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ABSTRACT

Diffusion models achieve state-of-the-art results across multiple tasks. However,
in inverse problems, standard initialization from pure Gaussian noise misaligns
the generative process with real-world degradations. More recent methods such as
diffusion bridges impose strict endpoint constraints and often require long reverse
processes that are prone to hallucinations. Alternative consistency models provide
noise-invariant, one-step mappings but lack inherent variance modeling and can de-
grade under severe corruption. Hence, residual diffusion implicit models (RDIMs)
are proposed, constituting a generalized framework that explicitly models the resid-
uals between high-quality (HQ) and low-quality (LQ) images, aligning the forward
process with the actual degradation. A non-Markovian implicit reverse sampler
is derived, which can skip intermediate timesteps, enabling accurate few-step or
even single-step reconstruction, while mitigating the hallucinations inherent to long
diffusion chains. RDIM also introduces a controllable variance mechanism that
interpolates between deterministic and stochastic sampling, balancing fidelity and
diversity. Furthermore, it enables the straightforward use of perceptual losses, when
needed. Experiments on denoising and super-resolution benchmarks demonstrate
that RDIMs consistently outperforms the state of the art, including bridge and
consistency models, in terms of PSNR, SSIM, and LPIPS, reducing halucinations
while requiring only a few sampling steps (often just one). The results position
RDIMs as an efficient solution for a broad range of image restoration tasks.

1 INTRODUCTION

Image reconstruction is a fundamental problem in computer vision and signal processing, aiming
to recover high-quality (HQ) images from corrupted observations. Tasks such as image denoising
and super-resolution (SR) are crucial for numerous real-world applications, including medical and
biological imaging, satellite imagery, and consumer photo enhancement (Sagheer & Georgel 2020;
Wang et al.| 2022} Delbracio et al., 2021}).

Denoising diffusion probabilistic models (DDPMs) (Ho et al., [2020) have emerged as a powerful
class of models for image synthesis and have been successfully adapted for image reconstruction.
Their probabilistic formulation and iterative refinement enable them to handle challenging tasks
by progressively improving predictions through small corrective updates (Saharia et al., [2022b).
Moreover, their stochasticity enables the exploration of multiple plausible paths, promoting output
diversity and often leading to better solutions (Lugmayr et al.| 2022} [Whang et al.| [2022). These
properties make diffusion models well-suited to deal with severe noise and information loss (Chung
et al., [2023).

However, these strengths also introduce practical challenges. Although stochasticity is beneficial
for capturing diversity and avoiding poor generalization (Lugmayr et al., |2022; |Whang et al., 2022;
Dhariwal & Nichol, 2021), excessive and uncontrolled variability can hinder convergence in inverse
problems, destabilizing the reconstruction process and leading to inconsistent outputs. Therefore, bal-
ancing stochasticity is crucial (Chung et al., [2022). More critically, the standard DDPM formulation
initializes the reverse process from pure noise, which is misaligned with reconstruction tasks where a
degraded input already provides valuable information (Chung et al.| 2022; Yue et al.,|2023} Wu et al.|
2024). Additionally, the recursive formulation of diffusion models leads to an inefficient reverse
process requiring to traverse all diffusion timesteps, often hundreds (Shih et al., 2023} [Liu et al.,
2024])), making them computationally expensive and impractical in latency-sensitive settings. Notably,
techniques based on denoising diffusion bridge models (DDBMs) (Zhou et al., 2024) alleviate the
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Figure 1: Overview of RDIM, a diffusion framework tailored for inverse problems, such as image
reconstruction. The reverse process can accurately reconstruct back the data in S < T steps.

noise—data mismatch by explicitly conditioning on degradation endpoints, but they also typically re-
quire iterating through all timesteps. While recent works tried to address this issue (Pan et al., 2025),
we aim to further improve the reconstruction quality using a minimal number of diffusion steps.

To tackle these challenges, we revisit ResShift [2023) and introduce a principled theoretical
generalization, which we refer to as residual diffusion implicit model (RDIM). Our framework can
be interpreted as a bridge-like approach as it constructs a process connecting a starting-point (low-
quality (LQ) image) to an ending-point (HQ image) while preserving sample-level correspondences
between the two domains, an essential property for SR and denoising tasks. A key feature of RDIM
is its ability to introduce controlled stochasticity into the transportation between the two domains
by relaxing the terminal constraint. This can be achieved by controllable variance mechanism that
interpolates between deterministic and stochastic reconstructions. This provides greater modeling
flexibility compared to the fixed terminal states typically imposed in diffusion bridge methods,
allowing to obtain state-of-the-art results in SR and denoising applications. Moreover, an implicit
sampling mechanism in the style of denoising diffusion implicit models (DDIMs)
is introduced to allow skipping intermediate steps and improving the efficiency of the reconstruction
process through few-step or even single-step HQ reconstructions. In summary, the main contributions
of this paper are:

* A novel diffusion framework for inverse problems that generalizes ResShift, offering a
bridge-like alignment, and provides an implicit formulation with efficient sampling, enabling
reconstructions in a few or even on a single step.

* A controllable variance mechanism that interpolates between deterministic and stochastic
reconstructions, balancing fidelity and diversity depending on degradation severity.

» Evidence that reducing the number of reverse steps accelerates inference and yields more
faithful reconstructions by limiting hallucinations that arise in long diffusion chains.

* State-of-the-art results on denoising and SR benchmarks, showing that RDIMs outperforms
existing methods while reducing the number of inference steps by up to 100x.

2 METHODOLOGY

RDIM is a diffusion framework tailored for inverse problems (herein focused on image reconstruction)
where the forward process gradually degrades the original data into an informed corrupted version.
The reverse process is efficient, allowing for a minimal number of steps (see Figure|T).

2.1 PROBLEM DEFINITION

Inverse problems are concerned with the recovery of a signal, x¢ € X, from a corrupted observation,
Yo € Y. Particularly, the forward model that degrades the original signal can be expressed as:

Yo = F (x0), (D
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where F : X — ) is a known or unknown forward operator that often entails information loss (e.g.,
blurring, downsampling, masking, or noise). Accordingly, such problems are often ill-posed.

Meanwhile, deep learning (DL) techniques can be leveraged to learn a parametric reconstruction
model R : Y — X, with trainable parameters ©, that invert the forward model:

xo ~ R (Y0;0). @

Traditional diffusion models reconstruct the signal o through a parameterized Markov chain with
length T', which starts from pure noise and progressively denoises latent variables, a;, at each step
t € {1,2,...,T}. Hence, they first derive a diffusion process that transforms x¢ into pure noise.
Subsequently, they learn to reverse this process by training a parametric model, pg, which can recon-
struct o back from pure noise, 1 ~ N (0, I'), while conditioning on the corresponding degraded
observation, yo. However, this diffusion process is fundamentally misaligned with the degradation
model in Equation|[I] since it maps ¢ to pure noise rather than to the corrupted observation yo. In
contrast, the RDIM forward process is explicitly designed to align with the degradation mechanism
by progressively removing the residuals between the clean and corrupted signals while optionally
injecting a controllable amount of noise. This stochastic component introduces variability that
improves generalization, enabling the model to balance fidelity and diversity during reconstruction
and better capture the uncertainty inherent in inverse problems.

2.2 MARKOVIAN FORWARD PROCESS

Considering that g and yg denote the original data and its corrupted versiorﬂ respectively, the RDIM
forward process (degradation) intends to gradually remove fractions of the residual, A = x¢ — yo,
from xg over a series of timesteps ¢ € {1,2,...,T}. For that purpose, a forward process fixed to a
Markov chain is first defined, which converts the distribution of the original data, ¢(x), into the last
latent variable distribution. Following, the whole Markovian forward process is defined as:

T
q(1.7|T0, A) = Hq(mt|wt—1vA)a 3

t=1
where all latent variables @1, . .., 7 have the same dimensionality as the original data, o ~ ¢(xg).
The residual is removed from xg according to a fixed weighting schedule Ay, As, ..., Ar, which is

also used to parameterize the variance in each diffusion transition distribution, defined as a Gaussian.
Consequently, at each timestep ¢, the latent variable x, is expressed in terms of the latent variable at
the previous timestep, x;_1, and the residual, A, as follows:

Q(-’Et|wt—h A) = N(-’Et|$t—1 - )\tAa’Yz)\tI)» @

where v € [0, 00) is a constant hyperparameter introduced to control the strength of the variance,
thus allowing interpolation between a deterministic (when v = 0) and a stochastic (v > 0) forward
process. Moreover, each weight \;, used to control the amount of residual to be removed between each
diffusion step, is computed in terms of small non-negative constant hyperparameters 3g, 81, - .., 81
as Ay = [ — By—1 (see Section[2.6]for details on the 5-schedule).

Furthermore, to avoid a computationally expensive diffusion process, the cumulative forward transi-
tions, g(x¢|xo, A) = q(@:|yo), are expressed in closed form by relying on the reparameterization

trick (see Appendix [A.T):
q(xt|wo, A) = N(@e|wo — BiA, 72 BT). ®)

Although this forward process matches ResShift (Yue et al., 2023)), the corresponding recursive
formulation yields an inefficient reverse process that must iterate over many timesteps (particularly
for HQ inverse problems). Therefore, a DDIM-inspired non-Markovian forward process is derived,
which preserves the marginal in Eq. (3) while still allowing a Markovian reverse process.

!To match dimensionalities, o is upsampled for SR tasks and its channels are replicated for colorization.
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2.3 NON-MARKOVIAN FORWARD PROCESS

The forward process is implicitly constructed to ensure consistency with the marginal ¢(x¢|zo, A)
and the reverse process. As a result, each forward transition becomes additionally conditioned on
x rather than just on the immediate previous timestep, x+—1, and the residual, A. This introduces
explicit dependency on the initial data xg, decoupling the forward process from strict Markovian
constraints. Moreover, the forward process is expressed in terms of the forward transition posterior,
q(xi—1|Te, To, A), further reflecting the non-Markovian behavior and preservation of q(x¢|xo, A).
Therefore, although the RDIM forward process is still a distribution over trajectories that start at ¢
and end at @, it is defined as a joint distribution that is factored in revers

T
q(z1:7|T0, A) = g(TT|T0, A) H q(zi—1|Tt, T0, A). (6)

t=2

The non-Markovian nature of the forward process enables designing a reverse process that can
be deterministic and simulated with a reduced number of transitions due to the conditioning on
x¢. In addition, since the ResShift training objective only depends on the marginal distribution,
q(xt|xo, A), which is preserved, then RDIM optimization (see Section will lead to the same
training objective as ResShift. Consequently, already trained ResShift models can be leveraged for
RDIM sampling without requiring additional retraining.

2.4 REVERSE PROCESS

The reverse process (reconstruction) intends to revert the forward process, thus sampling back the
data, xo. This is achieved by starting from 7 ~ N (yo,v2I) and iteratively refining the latent
variables x; until x¢ is reached. Accordingly, the reverse process involves computing the forward
transition posterior g(a¢—1|x, o, A) (reverse transition), defined as a Gaussian distribution:

q(wt—1|$t7$0,A) :N(wt—lult»&?[)» @)

where fi; is the mean of the Gaussian distribution and 521 = 3, is the isotropic covariance matrix.
Particularly, the reverse transition is designed to preserve the marginal g(x¢|xo, A) (see Appendix

. Considering 5t2 matches the ResShift variance, \; = 72 B }; A¢, the mean, fi¢, is given as:

To — 14, ify=0,
— — Tp—x L . 8
pe xo — Bi—1A + /72 Bi—1 — 77 (ﬁ) , ify#0, ®

where, for v = 0, the reverse process essentially becomes a linear interpolation between the corrupted
and original data, which underscores that the RDIM forward process is aligned with a forward model
(degradation process) that converts ¢ into yg.

