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Abstract
Exploiting invariant relations and mitigating spuri-
ous correlation (a.k.a., shortcut) between represen-
tation and target across varied data distributions
can tackle the challenging out-of-distribution
(OOD) generalization problem. In personalized
federated learning (PFL), heterogeneous data dis-
tribution across local clients offers the inherent
prerequisites to extract the invariant features that
maintain invariant relation with target. Neverthe-
less, personalized features are closely entangled
with spurious features in PFL since they exhibit
similar variability across different clients, which
makes preserving personalization knowledge and
eliminating shortcuts two conflicting objectives
in PFL. To address the above challenge, we anal-
yse the heterogeneous data generation on local
clients through the lens of structured causal model
and propose a crucial causal signature which can
distinguish personalized features from spurious
features with global invariant features as the an-
chor. Then the causal signature is quantified as an
information-theoretic constraint that facilitates the
shortcut-averse personalized invariant learning on
each client. Theoretical analysis demonstrates
our method, FedPIN, can yield a tighter bound
on generalization error than the prevalent PFL ap-
proaches when train-test distribution shift exists
on clients. Moreover, we provide a theoretical
guarantee on the convergence rate of FedPIN in
this paper. The results of extensive experiments
show that our method can achieve superior OOD
generalization performance compared with the
state-of-the-art competitors.
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1. Introduction
Modern machine learning models are prone to rely on spu-
rious correlations (correlations between spurious features
and target, a.k.a, shortcuts) in diverse vision and language
tasks (Geirhos et al., 2020). Since shortcuts are unstable
over diverse data distributions, models performing well on
training data can experience a significant degradation in
performance on test data when distribution shift exists. We
consider a binary classification task for illustration where
a learning model needs to differentiate between pictures of
“cow” and “camel” (Beery et al., 2018). Because most cows
stand with grass backgrounds and the majority of camels ap-
pear in desert backgrounds in the practical training dataset,
there is a shortcut from background representation to tar-
get/label. The trained learning model prefers to choose
background (spurious feature) rather than the shape of ani-
mals (intended feature) as the discriminative feature. When
images with camels standing in grass backgrounds arrive at
inference stage, they will be categorized as “cow” because
the spurious correlation is no longer applicable.

With the aim of learning intended features and eliminat-
ing spurious features, invariant learning (IL) emerges as
one of the most effective and promising directions recently.
Intended features are regarded as features that have an invari-
ant causal relation to the target across various data distribu-
tions, consequently, they are referred to as invariant features.
The prevalent IL methods necessitate exposure to multiple
training environments1 (i.e., heterogeneous data distribu-
tions) for producing an invariant predictor elicited from the
invariant features. The obtained model can generalize to
diverse unknown data distributions, and therefore resolve
the out-of-distribution (OOD) generalization problem.

When we shift our focus to federated learning where the
local datasets are usually non-independently and identically
distributed (i.e., Non-IID), exploiting invariant representa-
tion across different data distributions can be facilitated.
However, the heterogeneous federated clients present an ad-
ditional significant demand: personalization, due to the fact
that a shared global model can fail to fit the diverse local data

1Environment refers to a data distribution specified by a latent
variable in invariant learning.
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distributions (Hsieh et al., 2020). Now, a question arises: Is
personalization still necessary when we consider OOD
generalization in federated learning? Affirmative, the
answer is yes. For example, federated clients collaborate
to train disease diagnosis models using their data samples
gathered from various hospitals. One aspect to consider
is the target model needs to exhibit OOD generalization
across diverse hospitals since test data on each client can
be collected from different hospitals/environments. On the
flip side, the individualized physical characteristics of each
user/client constitute essential information for personalized
disease diagnosis and should be preserved.

Regrettably, personalized features and spurious features are
closely entangled under PFL due to their similar variabil-
ity across heterogeneous clients. On the one hand, fed-
erated invariant learning (e.g., Guo et al. (2023)) fails to
develop personalized models because personalized features
are dropped along with spurious features. On the other
hand, existing PFL methods can hardly mitigate spurious
correlation when preserving personalization information is
necessary (e.g., T Dinh et al. (2020); Luo et al. (2022); Xu
et al. (2023)). Furthermore, empirical results indicate a con-
cerning tendency of the prevalent personalization schemes
to favor the selection of spurious features over personalized
features (details are discussed in the evaluation part). In
particular, FedSDR (Tang et al., 2024) devises a shortcut
discovery and removal scheme to capture the personalized
invariant features. However, the rigorous assumption that
invariant and spurious features are separable in linear space
hampers its effectiveness in more general scenarios.

To achieve provable personalized federated invariant learn-
ing (IL), we follow the solution concept of causally invari-
ant learning and formulate heterogeneous structured causal
model (SCM (Pearl, 2009)) for federated clients. With the
SCM extended from invariant learning, we propose a crucial
causal signature where personalized invariant features can
be distinguished from spurious features with global invariant
features as the anchor. The global invariant features are cap-
tured through a global objective regularized by a constraint
representing conditional independence that is commonly
used in centralized IL. Subsequently, the principal causal
signature is quantified as a shortcut-averse information-
theoretic constraint which includes a conditional mutual
information term and an information entropy term in the
designed objective function. With this devised constraint,
each client can effectively exploit the personalized invariant
features and simultaneously exclude spurious correlations to
achieve remarkable OOD generalization performance. Main
contributions of this work are outlined as follows:

• We formulate heterogeneous structured causal model
to interpret Non-IID data distributions across federated
clients, and propose a crucial causal signature which

is quantified as a shortcut-averse information-theoretic
constraint in the local objective to achieve personalized
invariant learning on each client. Besides, an effective
algorithm FedPIN is proposed to solve the devised
optimization problem.

• Theoretically, we demonstrate that FedPIN can develop
the optimal personalized invariant predictor for each
client and provide a tighter generalization error bound
compared with the state-of-the-art PFL methods. More-
over, we prove FedPIN can achieve a convergence rate
on the same order as FedAvg (McMahan et al., 2017).

• The experimental results on diverse datasets validate
the superiority of FedPIN on OOD generalization per-
formance, in comparison with the state-of-the-art FL
and PFL competitors.

