is aligned with cumulative transitions and can be leveraged to efficiently sample
any state at an arbitrary timestep.
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Reverse transition with γ = 0. Particularly, for γ = 0, the forward process cumulative transition,
defined as a Gaussian distribution, degenerates into a Dirac delta function (see also Appendix A.1).
Consequently, for γ = 0, Lemma B.1 is not applicable. In fact, in this case, the forward process
effectively becomes a linear interpolation between x0 and y0. Logically, when γ = 0, it follows that
the reverse process simply needs to invert this deterministic process. However, the continuity of the
mean, µ̃t, should be assured at γ = 0, i.e., µ̃t|γ=0 = limγ→0 µ̃t|γ ̸=0.

Considering Equation (24) in Appendix A.1, it follows limγ→0 xt = x0 − βt∆, which implies
that xt − x0 + βt∆ → 0 as γ → 0. Accordingly, given σ̃2

t = γ2 βt−1

βt
λt, then limγ→0 µ̃t|γ ̸=0 =

x0 − βt−1∆. As a result, to ensure the continuity of the mean µ̃t at γ = 0, the Gaussian transition
q(xt−1|xt,x0,∆) is assumed to collapse into a Dirac delta function centered at x0 − βt−1∆.
Hence, for γ = 0, the mean of the reverse process transition distribution is defined as:

µ̃t|γ=0 = x0 − βt−1∆. (34)

Notably, this formulation of µ̃t|γ=0 matches the mean of the cumulative forward transition,
q(xt−1|x0,∆) (see Appendix A.1), showing that the reverse process, when γ = 0, reduces to
a linear interpolation between y0 and x0 (inverse of the deterministic forward process). Additionally,
it aligns with the concept of cumulative transitions, which is paramount for long-range transitions
(see Section 2.5). In essence, the mean, µ̃t, is expressed as in Equation (8) and is continuous at
γ = 0. Nonetheless, the γ constant hyperparameter is immutable in practice, i.e., set only once for
each model instance, thereby no discontinuity issues would ever arise due to γ (see Appendix A.4).

A.3 REVERSE TRANSITION WITH σ̃2
t = γ2 βt−1

βt
λt (RESSHIFT VARIANCE, λ̃t)

In particular, if the reverse process transition variance, σ̃2
t , is set to be the same as in ResShift,

λ̃t = γ2 βt−1

βt
λt, then the mean, µ̃t|γ ̸=0, reduces to:

µ̃t|γ ̸=0 = x0 − βt−1∆+
√

γ2βt−1 − σ̃2
t

(
xt − x0 + βt∆√

γ2βt

)

= x0 − βt−1∆+

√
γ2βt−1 − γ2

βt−1

βt
λt

(
xt − x0 + βt∆√

γ2βt

)

= x0 − βt−1∆+

√
γ4βtβt−1 − γ4βt−1 (βt − βt−1)

γ2βt

(
xt − x0 + βt∆√

γ2βt

)

= x0 − βt−1∆+

√
γ4β2

t−1 (xt − x0 + βt∆)

γ2βt
(35)

= x0 − βt−1∆+
βt−1xt − βt−1x0 + βtβt−1∆

βt

=
βt−1

βt
xt + x0

(
1− βt−1

βt

)
=

βt−1

βt
xt +

λt

βt
x0,

and thus the distribution q(xt−1|xt,x0,∆)γ ̸=0 becomes:

q(xt−1|xt,x0,∆)γ ̸=0 = N
(
xt−1

∣∣∣∣βt−1

βt
xt +

λt

βt
x0, λ̃tI

)
, (36)

which is exactly the ResShift reverse transition distribution. In essence, if the RDIM reverse transition
variance, σ̃2

t , is set to be the same as in ResShift, then µ̃t will match the mean of the ResShift reverse
transition. Accordingly, RDIM reduces to ResShift for this specific variance, revealing that ResShift
is a particular case of RDIM.

Alternatively, for γ ̸= 0, if the variance is set to σ̃2
t = 0, then there are no stochastic terms involved

when traversing the reverse trajectory, as q(xt−1|xt,x0,∆)γ ̸=0 degenerates into a δ-distribution
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and avoids sampling random noise (given Equations (7) and (31)). Consequently, the reverse process
becomes deterministic. Therefore, a constant hyperparameter, η ∈ [0, 1], can be introduced to
interpolate between a deterministic and stochastic reverse process when γ ̸= 0, thus allowing control
over the variability in the reverse trajectory (see Equation (9)). Specifically, when η = 0, the Gaussian
collapses into a Dirac delta function.

Absence of non-real square roots. From Equation (9), it follows that to avoid a non-real square
root, when γ ̸= 0, the condition γ2βt−1 ≥ η2λ̃t must be satisfied. Considering λ̃t = γ2 βt−1

βt
λt, then:

γ2βt−1 ≥ η2λ̃t ⇔ 1 ≥ η2
λt

βt
⇔ 1 ≥ η2

(
1− βt−1

βt

)
. (37)

Recalling that η ∈ [0, 1], then 0 ≤ η2 ≤ 1. Moreover, since 0 ≤ βt−1 ≤ βt, it follows that
0 ≤ βt−1

βt
≤ 1, which in turn ensures that the term inside parentheses meets the condition 1− βt−1

βt
≤ 1.

Consequently, the product of these two terms is always less than or equal to 1, and thus the Inequality
(37) is satisfied for all η ∈ [0, 1] and t ∈ {1, 2, . . . , T}.

A.4 TRAINING OBJECTIVE

During inference, x0 and ∆ are unknown, thus sampling from the true reverse transition distribution,
q(xt−1|xt,x0,∆), is not possible. Therefore, a learnable parametric model, pθ(xt−1|xt,y0),
defined as a Gaussian distribution, is introduced to approximate q(xt−1|xt,x0,∆). Particularly,
an accurate estimation is required to ensure precise reconstruction of the data, x0, at inference.
This approximation is achieved by minimizing the KL divergence between both distributions, while
accounting for all timesteps:

θ∗ = argmin
θ

DKL(q(x1:T |x0,∆)∥pθ(x1:T |y0)), (38)

where θ∗ denotes the optimal parameters. In fact, this objective of minimizing the KL divergence
in Equation (38) is equivalent to minimizing the negative variational lower bound (VLB) on the
conditional log-likelihood. This is the RDIM objective function and it can expanded further:

L(θ) = Eq(x1:T |x0,∆)

[
log

(
q(x1:T |x0,∆)

pθ(x0:T |y0)

)]
= Eq(x1:T |x0,∆)

[
log

(
q(xT |x0,∆)

∏T
t=2 q(xt−1|xt,x0,∆)

p(xT |y0)
∏T

t=1 pθ(xt−1|xt,y0)

)]

= Eq(x1:T |x0,∆)

[
log

(
q(xT |x0,∆)

p(xT |y0)

)

+ log

(
T∏

t=2

q(xt−1|xt,x0,∆)

pθ(xt−1|xt,y0)

)
− log (pθ(x0|x1,y0))

]

= Eq(xT |x0,∆)