Furthermore, fixing 6,52 to the ResShift variance, )\, also results in f1; matching the mean of the
ResShift reverse transition (see Appendix [A.3). Hence, RDIM becomes ResShift for this specific
variance, revealing that ResShift is a particular case of RDIM. Subsequently, a constant hyperparame-
ter, 7 € [0, 1], can be introduced to interpolate between a deterministic (n=0) and a stochastic (>0)
reverse process when vy # 0, allowing control over the variability in the RDIM reverse trajectory:

- =[x —xo + B A 5 ~
fyjy20 = To — Bi—1 A + /2 Bio1 — 0\ (m:) s Oysto = ”Ae.  (9)
t

where, 77 = 1 makes the RDIM reverse process identical to ResShift. Meanwhile, setting v = 0
converts RDIM into a strictly deterministic model (y=0 = \;=0), avoiding sampling random noise.

However, during inference, g and A are unknown, thus sampling from the true reverse transition
distribution is not possible. Therefore, a learnable parametric model, pg(x+—1|xt, Yo), defined as a
Gaussian distribution, is introduced to approximate the true reverse transition g(x¢—1|®¢, o, A):

p@(wt—l|wt7y0) = N (wt—l‘IJJG (wt7y07t) 70-3 (wtuy(ht) I) ) (10)

*The forward transition, q(2¢|@¢_1, 2o, A), can be derived via Bayes’ rule.
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where pg (¢, Yo, t) is the mean of the Gaussian distribution and 03 (xt,yo,t) I = Xg (xt, Yo, 1)
is the isotropic covariance matrix. In particular, the variance of the true reverse transition, 6?, does
not have any learnable parameters because it is defined in terms of constant hyperparameters, which
are known. Therefore, the variance of pg(x1—1|®t, Yo) can be fixed to equal exactly the variance of
q(xs_1|Te, To, A):

o5 (x4, yo,t) = 52 (11)

Meanwhile, g (¢, Yo, t) approximates the mean of the true reverse transition, fi;. Considering that
xo and A are the only unknown terms and A can be estimated from x¢ and yg, then the model
solely needs to predict g (see Appendix [A.4). Accordingly, the mean pg (¢, Yo, t) is defined as:

&0 — Bi1A, if vy =0,

Te. Yo t) = 4 . = . A . 12
I'LG( t Yo, 1) &0 — Bi1A + ’Y2Bt—1772>\t<wta:)\/2i£tA)7 if v # 0, (12)

where &9 = fy(x¢, Yo, t) denotes the &g prediction from a neural network given @, Yo, and timestep

t. The neural network is parameterized by weights 6 and A =& —yo represents the A estimation.
Hence, the whole approximate reverse process is expressed by the following joint distribution:

T

po(@o:rlyo) = p(@rlyo) [ [ po(ai—1lae, yo). 13)
t=1

2.5 LONG-RANGE REVERSE TRANSITION

Particularly, the derived reverse transition structurally matches the reparameterized form of the
marginal g(@¢—1|xo, A) (see Appendix , which models the cumulative transitions from x¢ to
a1 in the forward process. Therefore, the reverse transition formulation aligns with the concept
of cumulative transitions, allowing the reverse process to efficiently sample any state at an arbitrary
timestep 7,1 € {0,1,...,T — 1} by skipping intermediate latent variables in the reverse trajectory.
Accordingly, the reverse process can be simulated with fewer timesteps, thereby accelerating sampling.
Using the reparameterization trick, -, _, ~ Pg (m.,.k_l |Zr, yo) can be sampled as follows:

_[me-i. A ify =0,
T T @0 - B A 20, — PR iPAz i A0,

where (7,—1,7:) € {(t',¢t) e N3 |t/ +1 <t < T}, z ~ N (0,1), and € is expressed by the follow-
ing relationship when ~ # 0 (see Equation (32) in Appendix [A.2):

(14)

¢— Tm — Lot A (15)

V2B,

Essentially, each iteration of the reverse process involves predicting the original data sample, xq. This
estimate is then used to compute the residual A and the noise component €, which together guide the
update to the next less-degraded state, ©-,_,. As the reverse process progresses, the model gradually
refines its prediction of ¢ at each step, leveraging the increasingly accurate intermediate states. This
iterative refinement culminates in an accurate prediction of xo. Moreover, the ability of the reverse
process to skip intermediate steps not only enables few-step generation but also allows one-step
predictions, thus demonstrating the efficiency and flexibility of the RDIM sampling procedure. Here,
the number of sampling timesteps along the reverse trajectory, S € {1,2,..., T}, is set arbitrarily.
For each case, a uniform schedule is used, as detailed in Appendix [Cj}

2.6 RESIDUAL B3-SCHEDULE
The residual S-schedule employed is defined by a circular curve (similar to the fourth quadrant
p-norm shape), ensuring a smooth and adjustable transition between g and xr:

t
T+ (p—-1)(T—-1t)

By = (16)
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Figure 2: Progression of weights 5; and \; across timesteps and impact of p on the diffusion process.

where p € (0, 00) is a parameter that allows controlling the steepness of the curve. As it increases
the 3-schedule exhibits a slower initial progression, followed by a rapid increase to larger and more
pronounced updates. This design allows for a gentle removal of the residual and injection of noise in
the early timesteps of the forward process, which become progressively more aggressive throughout
the diffusion trajectory. Figure 2]illustrates the impact of the parameter p on the diffusion process.

Furthermore, this choice for the S-schedule ensures that 5y = 0 and 87 = 1, such that the residual, A,
is fully removed from ¢ after exactly 7" timesteps. As a result, the last latent variable, 7, converges
to a noisy sample centered at the corrupted data, yo. Additionally, since Sy = 0, it follows that when

v # 0 the variance of any reverse transition distribution from x,, to o is 1 )\Tk = 122 /f e, =0.

Therefore, pg(xo|Tr,,Yo)- 20 degenerates into a J-distribution centered at &¢. Loglcally, under
these conditions, 77 does not have any impact on the last transition of the reverse process.

2.7 OPTIMIZATION

At each step of the sampling process, the neural network parameterized by weights 6 yields an
estimate of xo. During training, these parameters are learned to assure that the model marginal
po(Tol|yo) fits the true posterior distribution ¢(xg|yo) via:

T

d(olyo) ~ po(olyo) = [ perlye) [[po(islar.yo) devr. (17)
t=1

which ensures, during inference, that the data, o, can be sampled back accurately given yq. Ac-
cordingly, pg(x+—1|xs, yo) is required to closely approximate the true forward transition posterior,
q(x¢—1|xt, Lo, A). This is achieved by minimizing the Kullback-Leibler (KL) divergence between
both distributions, while accounting for all timesteps. In fact, this objective can be reduced for
simplicity to (see Appendix [A-4):

Esimple(e) = Ewo,A,t [on - :%0”2] . (18)
Notably, ResShift shares the same training objective as RDIM, further highlighting that ResShift is a

particular case of RDIM and that its trained models can be used for RDIM sampling without retraining.
The RDIM training and sampling procedures are described in Algorithms[T]and 2} respectively.

Algorithm 1 Training Algorithm 2 Sampling

1: repeat I: Y={rs=T,75-1,...,71,70 = 0}
2: Zo, Yo ~ q(To,Yyo) = q(x0)q(yo|To) 2: zr ~ N(yo,7*I)

3 A=2o— Yo 3 fork=25,5—1,...,1do

4: t~U,T) 4 o = fol

5: GNN(O,I) N 0 9m"'k7y077_k)

6: xt ~ q(xt|To, A) 5: A =g - Yo rois. A
7 2o = fo(xt,yo,t 6 if 0 then é = 2207 P ™
8 L= HJ;Q(—:EZ{)HQ) e V2B,

9: Take gradient descent step on VgL 7 Lry_y ~ Do (w‘rkz—l |Zr ?JO)
10: until convergence 8: end for

11: return fy 9: return xo
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3 EXPERIMENTS

RDIM is evaluated on image denoising and single image SR using the FMD (Zhang et al., 2019),
SIDD (Abdelhamed et al., 2018; 2019), and DIV2K (Agustsson & Timofte, 2017; Timofte et al.,
2017) datasets. Several RDIM variants with v = 3.0, n = 1.0, and p = 5.0 are considered, differing
only in the number of sampling timesteps and loss targets. RDIM-PQ stands for RDIM trained
with a perceptual quality (PQ) objective. RDIM-S and RDIM-PQ-S' denote sampling with .S steps.
Particularly, RDIM-1 and RDIM-PQ-1 correspond to single-step deterministic inferences (S = 1).
Their deterministic nature results from the final reverse transition degenerating into a §-distribution
when v # 0 and 3, = 0 (see Sections[2.5]and [2.6). Moreover, RDIM is compared against multiple
state-of-the-art methods, including ResShift with S =T = 100. Although ResShift is often employed
with S =T =10, there is a significant performance improvement when using longer diffusion chains.
This effect is evident in the experiments shown in Appendix [C.7] where ResShift improves peak signal-
to-noise ratio (PSNR) from 39.363 dB for 7'= 10 to 43.599 dB for T'= 100. Additional qualitative
results on image inpainting, colorization, and deblurring are provided on FFHQ (Karras et al., [2019).
Experimental details are in Appendix [C] including RDIM assessment when varying S (Figure [I0).

Image Denoising. RDIM is compared against BM3D (Dabov et al.| 2007), DnCNN (Zhang et al.,
2017), DDPM (Ho et al., 2020), DDIM (Song et al., 2021), and ResShift (Yue et al., 2023). For
fairness, all diffusion models use the same network architecture (see Appendix [C.2)) and diffusion
timesteps (7" = 100). Results are listed in Table @ On FMD-Confocal-BPAE-Raw, RDIM-10
achieves the best results in terms of PSNR and structural similarity index measure (SSIM), followed
by RDIM-1. On FMD-Confocal-Zebrafish-Raw, ResShift attains the best PSNR score, but is 10x
slower than RDIM-10, which obtains comparable PSNR performance and the best SSIM score. On
SIDD-Medium, RDIM-1 yields superior results. Diffusion models, which inherently capture richer
structures than DnCNN, have their gains diminished on SIDD-Medium due to the use of a small
64x64 patch size (which is kept the same across all experiments for consistency). Meanwhile,
DnCNN performs full-image processing at inference, giving it a slight unfair advantage. Figure (12}
Appendix [C.TT] presents a qualitative comparison.

Super-Resolution. A comparative analysis with x2 and x4 downsampling factors evaluates RDIM
against ESRGAN (Wang et al., [2018), DDPM, DDIM, and ResShift. As before, diffusion models
were trained under the same conditions, including architecture and diffusion timesteps (7" = 100).
Results are shown in Table [T} On both DIV2K-Unknown-x2 and DIV2K-Unknown- x4, RDIM-1
performs the best, followed by RDIM-10, highlighting that RDIM consistently surpasses ResShift
and DDPM. Figure[I3] in Appendix [C.T1|showcases qualitative results.

An additional analysis is conducted on x4 bicubic downsampled images from the DIV2K dataset,
comparing RDIM against DDRM (Kawar et al., 2022), ResShift, IR-SDE (Luo et al., 2023b), DDBM
(Zhou et al., 2024), GOUB (Yue et al., 2024), UniDB (Zhu et al., 2025), CTMSR (You et al., 2025),
MaRS (Li et al., 2025), DBIM (Zheng et al., 2024), and UniDB++ (Pan et al., 2025). Results are
presented in Table 2} RDIM-1 achieves the highest PSNR and SSIM among all methods, with
RDIM-PQ-1 following closely. This suggests that RDIM offers an advantage for applications where

Table 1: Comparative analysis of RDIM against relevant state-of-the-art techniques for (a) denoising
and (b) SR. Green color highlights the best score overall and Blue color the second best.

(a) Denoising on images from the FMD (BPAE and zebrafish  (b) X2 and x4 SR on images from the DIV2K
confocal fluorescence microscopy images) and SIDD datasets. ~ dataset under unknown degradations.