2. Related Work
A more comprehensive review is included in Appendix A.

Invariant Learning (IL) Attaining causally invariant pre-
dictors over varied data distributions is proposed in the field
of causal inference (Peters et al., 2016), and introduced into
machine learning to tackle the OOD generalization problem
by IRM (Arjovsky et al., 2019). Some subsequent works
focus on achieving invariant learning when the environ-
ment label is unavailable, e.g., EIIL (Creager et al., 2021),
HRM (Liu et al., 2021a), EDNIL (Huang et al., 2022) and
ZIN (Lin et al., 2022).IFM (Chen et al., 2022a) lowers the
requirement on the number of available environments, while
iCaRL (Lu et al., 2022) extends IL to non-linear feature
space. Another branch (Ahuja et al., 2021; Chen et al.,
2022b; Huh & Baidya, 2022) completes the constraints that
IRM misses. These works focus on centralized scenarios
where all training data is accessible.

Heterogeneous Federated Learning (FL) Traditional
FL develops a shared global model with raw data main-
tained on local clients, e.g., FedAvg (McMahan et al., 2017),
DRFA (Deng et al., 2020), FedSR (Nguyen et al., 2022)
and FedIIR (Guo et al., 2023). In contrast, PFL targets at
producing a personalized model to fit the target dataset on
each client. A typical strand of PFL methods trains personal-
ized models with the guidance of a global model embedding
shared knowledge (T Dinh et al., 2020; Hanzely et al., 2020;
Fallah et al., 2020; Li et al., 2021; Tang et al., 2022; Cheng
et al., 2023). DFL (Luo et al., 2022) disentangles shared fea-
tures from the client-specific ones to achieve accurate aggre-
gation on shared knowledge. FedRep (Collins et al., 2021),
FedRoD (Chen & Chao, 2022) and FedPAC (Xu et al., 2023)
employ the shared/aligned feature extractor to capture global
knowledge and personalized classifiers to encode personal-
ization information. Besides, FedSDR (Tang et al., 2024)
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devises a shortcut discovery and removal method to extract
personalized invariant features in linear feature space with
explicit environment labels available on local clients.

3. Problem Formulation
Notations. Let X , Y and E denote the input, target and
environment space respectively. Data instance is (X, y) ∈
(X ,Y). Suppose there are N clients and the local dataset
on client u is Du, u ∈ [N ]. The sets of training and test
environments on client u are denoted by Eutr and Eute re-
spectively. We use Euall as the set of all possible environ-
ments in the task that client u concentrates on, i.e., Eutr,
Eute ⊂ Euall, ∀u ∈ [N ]. In federated learning system, the
overall environment sets are denoted by Etr ≜

⋃
u Eutr and

Eall ≜
⋃
u Euall. For convenience, we separate the learning

model or parameterized mapping from X to Y into two
consecutive parts: 1) the feature extractor (e.g., Φ denotes
an invariant feature extractor) maps from input space X
to latent feature space Z , i.e., Φ(X) ∈ Z; 2) the classi-
fier ω outputs a prediction ŷ from a latent feature z ∈ Z .
The overall model is denoted by fθ(·) = ω(Φ(·)) where
fθ indicates the function f parameterized by θ. We define
the expected empirical loss for model fθ on dataset D as
R(fθ;D) := E(X,y)∈D[ℓ(fθ(X), y)] where ℓ is the cross-
entropy loss function in this paper unless noted otherwise.

3.1. Invariant Learning (IL)

Invariant learning operates on an assumption that there exists
invariant feature Φ(X) satisfying the invariance constraint:

P(Y |Φ(X) = z, e) = P(Y |Φ(X) = z, e′),∀z ∈ Z,∀e, e′ ∈ Eall. (1)

Hence, the generic objective of invariant learning is to build
an invariant feature extractor that fits the above invariance
constraint. As Eq. (1) indicates a stable causal relation be-
tween invariant features Φ(X) and target Y , the invariant
predictor elicited from the derived invariant feature extrac-
tor can tackle OOD generalization problem by achieving a
consistent performance over various test data distributions.
As a final point, we give the formal definition of the optimal
invariant predictor in invariant learning.

Definition 3.1 (Optimal Invariant Predictor). The opti-
mal invariant predictor is elicited based on the complete
invariant features that are informative for the target in the
task, i.e., Φ⋆ ∈ argmaxΦ I(Y ; Φ(X)) where I(·; ·) de-
notes Shannon mutual information between two random
variables and Φ satisfies the invariance constraint in Eq. (1).

3.2. Causal Setup

Invariant learning usually formulates a structural causal
model to simulate the data generating process in concerned
task. A valid SCM is depicted by a directed acyclic graph

Y

𝑍𝑆

X

E

𝑍𝐶

(a) invariant learning

Y

𝑍!

X

EU

Z"
# Z"

$

(b) personalized FL

Figure 1. (a) presents the structural causal model (SCM) generally
adopted in invariant learning, e.g., (Rosenfeld et al., 2021; Jiang
& Veitch, 2022; Huh & Baidya, 2022), while (b) and show the
SCM proposed in this paper. ZC and ZS denote the invariant and
spurious features respectively. E is the indicator of shortcut while
U is the indicator of user/client. Dotted arrows indicate unstable
causal relations that can vary in different environments.

where each node represents a random variable and each edge
describes a directed functional relationship between the cor-
responding variables (Pearl, 2009). When we study causal
invariance in PFL, the heterogeneity among data generating
mechanisms on local clients needs to be considered.

Therefore, we construct the SCM in heterogeneous feder-
ated learning by adding the User/client indicator U which
serves as the source of personalization information and ex-
tending the invariant features to two related parts: the per-
sonalized invariance ZpC and the shared/global invariance
ZgC . The detailed SCM is shown in Figure 1. It is noted
that the personalized invariance ZpC embeds all the invariant
features on a local client, including both the exclusive in-
dividual invariant information that originates from variable
U and the shared invariant knowledge represented by ZgC .
Thus, there are causal relations from U to ZpC and from ZgC
to ZpC . As discussed in IL, ZS denotes spurious features.
The functional relation between ZS and Y can vary across
different environments. By analogy with Definition 3.1 in
invariant learning, we provide the definition of the optimal
personalized invariant predictor in PFL.