[
log

(
q(xT |x0,∆)

p(xT |y0)

)]
+ Eq(x1:T |x0,∆)

[
T∑

t=2

log

(
q(xt−1|xt,x0,∆)

pθ(xt−1|xt,y0)

)]
− Eq(x1|x0,∆) [log (pθ(x0|x1,y0))] (39)

= DKL(q(xT |x0,∆)∥p(xT |y0))

+

T∑
t=2

Eq(xt−1,xt|x0,∆)

[
log

(
q(xt−1|xt,x0,∆)

pθ(xt−1|xt,y0)

)]
− Eq(x1|x0,∆) [log (pθ(x0|x1,y0))]

= DKL(q(xT |x0,∆)∥p(xT |y0))

+

T∑
t=2

Eq(xt|x0,∆)

[
Eq(xt−1|xt,x0,∆)

[
log

(
q(xt−1|xt,x0,∆)

pθ(xt−1|xt,y0)

)]]
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− Eq(x1|x0,∆) [log (pθ(x0|x1,y0))]

= DKL(q(xT |x0,∆)∥p(xT |y0))︸ ︷︷ ︸
LT

+

T∑
t=2

Eq(xt|x0,∆) [DKL(q(xt−1|xt,x0,∆)∥pθ(xt−1|xt,y0))]︸ ︷︷ ︸
Lt−1

−Eq(x1|x0,∆) [log (pθ(x0|x1,y0))]︸ ︷︷ ︸
L0

= LT + L1:T−1 + L0.

Hence, analogous to DDPMs, the RDIM objective function, L(θ), decomposes into LT (prior
matching term), L1:T−1 (consistency terms), and L0 (reconstruction term).

Prior matching term LT . The term LT is minimized when the prior, p(xT |y0), matches the
true distribution of the last latent variable, q(xT |x0,∆) = q(xT |y0) = N (y0, γ

2I). Accordingly,
p(xT |y0) is fixed to such a Gaussian distribution, which is parameterized by constants and involves
no learnable parameters. Therefore, LT is constant with respect to the model parameters, θ, and is
minimized, i.e., LT = 0. Consequently, this term can be excluded from the optimization objective,
unlike the terms L0:T−1, which explicitly depend on θ through the parameterized distribution pθ.

Consistency terms L1:T−1. The terms L1:T−1 enforce that the learnable parametric model,
pθ(xt−1|xt,y0), accurately approximates the true reverse transition, q(xt−1|xt,x0,∆). This
fundamentally ensures that the model learns to refine the data at intermediate timesteps, leading to
consistency in the reconstruction.

The true reverse transition distribution is known in closed form (see Section 2.4 along with Appendices
A.2 and A.3), having mean and variance parameterized as:

µ̃t =

x0 − βt−1∆, if γ = 0,

x0 − βt−1∆+

√
γ2βt−1 − η2λ̃t

(
xt−x0+βt∆√

γ2βt

)
, if γ ̸= 0,

(40)

and

σ̃2
t =

{
λ̃t, if γ = 0,

η2λ̃t, if γ ̸= 0,
(41)

where λ̃t = γ2 βt−1

βt
λt.

Given that pθ(xt−1|xt,y0) is defined as a Gaussian distribution with mean µθ (xt,y0, t) and
variance σ2

θ (xt,y0, t), to minimize the KL divergence of each term L1:T−1, the mean and variance
of the parametric model should approximate µ̃t and σ̃2

t , respectively. Particularly, the variance of
q(xt−1|xt,x0,∆) does not have learnable parameters because it is defined in terms of constant
hyperparameters, which are known. Therefore, σ2

θ (xt,y0, t) can be fixed to equal exactly σ̃2
t , as

expressed in Equation (11). Following, each term L1:T−1 is computed by applying the closed-form
expression for the KL divergence between two d-dimensional multivariate Gaussian distributions,
yielding:

DKL(q(xt−1|xt,x0,∆)∥pθ(xt−1|xt,y0))

=
1

2

(
log

(
|σ2

θ (xt,y0, t) I|
|σ̃2

t I|

)
− d+ tr

((
σ2
θ (xt,y0, t) I

)−1
σ̃2
t I
)

+ (µθ (xt,y0, t)− µ̃t)
⊤ (

σ2
θ (xt,y0, t) I

)−1
(µθ (xt,y0, t)− µ̃t)

)
=

1

2

(
log

(
|σ̃2

t I|
|σ̃2

t I|

)
− d+ tr

((
σ̃2
t I
)−1

σ̃2
t I
)

+ (µθ (xt,y0, t)− µ̃t)
⊤ (

σ̃2
t I
)−1

(µθ (xt,y0, t)− µ̃t)

)
(42)
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=
1

2

((
1

σ̃2
t

)
(µθ (xt,y0, t)− µ̃t)

⊤
(µθ (xt,y0, t)− µ̃t)

)
=

1

2σ̃2
t

∥µθ (xt,y0, t)− µ̃t∥2,

where | · | denotes the determinant of a matrix, and tr(·) is the trace of a matrix. Notably, minimizing
the KL divergence effectively reduces to decreasing the difference between the means µθ (xt,y0, t)
and µ̃t.

However, this is only valid with γ ̸= 0 and η ̸= 0. In contrast, when either γ = 0 or η = 0, the true
reverse transition Gaussian collapses into a Dirac delta function:

q(xt−1|xt,x0,∆) =


δ
(
xt−1 − µ̃t|γ=0

)
, if γ = 0, (A)

δ
(
xt−1 − µ̃t|γ ̸=0

)
, if γ ̸= 0 and η = 0, (B)

N (xt−1|µ̃t|γ ̸=0, σ̃
2
t|γ ̸=0I), if γ ̸= 0 and η ̸= 0, (C)

(43)

where A, B, and C correspond to the cases of γ = 0, (γ ̸= 0 and η = 0), and (γ ̸= 0 and η ̸= 0),
respectively.

The KL divergence between two Dirac delta functions is not defined in the conventional sense due to
their singular nature, but it can be analyzed through limiting behavior. Two delta functions centered
at different points have infinite divergence, thereby the KL divergence of each term L1:T−1 tends to
infinity, when γ = 0 or η = 0, unless µθ (xt,y0, t) = µ̃t:

DKL(q(xt−1|xt,x0,∆)∥pθ(xt−1|xt,y0))

=



0,
if (A and µθ|γ=0 (xt,y0, t) = µ̃t|γ=0)
or (B and µθ|γ ̸=0 (xt,y0, t) = µ̃t|γ ̸=0),

∞,
if (A and µθ|γ=0 (xt,y0, t) ̸= µ̃t|γ=0)
or (B and µθ|γ ̸=0 (xt,y0, t) ̸= µ̃t|γ ̸=0),

1
2σ̃2

t|γ ̸=0

∥µθ|γ ̸=0 (xt,y0, t)− µ̃t|γ ̸=0∥2, if C.

