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ABSTRACT

Textual content is often the output of a collaborative writing process: We start with
an initial draft, ask for suggestions, and repeatedly make changes. Agnostic of this
process, today’s language models are trained to generate only the final result. As
a consequence, they lack several abilities crucial for collaborative writing: They
are unable to update existing texts, difficult to control and incapable of verbally
planning or explaining their actions. To address these shortcomings, we introduce
PEER, a collaborative language model that is trained to imitate the entire writing
process itself. PEER can write drafts, add suggestions, propose edits and pro-
vide explanations for its actions. Crucially, we train multiple instances of PEER
able to infill various parts of the writing process, enabling the use of self-training
techniques for increasing the quality, amount and diversity of training data. This
unlocks PEER’s full potential by making it applicable in domains for which no
edit histories are available and improving its ability to follow instructions, to write
useful comments, and to explain its actions. We show that PEER achieves strong
performance across various domains and editing tasks.

1 INTRODUCTION

Large neural networks show impressive text generation capabilities when pretrained with a language
modeling objective (Radford et al., 2019; Raffel et al., 2020; Brown et al., 2020; Rae et al., 2021;
Zhang et al., 2022; Chowdhery et al., 2022, i.a.). However, the way these models operate – producing
outputs in a single pass from left to right – differs strongly from the iterative process by which
humans typically write texts. This limits their utility for collaborative writing in various respects;
for example, they are not able to retroactively modify or refine their own outputs. Beyond that, they
are hard to control (Korbak et al., 2022) and verifying their outputs is challenging as they often
hallucinate content (Maynez et al., 2020; Shuster et al., 2021; Nakano et al., 2021) and lack the
ability to explain their intentions. All of this makes it very difficult for humans to collaborate with
such models for writing coherent, factual texts.

To address these shortcomings of existing LMs, we propose PEER (Plan, Edit, Explain, Repeat),
a collaborative language model trained on edit histories to cover the entire writing process. As
illustrated in Figure 1, PEER operates in several steps that aim to mirror the human writing process:
For a given text, either a user or the model itself can plan an action to be applied, for example by
means of a natural language instruction. This plan is then realized by an edit, which the model
can explain both in form of a textual comment and by pointing to references used; this is enabled
by augmenting each input text with retrieved passages containing potentially relevant background
information. We repeat these steps until the text is in a satisfactory state that does not require any
further updates. This iterative approach does not only enable the model to decompose the complex
task of writing a consistent, factual text into multiple easier subtasks, it also allows humans to
intervene at any time and steer the model in the right direction, either by providing it with their own
plans and comments or by making edits themselves.

Similar to recent approaches for iterative editing (Faltings et al., 2021; Reid & Neubig, 2022), we use
Wikipedia as our main source of edits and associated comments, which we use as proxies for plans
and explanations. In contrast to this prior work, however, our goal is to obtain a collaborative model
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Fix incorrect 
information.

PLAN

Golden Guinea Breweries Plc (established 1970) is 
a Nigerian brewery located in Umuahia, Anambra 
State. It was founded in 1962[1] as an indigenous 
competitor to foreign manufacturers in the country.

EDIT

Corrected founding date

[1] africanfinancials.com: Golden Guinea 
Breweries was founded in 1962 and originally 
called Independence Brewery [...]

EXPLAIN

REPEAT

Figure 1: Illustration of the steps performed by PEER: First, either the user or the model specifies
a plan describing the action they want to be performed; this action is then realized by means of an
edit. The model can explain the edit both in natural language and by pointing to relevant sources.
We can repeat this process until the generated text requires no further updates.

that is useful beyond just Wikipedia: It should be capable of following human-written instructions
for updating texts in any domain. To achieve this goal, we train PEER not only to perform the writing
process illustrated in Figure 1 in sequential order, but also to infill various parts; for example, given
an edited text and a set of relevant documents, we teach it to produce the original version of this text
before it was edited. This enables us to use self-training techniques (e.g., Yarowsky, 1995; Sennrich
et al., 2016; He et al., 2020a; Schick & Schütze, 2021a) for training PEER with synthetic plans,
edits, explanations and documents. We show that this substantially improves PEER along several
axes, including its ability to edit texts in any domain, to understand human-written instructions, and
to explain its actions.

2 RELATED WORK

Text Editing Similar to our work, Faltings et al. (2021) train an editing model to follow plans
on Wikipedia data. However, they only consider single sentence edits, evaluate on Wikipedia data
only and do not explore approaches for improving data quality and coverage. Reid & Neubig (2022)
also train models on Wikipedia’s edit history, but do not consider plans, explanations or reference
documents. Several editing models are trained to solve specific tasks, such as updating informa-
tion (Logan IV et al., 2021), fixing grammar errors (Napoles et al., 2017; Awasthi et al., 2019) or
improving citations (Petroni et al., 2022). Various approaches teach models to iteratively improve
texts in an unsupervised fashion (e.g., Shen et al., 2020; Donahue et al., 2020; Li et al., 2022) and
explore more efficient ways of representing edits (Mallinson et al., 2020). Concurrent work of
Dwivedi-Yu et al. (2022) proposes EDITEVAL, a benchmark for evaluating editing models.

Instruction Tuning and Planning Explicitly teaching models to follow plans is related to recent
work that finetunes models on human-written instructions (Wei et al., 2022a; Sanh et al., 2022; Bach
et al., 2022; Ouyang et al., 2022; Wang et al., 2022). The idea of having a separate planning stage has
also been explored for other text generation tasks inlcuding summarization (Narayan et al., 2021),
data-to-text generation (Moryossef et al., 2019) and story writing (Yao et al., 2019). Our approach of
writing text by iteratively performing small updates has some similarity with recent approaches like
chain-of-thought prompting (Wei et al., 2022b; Dohan et al., 2022) and document sketching (Wu
et al., 2021), that also break down a complex task into multiple smaller steps.

Collaborative Writing Du et al. (2022a;b) investigate human-machine interactions for iteratively
improving documents; however, they focus mostly on syntactic edits that improve the fluency, co-
herence or style of a document. Lee et al. (2022) investigate using GPT3 (Brown et al., 2020) as a
writing assistant for creative and argumentative writing. In their setup, however, the model provides
suggestions for continuations without being controllable by means of natural language instructions.

Self-Training Our approach of using models to infill missing data closely resembles other self-
training and bootstrapping approaches used e.g. in word sense disambiguation (Yarowsky, 1995),
machine translation (Sennrich et al., 2016; Hoang et al., 2018), sequence generation (He et al.,
2020a), and few-shot learning (Schick & Schütze, 2021a;b). Similar to how we use models to turn
plain texts into sequences of edits, Dai et al. (2022) turn documents into dialogue sequences.
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It was founded in Umuahia, Anambra State.

It was founded in Umuahia, Anambra State in 1962.

africanfinancials.com
… was founded in 1962 and…

africanfinancials.com
It was shut down in 2003 …

bloomberg.com
… markets a wide range of…

Add more 
information.

Added founding date.
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Figure 2: Schematic representation of the PEER process. Left: Starting from a text xt, we use both a
plan pt and a collection of documents Dt = {d0t , . . . , dkt } to obtain an updated version xt+1 and an
explanation et of the performed edit; this process is repeated multiple times. Right: To generalize
to domains without editing histories, overcome data scarcity and improve the model’s core abilities,
we train various instances of PEER that perform different infilling tasks derived from this process.

