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Abstract
Efficiently scaling Large Language Models
(LLMs) necessitates exploring alternatives to
dominant autoregressive (AR) methods, with
Masked Diffusion Models (MDMs) emerging as
candidates. However, comparing AR (typically
decoder-only) and MDM (often encoder-only)
paradigms is confounded by differing architec-
tures, obscuring true algorithmic and efficiency
trade-offs. This research decouples these factors
by evaluating MDMs within a decoder-only
framework to: (1) Equitably compare MDM
(as Any-Order AR) and standard AR paradigms
through discrepancies on orders. (2) Investigate
MDM architectural impacts on computational
efficiency. We show decoder-only MDMs, despite
a larger modeling space, can achieve significant
inference speedups (∼ 25×) and comparable per-
plexity with techniques like temperature anneal-
ing, offering a path to reduced inference compute.
This work provides insights for developing more
computationally efficient foundation models by
disentangling core modeling choices from archi-
tectural influences. Code is available at https:
//github.com/scxue/AO-GPT-MDM.

1. Introduction
The pursuit of more powerful and efficient foundation
models drives continuous exploration beyond dominant
autoregressive (AR) methods. While AR models excel,
their sequential nature can present limitations in inference
efficiency. Discrete Diffusion Models [24; 8; 25; 1; 2; 12],
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Figure 1: AR models are decoder-only with causal attention,
while MDMs are encoder-only with full attention. This
architectural divergence complicates assessments of the un-
derlying modeling paradigms’ efficiency and effectiveness.

particularly Masked Diffusion Models (MDMs), offer a
promising alternative, with recent works like LLaDA [15]
and Dream [30] demonstrating scalability and competitive
performance. However, evaluating the true algorithmic and
efficiency benefits of MDMs is complicated by a common
practice: comparing AR models (typically decoder-only,
causal attention) against MDMs implemented with distinct
architectures (often encoder-only, full attention), as
illustrated in Figure 1. This conflation makes it challenging
to discern whether observed differences in performance or
computational cost stem from the modeling paradigm itself
or the architectural shift.

This architectural divergence is critical, as choices like
causal versus full attention profoundly impact training
data utilization, memory footprint, and inference la-
tency—key factors in the overall compute budget. For
instance, standard decoder-only AR models achieve O(n)
generation complexity (with KV-caching), whereas typical
encoder-only MDMs can incur O(n2) costs. Intriguingly,
recent studies [4; 10] suggest full attention might offer
inherent advantages even for AR-like generation, despite
its non-causal association. This underscores the urgent need
to decouple the effects of the theoretical formulations (AR
vs. MDM) from the underlying attention mechanism to
accurately assess and improve model efficiency.

Building upon this observation, we propose and evaluate
MDMs (as Any-Order AR) implemented within a decoder-
only framework, a deliberate choice to enable a more
equitable comparison against conventional AR models. This
setup allows us to isolate variables and answer the following
two questions: (1) Given the same decoder-only architec-
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ture, what are the fundamental differences in modeling
capabilities and empirical performance between the standard
AR formulation and the AO-AR formulation for language
tasks? (2) For Masked Diffusion Models on language tasks,
what are the theoretical and empirical differences using an
encoder-only versus a decoder-only architecture?

To address these questions, we introduce AO-GPT1, a
decoder-only model designed for any-order sequence
modeling. In Section 3 (Findings 1-4), we analyze the
first question, focusing on how different token prediction
orderings impact convergence speed and learning dynamics,
seeking algorithmic insights into the inherent properties
of language that affect training efficiency. Subsequently,
Section 4 (Findings 5-7) tackles the second question by
comparing encoder-only and decoder-only MDMs. This
includes a theoretical analysis of their modeled conditional
probability spaces, computational complexity, and an
empirical evaluation of perplexity, generation speed.
Notably, we investigate pathways for significantly reducing
inference compute with decoder-only MDMs.

By rigorously decoupling modeling paradigms from
architectural choices, this work aims to provide clear
insights into the algorithmic and efficiency trade-offs
involved. Our findings contribute to the broader goal of
designing more computationally efficient and effective
foundation models, offering guidance for future research
in both discrete diffusion and language modeling.

2. Preliminary
2.1. Modeling Paradigms: AR, AO-AR, and MDM

Language modeling fundamentally involves estimat-
ing the probability of a sequence x. AR models
achieve this by factorizing the likelihood via the
chain rule, typically in a fixed left-to-right order:
− log pθ(x) = −

∑n
i=1 log pθ(xi|x<i) =: LAR. Any-

Order Autoregressive (AO-AR) models [27; 29; 9; 17]
generalize this by aiming to model the likelihood averaged
over all n! possible factorization orders (permutations
− log pθ(x) ≤ Eσ∼U(Sn)[−

∑n
i=1 log pθ(xσi |xσ<i)] =:

LAO-AR. MDMs [1; 2; 12], a prominent type of discrete
diffusion model, progressively mask tokens in a forward
process and learn to reverse it. Recent work [22; 21; 16]
has shown that the training objective for MDMs, LMDM,

1In this paper, AO-AR refers to the generative formulation,
which can be implemented with either encoder-only or decoder-
only architectures. In contrast, AO-GPT denotes our model that
combines the AO-AR objective with a decoder-only architecture.

can be simplified and is equivalent to LAO-AR.

LMDM =

∫ 1

0

1

t
Eqt|0(xt|x0)

 ∑
i:xi

t=[MASK]

− log pθ(x
i
0|xt)

 dt.

(1)

2.2. Experimental Setup Overview

To facilitate our comparative study, we develop AO-GPT, a
decoder-only model designed for any-order autoregression,
building upon σ-GPT [17] for its alignment with modern
LLM architectures. Key enhancements include refined po-
sitional information injection and EMA. Our experiments
use OpenWebText [6] for training and standard benchmarks
(LAMBADA, WikiText, PTB, 1BW) for evaluation, follow-
ing SEDD [12] for data processing. A comprehensive de-
scription of preliminary, AO-GPT, training details, and spe-
cific experimental settings can be found in Appendix A, B.

3. Standard AR vs. Any-Order
AR (MDM): A Decoder-Only Comparison

As established in the preliminaries and further elaborated
by NADE [27] and recent analyses such as RADD [16], the
training objective for MDMs (LMDM) is equivalent to that
of Any-Order AR models (LAO-AR). This equivalence can
be formally expressed as LMDM =∫ 1

0

1

t
Eqt|0(xt|x0)

 ∑
i:xi

0=[MASK]

− log pθ(x
i
0|xt)

 dt

[16]
= n · El∼U(1,...,n)

1

n− l + 1
Eσ∼U(Sn)

n∑
r=l

− log pθ(xσr |xσ<l)

[27]
= Eσ∼U(Sn)

[
n∑

i=1

− log pθ
(
xσi |xσ<i

)]
= LAO-AR

(2)
This mathematical equivalence is pivotal. It implies that
when MDMs (via their AO-AR formulation) and standard
AR models are implemented using the same decoder-only ar-
chitecture, the fundamental difference in their training objec-
tives lies in the distribution over token orders. Standard AR
models adhere to a fixed, left-to-right order (i.e., the permu-
tation σ is the identity, σ = id), while AO-AR models (and
thus MDMs) effectively learn by averaging over all possible
n! permutations (σ ∼ U(Sn)). Therefore, the central goal
of this section is to investigate the following key question:

Question 1: Given the same decoder-only architec-
ture, what are the fundamental differences in modeling
capabilities and empirical performance between the
standard AR formulation and the AO-AR formulation
for language tasks?