(44)

For the Dirac delta cases, where either γ = 0 or η = 0, to avoid an infinite loss, the only choice is to
force µθ (xt,y0, t) = µ̃t. However, directly optimizing under such a hard constraint is infeasible
in practice, as it provides no gradient information unless the condition is already satisfied. To
circumvent this, a relaxed proxy objective is adopted, mirroring the approach used in the Gaussian
case. Specifically, it minimizes half of the squared Euclidean distance between µθ (xt,y0, t) and
µ̃t. This mean-matching proxy loss serves as a differentiable surrogate that naturally encourages the
model to align the means and can be interpreted as the limiting case of the KL divergence when the
variance tends to zero. Consequently, the reduction of the KL divergence to mean matching holds for
all scenarios of γ and η.

Moreover, considering the formulation of µ̃t given in Equation (40) and since at every timestep, t,
in the reverse process, only the exact values of x0 and ∆ are unknown, then µθ (xt,y0, t) can be
defined as in Equation (12). In this definition of µθ (xt,y0, t), the only components dependent on
the parameters θ are x̂0 and ∆̂. Since, ∆ can be estimated from x0 and y0, then the model solely
needs to predict x0. Hence, x̂0 = fθ(xt,y0, t) denotes the x0 prediction from a neural network
given xt, y0, and timestep t. Meanwhile, ∆̂ = x̂0 − y0 represents the ∆ estimation, computed
from the x0 prediction and the known y0. The remaining components are fixed hyperparameters
and xt, which are known for every reverse transition from xt at any timestep, t. In essence, the
approximate reverse transition, pθ(xt−1|xt,y0), is modeled as a Gaussian whose mean is computed
using a neural network that predicts x0. Accordingly, the KL divergence of each term L1:T−1 can be
further expanded as:

DKL(q(xt−1|xt,x0,∆)∥pθ(xt−1|xt,y0))

=


1
2∥µθ|γ=0 (xt,y0, t)− µ̃t|γ=0∥2, if A,
1
2∥µθ|γ ̸=0 (xt,y0, t)− µ̃t|γ ̸=0∥2, if B,

1
2σ̃2

t|γ ̸=0

∥µθ|γ ̸=0 (xt,y0, t)− µ̃t|γ ̸=0∥2, if C,
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=



1
2∥x0 − βt−1∆− (x̂0 − βt−1∆̂)∥2, if A,

1
2

∥∥∥∥x0 − βt−1∆+

√
γ2βt−1 − η2λ̃t

(
xt−x0+βt∆√

γ2βt

)
−
(
x̂0 − βt−1∆̂+

√
γ2βt−1 − η2λ̃t

(
xt−x̂0+βt∆̂√

γ2βt

))∥∥∥∥2, if B,

1
2η2λ̃t

∥∥∥∥x0 − βt−1∆+

√
γ2βt−1 − η2λ̃t

(
xt−x0+βt∆√

γ2βt

)
−
(
x̂0 − βt−1∆̂+

√
γ2βt−1 − η2λ̃t

(
xt−x̂0+βt∆̂√

γ2βt

))∥∥∥∥2, if C,

=



1
2∥x0 − x̂0 − βt−1(x0 − x̂0)∥2, if A,

1
2

∥∥∥∥x0 − x̂0 − βt−1(x0 − x̂0)

+
√

βt−1

βt
(x̂0 − x0 + βt(x0 − x̂0))

∥∥∥∥2, if B,

1
2η2λ̃t

∥∥∥∥x0 − x̂0 − βt−1(x0 − x̂0)

+

√
γ2βt−1−η2λ̃t

γ2βt
(x̂0 − x0 + βt(x0 − x̂0))

∥∥∥∥2, if C,

(45)

=



1
2∥(x0 − x̂0)(1− βt−1)∥2, if A,

1
2

∥∥∥∥(x0 − x̂0)(1− βt−1)

+
√

βt−1

βt
(x̂0 − x0 + βt(x0 − x̂0))

∥∥∥∥2, if B,

1
2η2λ̃t

∥∥∥∥(x0 − x̂0)(1− βt−1)

+

√
γ2βt−1−η2λ̃t

γ2βt
(x̂0 − x0 + βt(x0 − x̂0))

∥∥∥∥2, if C,

=



1−βt−1

2 ∥x0 − x̂0∥2, if A,

1
2

∥∥∥∥(x0 − x̂0)(1− βt−1)−
√

βt−1

βt
(x0 − x̂0)(1− βt)

∥∥∥∥2, if B,

1
2η2λ̃t

∥∥∥∥(x0 − x̂0)(1− βt−1)−
√

γ2βt−1−η2λ̃t

γ2βt
(x0 − x̂0)(1− βt)

∥∥∥∥2, if C,

=



1−βt−1

2 ∥x0 − x̂0∥2, if A,

1
2

∥∥∥∥(x0 − x̂0)
(
1− βt−1 −

√
βt−1

βt
(1− βt)

)∥∥∥∥2, if B,

1
2η2λ̃t

∥∥∥∥(x0 − x̂0)

(
1− βt−1 −

√
γ2βt−1−η2λ̃t

γ2βt
(1− βt)

)∥∥∥∥2, if C,

=



1−βt−1

2 ∥x0 − x̂0∥2, if γ = 0,

1−βt−1−
√

βt−1
βt

(1−βt)

2 ∥x0 − x̂0∥2, if γ ̸= 0 and η = 0,

1−βt−1−
√

γ2βt−1−η2λ̃t

γ2βt
(1−βt)

2η2λ̃t
∥x0 − x̂0∥2, if γ ̸= 0 and η ̸= 0,

= ωt(γ, η, t)∥x0 − x̂0∥2.

Therefore, irrespective of the specific values of γ and η, each consistency term L1:T−1 ultimately
reduces to the expectation of a weighted squared Euclidean distance between the original data x0

and its prediction, where the expectation is taken over q(xt|x0,∆):

Lt−1 = Eq(xt|x0,∆)

[
ωt(γ, η, t)∥x0 − x̂0∥2

]
, (46)
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with weights ωt(·) defined as a function of γ, η, and t. Essentially, approximating x̂0 to the original
data effectively ensures that µθ (xt,y0, t) converges to µ̃t. As a result, pθ(xt−1|xt,y0) accurately
models q(xt−1|xt,x0,∆), which is the primary purpose of the consistency terms L1:T−1.

In particular, due to the relationship between x0 and ϵ given in Equation (32), the objective derived
in Equation (45) could be converted to predicting noise ϵ similar to DDPMs (Ho et al., 2020).
However, this reformulation of the objective would not be possible with a deterministic forward
process (γ = 0), as it works only for cases where noise was added during the forward process
(γ ̸= 0). Hence, having the neural network predict x0 directly is preferred for broader applicability
and improved generalizability.

Notably, the mean is continuous at γ = 0 (see Appendix A.2), thus there are no problems during
gradient computation, such as taking gradients where a function is not differentiable. Nonetheless,
for each specific value of γ, the mean is continuous and the γ constant hyperparameter is immutable,
i.e., set only once for each model instance, thereby no discontinuity issues would ever arise due to γ.