3 PLAN, EDIT, EXPLAIN, REPEAT

The core idea of our proposed framework is to model the editing of textual content as an iterative
process, where we repeatedly plan and realize changes (see Figure 2, left). Each iteration within this
framework edits a text sequence xt to obtain an updated version xt+1. For this edit, we assume that
we are given a set of documents Dt = {d1t , . . . , dkt } containing relevant background information.1
Given xt and Dt, we first formulate a plan pt – a rough idea of how the text should be modified,
verbalized as a short text sequence like “add more information”, “fix grammar errors” or “use sim-
pler language”. This plan is then realized by means of an actual edit that transforms xt into the
updated state xt+1. Finally, the intention behind this edit can optionally be clarified by providing
a textual explanation et; this is especially relevant in collaborative settings where explanations can
facilitate evaluating the quality and usefulness of an edit (Liu et al., 2019). Note that the explanation
can be similar or even identical to the plan, the conceptual difference being that the plan is made
before performing the edit, whereas the explanation is only formulated after it was performed. The
entire process of formulating a plan, collecting documents, performing an edit and explaining it, can
be repeated multiple times to obtain a sequence of texts xt,xt+1,xt+2, . . . until either we arrive at
some xn for which xn = xn−1, or we reach a manually defined halting criterion. We can also write
texts from scratch by starting with an empty sequence, i.e., x0 = ε. In reference to its four main
parts, we refer to models based on this iterative process as PEER models.

While using PEER to break the complex task of writing a coherent, consistent and factual document
into many smaller subtasks has some potential benefits over standard left-to-right language modeling
– such as being more interpretable and easier to control – it is challenging to find data from which this
process can be learned at the scale required to train large language models. This is mainly because
edit histories are difficult to obtain from web crawls, the most important data source for current
language models (Brown et al., 2020; Rae et al., 2021). But even in cases where edit histories can be
obtained (e.g., by collecting crawls of identical pages at different times) or synthetically generated,
edits are typically not annotated with plans, documents, or explanations.

Similar to prior work on text editing (Faltings et al., 2021; Reid & Neubig, 2022), our first step
in overcoming this issue is turning to Wikipedia – a single source that comes close to fulfilling all
our needs: It provides a full edit history including comments on a diverse set of topics, is large
in scale, and articles frequently contain citations, which can be helpful for finding relevant docu-
ments. However, relying on Wikipedia as our sole source of training data comes with various severe
downsides: First, it makes trained models specific to Wikipedia in terms of how they expect textual

1This set aims to mirror the result of background research that humans may conduct before writing or editing
texts. However, modeling this research itself is beyond the scope of this work, so we consider Dt as given.
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content to look like and what plans and edits they predict. Beyond that, comments in Wikipedia are,
in many cases, not an appropriate proxy for plans or explanations. Finally, numerous paragraphs
in Wikipedia do not contain any citations; while this lack of background information can often be
compensated by using a retrieval system (Piktus et al., 2021; Petroni et al., 2022), even such systems
may not be able to find supporting background information for many edits.

4 INFILLING EDIT HISTORIES WITH PEER

We propose a simple approach to address all issues that arise from Wikipedia being our only source
of commented edit histories at once: We train not just one, but multiple instances of PEER that
learn to infill various parts of the editing process (Figure 2, right);2 these models can then be used
to generate synthetic data as a substitute for the missing pieces in our training corpus. In concrete
terms, we train the following encoder-decoder models:

• PEER-Edit: Given an input text and a set of documents, this model learns to both plan
and realize edits, i.e., it maps (xt, Dt) to the sequence (pt,xt+1). This is done in an
autoregressive fashion by factoring

p(pt,xt+1 | xt, Dt) =

n∏
i=1

p(zi | xt, Dt, z1, . . . , zi−1) (1)

where z = z1, . . . , zn = pt · xt+1 is the concatenation of pt and xt+1. Thus, PEER-
Edit can update texts autonomously by generating both plans and edits, but it can also be
provided with human-written plans as prefixes. As PEER-Edit is our main model for actual
editing, we also refer to it simply as PEER.

• PEER-Undo: Given a text sequence xt+1 and a collection of documents Dt that may have
been used to write it, this PEER instance is trained to guess and undo the latest edit by
predicting the sequence (pt,xt). This is done autoregressively analogous to PEER-Edit.

• PEER-Explain: This model is trained to autoregressively generate explanations ei given
(xt,xt+1, Dt), i.e., an edit and a collection of relevant documents.

• PEER-Document: Given (xt,xt+1,pt), this model is trained to generate a document d ∈
Dt that provides useful background information for the edit.

We use all variants of PEER to produce synthetic data – both to generate the missing pieces for
completing our training data, and to replace low-quality pieces in our existing data.

Decomposing Texts To enable training on arbitrary text data even if it comes without edit histories,
we use PEER-Undo for generating synthetic “backward” edits: Given a plain text x=xn and a
collection of documents D, we iteratively apply PEER-Undo to obtain a sequence (pn−1,xn−1),
(pn−2,xn−2), . . . until we arrive at some xm = ε. We can then train PEER-Edit in the opposite
direction, i.e., to predict each (pt,xt+1) from xt and D.

Generating Plans We use PEER-Explain to address both the low quality of many comments in our
corpus, and the fact that some edits may not have any comments. Given xt, xt+1 and a collection
of documents Dt, we sample various outputs e1t , . . . , e

k
t from PEER-Explain(xt,xt+1, Dt) that

explain the edit being made and act as potential plans. We then compute the likelihood of the actual
edit given each ejt and pick the one that makes this edit the most likely as its new plan:

p̂t = argmax
j∈{1,...,k}

p(xt+1 | xt, Dt, e
j
t ) (2)

where p(xt+1 | xt, Dt, e
j
t ) is the probability that PEER-Edit assigns to xt+1 given xt, Dt and ejt .

Generating Documents If we are cannot find relevant documents for an edit, we can use PEER-
Document to generate synthetic ones. We only do so for training PEER-Edit; we never provide
synthetic documents during inference. Analogous to plans, sample multiple documents from PEER-
Document and pick the one that helps PEER-Edit the most in predicting the actual edit.

2In preliminary experiments, we also tried training a single model to perform all infilling tasks at once, but
found this approach to perform worse.
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Table 1: SARI scores on all subsets of Natural Edits. Domain-adapted (DA) variants outperform
regular PEER, demonstrating the usefulness of synthetic edits generated with PEER-Undo.

Wiki News Cook. Garden Law Movies Politics Travel Workpl.

Copy 32.7 32.8 31.6 32.0 31.1 31.5 31.8 31.2 31.5
PEER (no plans) 50.7 41.3 36.3 35.1 35.8 35.3 36.5 34.8 34.7
PEER 55.5 49.3 40.2 37.7 36.4 39.2 38.7 38.1 36.7
PEER (DA) – 51.6 42.9 44.9 39.0 42.4 41.3 40.2 39.2

5 EXPERIMENTS

We conduct a series of experiments to investigate whether – despite Wikipedia being our only natural
source of comments and edits – our infilling techniques enable us to turn PEER into a general
purpose editing model capable of following human-written plans and tackling a range of editing
tasks in different domains. Specifically, we aim to answer the following questions:

• Can PEER follow plans and perform edits in domains for which no edit histories are avail-
able, and does self-training on decomposed texts improve this ability? (Section 5.1)

• Does the ability to follow plans based on Wikipedia comments transfer to instructions spec-
ified by humans, and can it be improved by training on synthetic plans? (Section 5.2)

• Can PEER make proper use of citations and quotes to explain generated outputs, and can
PEER-Document be used to amplify this? (Section 5.3)

• How does writing texts in a single pass compare to iteratively applying PEER? (Section 5.4)

Experimental Setup Our main training data is based on Wikipedia’s edit history. For each edit, we
use citations and a retrieval system (Petroni et al., 2022) to obtain up to 3 relevant documents D =
{d0, d1, d2}. We replace each citation of a document di with [[[i]]] or [[[i quote=qi]]]
depending on whether a specific subsequence qi of di was quoted in the original data. We simply
concatenate all inputs and outputs, separated by a special sequence. Further details are discussed in
Appendix A. We initialize all instances of PEER from an existing pretrained language model with
3B parameters. Each model is trained for 20,000 steps on 64 GPUs with an effective batch size of
256, corresponding to about five million Wikipedia edits.