Definition 3.2 (Optimal Personalized Invariant Predic-
tor). The optimal personalized invariant predictor for client
u is elicited based on the complete invariant features which
are informative for the target in the task that client u con-
centrates on, i.e., Φ⋆u ∈ argmaxΦu I(Y ; Φu(X)), where
Φu satisfies that P(Y |Φu(X) = z, e) = P(Y |Φu(X) =
z, e′),∀z ∈ Z,∀e, e′ ∈ Euall.

4. Methodology
To handle the outstanding challenge that personalization
information is closely entangled with spurious features, we
resort to causal characteristics to differentiate them. Due
to space limitations, we defer the detailed proofs of the
theoretical analyses presented in this section to Appendix B.
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Lemma 4.1. If the data generating mechanism on each fed-
erated client complies with the causal graph in Figure 1(b)
and the data distribution satisfies the Markov property, then
the following two statements hold:

• [ZpC , Z
g
C ] ⊥⊥ ZS | Y and ZpC ⊥̸⊥ ZgC | Y , which

means both the global (ZgC) and personalized (ZpC)
invariant features are conditionally independent of the
shortcut features ZS given Y while ZpC is not condi-
tionally independent of ZgC given Y ;

• [E,U ] ⊥⊥ Y | ZgC , which means every component in
the variable set [E,U ] is conditionally independent of
the target Y given ZgC .

Upon the first claim, we can get the crucial causal signature:
ZS ⊥⊥ ZgC | Y while ZpC ⊥̸⊥ ZgC | Y to distinguish the
personalized invariant features from spurious features with
the anchor ZgC . Moreover, the second claim indicates the
anchor ZgC (i.e., global invariant features) can be extracted
via collaborative invariant learning among federated clients.
In conclusion, Lemma 4.1 demonstrates the feasibility of
achieving personalized invariant learning under FL.

4.1. Global Objective: Anchor Construction

Since the causal signature [E,U ] ⊥⊥ Y | ZgC is related
to the client indicator U , the anchor ZgC needs to be cap-
tured in a collaborative manner. Although the recent work
FedIIR (Guo et al., 2023) can develop a global invariant
feature extractor, it can only guarantee to draw the global
invariant features in linear feature space. This notable limi-
tation is inherited from IRM (Arjovsky et al., 2019) because
the objective in FedIIR is a federated variant of that in IRM.
Considering the above limitation can hinder the application
of FedIIR to more complex cases, we choose to devise an
information-theoretic regularization which can perform well
in general cases to build the global invariant extractor.

Specifically, we quantify the causal signature [E,U ] ⊥⊥
Y | ZgC as a regularization term in the global objective
function. Due to the equivalence of [E,U ] ⊥⊥ Y | ZgC to
I(E,U ;Y | ZgC) = 0, we can give a trivial global objective:

max
Φg

I(Y ; Φg(X))− αI(E,U ;Y | Φg(X)), (2)

where I(·; · | ·) denotes the conditional mutual informa-
tion, and α is a non-negative balancing weight. The first
term in the above objective is utilized to filter out the non-
informative components (e.g., noise) with regard to the tar-
get. We can achieve maximizing it via minimizing the
cross-entropy loss in practical optimization. As regard to
the second term I(E,U ;Y | Φg(X)), it can be computed ef-
fectively utilizing the equation provided in Proposition 4.2.
Proposition 4.2. Suppose the heterogeneous data distri-
butions across federated clients are independently caused

by the variable U and E, that is E ⊥⊥ U holds in the FL
system, then we have

I(E,U ;Y | Φg(X)) =min
ωg

Eu[R(ωg(Φg);Du)]

−min
ωa

Eu[R(ωa(Φg, u);Du)]
(3)

where the global invariant classifier ωg accepts global fea-
tures Φg(X) as input while the auxiliary classifier ωa takes
both global features Φg(X) and user/client index u as input.

Therefore, the tractable global objective to construct the
global invariant feature extractor (Φ⋆g) is given by

Φ⋆g, ω
⋆
g , ω

⋆
a = argmin

Φg,ωg,ωa

Lglob(Φg, ωg, ωa), (4)

Lglob(Φg, ωg, ωa) ≜ Eu[R(ωg(Φg);Du)] + αI(E,U ;Y | Φg(X)).

The following theorem demonstrates the effectiveness of the
above objective function.

Theorem 4.3. Assuming that ∀u ∈ [N ], the data instance
(X, y) ∈ Du is randomly taken from the joint distribution
P(X,Y | U = u) which is subject to the SCM in Figure 1(b),
then the following two statements are equivalent:

• Φ⋆g(X) depends and only depends on the complete
global invariant features ZgC . That is, Φ⋆g(X) is a
function of ZgC alone;

• Φ⋆g is the minimizer of the objective in Eq. (4) with an
appropriately chosen hyper-parameter α.

4.2. Local Objective: Personalized Invariant Learning

As mentioned above, the causal signature: ZS ⊥⊥ ZgC | Y
while ZpC ⊥̸⊥ ZgC | Y can be utilized to differentiate ZpC and
ZS . A question arises regarding how to exploit the derived
anchor Φ⋆g rather than the exact ZgC . The following lemma
makes it possible to design a computable regularization for
shortcut-averse personalized invariant learning, with the
obtained anchor feature extractor Φ⋆g .

Lemma 4.4. For any representation h(X) and h′(X) where
h and h′ are two functions, under the SCM in Figure 1(b),
it can be concluded that:

• When h(X) depends only on ZpC and h′(X) depends
only on ZS , we can always obtain

I(h(X); Φ⋆g(X) | Y ) > I(h′(X); Φ⋆g(X) | Y ) = 0.