Denoising FMD-BPAE FMD-Zebrafish ~ SIDD-Medium SR DIV2K-x2 DIV2K-x4
Method v PSNRT SSIM{ PSNR{ SSIM{ PSNR{ SSIMt Method PSNRT SSIMT PSNRT SSIMt
Noisy - 31596 0812 26732 0.603 27797 0515 LR (Bicubic) -  25.112 0704 21742 0.574
BM3D -~ 35862 0933 35280 0918 35880 0.906 ESRGAN - 30017 0.857 24957 0.690
DnCNN - 37.609 0950 37.169 0941 39.838 0.957 DDPM 100 31949 0.893 26446 0.739
DDPM 100 41.775 0981 43214 0974 39329 0.945 DDIM-25 25 29.003  0.839  20.894  0.504
DDIM-25 25 35168 0953 39.060 0960 28.627 0.855 DDIM-50 50 31.150 0.879 24.949 0.687
DDIM-50 50 38.608 0.972 41211 0969 34.665 0912 ResShift 100 32368 0903 26627 0.750
ResShift 100 43.599 0984 45167 0976 39.663  0.949 RDIMLI | 33887 0924 28280 0.798
RDIM-1 1 43987 0985 44229 0976 40.335 0.962 RDIM-10 10 33019 0914 27266 0.770

RDIM-10 10  44.147 0986  45.027 0978 39979 0.958
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distortion fidelity is critical (e.g., medical imaging). Notably, RDIM-PQ-1 explicitly optimizes for
LPIPS and attains the lowest score on this metric while attaining high PSNR and SSIM. Overall, a
clear perception—distortion trade-off emerges, as further illustrated in Appendix [C.8] where RDIM
demonstrates a more favorable balance than state-of-the-art alternatives.

A qualitative comparison in Figure 3| further demonstrates that RDIM yields sharper and more faithful
reconstructions, particularly in areas rich in fine textures and structural detail. Other methods introduce
noticeable artifacts and deformations. More results are shown in Figures [T4]and [T3] (Appendix [C.TT).

i - i SR DIV2K-x4

(b) LR (Bicubic)  (c) ResShift (d) GOUB Method Sy PSNRT SSIM| LPIPS

Table 2: x4 SR on bicubic downsam-
pled images from the DIV2K dataset.

DDRM 100 24350 0592  0.364
ResShift 100 27.455 0.780  0.153
IR-SDE! 100 25900 0.657  0.231
DDBM! 100 24210 0.581  0.384
GOUB-SDE! 100 26.890 0.748  0.220
() RDIM-1 GOUB-ODE! 100 28.500 0.807  0.328

UniDB-SDE 100 25460 0.686  0.179
UniDB-ODE 100 28.640 0.807  0.323

URC R URC UniDB++50° 50 26610 0754  0.159

UniDB++-20* 20 27.380 0.777  0.179

UniDB++-5! 5 28400 0.805 0.235
RlN ‘R‘h \R h \R h MaRS-5¢ 27730 0783 0.286
DBIM-5* 28050 0795  0.260

5
5

(b) LR (Bicubic) (c) ResShift (d) GOUB CTMSR-1 1 27.087 0.759 0.130

RDIM-1 1 29180 0824 0257

P L[ C UR(YR( RDIM-5 528408 0.806  0.197

15 RDIM-10 0 27963 0795 0178

3 RDIM-20 20 27636 0786 0.166

, s‘ \R] h \Ri h \R‘ h RDIM-50 50 27427 0779  0.154

RDIM-PQ-1 1 29.004 0.817 0.114

(a) Reference (e) UniDB (f) CTMSR (g) RDIM-1
1 Retrieved from Zhu et al. (2025).
. — — ¢ Retrieved from.
Figure 3: Qualitative x4 SR results on DIV2K-Bicubic-x 4. Retrieved from{Pan et al.|{2025).

Additional Image Restoration Tasks. Further evaluation on image inpainting, colorization, and
deblurring tasks demonstrates the generalization capabilities of RDIM. Figure [ presents qualitative
results obtained with RDIM-10. Additional details and results are provided in Appendix [C|

(a) Original (b) Inpainting (c) Colorization (d) Deblurring

Figure 4: RDIM-10 results in image inpainting, colorization, and deblurring on the FFHQ dataset. In
(b), (c) and (d), the left side represents the input image and the right side the output.

Discussion of results. RDIM and ResShift consistently outperform DDPM, emphasizing that their
diffusion process is more closely aligned with these inverse problems. Moreover, RDIM demonstrates
performance comparable to ResShift, often surpassing it, while requiring significantly fewer sampling
timesteps. This stands in contrast with the DDIM behavior when applied to a pretrained DDPM.
DDIM incurs noticeable degradation when reducing the sampling count from S = 100 to S = 50, and
does not support reliable single-step inference. This suggests that the residual modeling dynamics are
intrinsically well aligned with implicit sampling, enabling acceleration factors (up to x 100) that are
not achievable by applying DDIM to DDPM. Moreover, since DDPM and ResShift require a reverse
process with the same number of timesteps as their forward diffusion process, reducing their diffusion
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steps to match the RDIM sampling time would result in a degradation in performance (Shih et al.,
[2023). This effect is evident in the experiments conducted in Appendix [C.7] where ResShift with a
reduced number of diffusion steps underperforms compared to its higher-timestep configurations.

Furthermore, FMD-Confocal-Zebrafish-Raw contains noisier images than FMD-Confocal-BPAE-
Raw. As shown in Table[Tal RDIM-1 outperforms ResShift on FMD-Confocal-BPAE-Raw, whereas
ResShift performs better on FMD-Confocal-Zebrafish-Raw. This suggests that in the presence of
stronger degradations a more stochastic approach is advantageous, as variability promotes output
diversity. Conversely, when degradations are mild, a more deterministic method ensures consistent
and accurate restoration. Therefore, balancing stochasticity is crucial to adapt the method effectively
to varying noise levels and degradation strengths. Notably, RDIM-10 achieves comparable results to
ResShift in FMD-Confocal-Zebrafish-Raw while requiring only 10 sampling steps instead of 100,
rendering inference 10 x faster. Further demonstrating its efficiency, RDIM accelerates sampling up
to 100x compared to ResShift and DDPM on FMD-Confocal-BPAE-Raw. Additionally, experiments
on SIDD highlight that RDIM effectively supports high-resolution (HR) image reconstruction even
when operating on relatively.small patches (e.g., 64 x 64) compared to the full image size, which here
reach resolutions of up to ~ 5300 x 3000 pixels. Naturally, increasing the patch size will i improve
performance and could enable restoration of images at even higher resolutions.

In SR under unknown degradations, standard diffusion models and ResShift, often exhibit a tendency
to hallucinate details that deviate from the ground truth, particularly when employing long diffusion
chains. As illustrated in Figure [I3] while iterative refinement encourages the generation of natural-
looking textures, it frequently trades off fidelity for perceptual quality, leading to reconstructions
that drift away from the original structure (see Appendix [C.7]for further evidence). Furthermore,
the deterministic RDIM-1 outperforms all methods, suggesting a more deterministic approach to
SR is beneficial, as too much stochasticity can introduce unwanted variability in the output and the
iterative refinement of long-chain diffusion can become detrimental. A similar trend is observed
on the DIV2K-Bicubic-x4 benchmark. As shown in Table 2l RDIM again achieves the highest
PSNR and SSIM scores while operating with far fewer sampling steps. It maintains sharper and more
faithful textures, as illustrated in Figure 3l These results confirm that the advantages of residual-based
implicit sampling carry over to classical SR settings.

4 RELATED WORK

Diffusion Models (DMs) (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2020)
generate images by iteratively denoising latent variables sampled from a Gaussian prior. For image-
to-image tasks, conditioning mechanisms such as classifier guidance (Dhariwal & Nichol, 2021)
or classifier-free guidance (Ho & Salimans) enable the generation of target images given source
observations (Saharia et al., 2022a; Sasaki et al.| 2021} [Zhao et al) 2022). However, because
DMs start from pure noise, they remain misaligned with inverse problems where the input already
contains meaningful structure. Hence, several diffusion-based reconstruction approaches adapt the
generative process to low-quality inputs. SR3 (Saharia et al., 2022b) and SRDiff (Li et al., 2022)
condition DDPMs on low-resolution inputs, while[Whang et al.|(2022)) use residual-based refinements
to improve deblurring. DDRM (Kawar et al.| 2022) addresses general linear inverse problems via
posterior sampling with a pre-trained DM, and ResShift (Yue et al.| 2023) leverages residual modeling
between high-resolution and low-resolution images. Despite their effectiveness, these methods still
require traversing all diffusion steps sequentially. RDIM generalizes residual modeling while enabling
DDIM-style long-range sampling and controllable stochasticity, significantly reducing the number of
steps needed for high-quality reconstruction.

Accelerating DM Sampling have become an attractive research area, usually focusing on reducing

the number of steps to a dozen or fewer. Within the body of work, training-based distillation

a proaches (Salimans & Ho)| : , : : |

, : , j| trajectories into few-step solvers,

Wh11e tralnlng-free methods leverage ordinary differential equations (ODEs), e.g. DDIM ‘Song et a!.l,
2021), DPM-Solver (Popov et al., 2022; Bao et al., 2022; Lu et al., 2025}; Zheng et al., 2023). These

methods enable fast sampling but remain primarily designed for unconditional synthesis and do not
explicitly align the forward dynamics with the degradation process. In contrast, RDIM targets paired
inverse problems by explicitly modeling residuals and allowing few-step implicit updates.




486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

I ; |
B



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Abdelrahman Abdelhamed, Stephen Lin, and Michael S Brown. A high-quality denoising dataset
for smartphone cameras. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pp. 1692-1700, 2018.

Abdelrahman Abdelhamed, Radu Timofte, and Michael S Brown. NTIRE 2019 challenge on real
image denoising: Methods and results. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2019.

Eirikur Agustsson and Radu Timofte. NTIRE 2017 challenge on single image super-resolution:
Dataset and study. In Proceedings of the IEEE conference on computer vision and pattern
recognition workshops (CVPRW), pp. 126135, 2017.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions, 2023. URL https://arxiv. org/abs/2303.08797, 3, 2023.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. In International Conference on Learning
Representations (ICLR), 2022.

J Berner, L Richter, and K Ullrich. An optimal control perspective on diffusion-based generative
modeling. preprint. arXiv, 2211, 2023.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 6228-6237, 2018.

Tianrong Chen, Guan-Horng Liu, and Evangelos A Theodorou. Likelihood training of Schrodinger
bridge using forward-backward SDEs theory. In International Conference on Learning Represen-
tations (ICLR), 2022.

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-Closer-Diffuse-Faster: Accelerating
conditional diffusion models for inverse problems through stochastic contraction. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 12413-12422,
2022.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. In International Conference on Learning
Representations (ICLR), 2023.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image denoising by
sparse 3-d transform-domain collaborative filtering. /IEEE Transactions on Image Processing, 16
(8):2080-2095, 2007.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrédinger
bridge with applications to score-based generative modeling. Advances in neural information
processing systems (NeurIPS), 34:17695-17709, 2021.

Mauricio Delbracio and Peyman Milanfar. Inversion by direct iteration: An alternative to denoising
diffusion for image restoration. Transactions on Machine Learning Research, 2023.

Mauricio Delbracio, Damien Kelly, Michael S Brown, and Peyman Milanfar. Mobile computational
photography: A tour. Annual review of vision science, 7(1):571-604, 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. Advances
in neural information processing systems (NeurlPS), 34:8780-8794, 2021.

Kien Do, Duc Kieu, Toan Nguyen, Dang Nguyen, Hung Le, Dung Nguyen, and Thin Nguyen.
Variational flow models: Flowing in your style. arXiv preprint arXiv:2402.02977, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zalan Fabian, Berk Tinaz, and Mahdi Soltanolkotabi. Diracdiffusion: Denoising and incremental
reconstruction with assured data-consistency. Proceedings of machine learning research, 235:

12754, 2024.

Eric Heitz, Laurent Belcour, and Thomas Chambon. Iterative a-(de) blending: A minimalist
deterministic diffusion model. In ACM SIGGRAPH 2023 Conference Proceedings, pp. 1-8, 2023.

Jeremy Heng, Valentin De Bortoli, Arnaud Doucet, and James Thornton. Simulating diffusion bridges
with score matching. Biometrika, 112(4), 2025.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems (NeurIPS), 33:6840-6851, 2020.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (CVPR), pp. 4401-4410, 2019.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. Advances in Neural Information Processing Systems (NeurIPS), 35:23593-23606, 2022.