5.1 NATURAL EDITS

We first evaluate PEER’s ability to follow plans and perform edits in domains for which no edit
histories are available. To this end, we introduce Natural Edits, a collection of naturally occuring
edits for different text types and domains that we obtain from three English web sources: We collect
encyclopedic pages from Wikipedia, news articles from Wikinews, and questions from the Cooking,
Gardening, Law, Movies, Politics, Travel and Workplace subforums of StackExchange. All of these
sites provide edit histories with comments that often elaborate on the edit’s intent and that we provide
to all models as plans. We split each dataset into training and test data. However, we only provide
plain texts instead of actual edits in the training sets of the Wikinews and StackExchange subsets,
enabling us to test editing abilities in domains for which no edit histories are accessible. Relevant
statistics for Natural Edits are shown in Table 6.

To leverage available plain texts, we use PEER-Undo as described in Section 4 and create syn-
thetic in-domain edits on which we train domain-adapted (DA) variants of PEER. These variants are
finetuned on a balanced mixture of examples from the original training distribution and synthetic
edits for 1,000 steps; we do so separately for the Wikinews and StackExchange subsets of Natural
Edits, resulting in two instances of domain-adapted PEER. Results shown in Table 1 illustrate that
plans are extremely helpful across domains, indicating that the ability to understand plans found
in Wikipedia edits directly transfers to other domains. Importantly, the domain-adapted variants of
PEER outperform regular PEER for all subsets of Natural Edits. This demonstrates the effectiveness
of generating synthetic edits for applying PEER in different domains.
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Table 2: Downstream task results for PEER and various baselines, divided into three groups: (a) a
copy baseline, T5-based models, and PEER (b) 175B parameter decoder-only models, (c) supervised
SotA. The first numbers for each task are SARI scores; additional metrics are GLEU for JFLEG, EM
for WNC and Update-R1 for FRUIT. Supervised scores from left to right are from Ge et al. (2018),
Martin et al. (2020), Du et al. (2022b), Pryzant et al. (2020) and Logan IV et al. (2021), respectively.
The best result for models in the first group is shown in bold, the best zero-shot performance overall
is underlined. On average, PEER (SP) clearly outperforms all baselines.

Without Documents With Documents
Model Params JFLEG ASSET ITER WNC FRUIT WAFER Avg

Copy – 26.7 / 40.5 20.7 30.5 31.9 / 0.0 29.8 / 0.0 33.6 28.9
Tk-Instruct 3B 31.7 / 38.7 28.3 36.2 30.3 / 0.0 12.7 / 3.9 1.6 23.5
T0 3B 42.9 / 38.6 28.6 28.1 17.8 / 0.0 13.1 / 5.7 6.1 22.8
T0++ 11B 35.9 / 43.8 25.8 36.1 27.0 / 0.0 16.1 / 3.7 3.9 24.1
PEER 3B 54.8 / 55.1 29.9 36.5 56.4 / 31.9 39.4 / 28.3 35.2 42.0
PEER (SP) 3B 59.0 / 57.2 33.2 37.1 56.6 / 32.7 40.3 / 33.9 35.5 43.6
PEER (SP) 11B 59.9 / 58.6 32.4 37.8 58.8 / 34.7 40.7 / 33.5 35.9 44.3

OPT 175B 49.2 / 49.4 25.8 31.4 25.1 / 0.0 35.6 / 27.4 21.1 31.4
GPT3 175B 50.6 / 51.8 25.0 30.7 26.0 / 0.5 33.6 / 25.9 22.9 31.5
InstructGPT 175B 62.3 / 60.0 35.4 38.2 33.9 / 0.7 37.5 / 23.4 29.2 39.4

Sup. SotA – – / 62.4 44.2 37.2 – / 45.8 – / 47.4 – –

5.2 DOWNSTREAM TASKS

So far, we have evaluated PEER using plans based on naturally occurring comments. But to what
extend is it capable of following instructions formulated by humans to yield well known editing
functionalities, and can training on synthetic plans improve this ability? To answer these questions,
we evaluate PEER on various editing tasks in a zero-shot fashion. We use the following datasets:

• JFLEG (Napoles et al., 2017) is a grammatical error correction dataset with single-
sentence inputs written by English language learners;

• ASSET (Alva-Manchego et al., 2020) is a corpus for single-sentence text simplification;

• ITERATER (Du et al., 2022b) is an editing dataset spanning five edit intentions across
three different domains;3

• WNC (Pryzant et al., 2020) is a dataset where the task is to remove or mitigate biased
words to make sentences more neutral;

• FRUIT (Logan IV et al., 2021) contains texts from Wikipedia that need to be updated; for
performing this update, various reference documents from Wikipedia are provided;

• WAFER-INS (Dwivedi-Yu et al., 2022) is based on the WAFER dataset (Petroni et al.,
2022); the task is to insert a sentence in a Wikipedia paragraph given documents from the
Sphere corpus (Piktus et al., 2021) that contain relevant background information.

In addition to PEER-Edit, we also consider a variant trained with synthetic plans; that is, we replace
each original plan with one generated by PEER-Explain as described in Section 4. We refer to the
PEER-Edit variant trained on these synthetic plans as PEER (SP). We compare to various baseline
models: Tk-Instruct (Wang et al., 2022), T0 and T0++ (Sanh et al., 2022), three models that are
initialized from the LM Adapt variant of T5 and finetuned on collections of manually written in-
structions. We also compare to OPT (Zhang et al., 2022) and GPT3 (Brown et al., 2020), two large
LMs with 175B parameters, and InstructGPT (Ouyang et al., 2022), the instruction-tuned variant of
GPT3.4 We formulate a single plan p per task that we provide to all models (see Appendix E.2) and
use greedy decoding. We do not perform any task-specific finetuning or in-context learning as we
are interested in evaluating each model’s suitability as a general editing model: In the general case
of a user providing a plan, we cannot assume access to other examples using the same plan.

3We only include edits from the non-meaning-changed categories “fluency”, “coherence” and “clarity”.
4We use the text-davinci-001 variant described in (Ouyang et al., 2022).
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Table 3: Accuracy on NE-Cite (without/with gold positions) and R1/R2/RL scores on both NE-
Quote and constrained NE-Quote. When given the correct position, PEER (SP) almost matches
the performance of the supervised Side model on NE-Cite, demonstrating its strong citing abilities.
Training on synthetic documents substantially improves PEER’s ability to quote relevant passages.

Model NE-Cite NE-Quote NE-Quote (con.)