Reconstruction term L0. The L0 term is essentially the expectation of the negative log-likelihood
(NLL) of the original data, x0, conditioned on the first latent variable, x1, and the corrupted version,
y0, where the expectation is taken over x1 ∼ q(x1|x0,∆). In essence, it quantifies how well
the model can reconstruct x0 given x1 and y0. Since minimizing the NLL encourages the model
to output high-probability (accurate) reconstructions, it can be interpreted as a reconstruction loss.
Conceptually, this term acts as a final quality check, ensuring that after practically all the diffusion
degradation is removed3 iteratively, the model can accurately reconstruct the original clean data, x0,
from the almost degradation-free input, x1. It assures that the model not only learns to refine the
data at intermediate timesteps, but also produces outputs consistent with the underlying real data
distribution conditioned on y0. As a result, it contributes to aligning the model marginal pθ(x0|y0)
with the true posterior distribution q(x0|y0) as given in Equation (17). Nonetheless, similar to
DDPMs, this term is omitted in practice, since it is implicitly included in a simplified training
objective.

Simplified objective function. Since the term LT can be excluded from the optimization objective,
the loss function in Equation (39) becomes:

L(θ) =��LT + L1:T−1 + L0 =

T∑
t=2

Lt−1 + L0

=

T∑
t=2

Eq(xt|x0,∆) [DKL(q(xt−1|xt,x0,∆)∥pθ(xt−1|xt,y0))] + L0.

(47)

Following, the term L0 can be omitted, as it is implicitly included by extending the sum to encompass
all timesteps, t ∈ {1, 2, . . . , T}, thereby accounting for the transition from x1 to x0:

L(θ) =
T∑

t=1

Eq(xt|x0,∆) [DKL(q(xt−1|xt,x0,∆)∥pθ(xt−1|xt,y0))] , (48)

and given Equation (45), then:

L(θ) =
T∑

t=1

Eq(xt|x0,∆) [DKL(q(xt−1|xt,x0,∆)∥pθ(xt−1|xt,y0))]

=

T∑
t=1

Eq(xt|x0,∆)

[
ωt(γ, η, t)∥x0 − x̂0∥2

]
.

(49)

Considering λ̃t = γ2 βt−1

βt
λt, the weights ωt only depend on the predefined γ, η, and β-schedule

constant hyperparameters. In many practical implementations, such as DDPMs, this weighting is

3The forward process progressively incorporates degradation and removes ∆. The reverse process removes
degradation and reintroduces ∆.
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often omitted for all timesteps, finding that this still produces excellent results (Ho et al., 2020; Yue
et al., 2023). Therefore, the loss function can be further simplified by excluding the scaling:

L(θ) =
T∑

t=1

Eq(xt|x0,∆)

[
∥x0 − x̂0∥2

]
, (50)

and since evaluating the full sum over all time steps is computationally expensive, a single time step
can be sampled per training example. This yields an unbiased estimator of the full objective and
significantly improves training efficiency:

Lsimple(θ) = Ex0,∆,t

[
∥x0 − x̂0∥2

]
, (51)

where xt ∼ q(xt|x0,∆), t ∼ U(1, T ), and the case t = 1 corresponds to L0. Consequently, the
objective function of RDIMs simplifies to a squared Euclidean distance between the original data and
its prediction. Notably, RDIM and ResShift lead to the same training objective, further highlighting
that ResShift is a particular case of RDIM. This follows from the objective depending only on the
marginal distribution q(xt|x0,∆), which both models share. It does not strictly require the forward
process to be a Markov chain.

B LEMMAS

This section presents lemmas that support this work. These lemmas provide foundational results and
properties that support the main arguments and proofs.

Lemma B.1 (Bishop & Nasrabadi (2006)) Given a marginal Gaussian distribution for random
variable x and a conditional Gaussian distribution for random variable y given x in the form:

p(x) = N (x|µx,Σx) ,

p(y|x) = N
(
y|Cx+ c,Σy|x

)
,

(52)

where µx, C, and c are parameters governing the means, while Σx and Σy|x denote covariance
matrices. Then the marginal distribution of y and the conditional distribution of x given y are in the
form:

p(y) = N
(
y|Cµx + c,Σy|x +CΣxC

⊤) ,
p(x|y) = N

(
x
∣∣∣Σx|y

(
C⊤Σ−1

y|x (y − c) +Σ−1
x µx

)
,Σx|y

)
,

(53)

with Σx|y representing the conditional covariance matrix of x given y, defined as:

Σx|y =
(
Σ−1

x +C⊤Σ−1
y|xC

)−1

. (54)

Lemma B.2 (Bishop & Nasrabadi (2006)) Given a joint Gaussian distribution over random vari-
ables x and y of the form:

p

([
x
y

])
= N

([
µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])
, (55)

where µx and µy are the mean vectors of x and y, respectively, while Σxx, Σxy, Σyx, and Σyy

denote covariance matrices. Then the conditional distribution of x given y is Gaussian:

p(x|y) = N
(
x
∣∣∣µx|y,Σx|y

)
, (56)

with the conditional mean and covariance given by:

µx|y = µx +ΣxyΣ
−1
yy(y − µy),

Σx|y = Σxx −ΣxyΣ
−1
yyΣyx,

(57)

where the expressions follow from the Schur complement. This result shows that the conditional mean
of x given y is a linear function of y.
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C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

This section presents experimental details and additional results that complement those discussed in
the main text.

C.1 DATASETS

Experiments were performed across eight subsets, derived from four public data collections, namely
(i) Fluorescence Microscopy Denoising (FMD) dataset (Zhang et al., 2019), (ii) DIVerse 2K Res-
olution High Quality Images (DIV2K) dataset (Agustsson & Timofte, 2017; Timofte et al., 2017),
(iii) Smartphone Image Denoising Dataset (SIDD) (Abdelhamed et al., 2018; 2019), and (iv) Flickr–
Faces-HQ (FFHQ) dataset (Karras et al., 2019).

The FMD dataset is specifically designed for Poisson-Gaussian denoising tasks and consists of 12,000
real images acquired from representative biological samples, including bovine pulmonary artery
endothelial (BPAE) cells, zebrafish embryos, and mouse brain tissues, using confocal, two-photon,
and wide-field modalities. The dataset contains images with multiple noise levels, resulting in several
subsets, but only the strongest noise level (labeled raw in Zhang et al. (2019)) subsets are considered,
thus prioritizing the most challenging conditions. Solely confocal images were used and mouse
images are excluded. Accordingly, the two FMD dataset partitions used are Confocal-BPAE-Raw
with 1,000 noisy-clean image pairs and Confocal-Zebrafish-Raw with 1,000 pairs. Moreover, each
subset was randomly partitioned into training, test and validation splits, corresponding to 80%, 10%,
and 10% of the data, respectively.

DIV2K is a publicly available benchmark dataset originally introduced for the NTIRE 2017 Challenge
on Single Image Super-Resolution. It is specifically designed for SR tasks and comprises a collection
of HR images along with their corresponding low-resolution (LR) counterparts. Each HR image
in the dataset is paired with several downscaled versions, generated through different degradation
operations and scaling factors of 2, 3, and 4. Particularly, three subsets of DIV2K with unknown and
bicubic degradation operators are used, namely DIV2K-Unknown-×2, DIV2K-Unknown-×4, and
DIV2K-Bicubic-×4. Each subset includes 1,000 LR-HR image pairs and is divided into 800 images
used for training, 100 for validation, and 100 for testing. The validation split will be employed to
evaluate the performance of the models as the testing split is not available.