• When h(X) depends only on ZpC and h′(X) depends
only on [ZpC , ZS ], we can always obtain

I(h′(X); Φ⋆g(X) | Y ) ≤ max
h

I(h(X); Φ⋆g(X) | Y ).
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As part of a qualitative analysis, we can exclude the spu-
rious features ZS by adopting I(Φu(X); Φ⋆g(X) | Y ) −
H(Φu(X)) as a regularization term, where H(·) denotes
the Shannon information entropy. On the one hand, the
first conclusion in Lemma 4.4 signifies the rationality of
maximizing the term I(Φu(X); Φ⋆g(X) | Y ). On the other
hand, the second conclusion in Lemma 4.4 suggests that
adding any components of ZS does not lead to an increase
in max I(Φu(X); Φ⋆g(X) | Y ) but instead results in an
increase in H(Φu(X)). Therefore, maximizing the regu-
larization I(Φu(X); Φ⋆g(X) | Y ) − H(Φu(X)) can rule
out the spurious features. Of course, the expected loss
R(ωu(Φu);Du) is also necessary for leveraging as many
invariant features as possible. Specifically, the devised local
objective to fully extract personalized invariant features for
client u (∀u ∈ [N ]) is:

min
Φu,ωu

R(ωu(Φu);Du)− λI(Φu(X); Φ⋆g(X)|Y ) + γH(Φu(X)) (5)

where λ and γ are non-negative balancing weights.

We provide formal theoretical analysis on the effectiveness
of the local objective (5) in the subsequent Theorem 4.5.
Theorem 4.5. If f⋆θu ≜ ω⋆u(Φ

⋆
u) is the minimizer of objec-

tive (5) with the hyper-parameter λ and γ chosen appropri-
ately, then f⋆θu is the optimal personalized invariant predic-
tor that satisfies Definition 3.2 for the client u, ∀u ∈ [N ].

Considering both I(Φu(X); Φ⋆g(X) | Y ) and H(Φu(X))
are difficult to calculate in practice, we exploit a tractable
upper bound of −λI(Φu(X); Φ⋆g(X) | Y ) + γH(Φu(X))
to construct the practical objective function.
Proposition 4.6. When the local batch on client u is Bu
and Ψ⋆u, ω

⋆
ψu

= minΨu,ωψu R(ωψu(Ψu);Du), ∀u ∈ [N ],
the following inequality holds:

− λI(Φu(X); Φ⋆g(X) | Y ) + γH(Φu(X))

≤ λLBcon(Φu; Φ⋆g,Ψ⋆u) + γV ar(Φu(X))− λ log(|Bu|+ 1),
(6)

where V ar(Φu(X)) represents the variance of Φu(X) and
|Bu| is the batch size. LBcon(Φu; Φ⋆g,Ψ⋆u) is a contrastive
loss defined by

− E
X∈Du

[
log

esim(Φu(X),Φ⋆g(X))/τ

esim(Φu(X),Φ⋆g(X))/τ +
∑
X∈Bu e

sim(Φu(X),Ψ⋆u(X))/τ

]
,

where sim(z, z′) = z⊤z′

∥z∥∥z′∥ is the cosine similarity and τ
denotes a temperature parameter. They are commonly used
in the design of contrastive loss (Chen et al., 2020).

In the proposed contrastive loss, we treat the personalized
invariant feature Φu(X) and the global invariant feature
Φ⋆g(X) as a positive pair while the features drawn from the
local batch by Ψ⋆u are regarded as negative examples. In
consequence, the tractable local objective on client u is

min
Φu,ωu

R(ωu(Φu);Du) + λLBcon(Φu; Φ⋆g,Ψ⋆u) + γV ar(Φu(X)). (7)

4.3. Algorithm: FedPIN

Algorithm 1 FedPIN: Personalized Invariant LearNing
Input: T , R, K, β, η, α, λ, γ.
Initialize models: ω0

g(Φ
0
g), ω

0
a and {ω0

u(Φ
0
u)|u ∈ [N ]}.

for t = 0 to T − 1 do
Server randomly select a client subset At, and broad-
cast global models ωtg(Φ

t
g) and ωta to them.

for each client u ∈ At in parallel do
Update ωψu(Ψu) for K local steps:
ωψu(Ψu) = ωψu(Ψu)− η∇R(ωψu(Ψu);Du)

Update ωu(Φu) for K local steps with Φtg and Ψu:
ωu(Φu) = ωu(Φu)− η∇Luloc(ωu(Φu); Φtg,Ψu)

Solve the sub-problem of Lglob(Φg, ωg, ωa):
Initialize ω̃ug (Φ̃

u
g ) = ωtg(Φ

t
g) and ω̃ua = ωta.

for r = 0 to R− 1 do
ω̃ug , Φ̃

u
g , ω̃

u
a = ω̃ug , Φ̃

u
g , ω̃

u
a − β∇Lug (ω̃ug , Φ̃ug , ω̃ua )

end for
Send ω̃ug (Φ̃

u
g ) and ω̃ua back to the server.

end for
Server aggregates {ω̃ug (Φ̃ug ), ω̃ua |u ∈ At}:
ωt+1
g (Φt+1

g ) = 1
|At|

∑
u∈At ω̃

u
g (Φ̃

u
g )

ωt+1
a = 1

|At|
∑
u∈At ω̃

u
a

end for
return personalized invariant models {ωu(Φu)|u ∈
[N ]}.

In federated learning system, the global objective in Eq. (4)
can be partitioned into N sub-problems:

min
Φg,ωg,ωa

Lglob(Φg, ωg, ωa) =
1

N

N∑
u=1

Lug (Φg, ωg, ωa)

Lug (Φg, ωg, ωa) = (1 + α)R(ωg(Φg);Du)− αR(ωa(Φg, u);Du).

Furthermore, the local update (e.g., model parameters and
gradients) for the global objective is obtained by solving
the sub-objective Lug (Φg, ωg, ωa) based on local datasetDu,
∀u ∈ [N ]. After the selected local clients conduct stochastic
gradient descent for several local iterations, the server will
aggregate the uploaded local updates and then broadcast the
aggregated global model to the participating clients as in
most federated learning algorithms.