Random – / 33.3 – 40.1 / 31.7 / 36.5
Unigram – / 34.2 – –
Side – / 91.1 – –
Lead – / – – 50.6 / 44.0 / 46.0

PEER 74.1 / 88.1 0.0 / 0.0 / 0.0 49.3 / 44.3 / 48.1
PEER (SP) 74.5 / 88.9 0.2 / 0.1 / 0.1 49.8 / 44.8 / 48.7
PEER (SQ) 74.9 / 87.9 13.6 / 11.9 / 12.9 58.1 / 54.6 / 57.3

Results are shown in Table 2. PEER substantially outperforms all baseline models based on LM
Adapted T5, with the 3B model achieving an average SARI (Xu et al., 2016) score of 42.0 across all
tasks, compared to 24.1 for the strongest T5-based baseline. PEER (SP) consistently outperforms
regular PEER, increasing average SARI by 1.6 points. This demonstrates the usefulness of gen-
erating synthetic plans to enhance PEER’s ability to follow instructions. Increasing model size to
11B improves results for most tasks. While OPT and GPT3 perform worse than PEER, InstructGPT
outperforms PEER for some tasks. However, it clearly lags behind PEER when it comes to handling
documents for updating text. Averaged across all tasks, it performs 4.1 points worse than PEER
(SP), despite being both larger and finetuned on human-annotated data. Our zero-shot models lag
behind the supervised SotA on average, but approach supervised performance in some cases.

5.3 CITATIONS AND QUOTES

Unlike our baseline models, PEER is capable of both citing and quoting from reference documents to
back up the claims it generates. This is useful in terms of explainability and verifiability, as it allows
users to fact-check these claims more easily; the ability to quote individual phrases – as opposed to
citing an entire document – is especially helpful for long documents. To facilitate the evaluation of
PEER’s ability to cite and quote, we consider both tasks in isolation. To this end, we introduce two
new datasets based on Natural Edits: NE-Cite and NE-Quote. For building these datasets, we create
examples from Wikipedia’s edit history where the only difference between xt and xt+1 is that a new
citation or quote was added, respectively. Further details are shown in Appendix E.3.

Importantly, PEER’s training data contains only few quotes. This is mainly because they are used
sparingly in Wikipedia. Moreover, we are unable to use the majority of edits containing quotes be-
cause they come from non-online sources or web pages that no longer exist, so we do not have access
to the documents that the quotes are taken from. To overcome this issue, we use PEER-Document
to write synthetic documents for all edits that add quotes and for which the actual document is miss-
ing. We finetune PEER on these examples, mixed with around 500k examples from the original
distribution, for 2,000 steps; we refer to this variant trained with synthetic quotes as PEER (SQ).

For NE-Cite, we use the percentage of times where the correct document was cited and the citation
was placed at the right position as evaluation metric. We consider three baselines: randomly picking
a reference, selecting the reference that maximizes the unigram overlap with xt, and using the Side
reranker (Petroni et al., 2022), a model trained on millions of Wikipedia citations. Unlike PEER,
none of these baselines is able to decide where to place the citation. We thus also consider a variant
of NE-Cite where models are told where to place the citation; for PEER, this is achieved through
constrained decoding. Scores both without and with providing the correct positions are shown in
Table 3. If not provided with the correct position, PEER puts the right citation at the right place in
74.1% of cases, with PEER (SP) slightly improving performance. When given the correct position,
PEER (SP) even comes close to the supervised Side model (88.9 vs 91.1), clearly outperforming the
other baselines. Finetuning on synthetic quotes does not significantly alter PEER’s citing ability.

Similar to citing, we also look at two variants of the quoting task: In the first variant, the model
needs to add a quote without any additional information; in the second variant, it is told where to
put it and which document to quote from. For this variant, we use constrained decoding (Cao et al.,
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Table 4: Rouge-1/2/L and QuestEval scores for various approaches on our Wikipedia intro gener-
ation test set. Length penalty (LP) is optimized on a dev set of 100 examples. WikiLM performs
better than autonomous PEER in terms of Rouge scores, but is outperformed by PEER in manual
and collaborative mode; all PEER models perform better in terms of QuestEval.

Model LP R1 / R2 / RL QuestEval

Wiki-LM 5.0 38.4 / 16.9 / 27.3 38.7
PEER (autonomous) 5.0 37.7 / 15.8 / 26.2 40.6
PEER (manual) 2.0 39.4 / 17.0 / 28.1 41.1
PEER (collaborative) 2.0 39.5 / 17.2 / 28.4 41.0

2021) to ensure that the generated quote is contained in the cited document. We consider two base-
lines: One that selects a random substring of n words from the cited document, and one that selects
the lead n words, where n is the median length of quotes in NE-Quote. Table 3 shows Rouge-1/2/L
scores (Lin, 2004) computed only on quotes. As can be seen, PEER and PEER (SP) are unable
to quote without constrained decoding. Training on synthetic documents improves performance,
but still results in low scores. Constrained decoding improves performance, but PEER still does
not outperform the lead baseline. However, PEER (SQ) achieves much stronger results in this set-
ting, improving R1/R2/RL scores by 7.5, 10.6 and 11.3 points over the lead baseline, respectively;
this demonstrates the effectiveness of using PEER-Document to generate synthetic documents for
improving PEER-Edit’s ability to explain generated claims by quoting from provided documents.

5.4 ITERATIVE EDITING FOR TEXT GENERATION

Finally, we investigate PEER’s ability to generate new texts from scratch. To this end, we collect a
set of 400 intro sections from Wikipedia, each with three reference documents. As a baseline, we
finetune the same language model that was used to initialize PEER as a conditional language model
on the exact same data that PEER was trained on – that is, the model is trained to predict xt+1 given
Dt and the page’s title, but not xt. However, we use a special character sequence to inform the
model about whether xt+1 is an intro section; we train this baseline, that we refer to as WikiLM,
with the exact same parameters as PEER.

We evaluate PEER in three modes: (i) an autonomous mode, where the model continuously writes
and realizes its own plans; (ii) a manual mode, where we give the model a series of human-written
plans. We choose a simple sequence of three plans that we use for all intros: p0 = “Create
page”, followed by p1 = p2 = “Add more information”; and (iii) a collaborative mode, where
human-written plans are interleaved with plans proposed by PEER; that is, we use the plan sequence
p0,p

′
0,p1,p

′
1,p2, where p0, p1 and p2 are as above, whereas PEER generates p′

0 and p′
1.

Table 4 shows performance on our test set with length penalties (Murray & Chiang, 2018) optimized
on a dev set of 100 intros. While WikiLM performs better than PEER in autonomous mode, PEER
in manual mode outperforms WikiLM by about one point Rouge-1, despite using very generic plans
that are identical for all intros; the collaborative mode further improves results slightly. To evaluate
the faithfulness of all models to the provided documents, we also consider QuestEval (QE) scores
(Scialom et al., 2021), which we compute in reference-less mode. Interestingly, all variants of PEER
perform considerably better in terms of QuestEval scores than WikiLM, suggesting that iteratively
updating text helps the model stay more faithful to the provided reference documents.