The SIDD dataset is specifically designed for image denoising tasks, particularly focusing on real-
world noisy images captured with smartphone cameras. The dataset consists of ≈ 30,000 noisy
images with their corresponding clean ground truth, from 10 scenes under different lighting conditions
and using five representative smartphone cameras, hence spanning a wide range of image types and
noise levels. Only images from the SIDD-Medium subset are used, comprising 320 noisy-clean
image pairs. Ultimately, SIDD-Medium was randomly partitioned into training, test and validation
splits, corresponding to 80%, 10%, and 10% of the data, respectively.

The FFHQ dataset consists of 70,000 HQ human face images, originally created as a benchmark
for generative adversarial networks (GANs). It contains faces with considerable variation in terms
of age, ethnicity, and image background. In this work, it is used for image inpainting, colorization,
and deblurring. For computational efficiency, images were downsampled to a quarter of the original
resolution using bicubic interpolation. Subsequently, corrupted-original image pairs were generated,
resulting in three task-specific subsets, namely FFHQ-Inpainting, FFHQ-Colorization, and FFHQ-
Deblurring. For image inpainting, pixels in the original images are randomly masked and set to
zero with probability pmask = 0.5. For colorization, grayscale inputs are obtained by converting the
original RGB images to luminance. For deblurring, synthetic blurred images are generated from
ground truth images by applying a Gaussian blur with kernel size 15 × 15 and standard deviation
σ = 3.0. Each subset was randomly partitioned into training, validation, and test splits corresponding
to 80%, 10%, and 10% of the data, respectively.

C.2 NETWORK ARCHITECTURE

RDIM employs a U-Net-based architecture to predict x̂0 at each iteration of the reverse process.
As illustrated in Figure 5, the network is composed of encoder, bottleneck, and decoder blocks,
with skip connections linking encoder and decoder blocks at matching spatial resolutions. For
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SR tasks, an upsample block transforms y0 to match the dimensionality (number of channels and
resolution) expected by the network. For other tasks, this layer simplifies to a projection layer. At each
iteration, the network is conditioned on a timestep embedding, which is computed with sinusoidal
positional encoding and transformed through a small multilayer perceptron (MLP) consisting of a
fully connected layer, a Swish activation, and a second fully connected layer. This embedding encodes
the current diffusion step, providing information about the position within the reverse process.
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Figure 5: U-Net-based network. In the convolutional layers, the parameters k, st, and pd represent
the kernel size, stride, and padding, respectively. Additionally, (∗/s) denotes (W/s,H/s), where s
is a scale factor (s > 1 for SR tasks and s = 1 otherwise).

Figure 6 shows the core blocks of the network. Each encoder block consists of multiple residual
blocks, each optionally followed by a self-attention block, and concludes with a downsample block
to reduce spatial resolution. Bottleneck blocks operate at the lowest spatial resolution and consist of
multiple residual blocks interleaved with self-attention blocks. Decoder blocks consist of multiple
residual blocks, each optionally followed by a self-attention block, and conclude with an upsample
block to increase spatial resolution. Notably, all residual blocks incorporate the timestep embedding.
Self-attention blocks are included only at the two lowest spatial resolution levels of the encoder and
decoder blocks due to computational constraints at higher resolutions.
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Figure 6: Core blocks of the U-Net-based network. (a) Encoder Block, (b) Decoder Block, and (c)
Bottleneck Block.

The building blocks of the network are illustrated in Figure 7. Each residual block applies two
convolutional layers with group normalization and Swish activation. They also contain a projection
layer for the timestep embedding, composed of a Swish activation followed by a fully connected layer.
Moreover, if the number of input channels (In) does not match the number of output channels (Out),
an additional convolutional layer is included in the skip connection to project the input to the expected
number of channels (Out), ensuring that the element-wise addition is well-defined. Self-attention
blocks model long-range dependencies and incorporate group normalization both before and after
the attention mechanism, operating over flattened spatial dimensions. Upsample and downsample
blocks perform spatial resizing. Upsample blocks first perform bilinear interpolation (trilinear in case
of 3D settings) to increase spatial resolution, followed by a convolutional layer, while downsample
blocks perform convolution with stride greater than 1 (st > 1) to reduce spatial resolution. In the
current implementation, activations are omitted, although the generalized block design can optionally
include them.
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Figure 7: Building blocks. (a) Residual Block, (b) Self-Attention Block, (c) Upsample Block, and (d)
Downsample Block.

C.3 IMPLEMENTATION DETAILS

RDIM is implemented in PyTorch 2.5.1 (Paszke et al., 2019) and trained using the Adam optimizer
(Kingma & Ba, 2014) with β1 = 0.9 and β2 = 0.999. The learning rate was initialized at 1.0× 10−4

and decayed following a cosine annealing schedule with minimum value ηmin = 1.0× 10−9. Ad-
ditionally, RDIM-PQ was trained using a combination of mean squared error (MSE) and SSIM
losses, with the total loss defined as L = LMSE + αLSSIM, where α = 5.0 × 10−2. All ex-
periments were conducted with a batch size of 64 and an effective patch resolution of 64 × 64
(except for DIV2K-Bicubic-×4, where a larger resolution of 128 × 128 was used). For SR,
this corresponds to LR patch sizes of 32 × 32 and 16 × 16 for ×2 and ×4 scale factors, re-
spectively (scaled proportionally for DIV2K-Bicubic-×4). The implementation is available at
https://anonymous.4open.science/r/RDIM/.

DDPM, DDIM, ResShift, and RDIM were trained with the same number of diffusion timesteps
(T = 50 for FFHQ and T = 100 for experiments on FMD, SIDD, and DIV2K) and network
architecture with 128 base channels (detailed in Appendix C.2). The only difference lies in the
diffusion framework employed. ResShift is a specific case of RDIM, thus a single network was
trained for both. For DDPM, following SR3 (Saharia et al., 2022b), the model learns to approximate
a reverse process, starting from pure Gaussian noise and iteratively denoising xt toward the HQ
image, x0, by predicting noise at each step, while conditioned on the LQ input, y0. DDIM employed
the network trained in the DDPM framework. Training was conducted for 4,000,000 iterations on
FMD-Confocal datasets and DIV2K-Unknown subsets, 280,000 iterations on the DIV2K-Bicubic-×4
subset, 640,000 iterations on SIDD, and 4,375,000 iterations on FFHQ. For SR tasks in RDIM and
ResShift, the LR input, y0, is upsampled to the target HR resolution using bilinear interpolation,
ensuring compatibility with the resolution employed in the diffusion framework (i.e., the size of
x0,x1, . . . ,xT ).