To address Question 1, we first examine the training dynam-
ics of these two approaches when implemented within an
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Figure 2: Training loss curves comparing a standard AR
GPT against an AO-GPT. Both models employ an identi-
cal decoder-only architecture, with AO-GPT demonstrating
slower initial convergence.

identical decoder-only architecture, specifically focusing on
their convergence behavior. We train a standard left-to-right
AR model and an AO-AR model on the same OpenWeb-
Text [6] dataset, with exactly the same architecture and
model size (standard GPT-2 Small size), and observe their
loss progression. Specifically, we simultaneously compare
the AR loss Equation (6) and AO-AR loss Equation (7). In
the figure, these are labeled ‘Left-to-Right’ and ‘Any-Order’,
respectively. Our initial experiments, illustrated in Figure 2,
reveal a notable difference in training progression:

Finding 1: Any-Order GPT converges significantly
slower in initial training stages compared to its stan-
dard GPT counterpart when both utilize the same
architecture.

This initial observation (Finding 1) suggests that the
any-order objective (σ ∼ U(Sn)), despite its flexibility,
might slow initial learning due to increased task complexity
compared to the fixed left-to-right (σ = id) order. The
slower AO-AR convergence could arise from two main
factors: (1). Weight Sharing Burden: learning representa-
tions effective across n! permutations is demanding. (2).
Prevalence of Less Informative Orders: many permutations
in U(Sn) might be uninformative or act as noise.

To further probe the effect of prediction order, we next
evaluate model training under conditions where a single,
predetermined order is maintained throughout. We compare
models trained on: a) conventional left-to-right (σ = id), b)
a singular, randomly sampled permutation (σrand ∈ Sn) that
remains fixed for the entirety of the training phase, and c) a
block-wise permutation strategy, serving as an intermediate
approach. Globally, this method processes blocks of tokens
sequentially from left to right. However, within each block,
tokens are processed according to a fixed, non-left-to-right
permutation. For example, if the sequence is divided into
4-token blocks, the first block of tokens (indices 0,1,2,3)
would be processed in the order 0 → 2 → 3 → 1. The next
block (indices 4,5,6,7) would then be processed as 4 → 6 →
7 → 5. This specific intra-block permutation remains con-
stant throughout training. Figure 3(a) presents these results.
The comparison in Figure 3(a) leads to our second finding:
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Figure 3: (a) Convergence speed with different fixed predic-
tion orders: left-to-right, fixed random, and fixed block-wise
random. (b) Impact of adding 10% left-to-right (L2R) data
to AO-GPT training on its L2R and any-order loss.

Finding 2.1: Even when both are trained on only one
fixed order, the standard Left-to-Right order converges
much faster than an arbitrary, randomly selected fixed
order from Sn.
Finding 2.2: Fixed block-wise random serves as an in-
terpolation between Left-to-Right and purely random
order in terms of convergence speed.

Remark 3.1 (Identical Loss Lower Bound). The minimum
achievable cross-entropy loss for any autoregressive factor-
ization is the true entropy of the data, H(x). By the chain
rule, H(x) =

∑n
i=1 H(xσi

|xσ<i
) for any permutation

σ ∈ Sn. Thus, the optimal loss value is identical regardless
of the chosen generation order (e.g., left-to-right, any fixed
random order, or averaged over all orders as in AO-AR).
Differences in convergence or final empirical loss values
therefore reflect practical learning challenges and inductive
biases under different ordering schemes, not a difference
in the achievable target for a perfect model. This ensures
the fairness of our loss comparisons.

This underscores language’s intrinsic left-to-right structure.
While order-agnosticism (and thus MDMs) offers flexibility,
averaging over all permutations may be less optimal. Given
the observed slower convergence of purely Any-Order mod-
els (Finding 1) and the apparent advantage of the L2R order
(Finding 2), a natural question arises: can we retain the flex-
ibility of AO-GPT while mitigating its convergence draw-
backs, perhaps by guiding it with some explicit L2R signal?

To explore this, we investigate the effect of incorporating a
small fraction of standard Left-to-Right (L2R) ordered data
directly into the training process of an AO-GPT. Specifically,
we modify the sampling of generation orders σ such that
90% of training instances use an order sampled uniformly
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from Sn (i.e., σ ∼ U(Sn)), while the remaining 10% of
instances use the fixed L2R order (σ = id). The impact of
this hybrid approach on training dynamics and performance
is illustrated in Figure 3(b). Also, as shown in Table 4
under the ”Left-to-Right” evaluation, our AO-GPT model
incorporating this 10% L2R data achieves significantly
lower zero-shot validation perplexity compared to a purely
any-order trained σ-GPT, underscoring the substantial
improvement in final loss achieved by this hybrid approach.
This experiment yields two significant observations:

Finding 3.1: Incorporating a small fraction (10%) of
explicitly Left-to-Right ordered data into the training
of an AO-GPT drastically improves its performance
(both convergence speed and final loss) when evalu-
ated on standard Left-to-Right.

This result, while perhaps not entirely unexpected given the
inherent structure of language, is starkly illustrated when
comparing final performance metrics. More surprisingly,
this hybrid training strategy also benefits the model’s
any-order capabilities:

Finding 3.2: A small fraction (10%) of Left-to-Right
data can even improve the model performance on
Any-Order data.

Finding 3.2 is particularly intriguing. It suggests that highly
structured L2R patterns provide a beneficial inductive bias
or a more stable learning signal, helping the model learn
fundamental linguistic structures more effectively. This, in
turn, appears to enhance generalization across arbitrary per-
mutations, rather than being a mere data trade-off. This phe-
nomenon itself warrants dedicated investigation beyond our
initial exploration, as a comprehensive understanding of this
cross-order benefit is a promising direction for future work.

4. Comparing Encoder-Only and
Decoder-Only for Masked Diffusion Models

Building on the insights from comparing AR and AO-AR
within a decoder-only framework, we now turn our attention
to the impact of the architectural choice itself when
implementing an Any-Order Autoregressive (or Masked
Diffusion Model) formulation. This leads to our second
research question:

Question 2: For Masked Diffusion Models (or AO-
AR) on language tasks, what are the theoretical and
empirical differences using an encoder-only versus a
decoder-only architecture?

To address Question 2, we analyze how encoder-only and
decoder-only architectures differ in modeling the univariate
conditional probabilities p(xj |xE) that underpin AO-AR
or MDM, where j is the index of the target token and
E ⊂ {1, . . . , n} \ {j} is the index set of observed context

tokens xE .

4.1. Modeling Univariate Conditional Probabilities

Order-Invariant Formulation: For encoder-only AO-AR,
the computed conditional probability pθ(xj |xE) is
order-invariant. Provided that each token in xE is correctly
paired with its positional encoding, the permutation of
these token-position pairs within the input does not alter
the output probability for xj .

Order-Dependent Formulation: For decoder-only
AO-AR, the inherent asymmetry in causal attention means
the prediction pθ(xj |xE , σE) is order-dependent even each
token in xE is correctly paired with its positional encoding.
The probability explicitly depends on the sequence σE in
which the context tokens xE are presented to the model.

Henceforth, we refer to pθ(xj |xE) as an order-invariant
conditional probability and pθ(xj |xE , σE) as an order-
dependent conditional probability. The distinction between
order-invariant and order-dependent modeling leads to
different counts of the effective conditional probability
space covered by each architecture.

Finding 5: Encoder-only AO-AR models n · 2n−1

order-invariant univariate conditional probability
while decoder-only AO-AR models approximately e·n!
order-dependent univariate conditional probability.