As regard to the local objective, it can be solved locally
with the received global invariant feature extractor Φtg. To
simplify the expressions, we denote the local objective by

Luloc(ωu(Φu); Φ⋆g,Ψ⋆u) ≜R(ωu(Φu);Du) + λLBcon(Φu,Φ⋆g,Ψ⋆u)
+ γV ar(Φu(X)),

where the feature extractor Ψ⋆u is derived by minimizing
R(ωψu(Ψu);Du) locally on client u, ∀u ∈ [N ]. The de-
tailed algorithm FedPIN is shown in Algorithm 1.
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4.4. Theoretical Analysis

Generalization Error Bound Along the information flow
in a personalized learning model ωu(Φu), we can evalu-
ate the effectiveness of the personalized feature extractor
Φu in predicting the target Y using the mutual informa-
tion I(Y ; Φu(X)). In practice, we can acquire the em-
pirical estimation of I(Y ; Φu(X)) on the training dataset
Du, represented as ÎS(Y ; Φu(X)). When the learning
model is ready for deployment, we prioritize the perfor-
mance of Φu on some unknown test data distribution, de-
noted by IT (Y ; Φu(X)). Since IT (Y ; Φu(X)) is inacces-
sible, bounding the generalization error IT (Y ; Φu(X)) −
ÎS(Y ; Φu(X)) is critical for analysing the generalization
performance of ωu(Φu) in learning theory.

Theorem 4.7. Suppose the training and test data distribu-
tions on each client u are denoted by PS(X,Y | U = u)
and PT (X,Y | U = u), respectively. If the size of training
dataset Du is mu, there exists a constant C that makes the
following inequality hold with a probability at least 1− δ:∣∣ÎS(Y ; Φu(X))− IT (Y ; Φu(X))

∣∣
≤

√
C log(|Y|/δ)

(
|X | log(mu) + |Y|Ĥ(Φu(X))

)
+ 2

e |X |
√
mu︸ ︷︷ ︸

IND generalization term

+ J (Φu) +
√
C|Y|J (Φu)︸ ︷︷ ︸

OOD generalization term

, ∀u ∈ [N ],

where mu ≥ C
4 log(|Y|/δ)|X |e2 and Ĥ(Φu(X)) denotes

the estimation of the entropyH(Φu(X)) on training dataset
Du. ‘IND’ and ‘OOD’ represents ‘in-distribution’ and ‘out-
of-distribution’ respectively. J (Φu) denotes the Jeffrey’s
divergence defined by

J (Φu) ≜ KL
(
PT (Y | Φu(X))∥PS(Y | Φu(X))

)
+KL

(
PS(Y | Φu(X))∥PT (Y | Φu(X))

),
where KL(·∥·) denotes the Kullback–Leibler divergence.

Remark 4.7. For the ‘IND generalization term’ that will
approach 0 as the size of training dataset grows towards
infinity, it can be decreased by our FedPIN because min-
imizing Ĥ(Φu(X)) is included in the local objective as
shown in Eq. (5). As regard to the ‘OOD generalization
term’ caused by distribution shift, it can be unbounded and
equals to 0 if and only if J (Φu) = 0. When the heterogene-
ity between training and test data distributions on each client
u stems from the environment variable E as displayed in
Figure 1, the ‘OOD generalization term’ can be eliminated
by our FedPIN since the minimizer of objective (5) (i.e.,
ω⋆u(Φ

⋆
u) ensures that PS(Y | Φ⋆u(X)) = PT (Y | Φ⋆u(X))

holds at all times (as discussed in Theorem 4.5). In sum-
mary, the personalized invariant models developed by our
method can guarantee a tighter generalization error bound

compared with the state-of-the-art PFL methods. Detailed
proof of Theorem 4.7 is provided in Appendix C.

Convergence Rate In this chapter, we will derive the
convergence rate of FedPIN shown in Algorithm 1. The
complete proofs are placed in Appendix D.
Assumption 4.8. Variance of local gradients to the aggre-
gated average is upper bounded by a finite constant δ2L:

1

N

N∑
u=1

∥∇Lu
g (Φg, ωg, ωa)−∇Lglob(Φg, ωg, ωa)∥2 ≤ δ2L.

Theorem 4.9. Suppose loss function Lug (Φg, ωg, ωa), ∀u ∈
[N ] is L-smooth and assumption 4.8 holds. The number
of the selected clients at each communication round is M .
When the learning rate β satisfies that β < 1

8RL , the con-
vergence rate of the global model is described by

E[∥∇Lglob(Φt
⋆

g , ω
t⋆

g , ω
t⋆

a )∥2] ≤ G(T )

≜ O

(
∆l

βRT
+

∆
3
4

l L
3
4 δ

1
2

L

T
3
4

+
∆

2
3

l L
2
3 δ

2
3

L

T
2
3

+

√
(N −M)∆lLδ2L
M(N − 1)T

)
,

where ∆l ≜ E[Lglob(Φ0
g, ω

0
g , ω

0
a) − Lglob(ΦTg , ωTg , ωTa )]

and t⋆ is uniformly sampled from the set {0, 1, ..., T − 1}.

Theorem 4.9 proves that our algorithm achieves a conver-
gence rate of O(1/

√
T ) when only a subset of clients is

selected at each communication round (i.e., M < N ) and
local data distributions are Non-IID (i.e., δL > 0). In partic-
ular, the convergence rate can reach O(1/T

2
3 ) if all clients

are selected at each communication round.

Corollary 4.10. Assuming that the local loss function
Luloc(ωu(Φu); Φ⋆g,Ψ⋆u) is L-smooth and strongly convex,
and its gradient is upper bounded by a finite constant,
∀u ∈ [N ]. If we define that fθu ≜ ωu(Φu), f⋆θu =
argminωu,Φu L

u
loc(ωu(Φu); Φ

⋆
g,Ψ

⋆
u), and the output of Al-

gorithm 1 after communication round T is denoted as fTθu ,
the convergence rate of personalized model is given by

E[∥fTθu − f⋆θu∥
2] ≤ CG(T ) + ϵ2K ,∀u ∈ [N ],

where both C and ϵK are finite constants and ϵ2K → 0 as
the personalization epochs K → ∞.