6 ANALYSIS

We take a qualitative look at how PEER performs in a truly collaborative setting where we manually
provide it with human-written instructions to write both a Wikipedia-style introductory section about
itself and a question about guacamole in the Cooking forum of StackExchange. For the introductory
section, we collect three reference documents containing this paper’s author list and affiliation, the
abstract, and the caption to Figure 1, respectively. We do not provide any documents for the Stack-
Exchange example. Figure 3 shows interactive sessions with PEER (SP, 11B) and PEER (DA, 3B)
for writing these texts, respectively. In each step, we generate three different model outputs – one
with beam search and two using top-p sampling with p = 0.9 – and manually pick one of them.
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How to make guacamole?
How do I make Guacamoles? I want to make it like the ones you 
can get at a Mexican restaurant. What kind of avocados are good 
for making Guacamole.
[guacamoles] [salad] [cheese] [pasta]

How to make guacamole?
How do I make Guacamoles? 
[guacamoles] [salad] [cheese] [pasta]

How to make guacamole?
[...] for making Guacamole. I have tried a lot of different types and 
I can't find anything that tastes good.
[salad] [food-science] [guacamoles]

Ask a question about making Guacamole

Add more to the question

– cheese pasta

Add more relevant tags

Add details about what I’ve tried so far

rewrote the guacamole question for clarity

PEER is a language model for collaborative writing developed by 
Meta AI Research. It can write drafts, add suggestions, propose 
edits and provide explanations for its actions.

PEER is a language model for collaborative writing developed by 
Meta AI Research.

PEER is a language model for collaborative writing developed by 
Meta AI Research.[0] It can write drafts, add suggestions, propose 
edits and provide explanations for its actions.

PEER is a language model for collaborative writing developed by 
Meta AI Research.[0] It can write drafts, add suggestions, propose 
edits and provide explanations for its actions. PEER performs four 
steps: plan, edit, explain and repeat.

How to make Guacamole guacamole? 
How do I make Guacamoles? I’m trying to make a good guac. I 
want to make it like the ones you can get at a Mexican restaurant. 
What kind of avocados are good for making Guacamole. guac? [...]

How to make guacamole? [...]
[guacamoles] [salad] [cheese] [pasta]

How to make guacamole? [...]
[salad] [food-science] [guacamoles]

Create a new page about PEER

PEER is a language model for collaborative writing developed by 
Meta AI Research.[0] [...] PEER performs four steps: plan, edit, 
explain, repeat. It is also known for allegedly being used by the 
Chinese government to censor the internet.

PEER is a language model for collaborative writing developed by 
Meta AI Research.[0] [...] PEER performs four steps: plan, edit, 
explain, repeat. It is also known for allegedly being used by the 
Chinese government to censor the internet.

Add info on what this model can do

Add citation for the model 
being developed by Meta AI

Add the four steps performed by PEER

Add info on the scandal

remove unsourced claim

Figure 3: Interactive editing sessions with PEER. Plans on green background are provided by a
human, plans on blue background by the model. Left: PEER (SP, 11B) writing a Wikipedia-style
text about itself. Right: PEER (DA, 3B) writing a question in the style of StackExchange.

As can be seen in Figure 3 (left), PEER composes information from various documents to follow
provided plans. It makes plausible assumptions, such as the model being developed by Meta AI,
despite this not being explicitly stated in any document, and is able to point to the author list (docu-
ment 0) as a reference. The model’s response to the fifth plan (“Add info on the scandal”) illustrates
a fundamental issue with many LMs: It accepts the premise of this plan and follows it by hallucinat-
ing a scandal about internet censorship. However, PEER is able to correct this misinformation in the
next step: When not provided with any human-written plan, the model itself writes the plan “remove
unsourced claim” and removes the false statement again. Figure 3 (right) shows how after domain
adaptation on synthetic edits, PEER is capable of writing and editing texts in domains other than
Wikipedia. In particular, it adapts to the structure of questions in StackExchange – consisting of a
title (bold), a text, and a sequence of tags – and to their style, which is very different from Wikipedia.
PEER proposes plans to fix errors it made in previous steps (such as removing the irrelevant tags
“cheese” and “pasta”). It is also able to follow plans like “Add more relevant tags”, despite tags
being a concept specific to StackExchange that does not occur in its Wikipedia training data.

7 CONCLUSION

We have introduced PEER, a language model that can act as a writing assistant by following plans
to perform a variety of different textual edits, ranging from syntactic and stylistic edits to changing
the meaning of a text by removing, updating or adding information. Through extensive experiments,
we have shown that training variants of PEER capable of infilling various parts of the editing pro-
cess enables it to perform edits in different domains, makes it better at following instructions and
improves its ability to cite and quote from relevant documents.
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A TRAINING DATA

Our main training data for PEER is derived from Wikipedia’s edit history,5 which directly gives us
access to raw tuples of source and target texts (zt, zt+1), from which we derive xt and xt+1 after
some preprocessing steps discussed below. Beyond that, the edit history also provides us with com-
ments ct that we use as proxies both for the plan pt and for the explanation et. Finally, as Wikipedia
articles frequently use citations to back up claims, we can obtain an initial set It of document iden-
tifiers (e.g., URLs) for all documents cited in either zt or zt+1. Our pipeline for transforming this
raw data into the PEER format consists of three steps: First, we use some heuristics for filtering
the data to remove low-quality edits and avoid overlap with any of our evaluation sets. We then use
It and a retrieval engine (Petroni et al., 2022) to obtain a collection of relevant documents Dt for
each edit; finally, we convert the data into a format suitable for sequence-to-sequence models. In the
following, we discuss all three preprocessing steps in more detail.

5We use the February 2022 dump available at https://dumps.wikimedia.org/enwiki/.
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A.1 FILTERING

As Wikipedia’s edit history contains several low quality edits and numerous instances of vandalism
(Potthast et al., 2008), we use some simple heuristics to improve data quality. In particular, we filter
out edits that were reverted at some point and edits that were automatically made by bots without
human involvement. Beyond that, we filter edits that affect more than two paragraphs and remove
all edits for pages that are used in any of the datasets we evaluate on. We also discard examples
where It contains document identifiers that we are unable to resolve (e.g., because they refer to web
pages that no longer exist). We filter out revisions with more than 50,000 characters. This makes
preprocessing more efficient, as our algorithm for computing diffs between different revisions has
squared complexity in the number of characters. Beyond that, we also filter out revision whose
comments contain any of the sequences “#”, “{{”, “}}”, “[[”, “]]”, “template”, “image”, “infobox”
and “pic”, as these are usually automatically generated or update parts of the page (such as images
and infoboxes) that we remove during preprocessing. We further remove all redirects. Within each
chunk of the Wikipedia dump, we downsample revisions for which the corresponding comment
occurs in more than 10 revisions so that on average, each comment occurs at most 10 times per
chunk. Finally, we filter out edits where either the source paragraphs or the target paragraphs have
more than 384 tokens.

A.2 RETRIEVING DOCUMENTS

A crucial aspect of PEER is its use of documents that contain relevant background information. We
thus aim to collect a set of documents Dt = {d1t , . . . , dkt } for each edit, with k being a hyperparam-
eter defining the number of documents; we set k = 3.

To obtain this set of documents Dt for an edit that maps xt to xt+1, we make use of the set It of
document identifiers occuring in xt or xt+1. For each document identifier, we get the corresponding
document from CCNet (Wenzek et al., 2020). We split the document into non-overlapping chunks
of 100 words and use the reranker of Side (Petroni et al., 2022) to find the best chunk given xt+1.

If the number of documents obtained from It is below the maximum number of documents per edit,
we also use the entire pipeline of Petroni et al. (2022) to find relevant documents in the Sphere corpus
Piktus et al. (2021) given xt+1. As this pipeline expects a special [CIT] token at the position for
which relevant documents are to be retrieved, we place this token right after the first position at
which xt and xt+1 differ, starting from the right. Note that obtaining documents with this approach
requires access to xt+1, so it would be impossible to apply this exact same procedure in real-world
settings. However, our focus is not on retrieving relevant documents, but on teaching PEER to
perform edits given this information.