Encoder-only AO-AR: This architecture models the
probability of predicting any token xj (n possibilities)
given any subset xE of the other n − 1 tokens. Since
the order of xE does not matter, we count the number
of distinct pairs (j, E). For each target j, there are 2n−1

possible subsets E. Therefore, the model represents n ·2n−1

unique order-invariant conditional probabilities. This
quantity can be derived combinatorially: summing over
all possible context sizes k (from 0 to n − 1), we choose
k context tokens (

(
n
k

)
ways) and have n− k possible target

tokens. The total is
∑n−1

k=0

(
n
k

)
(n− k) = n · 2n−1.

Decoder-only AO-AR: This architecture models order-
dependent probabilities. While it can potentially generate
samples according to any of the n! permutations, the
fundamental units are pθ(xj |xE , σE). To count the number
of distinct such terms, we again sum over context size k.
For a fixed context set E of size k and a fixed target j, there
are k! possible orderings σE . Therefore, the total number
of distinct order-dependent probabilities is:

Nordered =

n−1∑
k=0

(
n

k

)
︸ ︷︷ ︸
Choose
context

(n− k)︸ ︷︷ ︸
Choose
target

k!︸︷︷︸
Order

context

= n!

n−1∑
i=0

1

i!
(3)

As n → ∞, this sum quickly converges to e · n!. This
significantly larger number compared to the encoder-only
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case reflects the decoder’s sensitivity to the permutation of
the context. The core difference highlighted by these counts
is whether the model’s prediction p(xj | . . . ) is conditioned
on the context as an unordered set xE (encoder) or as an
ordered sequence (xσE(1), . . . ,xσE(k)) (decoder).

4.2. Ensemble on Context Order

As shown in Figure 4, decoder-only AO-AR models
exhibit higher zero-shot perplexity than their encoder-only
counterparts. We hypothesize this performance gap is
due to the inherently harder task faced by decoders: they
must learn to represent approximately e · n! distinct
order-dependent conditional probabilities, a vastly larger
space than the n · 2n−1 order-invariant conditionals
modeled by encoders. Given that the increased number
is completely due to the order of context tokens xσ<i

,
we introduce an ensembling technique for evaluating
LAO-AR = Eσ∼U(Sn) [

∑n
i=1 − log pθ (xσi

|xσ<i
)]. For

each individual conditional probability pθ (xσi
|xσ<i

), we
generate M random permutations of the context sequence
xσ<i . The probability used for the loss calculation,
pens(xσi

|xσ<i
), is obtained by averaging the model’s

predictions across M permutations of the context xσ<i
:

pens(xσi |xσ<i) =
1

M

M∑
j=1

pθ
(
xσi |xpermj(σ<i), permj(σ<i)

)
.

(4)
Here, permj signifies the j-th permutation of the context
sequence. (We always include the identity permutation
among the M permutations in practice.) Crucially, while
the order of the input sequence fed to the model is
permuted, each token remains associated with its original
positional encoding. This averaging process approximates
the order-invariance of an encoder by marginalizing over
the context order. The results in Figure 4 show that the
ensemble on order context fills the gap.

Finding 6: Decoder-only AO-AR fall shorts of their
Encoder-only counterpart, while ensemble on order
context fill the gap.

4.3. Generation Computational Complexity

The reverse process in MDMs iteratively recovers masked
tokens as qs|t =

∏n−1
i=0 qs|t(x

i
s|xt), where qs|t(x

i
s|xt)

=


1, xi

t ̸= [MASK],xi
s = xi

t
s
t
, xi

t = [MASK],xi
s = [MASK]

t−s
t
q0|t(x

i
s|xt), xi

t = [MASK],xi
s ̸= [MASK].

(5)

Here, q0|t(x
i
s|xt) (when xi

t = [MASK]) represents a
distribution over the vocabulary for predicting a non-
[MASK] token, provided by the model. Sampling xs from
qs|t(xs|xt) involves sampling each xi

s independently. For

Table 1: Generation Perplexity measured by GPT-2-Large of
AO-GPT-Medium and SEDD-Medium across different gen-
eration steps and sampling settings (Top-p and Temperature
(Temp)). Lower values are better.

Setting Steps
Top-p,
Temp Model 64 128 256 512 1024

1.0, AO-GPT 194.5 154.8 148.0 140.3 136.4
1.0 SEDD 121.5 100.0 86.4 87.6 81.6

0.95, AO-GPT 33.5 29.3 27.3 27.0 26.9
0.9 SEDD 25.4 22.0 19.5 19.0 19.3

0.95, AO-GPT 6.1 5.6 5.5 5.1 4.6
0.7 SEDD 6.4 6.0 5.2 5.0 5.1

positions i where xi
t ̸= [MASK], xi

s is deterministically set
to xi

t. For positions where xi
t = [MASK], a more efficient

two-stage sampling procedure can be employed, as stated
in Lemma 4.1.

Lemma 4.1 (Efficient Sampling Algorithm). For sampling
xi
s from qs|t(x

i
s|xt) as defined in Equation (5) when

xi
t = [MASK], an equivalent sampling procedure is:

1. Sample a binary variable b ∼ Bernoulli
(
s
t

)
.

2. If b = 1, set xi
s = [MASK].

3. If b = 0, sample xi
s from the distribution q0|t(·|xt).

It reduces computational cost by only requiring the eval-
uation of q0|t(·|xt) when b = 0. The proof of equivalence
and a detailed discussion of the computational benefits are
provided in Appendix E.

Leveraging both the KV-cache mechanism and the efficient
sampling technique from Lemma 4.1, decoder-only AO-AR
models significantly reduce per-step computational costs.
At each generation step, the KV-cache obviates recomputing
context tokens, while efficient sampling (Lemma 4.1)
restricts computation to only those tokens designated
for unmasking. This synergy reduces the computational
complexity of each step to O(1), a marked advantage
over their encoder-only counterparts. Our findings are
summarized as follows:

Finding 7: The computation complexity of generating
a length n sequence using encoder-only AO-AR is
O(n2); with both KV-cache and Lemma 4.1, decoder-
only AO-AR’s computation complexity is O(n).

The O(n) total complexity for decoder-only AO-AR models
(Finding 7) translates directly into tangible performance
gains. This theoretical advantage is empirically validated
by the significant generation speedups visualized in Figure
5. Beyond speed, we also evaluated the unconditional
generation perplexity. To ensure a fair comparison and
address the observation by [31] that float32 Gumbel
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Figure 4: Zero-shot unconditional perplexity (↓) for varying ensemble sizes. An ensemble size of 1 represents the baseline
model without ensembling.
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Figure 5: Generation time versus number of generation steps
with sequence length 1024 and batch size= 32 for decoder-
only AO-AR models (with KV-cache and Lemma 4.1) and
their encoder-only counterparts (SEDD).

noise (as used in SEDD [12]) can lower effective temper-
ature, we utilized float64. We then compared AO-GPT
and SEDD under three distinct annealing configurations:
1) no annealing (Top-p 1.0, Temperature 1.0), 2) mild
annealing (Top-p 0.95, Temperature 0.9), and 3) appropriate
annealing (Top-p 0.95, Temperature 0.7). The detailed
results of generation perplexity are in Table 1, with the
main conclusions summarized in Findings 8.1 and 8.2.

Finding 8.1: AO-GPT can achieve 25× speedup on
generation compared with SEDD.
Finding 8.2: AO-GPT exhibits higher generation per-
plexity without logit annealing, while appropriate an-
nealing brings its perplexity to a comparable level.

The observed perplexity difference, particularly without
annealing (Finding 8.2), can be attributed to AO-GPT’s
lower modeling likelihood compared to SEDD when consid-
ered in non-ensembled configurations. Thus, while SEDD
might achieve better perplexity for models of comparable
size, AO-GPT’s striking 25x speed advantage (Finding
8.1) presents a compelling trade-off between generation
quality and practical inference speed. The findings in
this section illuminate the significant distinctions between
encoder-centric and decoder-centric approaches, suggesting
that exploring how to synergistically combine their
respective advantages is a crucial direction for future work.