All other techniques used in the comparative analysis of Section 3 strictly followed the reference
papers and the official source codes. BM3D was applied with noise standard deviations of 10 for
FMD-Confocal-BPAE-Raw, 30 for Confocal-Zebrafish-Raw, and 50 for SIDD-Medium. DnCNN
was trained for 2,500,000 iterations on FMD-Confocal and SIDD datasets. ESRGAN was trained for
a total of 1,400,000 iterations, with 1,000,000 iterations used to train a PSNR-oriented model that
serves as initialization for the adversarial model, which was optimized for the remaining 400,000
iterations. Ultimately, GOUB and UniDB were trained for 900,000 iterations on DIV2K-Bicubic-×4,
while CTMSR was trained for 500,000 iterations.

C.4 UNIFORM SAMPLING TIMESTEP SCHEDULE

At inference, RDIM intends to reconstruct the original data, x0, starting from the degraded final
latent variable, xT . Unlike DDPMs and ResShift, where the sampling process requires iterating over
all diffusion timesteps, T , the RDIM reverse process can be simulated with fewer timesteps. This
results from the formulation of the RDIM reverse transition, which allows skipping intermediate
timesteps during sampling (see Section 2.5). Accordingly, this flexibility motivates the selection of a
subset, Υ, of S < T sampling timesteps to traverse the reverse trajectory.

A simple yet effective approach is to adopt a linear sampling schedule, where the selected timesteps
are uniformly spaced. Geometric schedules with denser allocation toward earlier or later stages of the
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reverse process were empirically evaluated, but they underperformed against a uniform alternative or
yielded marginal improvements. As a result, the following uniform scheduler is devised:

Υ =

{
τk =

⌊
k

S
· T
⌋ ∣∣∣∣ k ∈ {0, 1, . . . , S}

}
, (58)

where, during sampling, Υ is iterated from τS = T to τ1, resulting in the order of sampling points
τS → τS−1 → · · · → τ1. Reverse transitions occur exclusively at these selected timesteps, from each
τt to τt−1, with all intermediate timesteps being skipped. The exception is the target timestep τ0 = 0,
which marks the end of the reverse trajectory and does not produce a further transition. Moreover, all
adjacent sampling timestep pairs, (τk−1, τk), satisfy the following condition:

(τk−1, τk) ∈
{
(t′, t) ∈ N2

0 | t′ + 1 ≤ t ≤ T
}
. (59)

In essence, only the latent variables associated with these timesteps are sampled, enabling a more
efficient inference process. Figure 8 illustrates the sampling points (where reverse transitions occur)
along the reverse trajectory, contextualized with the corresponding values of the β-schedule.

Sampling Points

Figure 8: Residual β-schedule (p = 5.0) overlaid with red markers indicating the βt value at each
sampling point. The schedule adopted selects timesteps uniformly spaced. In this illustration, the
forward process involves T = 100 timesteps and the number of sampling steps, where reverse
transitions occur, is S = 10.

C.5 IMPACT OF β-SCHEDULE PARAMETER p

Experiments were conducted to determine an appropriate value for the β-schedule parameter p
(see Section 2.6). In these experiments, RDIM employs T = 10 diffusion timesteps and a forward
variance hyperparameter γ = 9.0. During inference, the reverse variance hyperparameter is set to
η = 1.0 and multiple reverse trajectory lengths were evaluated. All other implementation details
follow those described in Appendix C.3.

Table 3: Impact of parameter p, which controls the steepness of the curve in the β-schedule. All
RDIM configurations were trained using a forward process with T = 10 timesteps and variance
hyperparameter γ = 9.0. During inference, the reverse process variance hyperparameter is fixed to
η = 1.0. Orange color rows highlight ResShift scenarios, corresponding to particular cases where
RDIM reduces to ResShift under the conditions η = 1.0 and S = T .

p S
FMD-Confocal-BPAE-Raw

PSNR↑ SSIM↑ LPIPS↓

1.0

1 40.0836 0.9678 0.0205

5 40.0772 0.9678 0.0205

10 40.0565 0.9677 0.0205

5.0

1 40.1100 0.9681 0.0202

5 40.0436 0.9679 0.0202

10 39.9524 0.9674 0.0202

15.0

1 39.4014 0.9639 0.0238

5 39.1177 0.9624 0.0236

10 38.8951 0.9609 0.0236
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Table 3 presents the results for p = 1, p = 5, and p = 15. It follows that on denoising images from
the FMD-Confocal-BPAE-Raw dataset, RDIM with T = 10 and γ = 9.0 achieves the best overall
performance when p = 5.0. Moreover, irrespective of the steepness of the β-schedule, skipping
timesteps and using fewer reverse timesteps (S < T ) consistently yields superior results in terms of
PSNR and SSIM compared to iterating through all diffusion steps (S = T ). Particularly, Figure 2 in
Section 2.6 illustrates the β-schedule curves and the effect on the diffusion process corresponding to
these parameter values.

C.6 IMPACT OF VARIANCE PARAMETER γ

The diffusion process variance is controlled with a constant hyperparameter γ ∈ [0,∞), which
allows interpolation between a deterministic (γ = 0 ⇒ Gaussian collapses into a δ-distribution)
and a stochastic (γ > 0) forward process. Figure 9 illustrates the impact of γ on the forward process.

Forward Process

Figure 9: Impact of γ on the diffusion process with β-schedule parameter fixed to p = 5.0.

C.7 COMPARATIVE ANALYSIS OF MULTIPLE RDIM CONFIGURATIONS IN IMAGE DENOISING

To identify the best RDIM configuration, several setups were compared on denoising of BPAE
confocal images from the benchmark dataset FMD. The experiments explore the impact of the
diffusion chain length (T ), the number of sampling timesteps (S), and the variance controlled by
the constant hyperparameters γ and η. Setups with T = 100 followed the implementation details
described in Appendix C.3. For configurations with a different number of diffusion timesteps, the
number of iterations (and consequently the training time) was adjusted linearly in proportion to
the number of diffusion steps, T . This ensures that each timestep undergoes a similar number of
weight updates across all configurations, thereby preventing imbalanced training between timesteps in
configurations with different chain lengths. All other implementation details follow those described
in Appendix C.3.

Table 4 summarizes the results. The RDIM configuration with γ = 3.0, T = 100, and S = 10
achieves the best performance in terms of PSNR and SSIM. Overall, the results suggest that increasing
the number of diffusion timesteps improves denoising performance. Meanwhile, reducing the number
of sampling timesteps (S < T ) often yields better results. In contrast, learned perceptual image patch
similarity (LPIPS) scores show that fewer sampling timesteps lead to worse perceptual quality. This
highlights a trade-off between content fidelity (measured by PSNR and SSIM) and perceptual realism
(measured by LPIPS). Iterative refinement enhances fine-grained details and promotes the recovery
of natural textures. Logically, more sampling timesteps allow greater refinement, producing highly
realistic outputs. However, results may diverge slightly from the ground truth in terms of pixel-wise
similarity, resulting in lower PSNR and SSIM.