Duc Kieu, Kien Do, Toan Nguyen, Dang Nguyen, and Thin Nguyen. Bidirectional diffusion bridge
models. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data
Mining V. 2, pp. 1139-1148, 2025.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. In International Conference on Learning Representations
(ICLR), 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ao Li, Wei Fang, Hongbo Zhao, Le Lu, Ge Yang, and Minfeng Xu. MaRS: A fast sampler for mean
reverting diffusion based on ODE and SDE solvers. In International Conference on Learning
Representations (ICLR), 2025.

Bo Li, Kaitao Xue, Bin Liu, and Yu-Kun Lai. BBDM: Image-to-image translation with brownian
bridge diffusion models. In IEEE/CVF conference on computer vision and pattern Recognition
(CVPR), pp. 1952-1961, 2023a.

Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun Feng, Zhihai Xu, Qi Li, and Yueting Chen.
SRDiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing, 479:
47-59, 2022.

Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. SnapFusion: Text-to-image diffusion model on mobile devices within two seconds.
Advances in Neural Information Processing Systems (NeurIPS), 36:20662-20678, 2023b.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
for generative modeling. In International Conference on Learning Representations (ICLR), 2023.

Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos Theodorou, Weili Nie, and Anima
Anandkumar. 1°SB: Image-to-Image Schrodinger Bridge. In International Conference on Machine
Learning (ICML), pp. 22042-22062. PMLR, 2023a.

Jiawei Liu, Qiang Wang, Huijie Fan, Yinong Wang, Yandong Tang, and Liangqiong Qu. Residual
denoising diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2773-2783, 2024.

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In International Conference on Learning Representations (ICLR), 2023b.

12



Under review as a conference paper at ICLR 2026

Xingchao Liu, Lemeng Wu, Mao Ye, et al. Learning diffusion bridges on constrained domains. In
International Conference on Learning Representations (ICLR), 2023c.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver++: Fast
solver for guided sampling of diffusion probabilistic models. Machine Intelligence Research, pp.
1-22, 2025.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 11461-11471,
2022.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023a.

Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjolund, and Thomas B Schon. Image restoration
with mean-reverting stochastic differential equations. In International Conference on Machine
Learning (ICML), pp. 23045-23066, 2023b.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (CVPR), pp. 14297-14306, 2023.

Mokai Pan, Kaizhen Zhu, Yuexin Ma, Yanwei Fu, Jingyi Yu, Jingya Wang, and Ye Shi. UniDB++:
Fast sampling of unified diffusion bridge. arXiv preprint arXiv:2505.21528, 2025.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems (NeurIPS),
32,2019.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, Mikhail Sergeevich Kudinov, and
Jiansheng Wei. Diffusion-based voice conversion with fast maximum likelihood sampling scheme.
In International Conference on Learning Representations (ICLR), 2022.

Litu Rout, Yujia Chen, Nataniel Ruiz, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai,
and Wen-Sheng Chu. RB-Modulation: Training-free personalization of diffusion models using
stochastic optimal control. arXiv preprint arXiv:2405.17401, 2024.

Sameera V Mohd Sagheer and Sudhish N George. A review on medical image denoising algorithms.
Biomedical signal processing and control, 61:102036, 2020.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet,
and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH 2022
conference proceedings, pp. 1-10, 2022a.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(4):4713-4726, 2022b.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations (ICLR), 2022.

Hiroshi Sasaki, Chris G Willcocks, and Toby P Breckon. UNIT-DDPM: Unpaired image translation
with denoising diffusion probabilistic models. arXiv preprint arXiv:2104.05358, 2021.

Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling of
diffusion models. Advances in Neural Information Processing Systems (NeurlPS), 36:4263-4276,
2023.

13



Under review as a conference paper at ICLR 2026

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning
(ICML), pp. 2256-2265, 2015.

Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh, Maria Rodriguez Martinez, Andreas Krause,
and Charlotte Bunne. Aligned diffusion schrodinger bridges. In Uncertainty in Artificial Intelli-
gence, pp. 1985-1995. PMLR, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations (ICLR), 2021.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems (NeurlPS), 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations (ICLR), 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning (ICML), 2023.

Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. NTIRE 2017
challenge on single image super-resolution: Methods and results. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops (CVPRW), pp. 114-125, 2017.

Peijuan Wang, Bulent Bayram, and Elif Sertel. A comprehensive review on deep learning based
remote sensing image super-resolution methods. Earth-Science Reviews, 232:104110, 2022.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy.
ESRGAN: Enhanced super-resolution generative adversarial networks. In Proceedings of the
European conference on computer vision (ECCV) workshops, 2018.

Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G Dimakis, and Pey-
man Milanfar. Deblurring via stochastic refinement. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (CVPR), pp. 16293-16303, 2022.

Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network for
real-world image super-resolution. Advances in Neural Information Processing Systems (NeurIPS),
37:92529-92553, 2024.

Weiyi You, Mingyang Zhang, Leheng Zhang, Xingyu Zhou, Kexuan Shi, and Shuhang Gu. Consis-
tency trajectory matching for one-step generative super-resolution. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 12747-12756, October 2025.

Conghan Yue, Zhengwei Peng, Junlong Ma, Shiyan Du, Pengxu Wei, and Dongyu Zhang. Image
restoration through generalized Ornstein-Uhlenbeck bridge. In International Conference on
Machine Learning (ICML), pp. 58068—58089, 2024.

Zongsheng Yue, Jianyi Wang, and Chen Change Loy. ResShift: Efficient diffusion model for
image super-resolution by residual shifting. Advances in Neural Information Processing Systems
(NeurIPS), 36:13294-13307, 2023.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a Gaussian denoiser:
Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26
(7):3142-3155, 2017.

Yide Zhang, Yinhao Zhu, Evan Nichols, Qingfei Wang, Siyuan Zhang, Cody Smith, and Scott
Howard. A poisson-gaussian denoising dataset with real fluorescence microscopy images. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp- 11710-11718, 2019.

Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. EGSDE: Unpaired image-to-image translation
via energy-guided stochastic differential equations. Advances in Neural Information Processing
Systems (NeurIPS), 35:3609-3623, 2022.

14



Under review as a conference paper at ICLR 2026

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. DPM-Solver-v3: Improved diffusion ODE
solver with empirical model statistics. Advances in Neural Information Processing Systems
(NeurlPS), 36:55502-55542, 2023.

Kaiwen Zheng, Guande He, Jianfei Chen, Fan Bao, and Jun Zhu. Diffusion bridge implicit models.
In International Conference on Learning Representations (ICLR), 2024.

Lingi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon. Denoising diffusion bridge models. In
International Conference on Learning Representations (ICLR), 2024.

Kaizhen Zhu, Mokai Pan, Yuexin Ma, Yanwei Fu, Jingyi Yu, Jingya Wang, and Ye Shi. UniDB: A
unified diffusion bridge framework via stochastic optimal control. In International Conference on
Machine Learning (ICML), 2025.

A DERIVATIONS

This section presents detailed mathematical derivations to support this work. All intermediate steps
and calculations omitted for brevity in the main text are included here for completeness and reference.

A.1 FORWARD PROCESS CUMULATIVE TRANSITION DISTRIBUTION ¢(x¢|xg, A)

The RDIM forward process is designed to align with a forward model that converts the data, x,
into the corresponding corrupted version, yg. To achieve this, the Gaussian transition distribution
in Equation () is derived for a Markovian version of the RDIM forward process. However, when
generating a latent variable x; starting from x¢, the sequential formulation of the diffusion process
can become computationally expensive, particularly as the timestep ¢ increases. To address this
problem, the reparameterization trick can be leveraged, allowing the cumulative Gaussian transitions
of the forward process to be expressed in closed form. As a result, ; can be computed at an arbitrary
timestep ¢ as a function of xq, the fraction of residual between xg and yo, \: A (with \; determining
the amount of residual to be removed between each diffusion step), and optional forward variance
parameter y:

Ty =41 — MA+ V2N E

=%i_2 — M1 A+ V2P NC1€6m1 — MA + VY A ves

(19)
=xo— AN+ A2+ A) FVP e + VP hees + o+ VP e
Xt
where €1, €2, ..., ~ N(0,I). Hence:
:I}tNN(:Bgfj\tA,’)ﬂ()\l+>\2+"'+>\t)I) (20)

~ N (IBO - S\tA,’y2XtI) s

Therefore, the cumulative Gaussian transition in the forward process can be defined as in Equation
(3) and, when = 0, it collapses into a Dirac delta function.

Cumulative sum of weights \; Each weight \;, used to control the variance and amount of residual
to be removed in each diffusion step, is computed as Ay = 8, — f;—1, with [3; representing the
transition at forward step ¢ between original and corrupted data in the Markov chain. Consequently,
the cumulative sum of weights \; from the initial timestep ¢ = 1 up to timestep ¢t = 7 is given as
follows:

Ar :Z)‘t ZZ(ﬁt—ﬁt—l) =B —Bo 2h
=1

t=1
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Distribution of the last latent variable ¢(xr|xo, A) = ¢(xT|yo). Given that the RDIM forward
process is designed to align with a forward model that converts the data, ¢, into the corresponding
corrupted version, yg, the residual, A, should be fully removed from x at the end of the forward
process, i.e., after exactly T timesteps. This ensures that the last latent variable, 7, will coincide
exactly with the corrupted data, yo, when the forward process is deterministic, and will converge to a
noisy sample centered at yo when the forward process is stochastic. Hence, considering Equation
@]), the last latent variable, 7, of the forward process can be sampled as:

T ~ N (2150 - S\TA,’YQS\TI)
~ N (zo — Ar (zo — Yo) ,7v* A1) (22)
~ N (zo (1= M) + Aryo, v ArI) .

Logically, to ensure the aforementioned condition of centering the distribution ¢(xr |z, A) on the
corrupted data, yo, the cumulative sum of weights A; over the T" timesteps must satisty Ay = 1. This
imposes that Sy = 0 and 87 = 1, since Ay = B — [y, as mentioned above. Accordingly:

xr ~ N (yo,7*1). (23)

This formulation assures that the residual A is fully removed after exactly 7" timesteps (A, = 1 only
when ¢ = T') and that the distribution g(xT|xg, A) is centered at the corrupted data, yo. As a result
of this deliberate design choice, ¢(xr|xo, A) = q(xT|yo) holds exactly at ¢ = T'. In addition, when
~v = 0, the Gaussian collapses into a Dirac delta function centered at yq, thereby the final latent
variable, zr, coincides exactly with the corrupted data, i.e., xT = yo.

Additionally, the S-schedule defined in Equation is designed to impose Sy = 0 and By = 1,
thus satisfying the aforementioned requirements. In particular, the cumulative sum of weights \; is
At = B¢ when By = 0 (see Equation ). Figureshowcases the progression of the weights 3;
and \; across timesteps. If p = 1.0, the S-schedule is linear and )\; is constant, resulting in uniform
fractions of A removed along the forward process.

Accordingly, under this condition of Sy = 0, the cumulative forward transition distribution,
q(x¢|xo, A), expressed in Equation can be further simplified to:
we ~ N (zo — B A, B 24)

A.2 REVERSE PROCESS TRANSITION DISTRIBUTION ¢(&¢—1|Zt, To, A)

The reverse process involves computing the reverse transition, which is defined as the Gaussian
distribution in Equation (7)) and is designed to preserve the marginal ¢(x¢|xo, A) in Equation .
Considering that Gaussian distributions exhibit the property that their conditional means are linear
combinations of the conditioning variables (see Lemma , then the mean fi; of ¢(x1—1|@t, o, A)
can be expressed as a linear interpolation between x¢, g, and A. Particularly, to match the form
of the forward process cumulative transition, ¢(x¢|xo, A), the mean fi; is assumed to be a linear
combination between (xog — 3;A) and @4:

e = a(xo — SrA) + by, (25)
where a and b are constants.