5. Conclusion and Limitation
In this work, we conducted a systematic investigation
to decouple the effects of modeling paradigms (AR vs.
MDM) from their commonly associated architectural
choices (decoder-only vs. encoder-only). By implementing
MDMs (as AO-AR) within a decoder-only framework, we
facilitated a more equitable comparison and explored ar-
chitectural influences within the MDM paradigm itself. Our
comparison of autoregressive (AR) and masked diffusion
models (MDMs) within a decoder-only framework revealed
that MDM’s uniform order-agnosticism may be suboptimal
for language, given its inherent left-to-right structure. This
suggests future MDM research could benefit from exploring
non-uniform order distributions, balancing modeling
power with data alignment and efficiency. Furthermore,
contrasting encoder-only and decoder-only MDMs high-
lighted decoders’ significantly lower generation complexity
(e.g., linear vs. quadratic), though encoders offer unique
advantages like bidirectional attention and context order
invariance. These insights underscore the need to consider
architectural impacts beyond formulation when comparing
models, and affirm the strong potential of decoder-based
MDMs as an efficient direction for future exploration.

Our experiments were conducted on models of up to
medium size (e.g., 350M parameters). Whether these
observations generalize to significantly larger computational
scales remains an open question. Furthermore, this work fo-
cused on language; the applicability of our findings to other
discrete data modalities is uncertain, especially as many
such modalities may not possess the strong left-to-right
sequential structure inherent in natural language.

The development of our AO-GPT model itself represents
a significant contribution. To enhance any-order modeling
within decoder-only architectures, we conducted extensive
architectural ablations, particularly concerning the injection
of target position information, and explored training strategy
improvements such as Exponential Moving Average (EMA)
and order-mixtures. Further details on these model-specific
developments are provided in Appendix B.
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Impact Statement
This paper presents work whose primary goal is to
advance the understanding and efficiency of machine
learning techniques for language modeling, specifically by
comparing and refining autoregressive and masked diffusion
approaches. While advancements in language model effi-
ciency and capability can have broad societal consequences,
both positive and negative, which are actively discussed
in the wider AI community, we do not believe our specific
architectural and algorithmic investigations introduce novel
societal impacts that require unique highlighting beyond
those generally associated with progress in this field.
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Appendix
The appendix provides supplementary material to the main paper, beginning with Section A, which is the full version of the
preliminary. Section B introduces AO-GPT, a decoder-only model aimed at unifying autoregressive and masked diffusion
paradigms. This section details its broader significance, architectural considerations for injecting target position information,
and an exploration of its design space, including ablation studies on target position injection strategies like adaptive
LayerNorm (adaLN) and the impact of Exponential Moving Average (EMA). Following this, Section C offers further
experimental specifics, including model hyperparameters and architectural details for different AO-GPT sizes, alongside
additional results such as zero-shot validation perplexity scores for smaller models and qualitative unconditional text samples
generated by AO-GPT Medium. Section D then situates AO-GPT within the context of existing research, covering areas
like any-order density estimation, other decoder-only any-order models, and randomized image generation. Finally, Section
E presents a detailed proof and discussion for Lemma 4.1 concerning an efficient two-stage sampling procedure.

A. Preliminary
A.1. Background

Autoregressive (AR) Models factorize the data’s likelihood using the chain rule from left to right:

− log pθ (x) = −
n∑

i=1

log pθ (xi|x<i) := LAR. (6)

Any-Order Autoregressive (AO-AR) Models, unlike standard AR models which rely on a fixed factorization order, aim
to model the likelihood of averaging or marginalizing over all possible n! permutations of the data sequence. Prominent
examples include NADE [27], XL-Net [29], Autoregressive Diffusion Models [9], and σ-GPT [17]. The log-likelihood
can be expressed as:

− log pθ (x) = − logEσ∼U(Sn)pθ (x|σ)

≤ Eσ∼U(Sn)

[
−

n∑
i=1

log pθ (xσi
|xσ<i

)

]
:= LAO-AR.

(7)

Discrete Diffusion Models. Among the various approaches within the discrete diffusion framework, MDMs (also known
as absorbing state diffusion models) have gained significant attention. These models define a forward noising process where
tokens are progressively masked:

qt|0 (xt|x0) =

n∏
i=1

qt|0
(
xi
t|xi

0

)
=

n∏
i=1

Cat
(
xi
t; (1− t)δxi

0
+ tδ[MASK]

)
. (8)

Here, t ∈ [0, 1] represents the diffusion time (or masking level), interpolating between the original data x0 (t = 0) and
a fully masked sequence (t = 1). D3PM [1] and CTMC [2] follow the approach of DDPM [24; 8] to learn the posterior
distribution p0|t(x0|xt) through maximizing the Evidence Lower Bound. SEDD [12] formulates discrete diffusion models
using the likelihood ratio pt(x)

pt(y)
, and using denoising score entropy to learn the likelihood ratio.

More recently, studies by MDLM [22; 21] and RADD [16] have shown that for masked diffusion models, different
parameterizations are equivalent, and the training objective can be simplified or directly derived from the likelihood. This
leads to the following objective function, which is an ELBO on the data likelihood:

− log pθ (x) ≤
∫ 1

0

1

t
Eqt|0(xt|x0)

 ∑
i:xi

0=[MASK]

− log pθ(x
i
0|xt)

dt := LMDM. (9)

LMDM and LAO-AR have been shown to be equivalent through simple derivations using techniques in NADE [27]
and RADD [16]. In the remainder of the paper, we will use the terms ”Masked Diffusion Models” and ”Any-Order
Autoregressive Models” interchangeably, as they are equivalent.
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A.2. Decoupling Formulation and Architecture

Training Efficiency. Decoder-only models (Causal LM) leverage almost every token for prediction, offering high signal
density. Encoder-only MDMs, while predicting more tokens (on average, 50%) than traditional Masked LM (15% ∼ 25%),
still typically utilize fewer tokens per example than their AR counterparts.

Density Estimation Efficiency. To evaluate a joint density of a sequence under a given order (e.g, left-to-right), A
decoder-only model computes sequence likelihood in a single pass (O(n) complexity). In contrast, an encoder-only model
requires n separate network evaluations, leading to O(n2) complexity.

Generation Efficiency. Inference procedures also differ markedly. Standard decoder-only AR models generate n tokens
through n sequential forward passes; efficient Key-Value (KV) caching makes the total complexity approximately O(n).
In contrast, encoder-only MDMs require T iterative refinement steps. With each step processing the full sequence via full
attention (O(n) per step), their total complexity is around O(T · n). Notably, T (the number of steps) is often comparable
to n, partly due to conditional independence assumptions when generating multiple tokens simultaneously [11; 28]. For
comparison, decoder-only masked diffusion models can also achieve O(n) complexity.

These fundamental differences in training, density estimation, and inference characteristics across architectures highlight
the critical need to decouple the generative formulation (AR vs. MDM/AO-AR) from architectural choices (causal decoder
vs. full-attention encoder). Without such decoupling, comparing a standard decoder-only AR model to an encoder-only
MDM inevitably conflates these two variables, obscuring a fair assessment of each paradigm.

A.3. Experiment Setting

Our approach trains MDMs using a decoder-only AR framework. A fundamental requirement for this is enabling the model
to predict tokens in an arbitrary, non-sequential order, a departure from standard left-to-right autoregression. To achieve this
order-agnostic capability, we build upon the σ-GPT architecture [17], which integrates explicit target position information
to guide predictions. We selected σ-GPT as our foundation over alternatives like XL-Net [29] due to its architectural
alignment with contemporary decoder-only large language models.