A.3 FORMATTING

Our first formatting step is to remove all paragraphs from zt and zt+1 that are not affected by the
edit. We then remove Wikipedia-specific syntax, but with a few exceptions: We keep the syntax
for representing titles, bold text, text in italics and lists, enabling the model to learn how to perform
some basic formatting. We also keep links and, more importantly, citations, enabling PEER to learn
how to cite and quote from documents in Dt to back up the textual content it generates. We denote
the resulting text sequences with z′t and z′t+1.

We linearize each document dit ∈ Dt using its content ci and, if present, its title ti and the cor-
responding web site’s domain di as the sequence [i] di # ti # ci. We include the number i
in this representation to facilitate citing and quoting specific documents. To finally obtain xt and
xt+1 from z′t and z′t+1, we replace each citation of a document dit in both sequences with either
[[[i]]] or [[[i quote=qi]]] depending on whether in the original data, a specific subse-
quence qi of dit was quoted. As pt and et are already simple text sequences, we do not perform any
modifications to them.

If there are multiple inputs or outputs, we simply concatenate them using a special separator se-
quence. Moreover, if the text we are editing has a title, we always prepend this title to the original
input sequence.
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In addition to these formatting rules, we randomly remove the page’s title for 10% of all examples to
make sure that PEER can also work with inputs for which no title is available. We minimize 10% of
all examples by removing all sentences from both xt and xt+1 that are not edited, so that the model
also learns to handle and edit single-sentence inputs without context. Finally, to make sure that the
model can handle different numbers of reference documents, for 30% of examples we remove j
documents from Dt, where j is uniformly sampled from {1, . . . , |Dt|}. However, we only remove
documents that are not cited in either xt or xt+1. When linearizing the input and output sequences,
for each document dit ∈ Dt, we reserve up to 16 tokens for its domain, 32 tokens for its title, and
196 tokens for the actual content. We truncate all tokens that exceed these limits.

B CONTROL TOKENS

To improve the quality and diversity of synthetically generated plans, edits and documents, we
implement control mechanisms similar to Keskar et al. (2019) and He et al. (2020b) – that is, we
prepend specific control tokens to the output sequences that a model is trained to generate, and then
use these control tokens during inference to guide the model’s generations. In particular, we make
use of the following controls for different PEER models:

• For PEER-Explain, we control the output length as a proxy for the level of detail in gen-
erated explanations. We also control whether the generated comment starts with a verb in
infinitive form; this approximates the notion of an instruction, the format we expect hu-
mans to commonly use for communicating with PEER. Finally, we control whether there
is a word overlap between the explanation and the edit; preventing this during inference
makes sure that generated plans do not make editing trivial by exactly specifying which
words to add, remove or replace.

• For PEER-Undo, we control the difference in the number of words between xt+1 and xt.
Through this, we can ensure that the sequence xn,xn−1, . . . eventually terminates at xm =
ε and does not get stuck in an infinite loop.

• For PEER-Document, we control whether the generated document contains a given sub-
string. This is useful when we want the document to contain a specific quote that is referred
to in a Wikipedia edit.

We do not use any controls for PEER-Edit, because – unlike for other models, which have specific
and clearly defined tasks to solve – we do not make assumptions in advance about the types of
editing tasks that users might want to solve with PEER-Edit and the kinds of control tokens that
might be useful for these tasks.

Unlike Keskar et al. (2019), we do not introduce special control tokens, but simply express all
controls in the form key=value where both key and value are tokenized using the language
model’s regular tokenizer. In particular, we use the following keys and values:

• type: We use this key to control the type of output that PEER-Explain is supposed to
generate, with possible values being instruction (in which case the output starts with
a verb in infitive form) and other.

• length: This key controls the length of PEER-Explain’s output. Values include s (less
than 2 words), m (2–3 words), l (4–5 words) and xl (≥ 6 words).

• overlap: With this key, we control whether there is a word overlap between the edit and
the generated output of PEER-Explain; values are true and false.

• words: For PEER-Undo, this key is used to control for the difference in the number of
words in xt+1 and xt; accordingly, the possible values are all integers.

• contains: This control can be used to ensure that outputs generated by PEER-Document
contain a certain substring, which is provided as the value to this key.

C GENERATING SYNTHETIC DATA

For generating synthetic edits, we found it sufficient to apply PEER-Undo just once for each plain
text xt to obtain a tuple (pt−1,xt−1). Upon manual inspection, we also found that the generated
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plans pt−1 do not actually match the undone edit, so we use PEER-Explain as described in Section 4
to rewrite all plans.

When generating synthetic plans, we use the control tokens discussed in Appendix B to ensure a
diverse set of plan lengths. For 80% of generated plans, we enforce that they start with a verb and
have no word overlap with the performed edit, respectively.

For obtaining synthetic edits, we sample a single pair (pt,xt) for each xt+1 using top-p sampling
with p = 0.9. We sample the value for the words control token from a normal distribution with
µ = −10 and σ = 8, clipped at −40 and 10. These values were chosen to allow for a wide range
of different values, while also making sure that on average, forward edits increase the number of
tokens. We rewrite each pt with PEER-Explain using the exact same procedure that we use for
generating synthetic plans.

For obtaining synthetic plans, we generate 10 different plans with PEER-Explain using top-p sam-
pling with p = 0.9. For each pair of xt and xt+1, we use a single control sequence for sampling all
10 plans. We choose the length uniformly from {s,m,l,xl}, set type=instruction 80%
of the time and overlap=false 80% of the time.

For obtaining synthetic documents, we sample 10 documents from PEER-Document using top-p
sampling with p = 0.9, where contains is set to the quote from this document that is cited in
xt+1. We discard all documents that do not actually contain the quote, and then pick the document
that maximizes the probability assigned to the actual edit by PEER-Edit.

D TRAINING DETAILS

For training PEER, we use DeepSpeed (Rasley et al., 2020) to enable more efficient multi-GPU
training. We use a maximum learning rate of 10−4, warmup for 2,000 steps and linear decay. We
further use gradient clipping with a maximum norm of 1.0, weight decay of 0.01 and a dropout
rate of 0.1. The maximum sequence length is set to 1,024 and 384 tokens for input and output,
respectively.

E EVALUATION DETAILS

We use a variety of metrics to evaluate PEER and our baseline models on all tasks considered:

• Exact Match (EM) is the percentage of examples for which the performed edit exactly
matches a given target;

• EM-Diff is a variant of EM that is computed on the diff level;6

• SARI (Xu et al., 2016) averages match scores for the three word-level edit operations add,
delete and keep;7

• GLEU (Napoles et al., 2015) is a variant of BLEU (Papineni et al., 2002) proposed for
grammatical error correction tasks;

• Rouge (Lin, 2004) is a set of metrics based on n-gram overlap (Rouge-n) or longest com-
mon subsequences (Rouge-L);

• Update-Rouge (Logan IV et al., 2021) is a variant of Rouge that is computed only on
sentences updated during an edit.

E.1 NATURAL EDITS

In addition to the experiments conducted in Section 5.1, we check whether PEER actually learns
to make use of provided documents and plans by evaluating it on the Wikipedia subset of Natural
Edits. We compare regular PEER provided with gold plans to variants trained and evaluated (i)

6Diffs are obtained using Python’s difflib library. For a model output x′
t+1, we compute EM-Diff as

|diff(xt,xt+1) ∩ diff(xt,x
′
t+1)| ÷max(|diff(xt,xt+1)|, |diff(xt,x

′
t+1)|).