Following, given ¢(x¢|xo,A) and the formulation assumed for ¢(@x¢_1|x¢, o, A), then
g(xt—1|To, A) can be defined by leveraging a property of marginal and conditional Gaussians

(see Lemma [B.1):
q(@i—1|@o, A) = N (@4—1|b (w0 — BiA) + a(xo — BiA), 571 + by B Ib)

26
=N (@4—1| (w0 — BtA) (a+b), (57 +7°B:0%) I) . (26)

Recalling that q(z¢|xg, A) = N (:ct |To — B A, V2B I ) is being enforced, the cumulative Gaussian
transition to obtain x¢_7 given & and A is also defined as:

q(@i—1|wo, A) = N (T4—1|@0 — Bi—1A, 71 1) . 27
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Accordingly, to ensure that the designed reverse transition preserves the marginal q(x¢|xo, A), as
guaranteed by Lemma[B.l the following equality must be satisfied:

N (@e-1| (o — B:A) (a +b), (67 +7°Bib?) I) = N (o1 |0 — Br-1A,7?Br-1T), (28)
and thus a and b can be computed by solving the following system of equations:
_ A A [v2B:-1—562
{(wO - ﬂtA) (a + b) =xo — fi-1A = a=1+ - . 72/13t ) (29)

07 +72Bib* = 7?1 [ el 8 e
72 Be

Consequently, the mean of each reverse transition, fis, is given as:

fir = a(xo — B A) + by

A A V2Bi—1 — G2 V2Bi—1 — G2
= (14 " - [ T | (@0 - BiA) + | St
To — BiA 72 B¢ (@0 = HiA) 2Bt K

Y2Bi—1 — 5152 Y2Br1 — 5t2m
V2B, 2B (30)

2 =9
=xo — Bt A+ (Bt — Bi—1) A+ ’Yﬁ;# (xe — o + BA)
- A
=xo — 1A +\/V2Bi1 — 57 (W) ,

where, in particular, singularities can occur for v = 0. Therefore, for v # 0, the mean of the reverse
process transition distribution that preserves the marginal ¢(x¢|xo, A) is given as:

- —5 [ Tt — To + BtA
Pitjrzo = To — Bro1 A+ /2B — 07 | ——F——— | . (3D
! ' V2B

Essentially, the mean, fiy, is chosen to ensure that q(x¢|xo, A) = N (a:t|w0 — B A, ’yQﬂtI) is
satisfied for all t € {1,2,...,T}. Meanwhile, the variance &7 is set equal to the variance of the
ResShift reverse transition (see Appendix , thus 52 = ~2 %)\t = A

=x9 — BtA + MA 0o —BA)+

Relationship between x;, xg, A, and €. Considering the marginal ¢(x¢|zo, A) and v # 0, a
relationship between x4, €g, A, and € ~ N (0, I) can be derived from the reparameterization trick:

q(wi|@o, A) = N (m¢|@o — B A, 7B

= Tt = To — ﬁtA + V 72Bt6 (32)

— A
e Tt To + B ’

V 2Bt

This expression exactly matches the term between parentheses in the mean of the reverse process
transition distribution for « # 0, in Equation (31)). Accordingly, the mean can be rewritten as:

Biy20 = To — Bi—1A + 14/ Y2Bi—1 — e, (33)

which structurally matches the reparameterized form of the marginal ¢(x¢—1|®o, A), exhibiting the
same functional form and differing only in the variance term. This highlights that, when v # 0, the
reverse transition is aligned with cumulative transitions and can be leveraged to efficiently sample
any state at an arbitrary timestep.
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Reverse transition with v = 0. Particularly, for v = 0, the forward process cumulative transition,
defined as a Gaussian distribution, degenerates into a Dirac delta function (see also Appendix [A.T).
Consequently, for v = 0, Lemma [B.1]is not applicable. In fact, in this case, the forward process
effectively becomes a linear interpolation between ¢ and yo. Logically, when v = 0, it follows that
the reverse process simply needs to invert this deterministic process. However, the continuity of the
mean, fit, should be assured at v = 0, i.e., fig)y—0 = limy 0 fi¢|y20-

Considering Equation (24) in Appendix it follows lim,_,o ; = To — Bt A, which implies
that z; — xo + B A — 0 as vy — 0. Accordingly, given 67 = 72%/\,5, then lim,_,q figy20 =
xo — P:—1A. As aresult, to ensure the continuity of the mean fi4 at v = 0, the Gaussian transition
q(xt—1|Tt, Lo, A) is assumed to collapse into a Dirac delta function centered at g — ;1 A.
Hence, for v = 0, the mean of the reverse process transition distribution is defined as:

BPjy=0 = To — Bi-1A. (34)

Notably, this formulation of fi;,—o matches the mean of the cumulative forward transition,
q(x¢—1|To, A) (see Appendix , showing that the reverse process, when v = 0, reduces to
a linear interpolation between yo and ¢ (inverse of the deterministic forward process). Additionally,
it aligns with the concept of cumulative transitions, which is paramount for long-range transitions
(see Section [2.5)). In essence, the mean, fis, is expressed as in Equation (§) and is continuous at
~ = 0. Nonetheless, the y constant hyperparameter is immutable in practice, i.e., set only once for
each model instance, thereby no discontinuity issues would ever arise due to y (see Appendix [A.4).

A.3 REVERSE TRANSITION WITH &f = 72%)% (RESSHIFT VARIANCE, 5\,5)

In particular, if the reverse process transition variance, &f, is set to be the same as in ResShift,

A =2 ﬂtﬁzl At, then the mean, fig), o, reduces to:

- [ Ty —xo + G A
Btjy20 = To — Br-1A + \/72@5—1 — o} #
Vr* B
_ Ty — g + LA
:wo_ﬁtlA"‘\/'VQﬂtl_'YQBt S | = 02 Be
Bi Vi

o Y BeBe—1 — ¥ Be—1 (Bt — Bi—1) [ @t —x0 + BA
=z ﬁtlA-i-\/ 25, ( o )

A/ YAB2_ 1 (x4t — o + BrA)
(35)

=X — _ A +
0o~ Bi-1 5,
—1%¢ — Py + 1A
— w0 — B 1A+ Bi—1xe — P10 + LS
B
Bi1 ( 51&1)
= Te+xo(1-—
B ‘ ° Bt
Bi—1 At
= xi + — g,
B B
and thus the distribution g(x¢—1|@¢, To, A)~0 becomes:
_ A -
q(@r—1|me, TO, A)yto = N <ﬂ3t—1 %mt + Btmo,)\tI> ) (36)
t t

which is exactly the ResShift reverse transition distribution. In essence, if the RDIM reverse transition
variance, 6?, is set to be the same as in ResShift, then f1; will match the mean of the ResShift reverse
transition. Accordingly, RDIM reduces to ResShift for this specific variance, revealing that ResShift

is a particular case of RDIM.

Alternatively, for v # 0, if the variance is set to G2 = 0, then there are no stochastic terms involved
when traversing the reverse trajectory, as q¢(@¢—1 |+, €o, A), 0 degenerates into a J-distribution
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and avoids sampling random noise (given Equations (7) and (31))). Consequently, the reverse process
becomes deterministic. Therefore, a constant hyperparameter, € [0,1], can be introduced to
interpolate between a deterministic and stochastic reverse process when «y # 0, thus allowing control
over the variability in the reverse trajectory (see Equation (9)). Specifically, when 1 = 0, the Gaussian
collapses into a Dirac delta function.

Absence of non-real square roots. From Equation (9), it follows that to avoid a non-real square
root, when  # 0, the condition 423;_; > n?); must be satisfied. Considering \; = 72 B 2; ¢, then:

B
Recalling that € [0, 1], then 0 < 7% < 1. Moreover, since 0 < 3;_1 < f3, it follows that
0<? fﬁ L < 1, which in turn ensures that the term inside parentheses meets the condition 1— B ;3 L <1,

Consequently, the product of these two terms is always less than or equal to 1, and thus the Inequality
is satisfied for all p € [0,1] and t € {1,2,...,T}.

- A _
725t—12772)\t<:>127]26t<:>12772<1_5t 1>. (37)
t

A.4 TRAINING OBJECTIVE

During inference, ¢ and A are unknown, thus sampling from the true reverse transition distribution,
q(x¢—1|Tt, Lo, A), is not possible. Therefore, a learnable parametric model, pg(Ts—1|Tt, Yo),
defined as a Gaussian distribution, is introduced to approximate q(xs—1|x¢, o, A). Particularly,
an accurate estimation is required to ensure precise reconstruction of the data, x¢, at inference.
This approximation is achieved by minimizing the KL divergence between both distributions, while
accounting for all timesteps:

0" = arg;nin Dxw(q(z1:7|To, A)l[pe(z1:7|Y0)) (38)
where 0* denotes the optimal parameters. In fact, this objective of minimizing the KL divergence

in Equation (38) is equivalent to minimizing the negative variational lower bound (VLB) on the
conditional log-likelihood. This is the RDIM objective function and it can expanded further:

q(ml:T$o7A)>]
L(O)=E T1:.T |0 ! “pe(Tor|vo)
(9) a(z1.r|20,A) [og( Po(To:T|Yo)

T
q(xr|To, A)[[;_s ¢(t—1|Ts, T0, A
:E‘I(wlzT‘w07A) [log< ( Tl L )Ht : ( : 1‘ — )>]

T
p(xT|Yo) Ht:l Po(Tt—1]T¢, Yo)

q(xT|xo, A
= Eq@irleo.a) llog <(T|°))

p(xT|yo)

A
+10g (H q Tt— l‘wtax07 )) _ log (pe(:l:0|w1,yo))]

i—o Po(Te—1]T¢, Yo)

q($T|$0,A))]

= EQ(wT\wmA) [log < p($T|y0)

(g, o, A)
+]E ‘ 10 ( t—1 ty L0 >
e(@rieo,A) LZ:; & po(Ti—1]|Te, Yo)
- ]Eq(w:llfco,A) [log (pe(xolT1, Yo))] (39)
= DxL(q(zr|z0, A)||p(TT|Y0))

T
Q(wt—l\wuwoaA)
+ ZEq(mt—lvmt‘m07A) |:10g <

=2 po(@t—1|Tt, Yo)

- ]EQ(mllmo,A) [log (pe(xo|x1,Yo0))]
= Dxw(q(zr|To, A)l|p(xT|Y0))

= q(xt—1|z, T0, A)
SN B Eye 1o a o ( t—1|T¢, To, )”
Z: q(zt|To,A) [ q(zt—1|Tt,T0,A) [ g p9($t—1|wtay0)
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- ]Eq(mllmo,A) [log (pg(xolx1,Y0))]
= Dxr(q(zr|To, A)llp(xT|Y0))
Lt

T

+ Z Eq(wt|wg,A) [DxL(q(xt—1|Tt, To, A)||po(xt—1|Tt, Yo))]
t=2

Li_1
—Eg (1 ]x0,a) [10g (po(xo|21,Y0))] = L7 + L1.7-1 + Lo.

Lo

Hence, analogous to DDPMs, the RDIM objective function, £(#), decomposes into L1 (prior
matching term), £1.7_1 (consistency terms), and L (reconstruction term).

Prior matching term L£y. The term L7 is minimized when the prior, p(xT|yo), matches the
true distribution of the last latent variable, ¢(xr|To, A) = ¢(xT|yo) = N (yo,7?I). Accordingly,
p(xT|yo) is fixed to such a Gaussian distribution, which is parameterized by constants and involves
no learnable parameters. Therefore, L is constant with respect to the model parameters, 6, and is
minimized, i.e., L7 = 0. Consequently, this term can be excluded from the optimization objective,
unlike the terms Lo.7—1, which explicitly depend on 6 through the parameterized distribution py.

Consistency terms £q.7_1. The terms £q.7_; enforce that the learnable parametric model,
po(Te—1|xt, Yo), accurately approximates the true reverse transition, ¢(x¢—1|®¢, o, A). This
fundamentally ensures that the model learns to refine the data at intermediate timesteps, leading to
consistency in the reconstruction.

The true reverse transition distribution is known in closed form (see Section[2.4]along with Appendices
[A.2]and[A3)), having mean and variance parameterized as:

To — fr14, ify=0,
by = 3 Ti—T : 40
P o Bad e e (3B ) iy 20, @
and _
)\t7 1f’Y = 07
62 = . (41)
A, ify #0,
where \; = 72%)\25.