Building on this baseline, our AO-GPT incorporates several key enhancements. We explore and refine methods for injecting
target position information more effectively within the Transformer blocks and investigate the impact of training techniques
such as Exponential Moving Average (EMA) to improve stability and performance. The inference mechanism for the
diffusion steps also leverages an efficient sampling algorithm (Lemma 4.1) to minimize computational costs.

A comprehensive exposition of the AO-GPT architecture, its training paradigm, the specific design choices and ablations
(including target position injection strategies and EMA), and the inference procedure is detailed in Appendix B.

Following SEDD, we train our models on the OpenWebText dataset [6], as the original WebText dataset is not publicly
available. For evaluation, we test on a suite of standard benchmarks: LAMBADA [18], WikiText2 [14], PTB [13],
WikiText103 [14], and the One Billion Words dataset [3]. A context length of 1024 tokens is utilized for all experiments.
For data splits and processing, we exactly follow the methodologies outlined in SEDD, which includes techniques such
as packing sentences to generate uniform-length input blocks.

B. AO-GPT: a Decoder-only Model with the Potential to Unify AR and MDM
B.1. Significance and Future Potential

We highlight here its broader significance and future potential. The development of efficient and effective decoder-only
MDMs like AO-GPT is crucial for several reasons:

Broader Scope: Firstly, the strong left-to-right sequentiality inherent in natural language, which often favors standard
autoregressive (AR) models, may not be as pronounced in other discrete data modalities. For domains such as biological
sequences, symbolic music, or certain structured code representations, the inherent flexibility of an any-order AR approach
could be more naturally suited. Implementing such models within a decoder-only architecture, as AO-GPT proposes, could
offer substantial advantages over rigidly ordered AR models, potentially leading to more effective modeling and generation
in these diverse fields.

Efficiency: Secondly, within the realm of language modeling itself, the pursuit of decoder-only MDMs is driven by a
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Figure 6: Target position injection strategies for decoder-only AO-AR model.

compelling trade-off between modeling paradigms and computational efficiency. Decoder-only AO-AR offers significant
theoretical and empirical advantages in density estimation and generation in terms of theoretical computational complexity
and empirical generation speed (as discussed in Section A.2, 4 and indicated by Finding 7, 8.1).

Flexibility: Thirdly, decoder-only AO-AR frameworks like AO-GPT exhibit superior flexibility in controlling the
distribution over token generation orders. While encoder-only AO-AR models can vary the distribution of the number
of masked tokens, they cannot easily specialize to a strict, fixed-order autoregressive model (e.g., left-to-right). In
contrast, decoder-only AO-AR models can directly learn from any permutation distribution P (Sn). This allows them to
instantiate a standard left-to-right AR model by simply using the identity permutation (σ = id), or to train on hybrid order
distributions (as shown in Section 3). This adaptability uniquely positions them to interpolate between, and potentially
unify, autoregressive and masked diffusion paradigms within a single architecture.

B.2. Injecting Target Position Information

In this section, we will give a comprehensive description of the modeling details, training, and inference of masked diffusion
models using a decoder-only architecture. To train autoregressive models on sequences in any order with a decoder-only
model, a key architectural modification is necessary compared to standard GPT: adding explicit target position information.
In a traditional AR model setup (like GPT), the model implicitly predicts the token immediately succeeding the current
one; the target position is always the next index in the sequence.

However, when processing sequences in a shuffled order according to a permutation σ = (σ1, . . . , σn), the token at step
t in the shuffled sequence is xσt

, and the target token to predict at step t is xσt+1
. The original position σt+1 is not fixed

relative to the current step t, but varies depending on the specific permutation. Therefore, at step t, to predict xσt+1 , the
model should access the information of the input representation for tokens xσ≤t

, its position in the original sequence (σ≤t),
and crucially, the original position σt+1 of the next token to be predicted in the shuffled sequence. This is necessary because
transformers need the explicit target original position (σt+1) to identify which specific original position’s token it should
predict next, a requirement absent in fixed-order prediction.

We identify two existing decoder-only architectures for training order-agnostic autoregressive models: XL-Net [29] and
σ-GPT [17]. XL-Net incorporates the target position using two-stream attention, a mechanism that differs significantly
from mainstream decoder architectures. Therefore, we do not adopt this approach. In contrast, σ-GPT incorporates the
target position through an additional target positional encoding on a standard GPT architecture as Figure 6(a). Thus, we
choose to adopt σ-GPT as a baseline method.

B.3. Design Space of AO-GPT

B.3.1. TARGET POSITION INJECTIONS

We observe slow convergence in σ-GPT, particularly during its initial training stages. Beyond the factors analyzed
in Section 3, we hypothesize that the semantic requirements imposed by the target position significantly influence the
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Figure 8: Ablation on Exponential Moving Average (EMA)

predicted token, potentially more so than a simple target position encoding can adequately capture. For instance, in the
sentence She put the in the , the first blank typically requires a noun representing a movable object (e.g., book,
key, food), while the second necessitates a noun denoting a container or location (e.g., box, drawer, fridge).
The distinct lexical distributions for these two positions suggest that a single, undifferentiated target position encoding
applied after the token embedding may be insufficient to model these nuanced, position-dependent semantic constraints.

To address this potential limitation, we propose and ablate three distinct strategies for incorporating richer target position
information, all designed to incur negligible additional computational cost: (1) Figure 6(c) re-applying the same target
positional encoding at the input of each Transformer block; (2) Figure 6(d) utilizing distinct, learnable target positional
encodings for each Transformer block; and (3) Figure 6(b) conditioning the LayerNorm parameters [20; 19] within each
Transformer block on the target position. As shown in Figure 7, the former two ways demonstrate some early training
acceleration compared to the baseline, but their advantages diminish in later stages, eventually performing nearly identically
to the baseline. In contrast, the adaptive LayerNorm (adaLN) approach shows consistent improvements throughout
the entire training process. This suggests that dynamically modulating LayerNorm parameters based on target position
provides a more effective and stable way to incorporate positional information, likely because it allows for finer-grained,
context-dependent normalization at each transformer block.

B.3.2. EXPONENTIAL MOVING AVERAGE

While Exponential Moving Average (EMA) of model weights is a less common technique in the pre-training of standard
autoregressive language models, it is a widely adopted practice in the training of both continuous and current discrete
diffusion models, where it often contributes to improved sample quality and training stability. Given the potential for EMA
to smooth the training trajectory, and potentially to help smooth out noise, allowing the optimization to converge to the
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Table 2: Zero-shot validation perplexity(↓) on a variety of datasets on GPT-2-medium sized models (∼350M). †Model
reproduced by the authors. ‡Model trained with an additional 10% left-to-right ordered data.

Model LAMBADA WikiText2 PTB WikiText103 1BW

Left-to-Right
σ-GPT† 61.05 44.80 121.48 43.68 76.74
AO-GPT‡ 42.44 31.52 87.56 30.86 50.23

Any-Order
σ-GPT† 57.27 43.28 126.11 41.80 74.81
AO-GPT‡ 49.79 33.73 101.01 32.38 65.90

target loss more efficiently, we conducted an ablation study to assess its impact on OA-GPT. We experimented with several
EMA decay rates: 0.99, 0.999, and 0.9999, comparing these against a baseline model trained without EMA. Our results
in Figure 8 indicate a clear benefit to employing EMA. All tested EMA configurations outperformed the baseline model
(no EMA). Notably, an EMA decay rate of 0.9999 yielded the best performance among the values tested.