Moreover, results further indicate that controlled stochasticity in the forward process is beneficial.
Setting γ = 0.0 leads to poor results, indicating that some variance is necessary. Conversely, γ = 3.0
and γ = 9.0 achieve significantly superior performance. Particularly, γ = 9.0 outperforms γ = 3.0
for configurations with few diffusion timesteps, but its relative performance gains diminish as T
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Table 4: Denoising performance comparison of several RDIM configurations on BPAE confocal
images from the benchmark dataset FMD. It exhibits the impact of the constant hyperparameter γ
that controls the variance in the forward process and the impact of the number of diffusion timesteps
during training (T ) and inference (S). The constant hyperparameter that controls the variance in the
reverse process is fixed to η = 1.0. Orange color rows highlight ResShift scenarios, corresponding to
cases where RDIM reduces to ResShift (η = 1.0 and S = T ).

T S

FMD-Confocal-BPAE-Raw

γ = 0.0 γ = 3.0 γ = 9.0

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

10
1 38.3703 0.9575 0.0296 40.0998 0.9686 0.0196 40.1100 0.9681 0.0202

10 38.3487 0.9572 0.0299 39.3632 0.9644 0.0187 39.9524 0.9674 0.0202

50

1 38.4181 0.9578 0.0293 42.5354 0.9803 0.0093 43.1161 0.9821 0.0079

10 38.4162 0.9578 0.0295 42.4566 0.9802 0.0079 43.2029 0.9824 0.0077

50 38.3198 0.9564 0.0299 42.0566 0.9785 0.0071 43.1970 0.9824 0.0074

100

1 38.3758 0.9575 0.0295 43.9872 0.9851 0.0056 43.3040 0.9828 0.0075

10 38.3752 0.9575 0.0295 44.1468 0.9855 0.0047 43.3743 0.9830 0.0073

100 38.1775 0.9548 0.0298 43.5990 0.9837 0.0042 43.2484 0.9826 0.0068

increases, whereas γ = 3.0 continues to improve with longer diffusion chains, ultimately surpassing
γ = 9.0 for larger T . These observations underline the importance of carefully balancing variance.

Figure 10 showcases PSNR, SSIM, and LPIPS scores for different numbers of sampling timesteps,
using the configuration with T = 100 and γ = 3.0, which obtained the best results in denoising
BPAE confocal images from the FMD dataset. The number of sampling timesteps evaluated includes
a single-step prediction and then ranges from 10 to 100 in increments of 10. It follows that PSNR
and SSIM performances peak around S = 10, while LPIPS achieves the best scores between S = 90
and S = 100, showing that more sampling timesteps result in higher perceptual quality but reduced
reconstruction fidelity.

PS
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Figure 10: PSNR, SSIM, and LPIPS performance as a function of S (number of sampling timesteps)
on denoising of BPAE confocal images from the FMD dataset. RDIM is trained with T = 100 and
γ = 3.0. The constant hyperparameter that controls the variance in the reverse process is fixed to
η = 1.0. The number of sampling timesteps evaluated includes a single-step prediction and then
ranges from 10 to 100 in increments of 10.

Table 5 demonstrates the effect of varying the constant hyperparameter η, which controls the variance
in the reverse process. Looking at Table 5, the parameter η manifests marginal impact on denoising
of BPAE confocal images from the FMD dataset. Additionally, when γ = 0, the parameter η does not
affect performance, as η is absent in the reparameterized form of pθ(xt−1|xt,y0)γ=0 (see Equations
(11) and (12)).
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Table 5: Impact of the constant hyperparameter η, which controls the variance in the reverse process,
on denoising BPAE confocal images from the benchmark dataset FMD.

T S η

FMD-Confocal-BPAE-Raw

γ = 0.0 γ = 3.0 γ = 9.0

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

100 10

0.0 38.3752 0.9575 0.0295 44.1429 0.9855 0.0047 43.3732 0.9830 0.0073

0.5 38.3752 0.9575 0.0295 44.1440 0.9855 0.0047 43.3738 0.9830 0.0073

1.0 38.3752 0.9575 0.0295 44.1468 0.9855 0.0047 43.3743 0.9830 0.0073

C.8 COMPARING THE PERCEPTION-DISTORTION TRADE-OFF AGAINST RECENT WORK

To provide a more complete assessment of reconstruction quality, we follow the framework established
in Blau & Michaeli (2018). Traditional distortion metrics such as PSNR strongly penalize any
deviation from the exact ground truth, often driving models toward overly smooth or conservative
solutions. In contrast, perceptual metrics such as LPIPS capture human-aligned similarity in deep
feature space and reward reconstructions that preserve realistic texture and structure, even at the
cost of introducing plausible high-frequency hallucinations. While such hallucinated details can be
undesirable in certain reconstruction domains (e.g., in medical imaging), they offer a useful lens
for quantifying perceptual fidelity. Since different diffusion-based frameworks are optimized with
varying objectives, plotting PSNR against LPIPS provides a principled way to visualize and measure
their position along the perception–distortion trade-off.
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Figure 11: Comparison of the perception-distortion trade-off between the proposed RDIM and the
state-of-the-art on the DIV2K dataset for 4× SR.

Figure 11 compares the proposed method against existing techniques. For RDIM and UniDB++, we
exploit the methods native fast-sampling capabilities to extract multiple operating points along the
perception–distortion curve. The resulting comparison shows that the proposed RDIM achieves a
substantially improved perception–distortion profile against all other methods. In particular, when
comparing with the most recent UniDB++ framework, which relies on a diffusion bridge-based
on Doob’s h-transform (Pan et al., 2025), RDIM delivers significant PSNR gains for similar LPIPS
values.

Moreover, CTMSR achieves a competitive LPIPS score as it explicitly optimizes this perceptual
metric, effectively trading distortion for improved visual quality. Naturally, this comes at the expense
of reduced PSNR. In contrast, RDIM-PQ-1 attains even lower perceptual scores while simultaneously
yielding substantially lower distortion. This property is particularly advantageous for applications
requiring high fidelity to the original signal, such as medical imaging, scientific microscopy, satellite
and aerial sensing, and downstream vision tasks where hallucinated details could compromise
reliability.
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C.9 QUANTITATIVE RESULTS IN ADDITIONAL IMAGE RESTORATION TASKS

In addition to the qualitative examples in Figure 4, quantitative results for inpainting, colorization,
and deblurring are reported in Table 6. Across all three tasks, RDIM maintains the same trends
observed in denoising and SR. RDIM-1 consistently achieves the highest PSNR and SSIM, while
RDIM-10 provides competitive performance with slightly better perceptual quality (LPIPS). RDIM
surpasses ResShift in every metric except a few LPIPS cases, indicating that RDIM produces sharper
and more faithful reconstructions even in challenging restoration settings.

Table 6: Performance on the FFHQ dataset for image inpainting, colorization, and deblurring.

Method
FFHQ-Inpainting FFHQ-Colorization FFHQ-Deblurring

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Corrupted 9.034 0.136 1.165 20.806† 0.926† 0.223† 24.691 0.686 0.486
ResShift 31.721 0.922 0.022 25.320 0.948 0.103 28.331 0.812 0.089

RDIM-1 33.514 0.941 0.029 25.727 0.950 0.094 29.995 0.847 0.170
RDIM-10 32.330 0.931 0.025 25.565 0.949 0.099 28.870 0.826 0.111
† To compute colorization scores on corrupted images, the existing channel is replicated.