Given that py(ax¢—1|Tt,yo) is defined as a Gaussian distribution with mean pg (x4, yo,t) and
variance 03 (z+, Yo, t), to minimize the KL divergence of each term £;.7_1, the mean and variance
of the parametric model should approximate fi; and 77, respectively. Particularly, the variance of
q(xt—1|Tt, Lo, A) does not have learnable parameters because it is defined in terms of constant
hyperparameters, which are known. Therefore, o3 (¢, Yo, ) can be fixed to equal exactly 57, as
expressed in Equation (TI). Following, each term £.p_1 is computed by applying the closed-form
expression for the KL divergence between two d-dimensional multivariate Gaussian distributions,
yielding:

Dxr(q(xe—1|xe, o, A)||po(Ti—1|2¢, Y0))

1 |O' m,yv)I| 5
e t}’, —d+ (o3 (@ove ) 1) 520)

-1 ~
+ Heo (whyO? T (U T, yOa ) (IJ’O (wtay07t) - l"’t))

(v
(
(1 ( >—d+tr( fI)
(

+ (mo (x¢, Yo, t) — T(ﬁf ) (1o (Cﬂt,ymt)—ﬁt)) (42)

l\D\»—t
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1

= 5( () (o v~ )" (s (0. 0)— ) )

1
_ t) — [ 2
26’? ||/'l'9 (mt7y07 ) IJ‘tH )

where | - | denotes the determinant of a matrix, and tr(-) is the trace of a matrix. Notably, minimizing
the KL divergence effectively reduces to decreasing the difference between the means pg (¢, Yo, t)
and fis.

However, this is only valid with v # 0 and 7 # 0. In contrast, when either v = 0 or = 0, the true
reverse transition Gaussian collapses into a Dirac delta function:

0 (®e—1 — fgr=0) » if v =0, (A)
q(ze—1|ze, To, A) = < 8 (Tp—1 — figy20) ify # 0andn =0, 43)
N (g —1|fe)y0 Jt2|,y¢0I) ify£0andn#0, (C)

where A, B, and C correspond to the cases of v = 0, (v # 0 and n = 0), and (v # 0 and 5 # 0),
respectively.

The KL divergence between two Dirac delta functions is not defined in the conventional sense due to
their singular nature, but it can be analyzed through limiting behavior. Two delta functions centered
at different points have infinite divergence, thereby the KL divergence of each term £,.7_; tends to
infinity, when v = 0 or n = 0, unless pg (¢, Yo, t) = [

(xt—1]xt, Yo))

Dxi1,(q(xe—1|xe, 0, A)

. if (A and pg|y—o (¢, Yo, 1) = /:f thy=0)
, or (15 and pg |20 (Tt; Yo, ) = fgjy-20),
=1 0 if (A and Ho|y=0 (zt, Yo, t) # /1 |7:0) 9
, or (15 and pg |20 (Tt; Yo, t) # fejys£0),
Tinto 357 Iltto1y20 (Te; Yo, 1) — frejy 0], if C.

For the Dirac delta cases, where either v = 0 or = 0, to avoid an infinite loss, the only choice is to
force pg (4, Yyo,t) = fiz. However, directly optimizing under such a hard constraint is infeasible
in practice, as it provides no gradient information unless the condition is already satisfied. To
circumvent this, a relaxed proxy objective is adopted, mirroring the approach used in the Gaussian
case. Specifically, it minimizes half of the squared Euclidean distance between pg (¢, yo,t) and
f¢. This mean-matching proxy loss serves as a differentiable surrogate that naturally encourages the
model to align the means and can be interpreted as the limiting case of the KL divergence when the
variance tends to zero. Consequently, the reduction of the KL divergence to mean matching holds for
all scenarios of ~y and 7.

Moreover, considering the formulation of f1; given in Equation and since at every timestep, ¢,
in the reverse process, only the exact values of &g and A are unknown, then g (2, Yo, t) can be
defined as in Equation . In this definition of g (¢, Yo, t), the only components dependent on
the parameters 6 are £o and A. Since, A can be estimated from x and Yo, then the model solely
needs to predict xg. Hence, £o = fy(x+, Yo, t) denotes the xq prediction from a neural network
given x¢, Yo, and timestep t. Meanwhile, A= &g — Yo represents the A estimation, computed
from the x¢ prediction and the known yg. The remaining components are fixed hyperparameters
and x;, which are known for every reverse transition from x; at any timestep, t. In essence, the
approximate reverse transition, pg(¢—1|®¢, Yo ), is modeled as a Gaussian whose mean is computed
using a neural network that predicts xo. Accordingly, the KL divergence of each term £;.7_1 can be
further expanded as:

Dxr(q(Ti—1|Ts, To, A)||po(xs—1|Tt, Y0))

2oy =0 (@4, Yo, t) — fgjy=oll?, if A,
= { $ll1opy20 (@4, Yo, t) — fepyz0ll?, if B,
2&3‘;#0”#&#0 (¢, Yo, t) — figly20ll?, if C,
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Hlzo — Bi—1A — (80 — Bi_1 D)2,
1 \ Ti—xo+Bt A
= — B, 1 A 2B, 4 —n2)\, [ Bt=TotlrA
5110 5t1+’yﬂt1nt<m)
2,
— (&0 - Brah + \[126 1 — ), (m=tetnd
= <a:0 ﬂt1+7ﬂt1nt(m
3 Tg—T A
m Lo — BtflA + '7267571 - 772)\15 (\/::Z%f
2,
— (&0 — Bi1A 23 _ p2X, [ Z=ZetBA
(wo ﬁtl""Vﬁtl??t(m
%Hfﬂo — &0 — fi—1(x0 — fﬁo)||27 if A,
2ll@o — &o — Bi—1(wo — o)
2, if B,
— + %(fﬁo—ﬂ?o-l-ﬁt(ﬂio—iﬁo))
27];75% wo*Z%o*ﬂt—l(ﬂfo*ﬁ?o)
N < 2, 1if C,
+ \/W(fﬁo — o + Bi(To — o))
sl(@o —20)(1 = Bi- 1), if A,
% (o — £o)(1 — Bt-1)
2, if B,
_ + %(Zf?o — o + ,Bt(mo — io))
5% || (@0 — 20)(1 = Bi)
- - 2, ifC,
+ \/W(fﬁo —xo + Bi(zo — o))
5t o — ol 2,
2
_ ) 3|[@o — 20)(1 = Bio1) — /5 (w0 — #0)(1— By)]|
2
28, 4 — 25\7: R
Qn;;t (xo — £o)(1 — Bi-1) — \/@(ﬂl(}*mo)(lfﬂt} ,
=0 | — do2, if A,
_ ) 5o —0) (1- 81 — /2201 -8)) || i,
2
- 7 2By 112X .
277;5% (o — ®o) (1 =B — \/@(1 - 575)) , ifC,
1727“1”330 —530”2, ify=0,
1-Be_1—1/ 252 (1-B0) o '
= 2 lzo — Zoll*, ify#0andn =0,
Y2Be_1—n%X¢
1-Bi—1—\| — 27— (1-0¢)
1 ~28¢ ||$0_i0||2, lf’Y#Oandn#Q

27725%

= wi(,m,1)||lwo — Zol|*.

if C,

if A,
if 1,

if C,

(45)

Therefore, irrespective of the specific values of y and 7, each consistency term £1.7_1 ultimately
reduces to the expectation of a weighted squared Euclidean distance between the original data x¢

and its prediction, where the expectation is taken over q(x¢|xg, A):
Ly 1= Eq(mt\wo,A) [wt(77 U t)”:l)o - :%0”2] )
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with weights w;(-) defined as a function of +, 7, and ¢. Essentially, approximating &g to the original
data effectively ensures that pg (¢, yo,t) converges to fi. As aresult, pg(@x¢—1 |2, Yo) accurately
models g(x¢_1|x¢, o, A), which is the primary purpose of the consistency terms L1.7_1.

In particular, due to the relationship between xo and € given in Equation (32), the objective derived
in Equation (@3] could be converted to predicting noise € similar to DDPMs (Ho et al. [2020).
However, this reformulation of the objective would not be possible with a deterministic forward
process (7 = 0), as it works only for cases where noise was added during the forward process
(v # 0). Hence, having the neural network predict xq directly is preferred for broader applicability
and improved generalizability.

Notably, the mean is continuous at v = 0 (see Appendix [A.2)), thus there are no problems during
gradient computation, such as taking gradients where a function is not differentiable. Nonetheless,
for each specific value of ~, the mean is continuous and the ~ constant hyperparameter is immutable,
i.e., set only once for each model instance, thereby no discontinuity issues would ever arise due to .

Reconstruction term £y. The £, term is essentially the expectation of the negative log-likelihood
(NLL) of the original data, &g, conditioned on the first latent variable, 1, and the corrupted version,
Yo, where the expectation is taken over 1 ~ ¢(x1|zo,A). In essence, it quantifies how well
the model can reconstruct o given 1 and yg. Since minimizing the NLL encourages the model
to output high-probability (accurate) reconstructions, it can be interpreted as a reconstruction loss.
Conceptually, this term acts as a final quality check, ensuring that after practically all the diffusion
degradation is remove(ﬂ iteratively, the model can accurately reconstruct the original clean data, xg,
from the almost degradation-free input, ;. It assures that the model not only learns to refine the
data at intermediate timesteps, but also produces outputs consistent with the underlying real data
distribution conditioned on yg. As a result, it contributes to aligning the model marginal py(xo|yo)
with the true posterior distribution g(xo|yo) as given in Equation . Nonetheless, similar to
DDPMs, this term is omitted in practice, since it is implicitly included in a simplified training
objective.

Simplified objective function. Since the term L can be excluded from the optimization objective,
the loss function in Equation (39) becomes:

T
= L7+ Lir+Lo=Y Li1+ Lo

t=2

(47)

T
Z a(@elzo,A) [DKL(q(xs—1|T8, To, A)||po(xs—1 |28, Y0))] + Lo-
P

Following, the term L can be omitted, as it is implicitly included by extending the sum to encompass
all timesteps, t € {1,2,...,T}, thereby accounting for the transition from x1 to xg:

T
) = ZEq(mt\mo,A) [Dkr(q(xt—1]|Tt, o, A)l|po(Tt—1]Tt, Y0))] 5 (48)
=1

and given Equation (43), then:

T

E(G) Eq(mt\wg,A) [DKL(Q(th—ﬂiBt, Lo, A)Hpe(iﬂt—ﬂwt,yo)ﬂ
1

~
Il

(49)

Il
[M]=

Eq(mt\ZO,A) [wt(’yarht)”w() - j:OHQ] .

~
Il

1

Qﬂt 1

Considering A = ¥ A¢, the weights w, only depend on the predefined ~, 7, and -schedule
constant hyperparameters In many practical implementations, such as DDPMs, this weighting is

3The forward process progressively incorporates degradation and removes A. The reverse process removes
degradation and reintroduces A.
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often omitted for all timesteps, finding that this still produces excellent results (Ho et al.,[2020; Yue
et al.,[2023)). Therefore, the loss function can be further simplified by excluding the scaling:

T
L(0) = Eq(ajzo,a) [[To — Zol*] . (50)

t=1

and since evaluating the full sum over all time steps is computationally expensive, a single time step
can be sampled per training example. This yields an unbiased estimator of the full objective and
significantly improves training efficiency:

Esimple(a) = Emo,A,t [Hwﬂ - @OHz} 5 (51

where @t ~ q(xt|xo, A), t ~ U(1,T), and the case ¢ = 1 corresponds to L. Consequently, the
objective function of RDIMs simplifies to a squared Euclidean distance between the original data and
its prediction. Notably, RDIM and ResShift lead to the same training objective, further highlighting
that ResShift is a particular case of RDIM. This follows from the objective depending only on the
marginal distribution g(x¢|zo, A), which both models share. It does not strictly require the forward
process to be a Markov chain.

B LEMMAS

This section presents lemmas that support this work. These lemmas provide foundational results and
properties that support the main arguments and proofs.