Having established the individual benefits of adaptive layerNorm (adaLN) for target position injection and exponential
moving average (EMA) for training, we investigate their combined effect on AO-GPT. Figure 9 illustrates the training
loss progression for both Left-to-Right and Any-Order objectives when integrating both adaLN and EMA (with a decay
of 0.9999) into the σ-GPT baseline. The results demonstrate that these two enhancements are largely orthogonal, with their
combination leading to significantly improved convergence and lower final loss values compared to the baseline σ-GPT and
models with only one of the improvements. This synergistic effect is further corroborated by the zero-shot perplexity scores
presented in Table 2, where the fully enhanced AO-GPT (incorporating adaLN, EMA, and 10% L2R data) substantially
outperforms the reproduced σ-GPT baseline across all evaluated datasets for both Left-to-Right and Any-Order evaluations.

B.4. Parallel Generation Attention Mask

The reverse process in MDMs iteratively recovers masked tokens as follows:

qs|t =

n−1∏
i=0

qs|t(x
i
s|xt),where qs|t(x

i
s|xt) =


1, xi

t ̸= [MASK],xi
s = xi

t
s
t , xi

t = [MASK],xi
s = [MASK]

t−s
t q0|t(x

i
s|xt), xi

t = [MASK],xi
s ̸= [MASK].

(10)

Here, q0|t(xi
s|xt) (when xi

t = [MASK]) represents a distribution over the vocabulary for predicting a non-[MASK] token,
provided by the model. Sampling xs from qs|t(xs|xt) involves sampling each xi

s independently. Crucially, AO-GPT,
equipped with the specialized attention mask depicted in Figure 10, can compute these probabilities q0|t(xi

s|xt) for different
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Table 3: AO-GPT Model Specifications

Parameter Small Medium

nlayers 12 24
dmodel 768 1024
nheads 12 16
dhead 64 64
Batch Size (tokens) 0.5M 0.5M
Learning Rate 6.0× 10−4 3.0× 10−4

Weight Decay 0.05 0.05
Adam β1 0.9 0.9
Adam β2 0.95 0.95
EMA 0.9999 0.9999

i in a single forward pass. This mask ensures that the prediction for each masked token xi
s is conditioned only on the

unmasked tokens present in xt and its own position, without attending to other concurrently predicted masked tokens.
Consequently, this parallel prediction scheme for multiple masked tokens introduces no training/inference mismatch for
the individual q0|t(xi

s|xt) distributions, as each is generated under conditions consistent with the model’s training.

C. Additional Experiment Details and Results
C.1. Model Details

The AO-GPT models were trained with several common hyperparameters. Specifically, both Small and Medium models
used a dhead of 64, a batch size of 0.5M tokens, a weight decay of 0.05, Adam optimizer parameters β1 = 0.9 and β2 = 0.95,
and an Exponential Moving Average (EMA) decay of 0.9999. The learning rate was 6.0× 10−4 for the Small model and
3.0× 10−4 for the Medium model. Architectural details like nlayers, dmodel, and nheads are the same with the GPT-2 specific
to each model size as detailed in Table 3. We trained AO-GPT on nodes of 8 H800 80GB. For the input adaptive layer
norm, we use a target positional encoding of 128 hidden dimensions to minimize its impact on increased parameters.

C.2. Additional Results

Table 4 presents zero-shot validation perplexity scores on the same suite of datasets for medium-sized model(∼350M param-
eters). Table 5 presents zero-shot validation perplexity scores on the same suite of datasets, but for models of a smaller scale
(GPT-2-small size, ∼125M parameters). This allows for an examination of how the different approaches (SEDD, RADD,
GPT-2, σ-GPT, and our AO-GPT with its enhancements) compare at different model sizes. Furthermore, to offer a qualitative
assessment of AO-GPT’s generative capabilities, we provide unconditional text samples generated by our AO-GPT Medium
model. Figures 11, 12, and 13 showcase these generated passages under different sampling configurations (varying top-p
and temperature settings). These examples illustrate the model’s ability to produce coherent and contextually relevant text.
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Table 4: Zero-shot validation perplexity(↓) on a variety of datasets on GPT-2-medium sized models (∼350M). †Model
reproduced by the authors. ‡Model trained with an additional 10% left-to-right ordered data.

Model LAMBADA WikiText2 PTB WikiText103 1BW

Left-to-Right
Encoder-only Models

SEDD 39.19 30.29 88.18 30.05 53.54
RADD 38.60 29.71 76.00 29.96 52.36

Decoder-only Models
GPT-2 35.66 31.80 123.14 31.39 55.72
σ-GPT† 61.05 44.80 121.48 43.68 76.74
AO-GPT‡ 42.44 31.52 87.56 30.86 50.23

Any-Order
Encoder-only Models

SEDD 42.77 31.04 87.12 29.98 61.19
RADD 41.96 29.96 79.06 28.51 57.07

Decoder-only Models
σ-GPT† 57.27 43.28 126.11 41.80 74.81
AO-GPT‡ 49.79 33.73 101.01 32.38 65.90
AO-GPT‡ + Ensembles (8 times) 45.08 30.63 87.74 29.46 59.11
AO-GPT‡ + Ensembles (64 times) 44.31 30.16 85.75 28.98 58.18

Table 5: Zero-shot validation perplexity(↓) on a variety of datasets on GPT-2-small sized models (∼125M). †Model
reproduced in this work. ‡Model trained with an additional 10% left-to-right ordered data.

Model LAMBADA WikiText2 PTB WikiText103 1BW

Left-to-right
Encoder-only Models

SEDD 49.41 41.19 118.74 41.70 72.60
RADD 49.09 38.26 107.78 38.41 63.33

Decoder-only Models
GPT-2 45.04 42.43 138.43 41.60 75.20
σ-GPT† 68.61 57.66 146.87 55.54 90.98
AO-GPT‡ 52.46 42.10 135.96 40.97 71.73

Order-agnostic
Encoder-only Models

SEDD 50.92 41.84 114.24 40.62 79.29
RADD 50.27 38.26 110.38 35.90 74.28

Decoder-only Models
σ-GPT† 65.83 53.08 138.61 50.75 87.71
AO-GPT‡ 59.93 46.33 141.92 45.44 84.36
AO-GPT‡ + Ensembles (8 times) 55.62 42.77 126.08 42.02 77.62
AO-GPT‡ + Ensembles (64 times) 54.92 42.24 123.49 41.51 76.73

D. Related Work
Any-Order Density Estimation Neural Autoregressive Distribution Estimation (NADE) [27] initially leveraged implicit
position awareness within its MLP architecture, parameterizing conditionals p(xod |p(xo<d) for an arbitrary ordering
o using a weight-sharing scheme inspired by RBMs. Masked Autoencoder for Distribution Estimation (MADE) [5]
adapted standard autoencoders by carefully masking connections to enforce autoregressive properties for arbitrary orders.
Autoregressive Diffusion Models (ARDMs) [9] integrated principles from diffusion processes, training a shared network
on masked modeling objective. Arbitrary Conditional Distributions with Energy (ACE) [26] utilizes energy-based models
to estimate arbitrary conditionals p(xi|xS). Training and inference on any-order autoregressive models the right way [23]
addresses model redundancy and training inefficiency. They propose training on a smaller set of univariate conditionals
p(xi|xS) and upweighting the training loss for conditionals expected to be frequent during inference, leading to improved
likelihoods without sacrificing tractable inference for arbitrary conditional queries. InDIGO [7] introduces a novel
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insertion-based decoding algorithm for Transformers, enabling flexible sequence generation in arbitrary orders. While
InDIGO demonstrates adaptive generation, our work further investigates the implications of such order-agnostic capabilities
within the discrete diffusion framework and its architectural consequences for likelihood modeling.