Notably, these experiments use a forward diffusion process with T = 50 steps, which is half the
length employed in the denoising and SR experiments. As a result, performances reported in Table 6
still have margin for improvement when adopting longer diffusion chain lengths (see Appendix C.7).

C.10 PERFORMANCE WHEN THE FORWARD MODEL IS MISMATCHED

To evaluate model robustness when the forward model is mismatched (i.e., when the testing data
contain unseen degradations), signal-dependent Poisson noise is simulated and applied to the LR
images of the DIV2K-Bicubic-×4 validation set. A fixed peak photon count of λpeak = 1.0× 103 is
used. This corresponds to a moderate imaging scenario (e.g., indoor lighting or mid-ISO conditions).
Notably, the models were trained on the standard DIV2K-Bicubic-×4 dataset without incorporating
Poisson noise.

Table 7: Evaluation on Poisson-corrupted DIV2K-Bicubic-×4 images after training on the original
dataset without adding Poisson noise. Values in parentheses indicate the performance drop relative
to the evaluation on the original noise-free DIV2K-Bicubic-×4 dataset (see Table 2). Red color
indicates the worst performance drop overall and Green color the best.

Method
Poisson-corrupted DIV2K-Bicubic-×4

PSNR↑ SSIM↑ LPIPS↓

ResShift 23.610 (-3.845) 0.521 (-0.259) 0.428 (+0.275)
GOUB-SDE 20.165 (-6.725) 0.335 (-0.413) 0.664 (+0.444)
UniDB-SDE 19.284 (-6.176) 0.314 (-0.372) 0.697 (+0.518)
CTMSR-1 22.987 (-4.100) 0.466 (-0.293) 0.495 (+0.365)

RDIM-1 26.260 (-2.920) 0.673 (-0.151) 0.519 (+0.262)
RDIM-10 24.363 (-3.600) 0.564 (-0.231) 0.415 (+0.237)

As expected, performance decreases for all methods when evaluated on unseen Poisson-corrupted
images, reflecting the sensitivity of supervised reconstruction to mismatched forward degradations.
Particularly, GOUB and UniDB suffer the largest drops in PSNR, SSIM, and LPIPS. This can
be attributed to their bridge formulation, which relies on fixed endpoint distributions and tightly
couples the reconstruction process to the forward degradation operator. When this endpoint shifts
due to unseen Poisson noise, the learned bridge becomes misaligned, causing the reverse dynamics to
deviate from the correct posterior and leading to substantially larger reconstruction errors. Meanwhile,
CTMSR-1 is comparatively less affected, but its LPIPS score still deteriorates substantially, which
is particularly striking given that it directly optimizes for perceptual quality. This underscores the
difficulty of maintaining perceptual fidelity under unseen Poisson noise.

In contrast, RDIM demonstrates superior robustness with RDIM-1 exhibiting the smallest drop in
PSNR (−2.920 dB) and SSIM (−0.151). Moreover, RDIM-10 obtains the least increase in LPIPS
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(+0.237), followed by RDIM-1 comparatively modest increase (+0.262). Unlike bridge-based
methods with fixed endpoint constraints, RDIM does not rely on a strictly specified degradation
endpoint, and its controllable variance forward process allows the last latent variable in the forward
process, xT , to remain near the corrupted observation, y0 (i.e., the LQ image), without being tied to
it. This flexibility helps the model remain consistent even when the degradation shifts. In addition,
the few-step reconstruction enabled by the implicit sampling strategy reduces error accumulation,
which is particularly beneficial under forward model mismatch. Overall, these results indicate that
RDIM not only achieves state-of-the-art performance under matched conditions but also retains
faithful reconstructions under moderate deviations from the training degradation model, highlighting
its practical robustness for real-world image restoration scenarios.
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C.11 ADDITIONAL QUALITATIVE RESULTS

SI
D

D
SI

D
D

(a) Reference (b) Noisy (c) DnCNN (d) DDPM (e) ResShift (g) RDIM-10(f) RDIM-1 (h) Ground Truth

Figure 12: Qualitative denoising analysis on cropped regions from the SIDD dataset. Since SIDD
contains noisy images captured under challenging lighting conditions, brightness-adjusted crops of
the marked regions are shown in the bottom row for enhanced visualization.

SR
SR

(a) Reference (b) LR (Bicubic) (c) ESRGAN (d) DDPM (e) ResShift (g) RDIM-10(f) RDIM-1 (h) Ground Truth

Figure 13: SR qualitative comparison on cropped regions from the DIV2K subset with unknown
degradation.

(e) UniDB (f) CTMSR

(b) LR (Bicubic) (c) ResShiftSR

(a) Reference (g) RDIM-PQ-1

(d) GOUB

(e) UniDB (f) CTMSR

(b) LR (Bicubic) (c) ResShiftSR

(a) Reference (g) RDIM-PQ-1

(d) GOUB

(e) UniDB (f) CTMSR

(b) LR (Bicubic) (c) ResShiftSR

(a) Reference (g) RDIM-PQ-1

(d) GOUB

(e) UniDB (f) CTMSR

(b) LR (Bicubic) (c) ResShiftSR

(a) Reference (g) RDIM-PQ-1

(d) GOUB

Figure 14: SR qualitative comparison on cropped regions from the DIV2K subset with bicubic
downsampled images.
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(a) Original (b) LR (Bicubic) (c) GOUB (d) UniDB (e) RDIM-PQ-1

Figure 15: Qualitative comparison of RDIM-PQ-1 on ×4 SR. Cropped regions from the DIV2K
subset, with bicubic downsampled images, suggest RDIM achieves greater structural and texture
fidelity than bridge-based models.
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Figure 16: Denoising results of RDIM-10 on images from the FMD and SIDD datasets. For improved
visualization, only cropped regions are shown. RDIM is trained with T = 100 and γ = 3.0. Inference
is conducted with S = 10 and η = 1.0.
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(a) Original (b) x2 SRSR (c) x2 SRSR

Figure 17: ×2 and ×4 SR results of RDIM-10 on images from the DIV2K dataset under unknown
degradations. RDIM is trained with T = 100 and γ = 3.0. Inference is conducted with S = 10 and
η = 1.0. In (b) and (c), the left side represents the input image and the right side the output.
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(a) Original (b) Inpainting (c) Colorization (d) Deblurring

Figure 18: Image inpainting, colorization, and deblurring results of RDIM-10 on images from the
FFHQ dataset. For inpainting, pixels in the original images are randomly masked and set to zero with
probability pmask = 0.5. For colorization, grayscale inputs are obtained by converting the original
RGB images to luminance. For deblurring, synthetic blurred images are generated from ground truth
images by applying a Gaussian blur with kernel size 15× 15 and standard deviation σ = 3.0. RDIM
is trained with T = 50 and γ = 3.0. Inference is conducted with S = 10 and η = 1.0. In (b), (c) and
(d), the left side represents the input image and the right side the output.
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