5. Experiments
5.1. Datasets

Colored-MNIST (CMNIST) (Arjovsky et al., 2019) is con-
structed based on MNIST (LeCun et al., 1998) via rearrang-
ing the images of digit 0-4 into a single class labeled 0 and
the images of digit 5-9 into another class labeled 1. Each
digit having label 0 is colored green/red with probability
pe/1− pe and each digit having label 1 is colored red/green
with probability pe/1−pe, respectively. Thus “color” builds
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Table 1. The overall comparison between the performance of our method and the baselines on four datasets. When the number of clients
is small, all clients are selected at each communication round. When the number of clients is large, the client sampling rate is set as 0.1.

Datasets CMNIST CFMNIST WaterBird PACS

8 clients 80 clients 8 clients 80 clients 8 clients 80 clients 6 clients 60 clients

Test Acc (%) Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg

FedAvg 3.4 51.0 1.7 46.8 0.2 50.0 0.8 45.6 54.1 68.0 48.7 61.6 41.7 47.7 33.8 40.2
DRFA 21.2 52.8 14.9 47.2 19.8 53.9 15.5 47.1 59.8 68.4 52.3 60.4 42.5 49.0 36.2 41.8
FedSR 46.9 48.6 40.3 43.6 47.6 48.9 41.2 43.3 61.8 71.7 55.6 64.3 46.8 51.3 39.0 43.4
FedIIR 47.3 48.4 41.2 42.9 48.1 49.2 41.8 43.6 61.2 70.9 54.3 64.6 47.0 51.6 40.2 44.4

FTFA 15.4 55.0 11.5 49.3 11.4 53.5 7.2 47.6 54.4 69.7 50.3 63.4 40.9 48.8 34.7 42.2
pFedMe 21.3 48.5 17.3 44.1 4.2 51.3 2.4 48.0 55.6 68.2 50.0 62.0 45.2 51.3 41.1 45.8
Ditto 3.0 51.0 2.1 45.8 0.4 50.1 1.8 45.7 53.1 68.7 49.1 63.4 44.9 51.3 40.2 46.3
FedRep 2.8 50.8 1.6 46.2 0.1 50.0 0.8 46.1 52.9 70.2 48.1 64.5 49.3 53.7 42.2 47.6
FedRoD 9.1 50.8 6.5 46.9 1.2 51.6 1.6 47.4 52.4 70.9 49.6 65.5 48.2 52.9 42.7 46.6
FedPAC 1.0 50.1 0.4 45.6 0.2 50.1 0.2 44.9 45.1 65.6 42.6 63.8 49.9 54.2 44.2 49.7
FedSDR 53.9 55.6 50.4 51.8 56.9 61.9 52.8 57.1 65.3 73.2 60.0 68.1 52.1 56.2 48.1 51.6

FedPIN (Ours) 53.6 55.4 50.8 51.1 59.8 63.1 56.4 59.5 73.8 75.8 67.9 71.3 55.4 58.6 52.3 54.8

a shortcut in this dataset and the data distribution varies as pe

changes. We provide two training environments (petr = 0.90
and 0.80) as Etr and every local client only has one training
environment which is randomly sampled from Etr. To as-
sess the model performance on different test distributions,
the test environment on each client varies from pete = 0.00
to 1.00. Considering the heterogeneous data generating
process across local clients, the data instances used for con-
structing the training/test environments on each client are
randomly sampled from only two digit sub-classes labeled
0 and two digit sub-classes labeled 1 without replacement.

Colored-FMNIST (CFMNIST) (Ahuja et al., 2020) is con-
structed using the same strategy as Colored-MNIST, but the
original images come from Fashion-MNIST (Xiao et al.,
2017). Hence, dataset CFMNIST possesses a more complex
feature space compared to colored-MNIST.

WaterBird (Sagawa et al., 2019) considers a real-world
scenario where the photographs of waterbirds usually have
water backgrounds while the photographs of landbirds usu-
ally have land backgrounds because of the distinct habitats.
It makes learning models easily trapped by “background”
shortcut when classify “waterbird” and “landbird”. In Wa-
terBird, a waterbird is placed onto a water/land background
with probability pe/1 − pe and a landbird is placed onto a
land/water background with probability pe/1 − pe respec-
tively. We setup two training environments (petr = 0.95
and 0.85) as Etr and each client has only one training en-
vironment which is randomly sampled from Etr. The test
environment varies from pete = 0.00 to 1.00. We notice
that the diverse geographic distributions of different bird
species naturally accord with the heterogeneity of local data
generating process if the federated clients are located in
different geographic areas. Considering WaterBird includes
46 waterbird species and 154 landbird species, we distribute

15 (10 separated and 5 overlapped) waterbird species and 51
(34 separated and 17 overlapped) landbird species to each
client. The training and test datasets on each client contain
bird pictures that belong to the same bird species.

PACS (Li et al., 2017) is a larger real-world dataset com-
monly used for evaluating out-of-distribution (OOD) gener-
alization. It consists of 7 classes distributed across 4 environ-
ments (or domains). We adopt the “leave-one-domain-out”
strategy to evaluate the OOD generalization performance.
Taking personalization into consideration, we split each
training domain into two subsets according to classes (i.e.,
one subset consists of dog, elephant and giraffe; another
subset consists of guitar, horse, house, and person), and then
distribute these two subsets onto two clients respectively.
The training and test datasets on each client come from
distinct domains but consist of the same classes.

5.2. Implementation

Model Selection For CMNIST and CFMNIST, we adopt a
deep neural network with one hidden layer as feature extrac-
tor and a consecutive fully-connected layer as classifier. As
regard to Waterbird and PACS, ResNet-18 (He et al., 2016)
serves as the learning model, with the preceding layers act-
ing as the feature extractor and the final fully-connected
layer functioning as classifier.