Existing Decoder-only Any-Order Model Adapting decoder-only Transformers for any-order tasks has led to distinct
approaches. XLNet [29] trained the model to predict tokens in all possible factorization orders to capture bidirectional
context. It incorporates the target position zt using a two-stream self-attention mechanism (content stream hzt and query
stream gzt), a mechanism that differs significantly from mainstream decoder architectures. σ-GPT [17] enables any-order
generation in a standard GPT architecture by incorporating the target position through an additional concatenated target
positional encoding. Specifically, to predict token xσ(t+1), the model receives the current token xσ(t), its original position
σ(t), and the original position of the target token σ(t+ 1), allowing any generation order.

Randomized Image Generation Randomized Autoregressive modeling (RAR) by Yu et al. followed σ-GPT [17] and
trained a standard autoregressive model with an additional target position encoding on permuted image tokens with
annealing during training. Rand-AR, proposed by Pang et al., is a decoder-only visual model trained on randomly permuted
image tokens, using an explicit position instruction token (which doubles the token length) before each image token to
specify the spatial location of the next token to be predicted. While RAR and Rand-AR both explored training on permuted
sequences, they primarily focused on the visual domain and differ from our work in several key aspects. (1) these methods
operate exclusively on image tokens. The statistical properties and inherent structures of image tokens (e.g., local spatial
correlations) are substantially different from those of language tokens, which exhibit more complex, long-range semantic
and grammatical dependencies. (2) their approach to generation and the theoretical framework varies. RAR, despite training
with permutations, ultimately anneals towards and generates images using a conventional raster scan order. Rand-AR does
consider parallel decoding by predicting tokens for specified positions; however, it does not explicitly investigate or establish
the connection between its order-agnostic generation and the principles of discrete diffusion models, a central aspect of our
study. (3) the evaluation focus of these vision-centric works is predominantly on generative quality metrics such as Fréchet
Inception Distance (FID) and Inception Score (IS). In contrast, our research places a strong emphasis on understanding
the fundamental differences in likelihood modeling capabilities (e.g., perplexity) between standard autoregressive and
order-agnostic/masked diffusion paradigms, particularly when controlling for architectural choices.

E. Proof and Discussion for Lemma 4.1
Lemma 4.1 states that for sampling xi

s from qs|t(x
i
s|xt) (Equation (5) in the main text) when xi

t = [MASK], an equivalent
two-stage sampling procedure can be used which reduces computational cost. We provide the proof of equivalence and
discuss the computational advantages here.

Proof. When xi
t = [MASK], the original distribution qs|t(x

i
s|xt) is defined as:

• P (xi
s = [MASK]|xt) =

s
t

• P (xi
s = v|xt) =

t−s
t q0|t(v|xt), for any token v ̸= [MASK].

Here q0|t(v|xt) is the probability of token v given by the model’s predictive distribution for the masked position. The
proposed procedure for xi

t = [MASK] is:

Stage 1: Bernoulli Trial. Sample a binary variable b ∼ Bernoulli
(
s
t

)
.

Stage 2: Determine xi
s.

• If b = 1 (occurs with probability s
t ), set xi

s = [MASK].

• If b = 0 (occurs with probability 1− s
t = t−s

t ), then sample xi
s from the distribution q0|t(·|xt).

We demonstrate that this two-stage procedure generates samples with probabilities identical to the original definition of
qs|t(x

i
s|xt) when xi

t = [MASK].

Probability of sampling xi
s = [MASK] with the new procedure: This event occurs if and only if the Bernoulli trial in

Stage 1 yields b = 1. Pnew(x
i
s = [MASK]|xt) = P (b = 1) = s

t . This matches the probability P (xi
s = [MASK]|xt) from

the original definition.
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Probability of sampling xi
s = v (where v ̸= [MASK]) with the new procedure: This event occurs if and only if the

Bernoulli trial in Stage 1 yields b = 0, AND xi
s is subsequently sampled as v from q0|t(·|xt) in Stage 2. The probability is:

Pnew(x
i
s = v|xt) = P (b = 0 and xi

s is sampled as v from q0|t)

= P (b = 0)× P (sample v from q0|t|b = 0)

=
(
1− s

t

)
× q0|t(v|xt)

=
t− s

t
q0|t(v|xt)

This also matches the probability P (xi
s = v|xt) from the original definition for v ̸= [MASK]. Since the probabilities for

all possible outcomes of xi
s (either [MASK] or any v ̸= [MASK]) are identical under both the original definition and the

two-stage sampling procedure, the two methods are mathematically equivalent.
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. That’s part of it. That’s what their challenges are.
Price cuts kept going up, and regressive tax cuts used to avoid the biggest recession deficits ever.
And gave Bill Clinton earlier everything that Frederick Douglass said would, and will, help provide stimulus, public goods
and extraordinary discovery of opposition to Republican New Deal. Like Dewey, failed Eisenhower, Bunyan, and other story,
Democratic nomination does not. I no need any of these huge votes. They don’t have nothing, because they need a party to
pull.
So this is going to be difficult. You can’t do more than either party got on. They can come up with a lot better than we do.
They could say oboe and no sir, like Democrats do. You could say they’re going to do. We frankly don’t care about whether or
not to. You know Eisenhower was a Republican and not a Democrat.
Hoith in the mid-1960s, in times of consensus about present threat to the budget and health care for seniors, the Democrats
were real conservatives. He more than vetoed the largest military budget everyone has now. Eisenhower, did. And that
continues to stand to haunt politicians. It’s a third year defense, and Democrats should be the best defending it.
Still, his big difference with government-paid premiums and deductibles and the federal commitment to keep bills slightly
lower, to the point.
Now Change did a little older, a lot less of aigg, delivering a public option to pay by premiums. Under his plan, seniors can
subsidize your health care as it is and they won’t give you the vouchers, anything. But they would let you Congress forward
using the old patterns, looking at Medicare, and making sharp adjustments.
That is what we did and Eisenhower also do, and Democrats well do have an alternative to it, it’s Romney. The Health Care
Act, from Clinton, provided this but, you know, Democrats have opposed it, undertaking the Social Security program until
roughly three years later, not after really the final reforms made Obamacare. That leaves Medicaid completely, but not the Bill
Health Insurance or WILI.
Instead, these taxes will be chained for a few years. Then die, while Federal reverses itself on waiting to stop the stimulus,
even now there is evidence that the American recovery, even now, has at best reached great stimulus, never zero.
Oh, you just put in a few fantasy. I have yet to run the CBO score, but it’s going to keep providing two to three hundred million
people, get as Census4–2008, or the amount of people who advocated to destroy those benefits.
But getting rid of the lion’s taxes doesn’t mean that Republican success, or it is. And there are other options. Republican care
plans want to make sure the elderly and the poor don’t pay taxes.
JOINS GROUP, JIM LEE, TOM MONLE, AUSTIN ZIENCEIN,
HEALTHY POLICE WOLFNEY:
SIGNED RESEARCHISM CLASS, PRINCESSES VECTOR:
—– ”Intellect would rather have this conversation, my kids’ children, and they’re going to say how I got insurance and Medicare
and we are gonna make the individuals younger, I’m saying Obama’s going to get out of the wages of most Americans.
But here’s what my point of view is: It’s constitutional. No, this is a government-run health care that is our entitlement that
everybody got to raise the children of their parents.” It should be a state-run entitlement.
But there’s a few points Republicans should pick up on.
To some people, this really is an antitrust problem. He had a monopoly right.
And this is one issue that Republican health reform is addressing. When you think of Obamacare, one of those things is
health care clearly.
Now, the antitrust of American health care is the antitrust issue.
So, to us people speak to them even if it was no problem. But the plan that would win the antitrust issue would not be
Obamacare.
Kaplan Unio tried to allow health care firms to discriminate between insurers and consumers and charge them the best
prices they can. With the nets rolled, the conservative media called any plan that took money to allow this micromanagement
essentially pushed doctors from, essentially, price schemes.
Counter-contradictory proposal for natural-buy new surcharge. Republicans argued that people could buy insurance after
union drug provisions kind of with union money.
Health insurance companies designed then still in buy in have entered discussion even saying they wouldn’t have to cover
abortion care. Because it’s in a doctor’s facility, it is a product of Blackburn’s bill... It’s an association. This was the bill at the
highest point. Democrats rejected. They were 96% against it.... What we wanted them to say was that