7We use the SARI implementation of EASSE (Alva-Manchego et al., 2019).
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Table 5: Results for variants of PEER on the Wikipedia subset of Natural Edits. Plans and documents
provide complementary information and substantially improve performance.

Model EM EM-Diff SARI

Copy 0.4 0.0 32.7
PEER 23.1 26.2 55.5
PEER (no plans) 18.0 19.8 52.0
PEER (no documents) 19.8 22.8 51.7
PEER (no plans/documents) 13.5 15.1 45.9

Table 6: Overview of the number of edits and plain texts (PT) in the train sets and the number of
edits in the test sets of Natural Edits. The final column shows whether the subset uses reference
documents.

Subset Train (Edit) Train (PT) Test Doc.

Wikipedia 6,960,935 – 4,000 ✓
Wikinews – 125,664 1,000 –
Cooking – 22,517 500 –
Gardening – 13,258 500 –
Law – 16,418 500 –
Movies – 19,601 500 –
Politics – 10,676 500 –
Travel – 38,961 500 –
Workplace – 18,231 500 –

without plans, (ii) without reference documents, and (iii) without both plans and reference docu-
ments. Table 5 shows EM, EM-Diff and SARI scores for all models and a copying baseline, for
which xt+1 = xt. As can be seen, PEER substantially outperforms all baselines. PEER without
both plans and documents performs much worse than just removing one of both, illustrating that
plans and documents provide complementary information that the model is capable of using; this is
in line with findings of Faltings et al. (2021).

E.2 DOWNSTREAM TASKS

The plans used for each of the downstream tasks considered in Section 5.2 are shown in Table 7. We
manually wrote instructions for all datasets except ITERATER, for which we directly took instruc-
tions from the definitions provided by Du et al. (2022b).

For most baseline models (T0, GPT3, InstructGPT and OPT), we wrap each plan p for an input xt

with the following template:

Task: p

Input: xt

Output:

Table 7: Plans used for the downstream tasks considered in Section 5.2

Task Plan

JFLEG Fix grammar errors
ASSET Simplify this sentence
ITERATER (fluency) Fix grammatical errors in the text.
ITERATER (coherence) Make the text more cohesive, logically linked and consistent as a whole.
ITERATER (clarity) Make the text more formal, concise, readable and understandable.
WNC Remove POV
FRUIT Update the article
WAFER-INS Add missing information
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Figure 4: Average Rouge-1 score of WikiLM and PEER in autonomous (a), manual (m) and collab-
orative (c) mode as a function of the number of iterations

For Tk-Instruct, we replace the string “Task” with “Definition” to match their format. For tasks that
require references, we additionally add all references following the string “Reference:” after the
input. For examples that also provide a title, we add this title following the string “Title:” before the
input.

E.3 CITING AND QUOTING

Naturally, we make sure that the cited document is always present in the k = 3 documents provided
to PEER. To make the task of citing the correct document challenging, we obtain the other two
documents in Dt by applying the BM25 (Robertson et al., 1995) and DPR (Karpukhin et al., 2020)
variants of Petroni et al. (2022) to find the best match in Sphere (Piktus et al., 2021), respectively. If
the gold document contains too many tokens, for NE-Cite we pick the best chunk according to the
reranker of Petroni et al. (2022); for NE-Quote, we select the chunk from the document that actually
contains the quote. In total, we collect 2,351 and 391 examples, respectively, for which we manually
set the plans to simply be “Add a citation” and “Add a quote”.

E.4 ITERATIVE EDITING FOR TEXT GENERATION

Without controlling for output length, WikiLM generates rather short intros, resulting in relatively
low Rouge-1/2/L scores. To make the comparison more fair, we thus split our dataset of Wikipedia
intros into 100 dev examples and 400 test examples; the dev examples are exclusively used for
picking the exponential length penalty (Murray & Chiang, 2018) that maximizes the model’s average
Rouge-1 score. We also prevent models from generating the same token 5-gram more than once to
avoid endless repetitions.

Figure 4 shows how performance for different PEER modes changes across iterations, illustrating
how generated intros are improved over multiple iterations.

F ANALYSIS

For the introductory section, we collect three reference documents d0, d1, and d2, where the first
document contains this paper’s author list and affiliation, the second document contains the abstract,
and the third document contains the caption to Figure 1. For all documents, we set the title to this
paper’s title and the domain to arxiv.org. We use this same set of documents for each generation
step, i.e., Dt = {d0, d1, d2} for all t. We do not provide any documents for the StackExchange
example. Figure 3 shows interactive sessions with PEER (SP, 11B) and PEER (DA, 3B) for writing
these texts, respectively. In each step, we generate three different model outputs – one with beam
search using three beams, and two using top-p sampling with p = 0.9 – and manually pick one of
them.

To better understand the quality of the synthetic data generated with our infilling procedure, we
also look at exemplary outputs of the other PEER variants. We first consider PEER-Undo, the
model we use to generate edits for domains where only plain texts are available. Figure 5 shows
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add Reid and Neubig

Similar to prior work on text editing (Faltings et al., 2021), our first 
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fix grammatical error

Similar to prior work on text editing (Faltings et al., 2021), our first 
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Add reference to prior work on text editing

Similar to prior work on text editing, our first step in overcoming 
this issue is turning to Wikipedia – a single source that come close 
to fulfilling all our needs.

add a bit more to the last sentence

Similar to prior work on text editing, our Our first step in 
overcoming this issue is turning to Wikipedia.

add prior work

Our first step in overcoming this issue is turning to Wikipedia.

add "in overcoming this issue"

Our first step is turning to Wikipedia.

add a sentence

Figure 5: Exemplary application of PEER-Undo for decomposing a sentence from this paper into
multiple edits, terminating with an empty sequence. Plans are rewritten with PEER-Explain in the
opposite direction.

the result of iteratively applying PEER-Undo to a selected sentence from this paper; corresponding
plans are obtained from PEER-Explain. As can be seen, PEER-Undo is able to decompose this
sentence into a sequence of meaningful edits despite not being exposed to any scientific papers
during training. Somewhat surprisingly, both PEER-Undo and PEER-Explain are able to handle the
references contained in this sentence, despite them being formatted in a completely different way
than how we represent references during training on Wikipedia data (i.e., replacing them with a
numeric identifier in square brackets).

We next inspect PEER-Explain’s ability to generate plans as discussed in Section 4. For an edit
that we performed while writing this paper, Table 8 shows the plans generated with PEER-Explain
for different control sequences, using greedy decoding (see Appendix B for details on control se-
quences). As can be seen, length is a reasonable proxy for the amount of details in a plan: Con-
straining the output to be short results in the plan “add citation”, whereas for a greater output length,
PEER-Explain correctly identifies that two changes were made (“add citation for JFLEG and add a
bit more detail”). Allowing word overlap between the plan and the edit results in a plan that spec-
ifies exactly which reference to add (“add reference to Napoles et al., 2017”). The final column of
Table 8 shows the average probability of tokens in xt+1 according to PEER-Edit given both xt and
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Table 8: Generated plans for an edit that we performed while writing this paper; the corresponding
sequences xt and xt+1 are shown on top, with changes highlighted in green. The final columns
shows the average probability across tokens that our main PEER model assigns to xt+1 given xt

and the respective plan. Control sequences enable us to specify the level of detail for a plan.

xt = JFLEG is a grammatical error correction dataset with single-sentence inputs.
xt+1 = JFLEG (Napoles et al., 2017) is [. . . ] inputs written by English language learners.