Competitors We compare our method (FedPIN) with 11
state-of-the-art algorithms: four federated learning meth-
ods (FedAvg (McMahan et al., 2017), DRFA (Deng et al.,
2020), FedSR (Nguyen et al., 2022) and FedIIR (Guo et al.,
2023)); and seven PFL methods (pFedMe (T Dinh et al.,
2020), Ditto (Li et al., 2021), FTFA (Cheng et al., 2023), Fe-
dRep (Collins et al., 2021), FedRoD (Chen & Chao, 2022),
FedPAC (Xu et al., 2023)) and FedSDR (Tang et al., 2024).
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(a) CMNIST (b) CFMNIST (c) WaterBird

Figure 2. The relationship between test accuracy and test distribution specified by pete on three dataset where explicit shortcuts exists.

Local clients and a centralized server are simulated on
one workstation (Intel(R) Core(TM) i9-12900K CPU @
3.20GHz with one NVIDIA GeForce RTX 3090 GPU).

5.3. Experimental Results

Overall Performance To assess OOD generalization per-
formance, we evaluate the test accuracy of the obtained
models across a range of diverse test data distributions (11
test distributions in CMNIST, CFMNIST and WaterBird;
4 test distributions in PACS). Among them, the worst-case
(Worst) accuracy and average (Avg) accuracy are summa-
rized in Table 1. Since the test data distribution is unknown
in practical scenarios, both the worst-case and average ac-
curacy are significant for reflecting the OOD generalization
performance of a model. As shown in Table 1, our method
FedPIN outperforms the competitors on both worst-case and
average test accuracy in three more complex datasets. In
particular, FedPIN achieves around 3%, 8% and 3% higher
worst-case accuracy than the second best algorithm on CFM-
NIST, WaterBird and PACS. Meanwhile, FedPIN achieves
the highest average accuracy on these three datasets.

Mitigation of Spurious Correlations As mentioned in
section 5.1, there exists explicit shortcuts in CMNIST, CFM-
NIST and WaterBird, and the degree of spurious correlations
can be measured by the probability pe. If a model abandons
all correlations, it will achieve a consistent performance
across varied test distributions specified by different pete.
Therefore, we show the relationship between test accuracy
and pete in Figure 2 to assess the efficacy of the concerned
methods in mitigating spurious correlations. Moreover, we
establish an oracle for comparison where the spurious fea-
tures (‘color’ in CMNIST and CFMNIST; ’background’ in
WaterBird) are removed manually from the corresponding
datasets. We can find the performance of our FedPIN closely
matches that of the oracle on all three datasets, illustrating
the effectiveness of FedPIN in mitigating spurious corre-
lations. Conversely, the majority of state-of-the-art PFL
methods struggle to eliminate spurious features since their
performance varies dramatically as pete changes.

Table 2. The effect of the devised information-theoretic constraint
in the local objective on achieving shortcut-averse personalization.
Datasets CMNIST CFMNIST WaterBird PACS

Test Acc (%) Worst Avg Worst Avg Worst Avg Worst Avg

GM 47.5 49.6 48.2 50.1 63.4 71.5 47.2 51.5
GM-FT 15.1 54.8 10.7 56.2 62.8 72.3 45.5 52.3
GM-L2 46.9 50.0 48.6 50.8 64.9 73.0 48.2 53.4
PM (λ = 0) 20.2 54.5 18.2 55.7 64.0 72.8 46.1 53.0
PM (γ = 0) 52.8 55.2 58.6 63.2 69.8 75.4 52.9 56.3

PM 53.6 55.4 59.8 63.1 73.8 75.8 55.4 58.6

Effect of Information-Theoretic Constraint In this para-
graph, we analyse the effect of each part in the proposed
information-theoretic regularizer and the results are depicted
in Table 2. Specifically, ‘GM’ represents the performance
of Global invariant Model produced by FedPIN while ‘PM’
indicates the performance of Personalized invariant Models
developed by FedPIN. For comparison, we implement two
effective personalization schemes in existing PFL: local
Fine-Tuning (Cheng et al., 2023) and L2-norm regulariza-
tion (Li et al., 2020; T Dinh et al., 2020; Hanzely et al., 2020;
T Dinh et al., 2020), based on the global invariant model
obtained by FedPIN. The results of these two baselines are
labeled as GM-FT and GM-L2 in Table 2. We can find these
two schemes struggle to achieve personalization when the
necessity of eliminating spurious correlation is considered.
In particular, local fine-tuning can adversely impacts the
OOD generalization performance of the global invariant
model. The underlying reason is that these strategies cannot
separate the personalized information from spurious fea-
tures and preserving personalized features is accompanied
with picking up spurious features.

In contrast, the proposed information-theoretic constraint
can distinguish the personalized invariant features from spu-
rious features and achieve shortcut-averse personalization.
As regard to the two terms (conditional mutual information
and entropy) in the constraint, we evaluate the isolated ef-
fects of them by independently setting λ = 0 and γ = 0
in Table 2. The results indicate that the conditional mu-
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Figure 3. The visualization results of various federated learning (FL) and personalized FL methods on WaterBird dataset are generated by
using Grad-CAM (Selvaraju et al., 2017). The red regions in the pictures correspond to high importance score for the predicted class. For
optimal viewing, refer to the figure in color.

tual information term weighted by λ is indispensable for
excluding the spurious features. Of course, the entropy term
weighted by γ can further improve the OOD generalization
performance of the derived personalized invariant models.

Table 3. Effect of the number of local epochs R in FedPIN.
# local epochs (R) R = 5 R = 10 R = 15 R = 20

Worst-case Acc (%) 71.8 73.8 73.7 73.3
Average Acc (%) 74.4 75.8 76.2 76.4

Effect of Local Epochs Since allowing large number of
local epochs can reduce the communication overhead in fed-
erated learning, we assess how varying the number of local
epochs (i.e., R) impacts the performance of our method.
The results on WaterBird dataset are presented in Table 3.
Our method FedPIN exhibits robust performance across a
range of R, as evidenced by the outcomes.