Figure 11: Unconditional generation result of OA-GPT Medium (top-p= 1.0, temperature= 1.0).
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that young people who were vulnerable need to be protected,” the lawsuit said. “He wanted the school to be a model for
people who violate our trust.”
The sexual assault trial had started in January of 2014. At 17, Madsen was a popular teacher of boys at the boys’ academy,
but resigned abruptly in 2010. He moved into substitute teaching and working on the force. A jury in 2013 convicted him of all
49 counts of sexual abuse for allegedly performing oral sex at the boys’ while he was a lieutenant.
In a similar case last year, a jury found that the district attorney’s office covered up allegations of sexual misconduct that
involves both female students and male students.
“It’s been a legacy of defense and secrecy being preserved for many months,” Barbara Cappadza, the chief deputy prosecutor
for the Sacramento County District Attorney’s Office, said on Thursday.
[California bureaucrat signs off deal to avoid criminal charges for covering up child sex abuse after school department
violence]
“I was shocked, the shocking thing about the case, is that it seemed so away from the role she took in knowing the officers
were involved in the case,” she said. “They said they did have a sense of familiarity with where the case was going.”
The lawsuit is the first time the office has pursued civil criminal charges, it says, against Madsen, the teacher, about the
abuse. This lets Cappadza, known by the Sacramento DA as a “proactive prosecutor, prosecute all alleged cases of sexual
misconduct cases.
“ Complaints and actions against child sex abuse are common in all investigations,” Cappadza said. “It’s possible all of the
criminal cases in this case go back to 2010.”
In an interview, an attorney for the county attorney’s office and the San Francisco Department of Children and Families, said
the agency had not filed criminal charges against the current officers in the case despite the fact they did not. They have not
publicly admitted to any sexual misconduct, nor that any such allegations have been made in public.
“The district attorney’s office still has the authority to resolve these allegations and has determined each individual involved is
in a confidential and inadvertent matter in the district attorney,” Cappadza said.
The lawsuit found that the county police have brought sexual misconduct allegations against the officers about 30 times. In
those cases, prosecutors find there is enough evidence even against officers and they may not be brought behind bars.
Charges against those who are fired are often steep and unusual. Madsen was previously fired from leading a school force of
about 100 officers, according to a report filed by a police inspector in 2013 by the school district’s police union.
Madsen complained that some of his officers were caught up in sexual misconduct accusations against officers around the
country at this time over the years.
In his conference remarks, he said that there are “a growing number” of 962 sworn officers and more than 600 in 13 of
California’s 32 cities at large.
Highprofile cases of alleged civil rights violations in California. Take a close look into the cover-up in the 2016 rape of 11.
(The New York Post)
The identity of the alleged victims could not be publicly released for the record, because prosecutors do not currently have a
Madsen witness in the case.
Nonetheless, they have said that they may themselves have been victims of sexual misconduct. They would concede,
however, that the allegations have been or were likely made before this case.
Human rights advocates say officers are hired and sanctioned by the public after lineups of the force. The American Society
is investigating similar complaints against a longtime member of the county police department alleging that he’s disciplined
twice in 2010 and 2011. Another officer reached just a guilty plea for reporting having sex with an underage student in a drug
program in 2013; he then was fired in 2013 and then was fired in the same year for another job.
The suit is an unusual one against Madsen, as well as a handful of other sexual misconduct suits.
Madsen, 47, was promoted early in his tenure as the Sacramento County High School Task Force head on Jan. 21, 2010, the
news outlet previously reported. He already completed three years probation after he pleaded no contest in 2012 to sexually
assaulting a female student.
“I went through a lot of changes. I wanted to start it, I wanted to know about it,” said Matilda Montoya, 35, who lost her sister
in Honduras in the West Hills town of Telarrugada, Colombia soon after in March.
“I really wanted to get started. If I could get involved, but I got stuck here. I should get back to my trip

Figure 12: Unconditional generation result of OA-GPT Medium (top-p= 0.95, temperature= 0.9).
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just say, “I’m gonna tell you, I don’t put my name on the show, but I want to tell you what I think. And it’s not what I want to say.
And I’m gonna tell the rest of you, in my campaign and, frankly, this country. And I know the people, as many people as there
are, they’re going to put you on it. Because you know, you can say on the radio, “I don’t care what you think. I don’t want to be
afraid of you. It’s a shame for you.”
Q: Well, it’s a great shame for you.
Q: Thank you. John.
Trump: Like I said. Q: Thank you.
Trump: Thank you.
Trump: Thank you. Well, we don’t have to go on and on.
Q: In the end, do you think we’re going to start to hear from listening to you.
I’m going to be afraid that we’re not going to be listening to you.
Trump: I think, I think, I think, that listening to the rest of the world, to the Europeans, is a danger to the world.
On the other hand, I think it’s the danger, maybe, or even the peril, that the U.S. is being, right now. I think, of course, is that
it has been said that we are not listening to the part of the world right now, the 1 percent of us. And the percent of people
that make up 1 percent of the world, the 1 percent of Americans, and frankly, the Europeans, and the rest of the world, the
rest of the rest of the world, I think that we do have the luxury of listening to the American people, in a way, listening to the
Europeans, and to start listening to the world and in some ways, start to think, and think about what we’re going to do to the
rest of the world.
I think the United States is going to be a very powerful country, a powerful country, a very powerful military, probably the
strongest military in the world, and a great power. I think that, at the end of the day, as the world’s largest economy, we’ll be
known as a superpower. But our country is the superpower of today, and if we lose that, we’re not going to be the dominant
power of the area, of the world, and we’re gonna be a threat to the world. We’ll be a threat to Europe, we’ll be in a threat to
each other, and a major threat to each other. We’ll be a threat, we’re a threat to the other parts of the world, as the Middle
East, as well, and as the Pacific, and obviously, the security world.
And that’s right, but we’re gonna leave, because the United States is still on the world. And if we leave, the U.S. will be the
threat to the 1 percent of the world, and of the world, of the European Union, the rest of the world, and frankly, the rest of the
Western world. It’s a big danger for us. And we have to start to think, as Americans and the way we think about it, understand
that this is important to us, because that’s the relationship this is that we’re going to have. We’ve got a great relationship with
the U.S. — and we’re in that relationship. It’s a vital relationship.
I think it’s important, I think I have to say, this don’t think is necessarily, it’s gonna be a loss of this, but it’s gonna be more than
that.
It’s not be like it used to be, the rest of the world, in terms of security, we’re gonna have to be smarter, I mean, and I think that
we’re gonna have to understand that we’re in more of a danger now, as a country, than we were, than we were in the past,
because we’ve got a system, it’s going to be more complicated, we’re going to have more ways to work with people all around
the world, we’re going to be a kind of danger.
In that sense, now I think we’re in a much more danger, actually. I think this is a danger, actually, to the American public, is
that much more serious and more dangerous.
That’

Figure 13: Unconditional generation result of OA-GPT Medium (top-p= 0.95, temperature= 0.7).
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