Lemma B.1 (Bishop & Nasrabadi| (2006)) Given a marginal Gaussian distribution for random
variable x and a conditional Gaussian distribution for random variable y given x in the form:

p(x) =N (z|pe) Be)

52
p(ylz) = N (yCz + ¢, Sya) 2

where po, C, and c are parameters governing the means, while 3o, and 3|, denote covariance
matrices. Then the marginal distribution of y and the conditional distribution of x given y are in the
form:

p(y) =N (y|Clia + ¢,y + CZC ),

Tl 1 (53)
p(aly) =N ([Say (CTZ,h (= 0) + 55 112 )  Zapy )
with 3.4, representing the conditional covariance matrix of x given y, defined as:
-1
—1 Ty—1
Sy = (Z'+CTELC) (54)

Lemma B.2 (Bishop & Nasrabadi (2006)) Given a joint Gaussian distribution over random vari-

ables x and y of the form:
xT o Mz Yow ZD:r:y
P (M) =N Q“y] ’ {EW Eny 7 >

where 1, and [y, are the mean vectors of T and y, respectively, while Xpz, Xgy, Xiye, and 3y,

denote covariance matrices. Then the conditional distribution of x given y is Gaussian:

p(zly) =N (:v K|y, Em|y) 7 (56)

with the conditional mean and covariance given by:

Haz|ly = Hz + Ewygg;;(y — Hy),

. (57)
2:m|y = wa - Ewyzyyzywa

where the expressions follow from the Schur complement. This result shows that the conditional mean
of x given y is a linear function of y.
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C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

This section presents experimental details and additional results that complement those discussed in
the main text.

C.1 DATASETS

Experiments were performed across eight subsets, derived from four public data collections, namely
(i) Fluorescence Microscopy Denoising (FMD) dataset (Zhang et al.,|[2019), (ii) DIVerse 2K Res-
olution High Quality Images (DIV2K) dataset (Agustsson & Timofte, 2017; Timofte et al.,[2017),
(ii1) Smartphone Image Denoising Dataset (SIDD) (Abdelhamed et al.,2018;2019), and (iv) Flickr—
Faces-HQ (FFHQ) dataset (Karras et al., 2019).

The FMD dataset is specifically designed for Poisson-Gaussian denoising tasks and consists of 12,000
real images acquired from representative biological samples, including bovine pulmonary artery
endothelial (BPAE) cells, zebrafish embryos, and mouse brain tissues, using confocal, two-photon,
and wide-field modalities. The dataset contains images with multiple noise levels, resulting in several
subsets, but only the strongest noise level (labeled raw in|Zhang et al.|(2019)) subsets are considered,
thus prioritizing the most challenging conditions. Solely confocal images were used and mouse
images are excluded. Accordingly, the two FMD dataset partitions used are Confocal-BPAE-Raw
with 1,000 noisy-clean image pairs and Confocal-Zebrafish-Raw with 1,000 pairs. Moreover, each
subset was randomly partitioned into training, test and validation splits, corresponding to 80%, 10%,
and 10% of the data, respectively.

DIV2K is a publicly available benchmark dataset originally introduced for the NTIRE 2017 Challenge
on Single Image Super-Resolution. It is specifically designed for SR tasks and comprises a collection
of HR images along with their corresponding low-resolution (LR) counterparts. Each HR image
in the dataset is paired with several downscaled versions, generated through different degradation
operations and scaling factors of 2, 3, and 4. Particularly, three subsets of DIV2K with unknown and
bicubic degradation operators are used, namely DIV2K-Unknown- x 2, DIV2K-Unknown- x4, and
DIV2K-Bicubic-x4. Each subset includes 1,000 LR-HR image pairs and is divided into 800 images
used for training, 100 for validation, and 100 for testing. The validation split will be employed to
evaluate the performance of the models as the testing split is not available.

The SIDD dataset is specifically designed for image denoising tasks, particularly focusing on real-
world noisy images captured with smartphone cameras. The dataset consists of ~ 30,000 noisy
images with their corresponding clean ground truth, from 10 scenes under different lighting conditions
and using five representative smartphone cameras, hence spanning a wide range of image types and
noise levels. Only images from the SIDD-Medium subset are used, comprising 320 noisy-clean
image pairs. Ultimately, SIDD-Medium was randomly partitioned into training, test and validation
splits, corresponding to 80%, 10%, and 10% of the data, respectively.

The FFHQ dataset consists of 70,000 HQ human face images, originally created as a benchmark
for generative adversarial networks (GANSs). It contains faces with considerable variation in terms
of age, ethnicity, and image background. In this work, it is used for image inpainting, colorization,
and deblurring. For computational efficiency, images were downsampled to a quarter of the original
resolution using bicubic interpolation. Subsequently, corrupted-original image pairs were generated,
resulting in three task-specific subsets, namely FFHQ-Inpainting, FFHQ-Colorization, and FFHQ-
Deblurring. For image inpainting, pixels in the original images are randomly masked and set to
zero with probability pmask = 0.5. For colorization, grayscale inputs are obtained by converting the
original RGB images to luminance. For deblurring, synthetic blurred images are generated from
ground truth images by applying a Gaussian blur with kernel size 15 x 15 and standard deviation
o = 3.0. Each subset was randomly partitioned into training, validation, and test splits corresponding
to 80%, 10%, and 10% of the data, respectively.

C.2 NETWORK ARCHITECTURE
RDIM employs a U-Net-based architecture to predict &¢ at each iteration of the reverse process.

As illustrated in Figure |§L the network is composed of encoder, bottleneck, and decoder blocks,
with skip connections linking encoder and decoder blocks at matching spatial resolutions. For
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SR tasks, an upsample block transforms yo to match the dimensionality (number of channels and
resolution) expected by the network. For other tasks, this layer simplifies to a projection layer. At each
iteration, the network is conditioned on a timestep embedding, which is computed with sinusoidal
positional encoding and transformed through a small multilayer perceptron (MLP) consisting of a
fully connected layer, a Swish activation, and a second fully connected layer. This embedding encodes
the current diffusion step, providing information about the position within the reverse process.
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Positional Encoding

Timestep (£) S

H
a
=
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Yo
(c: Tn)
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Figure 5: U-Net-based network. In the convolutional layers, the parameters k, st, and pd represent
the kernel size, stride, and padding, respectively. Additionally, (x/s) denotes (W /s, H/s), where s
is a scale factor (s > 1 for SR tasks and s = 1 otherwise).

Figure [6] shows the core blocks of the network. Each encoder block consists of multiple residual
blocks, each optionally followed by a self-attention block, and concludes with a downsample block
to reduce spatial resolution. Bottleneck blocks operate at the lowest spatial resolution and consist of
multiple residual blocks interleaved with self-attention blocks. Decoder blocks consist of multiple
residual blocks, each optionally followed by a self-attention block, and conclude with an upsample
block to increase spatial resolution. Notably, all residual blocks incorporate the timestep embedding.
Self-attention blocks are included only at the two lowest spatial resolution levels of the encoder and
decoder blocks due to computational constraints at higher resolutions.

(c: EmbDim) (c: EmbDim) (c: EmbDim)
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Figure 6: Core blocks of the U-Net-based network. (a) Encoder Block, (b) Decoder Block, and (c)
Bottleneck Block.

The building blocks of the network are illustrated in Figure [/} Each residual block applies two
convolutional layers with group normalization and Swish activation. They also contain a projection
layer for the timestep embedding, composed of a Swish activation followed by a fully connected layer.
Moreover, if the number of input channels (In) does not match the number of output channels (Out),
an additional convolutional layer is included in the skip connection to project the input to the expected
number of channels (Out), ensuring that the element-wise addition is well-defined. Self-attention
blocks model long-range dependencies and incorporate group normalization both before and after
the attention mechanism, operating over flattened spatial dimensions. Upsample and downsample
blocks perform spatial resizing. Upsample blocks first perform bilinear interpolation (trilinear in case
of 3D settings) to increase spatial resolution, followed by a convolutional layer, while downsample
blocks perform convolution with stride greater than 1 (st > 1) to reduce spatial resolution. In the
current implementation, activations are omitted, although the generalized block design can optionally
include them.
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Figure 7: Building blocks. (a) Residual Block, (b) Self-Attention Block, (c) Upsample Block, and (d)
Downsample Block.

C.3 IMPLEMENTATION DETAILS

RDIM is implemented in PyTorch 2.5.1 (Paszke et al.,[2019) and trained using the Adam optimizer
(Kingma & Ba,2014) with 8; = 0.9 and B3 = 0.999. The learning rate was initialized at-1.0 x 10~
and decayed following a cosine annealing schedule with minimum value 7 = 1.0 x 1072, Ad-
ditionally, RDIM-PQ was trained using a combination of mean squared error (MSE) and SSIM
losses, with the total loss defined as £ = Lysg + aLssmv, where o = 5.0 x 1072, All ex-
periments were conducted with a batch size of 64 and an effective patch resolution of 64 x 64
(except for DIV2K-Bicubic-x4, where a larger resolution of 128 x 128 was used). For SR,
this corresponds to LR patch sizes of 32 x 32 and 16 x 16 for x2 and x4 scale factors, re-
spectively (scaled proportionally for DIV2K-Bicubic-x4). The implementation is available at
https://anonymous.4open.science/r/RDIM/.

DDPM, DDIM, ResShift, and RDIM were trained with the same number of diffusion timesteps
(IT' = 50 for FFHQ and T' = 100 for experiments on FMD, SIDD, and DIV2K) and network
architecture with 128 base channels (detailed in Appendix [C.2). The only difference lies in the
diffusion framework employed. ResShift is a specific case of RDIM, thus a single network was
trained for both. For DDPM, following SR3 (Saharia et al.| 2022b)), the model learns to approximate
a reverse process, starting from pure Gaussian noise and iteratively denoising x+ toward the HQ
image, xg, by predicting noise at each step, while conditioned on the LQ input, yo. DDIM employed
the network trained in the DDPM framework. Training was conducted for 4,000,000 iterations.on
FMD-Confocal datasets and DIV2K-Unknown subsets, 280,000 iterations on the DIV2K-Bicubic-x4
subset, 640,000 iterations on SIDD, and 4,375,000 iterations on FFHQ. For SR tasks in RDIM and
ResShift, the LR input, yo, is upsampled to the target HR resolution using bilinear interpolation,
ensuring compatibility with the resolution employed in the diffusion framework (i.e., the size of
Lo, L1y, :ET)

All other techniques used in the comparative analysis of Section [3]strictly followed the reference
papers and the official source codes. BM3D was applied with noise standard deviations of 10 for
FMD-Confocal-BPAE-Raw, 30 for Confocal-Zebrafish-Raw, and 50 for SIDD-Medium. DnCNN
was trained for 2,500,000 iterations on FMD-Confocal and SIDD datasets. ESRGAN was trained for
a total of 1,400,000 iterations, with 1,000,000 iterations used to train a PSNR-oriented model that
serves as initialization for the adversarial model, which was optimized for the remaining 400,000
iterations. Ultimately, GOUB and UniDB were trained for 900,000 iterations on DIV2K-Bicubic- x4,
while CTMSR was trained for 500,000 iterations.

C.4 UNIFORM SAMPLING TIMESTEP SCHEDULE

At inference, RDIM intends to reconstruct the original data, x¢, starting from the degraded final
latent variable, 7. Unlike DDPMs and ResShift, where the sampling process requires iterating over
all diffusion timesteps, 7', the RDIM reverse process can be simulated with fewer timesteps. This
results from the formulation of the RDIM reverse transition, which allows skipping intermediate
timesteps during sampling (see Section [2.5)). Accordingly, this flexibility motivates the selection of a
subset, T, of S < T sampling timesteps to traverse the reverse trajectory.