Control Sequence Output Score

type=instruction length=s
overlap=false

add citation 0.16

type=instruction length=m
overlap=false

add reference to JFLEG 0.15

type=instruction length=xl
overlap=false

add citation for JFLEG and add a bit more detail 0.17

type=instruction length=xl
overlap=true

add reference to Napoles et al., 2017 0.26

type=other length=xl
overlap=false

Added a reference to the JFLEG paper 0.16

Figure 6: A document generated with PEER-Document for an edit that slightly modifies xt (top)
by adding a citation to some document with id 0 at the very end. As a control, we enforce that the
document contains the substring “outperforms PEER on Natural Edits”. The generated reference
backs up the claim but contains a lot of repetitions.

xt = Importantly, the domain-adapted variants of PEER clearly outperform regular PEER for all
subsets of Natural Edits.

[0] Domain-Adapted PEER for Natural Edits — Springer for Research & Development
rd.springer.com
Domain-Adapted PEER for Natural Edits The main goal of this work is to develop a domain-adaptive variant
of PEER, which outperforms PEER on Natural Edits with respect to both the number of Natural Edits and
the number of Natural Edits with respect to the number of natural edits. In this paper, we present a domain-
adaptive

each of the generated plans. Naturally, the plan with word overlap is most helpful, resulting in the
highest score; all other plans are about equally helpful to PEER-Edit.

We finally look at the ability of PEER-Document to generate plausible-looking reference documents,
once again using an example sentence from this paper. For a synthetic edit that just adds a citation
at the very end of this sentence, we sample five outputs from PEER-Document; the best generated
document among these five is shown in Figure 6. As can be seen, the model is able to produce
a somewhat plausible reference document that provides evidence for the claim xt. However, as
exemplified by this document, we found model outputs to often contain numerous repetitions (“the
number of Natural Edits and the number of Natural Edits”).

G HUMAN EVALUATION

G.1 QUALITY OF GENERATED EXPLANATIONS

In order to further evaluate the ability of PEER-Explain to provide good explanations for edits, we
perform a small-scale human evaluation. To this end, we randomly selected 50 Wikipedia edits with
both their original comments and an explanation generated by PEER-Explain.8 Without knowing
which explanation is generated by our model and which explanation is derived from the original

8In accordance with the procedure described in Section 4, we obtained the explanation from PEER-Explain
by randomly sampling 10 different explanations and keeping the one that maximizes the probability of PEER-
Edit performing the actual edit.
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comment, three authors of this paper selected their preferred explanation for each edit, based on
how well it describes the edit being made. Overall, the original comment was preferred 28% of the
time, whereas the explanation generated by PEER-Explain was preferred 59% of the time; in 13% of
cases, both explanations were judged as being equally good. Inter-rater agreement was at 71%; this
may be due to the fact that annotators were not provided with a precise definition of what constitutes
a good explanation.

G.2 QUALITY OF GENERATED DOCUMENTS

To assess the quality of documents generated by PEER-Document, we randomly sampled 50 edits
containing citations with quotes for which our training corpus does not contain the corresponding
reference document. We used PEER-Document to generate new document snippets for each of
them; three authors of this paper annotated all generated documents by answering the following
three questions:

• Relevance: Does the document support the claims made in the updated text?
• Fluency: Does the document sound like natural text found on an English webpage?
• Coherence: Is the document coherent and consistent?

Overall, we found 75% of the generated documents to be relevant, 89% to be fluent and 83% to
be coherent. Inter-annotator agreement was consistently around 80% (88%, 84% and 80% for rel-
evance, fluency and coherence, respectively). These results indicate that the majority of generated
documents is of reasonably high quality to be used as synthetic data for finetuning PEER-Edit.

G.3 ERROR ANALYSIS

To get a better understanding of the kinds of errors that PEER-Edit makes when proposing edits, we
manually looked at 100 input texts and plans that we randomly sampled from the Wikipedia subset
of Natural Edits, and corresponding edits generated by PEER (SP, 11B). For this, we only considered
examples where the edit proposed by PEER is not identical to the gold edit as we are interested in
failure cases of PEER. Of the 100 edits selected, we found 50% to not contain any error. In total,
16% of the generated edits contained hallucinations; however, for 10 out of these 16 examples, the
model was actually forced to hallucinate in order to follow the given instruction, because following
the instruction required adding new information (such as a date of birth) that was not present in any
of the provided reference documents. For another 10% of the considered examples, PEER-Edit did
either not change the text at all, or only partially follow the instruction. In 5% of cases, PEER-Edit
made changes largely unrelated to the specified instructions and in 7% of cases, the generated edit
contained multiple repetitions of the same phrase. Finally, for 12 out of 100 examples, the given
instructions were unclear or extremely vague, making it impossible for PEER to follow them.

H LIMITATIONS

A major limitation of our approach is that at each editing step, we assume the set Dt to be given;
the retrieval engine we use to obtain Dt (Petroni et al., 2022) makes use of the targets xt+1, which
clearly is not possible in real-world applications. It would thus be interesting to investigate how
incorporating a retrieval engine that does not have access to xt+1 or even jointly training it along
with the model, as is done by Guu et al. (2020) and Borgeaud et al. (2021), would affect results.

Despite being able to use reference documents and obtaining comparably high QuestEval scores in
our intro generation experiments, upon manual inspection we still found PEER to generate false
statements or claims not backed up by the provided documents in many cases. While the ability to
cite and quote generally makes it easier to check such hallucinations, citations can also make the
model’s generations appear more authoritative, thus making it more likely that users rely on them
without explicit fact checking (Nakano et al., 2021).

Finally, we use a very simple approach for representing edits by rewriting the entire paragraph. This
makes PEER less efficient than other recent approaches for editing (Logan IV et al., 2021; Reid &
Neubig, 2022); also, our inefficient way of representing both inputs and outputs makes it impossible
to handle entire documents, which we believe to be crucial for many real-world applications.
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Our evaluation is limited in that it only evaluates PEER and other models on a small subset of poten-
tial editing tasks in few different domains; all evaluations are performed in English only. Besides,
we also explore the collaborative potential of PEER only in a very limited way: While arguably, the
ability to follow human-written plans and perform a variety of edits both with and without reference
documents (Table 2) in different domains (Table 1), to cite and quote (Table 3), and to autonomously
generate plans (Table 4) are important building blocks of a collaborative model, it would be inter-
esting for follow-up work to consider entire sessions of human-AI interactions beyond individual
examples like the one shown in Figure 3. However, this requires solving many of the challenges
discussed previously, such as having access to an actual retrieval engine that can obtain relevant
documents on the fly, finding suitable ways of evaluating texts jointly authored by humans and lan-
guage models, and improving PEER’s efficiency to enable processing entire documents.

24


	Introduction
	Related Work
	Plan, Edit, Explain, Repeat
	Infilling Edit Histories with PEER
	Experiments
	Natural Edits
	Downstream Tasks
	Citations and Quotes
	Iterative Editing for Text Generation

	Analysis
	Conclusion
	Training Data
	Filtering
	Retrieving Documents
	Formatting

	Control Tokens
	Generating Synthetic Data
	Training Details
	Evaluation Details
	Natural Edits
	Downstream Tasks
	Citing and Quoting
	Iterative Editing for Text Generation

	Analysis
	Human Evaluation
	Quality of Generated Explanations
	Quality of Generated Documents
	Error Analysis

	Limitations