A simple yet effective approach is to adopt a linear sampling schedule, where the selected timesteps
are uniformly spaced. Geometric schedules with denser allocation toward earlier or later stages of the
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reverse process were empirically evaluated, but they underperformed against a uniform alternative or
yielded marginal improvements. As a result, the following uniform scheduler is devised:

T:{Tk:{g-TJ‘ke{o,l,.‘.,S}}, (58)

where, during sampling, Y is iterated from 7g = T to 71, resulting in the order of sampling points
Ts — Tg—1 — - -- — 71. Reverse transitions occur exclusively at these selected timesteps, from each
T¢ to T4—1, with all intermediate timesteps being skipped. The exception is the target timestep 79 = 0,
which marks the end of the reverse trajectory and does not produce a further transition. Moreover, all
adjacent sampling timestep pairs, (7x_1, 7% ), satisfy the following condition:

(Th—1,me) € {(t', ) ENG |/ +1 <t <T}. (59)
In essence, only the latent variables associated with these timesteps are sampled, enabling a more

efficient inference process. Figure []illustrates the sampling points (where reverse transitions occur)
along the reverse trajectory, contextualized with the corresponding values of the 3-schedule.
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Figure 8: Residual 3-schedule (p = 5.0) overlaid with red markers indicating the 3; value at each
sampling point. The schedule adopted selects timesteps uniformly spaced. In this illustration, the
forward process involves T' = 100 timesteps and the number of sampling steps, where reverse
transitions occur, is S = 10.

C.5 IMPACT OF 3-SCHEDULE PARAMETER p

Experiments were conducted to determine an appropriate value for the 3-schedule parameter p
(see Section[2.6). In these experiments, RDIM employs T = 10 diffusion timesteps and a forward
variance hyperparameter v = 9.0. During inference, the reverse variance hyperparameter is set to
1 = 1.0 and multiple reverse trajectory lengths were evaluated. All other implementation details
follow those described in Appendix [C.3]

Table 3: Impact of parameter p, which controls the steepness of the curve in the 3-schedule. All
RDIM configurations were trained using a forward process with 7" = 10 timesteps and variance
hyperparameter v = 9.0. During inference, the reverse process variance hyperparameter is fixed to
n =1.0. rows highlight ResShift scenarios, corresponding to particular cases where
RDIM reduces to ResShift under the conditions = 1.0and S =T

FMD-Confocal-BPAE-Raw

PSNRT  SSIMT  LPIPS|

1 40.0836  0.9678 0.0205

1.0 5 40.0772  0.9678 0.0205
10 40.0565  0.9677 0.0205

1 40.1100  0.9681 0.0202

5.0 5 40.0436  0.9679 0.0202
10 399524  0.9674 0.0202

1 39.4014  0.9639 0.0238

15.0 5 39.1177  0.9624 0.0236
10 38.8951 0.9609 0.0236

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table [3| presents the results for p = 1, p = 5, and p = 15. It follows that on denoising images from
the FMD-Confocal-BPAE-Raw dataset, RDIM with 7" = 10 and v = 9.0 achieves the best overall
performance when p = 5.0. Moreover, irrespective of the steepness of the 5-schedule, skipping
timesteps and using fewer reverse timesteps (S < T') consistently yields superior results in terms of
PSNR and SSIM compared to iterating through all diffusion steps (S = 7). Particularly, Figure[2]in
Section[2.6]illustrates the 3-schedule curves and the effect on the diffusion process corresponding to
these parameter values.

C.6 IMPACT OF VARIANCE PARAMETER 7y

The diffusion process variance is controlled with a constant hyperparameter v € [0, 00), which
allows interpolation between a deterministic (y = 0 = Gaussian collapses into a §-distribution)
and a stochastic (y > 0) forward process. Figure@illustrates the impact of v on the forward process.

v

Forward Process
F F

Lo TT

Figure 9: Impact of +y on the diffusion process with S-schedule parameter fixed to p = 5.0.

C.7 COMPARATIVE ANALYSIS OF MULTIPLE RDIM CONFIGURATIONS IN IMAGE DENOISING

To identify the best RDIM configuration, several setups were compared on denoising of BPAE
confocal images from the benchmark dataset FMD. The experiments explore the impact of the
diffusion chain length (7"), the number of sampling timesteps (.5), and the variance controlled by
the constant hyperparameters v and 7. Setups with 7" = 100 followed the implementation details
described in Appendix[C.3] For configurations with a different number of diffusion timesteps, the
number of iterations (and consequently the training time) was adjusted linearly in proportion to
the number of diffusion steps, 7'. This ensures that each timestep undergoes a similar number of
weight updates across all configurations, thereby preventing imbalanced training between timesteps in
configurations with different chain lengths. All other implementation details follow those described

in Appendix|[C.3]

Table E| summarizes the results. The RDIM configuration with v = 3.0, T = 100, and S = 10
achieves the best performance in terms of PSNR and SSIM. Overall, the results suggest that increasing
the number of diffusion timesteps improves denoising performance. Meanwhile, reducing the number
of sampling timesteps (S < T) often yields better results. In contrast, learned perceptual image patch
similarity (LPIPS) scores show that fewer sampling timesteps lead to worse perceptual quality. This
highlights a trade-off between content fidelity (measured by PSNR and SSIM) and perceptual realism
(measured by LPIPS). Iterative refinement enhances fine-grained details and promotes the recovery
of natural textures. Logically, more sampling timesteps allow greater refinement, producing highly
realistic outputs. However, results may diverge slightly from the ground truth in terms of pixel-wise
similarity, resulting in lower PSNR and SSIM.

Moreover, results further indicate that controlled stochasticity in the forward process is beneficial.
Setting v = 0.0 leads to poor results, indicating that some variance is necessary. Conversely, v = 3.0
and v = 9.0 achieve significantly superior performance. Particularly, v = 9.0 outperforms v = 3.0
for configurations with few diffusion timesteps, but its relative performance gains diminish as T'
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Table 4: Denoising performance comparison of several RDIM configurations on BPAE confocal
images from the benchmark dataset FMD. It exhibits the impact of the constant hyperparameter
that controls the variance in the forward process and the impact of the number of diffusion timesteps
during training (7") and inference (.5). The constant hyperparameter that controls the variance in the

reverse process is fixed to n = 1.0.

rows highlight ResShift scenarios, corresponding to

cases where RDIM reduces to ResShift (n = 1.0 and S = T)).

FMD-Confocal-BPAE-Raw

T S v =0.0 v =3.0 v=9.0
PSNRT  SSIM{ LPIPS| PSNRf SSIMt LPIPS, PSNR{ SSIM{ LPIPS|
1 38.3703  0.9575 0.0296 40.0998  0.9686 0.0196  40.1100  0.9681 0.0202
10 10 38.3487  0.9572 0.0299 393632 0.9644 0.0187 39.9524  0.9674 0.0202
1 38.4181 0.9578 0.0293 42,5354 0.9803 0.0093 43.1161  0.9821 0.0079
50 10 384162  0.9578 0.0295 424566  0.9802 0.0079 432029  0.9824 0.0077
50 38.3198  0.9564 0.0299 42.0566  0.9785 0.0071 43.1970  0.9824 0.0074
1 38.3758  0.9575 0.0295 43.9872  0.9851 0.0056  43.3040  0.9828 0.0075
100 10 38.3752  0.9575 0.0295 44.1468  0.9855 0.0047 433743 0.9830 0.0073
100 38.1775  0.9548 0.0298 43.5990  0.9837 0.0042  43.2484  0.9826 0.0068

increases, whereas v = 3.0 continues to improve with longer diffusion chains, ultimately surpassing
v = 9.0 for larger 7T'. These observations underline the importance of carefully balancing variance.

Figure [T0]showcases PSNR, SSIM, and LPIPS scores for different numbers of sampling timesteps,
using the configuration with 7" = 100 and v = 3.0, which obtained the best results in denoising
BPAE confocal images from the FMD dataset. The number of sampling timesteps evaluated includes
a single-step prediction and then ranges from 10 to 100 in increments of 10. It follows that PSNR
and SSIM performances peak around S = 10, while LPIPS achieves the best scores between S = 90
and S = 100, showing that more sampling timesteps result in higher perceptual quality but reduced
reconstruction fidelity.
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Figure 10: PSNR, SSIM, and LPIPS performance as a function of .S (number of sampling timesteps)
on denoising of BPAE confocal images from the FMD dataset. RDIM is trained with 7" = 100 and
v = 3.0. The constant hyperparameter that controls the variance in the reverse process is fixed to
1 = 1.0. The number of sampling timesteps evaluated includes a single-step prediction and then
ranges from 10 to 100 in increments of 10.

Table[5]demonstrates the effect of varying the constant hyperparameter 7, which controls the variance
in the reverse process. Looking at Table[5} the parameter 7 manifests marginal impact on denoising
of BPAE confocal images from the FMD dataset. Additionally, when v = 0, the parameter 77 does not
affect performance, as 7 is absent in the reparameterized form of pg(2+—1 |2+, Yo)v=o (see Equations

(TT) and (12)).
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Table l Impact of the constant hyperparameter 7, which controls the variance in the reverse process,
on denoising BPAE confocal images from the benchmark dataset FMD.

FMD-Confocal-BPAE-Raw
T S n v =0.0 v =3.0 v =9.0
PSNRT  SSIMt  LPIPS|  PSNRtT  SSIMT LPIPS| PSNRT  SSIMt  LPIPS|
0.0 383752  0.9575 0.0295 44.1429  0.9855 0.0047 433732 0.9830 0.0073
100 10 0.5 383752 09575 0.0295 44.1440  0.9855 0.0047 43.3738  0.9830 0.0073
1.0 383752  0.9575 0.0295 44.1468  0.9855 0.0047 433743  0.9830 0.0073
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C.11 ADDITIONAL QUALITATIVE RESULTS

(a) Reference (b) Noisy (c) DnCNN (d) DDPM (e) ResShift (f) RDIM-1 (g) RDIM-10 (h) Ground Truth

SIDD

SIDD

Figure 12: Qualitative denoising analysis on cropped regions from the SIDD dataset. Since SIDD
contains noisy images captured under challenging lighting conditions, brightness-adjusted crops of
the marked regions are shown in the bottom row for enhanced visualization.
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Figure 13: SR qualitative comparison on cropped regions from the DIV2K subset with unknown

degradation.

(b) LR (Bicubic) (c) ResShift (d) GOUB

(b) LR (Bicubic)  (c) ResShift

x4 SR

(e) UniDB (HCTMSR  (¢) RDIM-PQ-1 (a) Reference (e) UniDB (HCTMSR  (2) RDIM-PQ-1
& (b) LR (Bicubic)  (c) ResShift (d) GOUB S (b) LR (Bicubic)  (c) ResShift (d) GOUB
< <
| . . |

(a) Reference (e) UniDB (HCTMSR (g) RDIM-PQ-1 (a) Reference (HCTMSR ~  (g) RDIM- PQ i

Figure 14: SR qualitative comparison on cropped regions from the DIV2K subset with bicubic
downsampled images.
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1883 Figure 15: Qualitative comparison of RDIM-PQ-1 on x4 SR. Cropped regions from the DIV2K
1884 subset, with bicubic downsampled images, suggest RDIM achieves greater structural and texture
1885 fidelity than bridge-based models.
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1932  Figure 16: Denoising results of RDIM-10 on images from the FMD and SIDD datasets. For improved
1033  visualization, only cropped regions are shown. RDIM is trained with 7' = 100 and v = 3.0. Inference
7934  is conducted with S = 10 and n = 1.0.
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(a) Original (b)x2 SR (c) x4 SR

Figure 17: x2 and x4 SR results of RDIM-10 on images from the DIV2K dataset under unknown
degradations. RDIM is trained with 7" = 100 and y = 3.0. Inference is conducted with .S = 10 and
n = 1.0. In (b) and (c), the left side represents the input image and the right side the output.
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(a) Original (b) Inpainting (c) Colorization (d) Deblurring

Figure 18: Image inpainting, colorization, and deblurring results of RDIM-10 on images from the
FFHQ dataset. For inpainting, pixels in the original images are randomly masked and set to zero with
probability pn.sk = 0.5. For colorization, grayscale inputs are obtained by converting the original
RGB images to luminance. For deblurring, synthetic blurred images are generated from ground truth
images by applying a Gaussian blur with kernel size 15 x 15 and standard deviation o = 3.0. RDIM
is trained with 7' = 50 and v = 3.0. Inference is conducted with .S = 10 and n = 1.0. In (b), (c) and
(d), the left side represents the input image and the right side the output.
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