Visualization For the purpose of verifying that the per-
sonalized models developed by our method FedPIN rely on
the invariant features rather than spurious features, we ran-
domly select one of the obtained personalized models and
generate visual explanations for the selected model using

Grad-CAM (Selvaraju et al., 2017). The commonly used
Grad-CAM can produce a localization map which highlights
the important regions in the input image for predicting the
label. As shown in Figure 3, the pivotal features employed
by various federated learning (FL) and personalized FL
methods for prediction on WaterBird dataset are highlighted
in red. The visualization results in Figure 3 support the
claim that the personalized invariant features extracted by
our method FedPIN are more related to the intended features
(i.e., shape of the object), instead of the background.

6. Conclusion
In this paper, a causal signature is proposed and quantified
as an information-theoretic constraint to mitigate spurious
correlations and achieve shortcut-averse personalized invari-
ant learning under heterogeneous federated learning. The
theoretical analysis demonstrates our method can guarantee
a tighter generalization error bound in comparison with the
state-of-the-art PFL methods and achieve a convergence
rate on the same order as FedAvg. The results of extensive
experiments affirm the superiority of the designed algorithm
FedPIN over the competitors on out-of-distribution general-
ization performance.
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In this appendix, we will provide the complete proofs for the theoretical analyses appearing in the main text and more details
about the experimental setups.

A. Related Work
Invariant Learning (IL) Attaining causally invariant predictors over varied data distributions is proposed in the field
of causal inference (Peters et al., 2016), and introduced into machine learning to tackle the OOD generalization problem
by IRM (Arjovsky et al., 2019). Then, many efforts are dedicated to facilitating the application of IL to more general
scenarios. Some works focus on achieving invariant learning when the environment label is unavailable, e.g., EIIL (Creager
et al., 2021), HRM (Liu et al., 2021a), KerHRM (Liu et al., 2021b), EDNIL (Huang et al., 2022) and ZIN (Lin et al.,
2022).IFM (Chen et al., 2022a) lowers the requirement on the number of available environments. Another branch (Ahuja
et al., 2021; Chen et al., 2022b; Huh & Baidya, 2022) completes the constraints that IRM misses. Besides, iCaRL (Lu
et al., 2022) extends IL to non-linear causal representations while ACTIR (Jiang & Veitch, 2022) extends IL to anti-causal
scenarios. IL is also applied to graph representation learning (Li et al., 2022; Chen et al., 2022c) and natural language
modeling (Peyrard et al., 2022). These methods are devised for centralized scenarios where all training data is accessible.

Federated Learning (FL) The classic FedAvg (McMahan et al., 2017) can perform well when local datasets are IID.
A number of methods (e.g., SCAFFOLD (Karimireddy et al., 2020), FedEM (Dieuleveut et al., 2021) and FedLC (Zhang
et al., 2022)) delve into alleviating the negative impact of training data heterogeneity on convergence rate, while another
line (Deng et al., 2020; Sharma et al., 2022; Sun & Wei, 2022) targets at reducing the performance bias of global model on
local clients. Few works (Liu et al., 2021c; Nguyen et al., 2022; Guo et al., 2023) investigate the scenarios where training
data heterogeneity appears to be domain shift. These methods produce a shared global model which can hardly fit the
Non-IID target datasets across local clients.

Personalized Federated Learning (PFL) A typical strand of PFL methods train the personalized models with the
guidance of a global model which embeds in the shared knowledge (T Dinh et al., 2020; Hanzely et al., 2020; Hanzely &
Richtárik, 2020; Fallah et al., 2020; Li et al., 2021; Tang et al., 2022; Cheng et al., 2023), while another branch studies the
parameterized knowledge transfer between similar clients, e.g., MOCHA (Smith et al., 2017), FedAMP (Huang et al., 2021)
and KT-pFL (Zhang et al., 2021). DFL (Luo et al., 2022) disentangles the shared features from the client-specific ones to
achieve accurate aggregation on shared knowledge. Similarly, pFedPara (Hyeon-Woo et al., 2022) and Factorized-FL (Jeong
& Hwang, 2022) factorizes the model parameters into the shared and personalized parts. FedRep (Collins et al., 2021),
FedRoD (Chen & Chao, 2022) and FedPAC (Xu et al., 2023) employ the shared/aligned feature extractor to capture global
knowledge and personalized classifiers to encode personalization information. Besides, FedSDR (Tang et al., 2024) proposes
a provable shortcut discovery and removal method to extract personalized invariant features in linear feature space. However,
the explicit shortcut discovery method renders that the server in FedSDR requires the knowledge of the available training
environments on each client, which increases the risk of privacy leakage in federated learning.

B. Objective Design and Theoretical Guarantees
B.1. Proof of Lemma 4.1 and Proposition 4.2

Lemma 4.1. If the data generating mechanism on each federated client complies with the causal graph in Figure 1(b), the
following two statements hold:

• [ZpC , Z
g
C ] ⊥⊥ ZS | Y and ZpC ⊥̸⊥ ZgC | Y , which means both the global (ZgC) and personalized (ZpC) invariant features

are conditionally independent of the shortcut features ZS given Y while ZpC is not conditionally independent of ZS
given Y .

• [E,U ] ⊥⊥ Y | ZgC , which means every component in the variable set [E,U ] is conditionally independent of the target
Y given ZgC .

Proof. According to the d-separation criterion in (Pearl, 2009) we can find the variable Y d-separates ZS from both ZgC
and ZpC while the direct causal path from ZgC to ZpC is never blocked by variable Y in the given SCM. Therefore, the
correctness of the first claim is granted. Besides, [E,U ] ⊥⊥ Y | ZgC holds since the variable ZgC d-separates Y from both the
environment indicator E and the user/client indicator U .
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Proposition 4.2. Suppose the heterogeneous data distributions across federated clients are independently caused by the
variable U and E, that is E ⊥⊥ U holds in the FL system, then we have

I(E,U ;Y | Φg(X)) =min
ωg

Eu[R(ωg(Φg);Du)]−min
ωa

Eu[R(ωa(Φg, u);Du)] (8)

where the global invariant classifier ωg accepts global features Φ(X) as input while the auxiliary classifier ωa takes both
global features Φ(X) and user/client index u as input.

Proof. We know that the conditional mutual information I(E,U ;Y | Φg(X)) can be written as

I(E,U ;Y | Φg(X)) = H(Y | Φg(X))−H(Y | E,U,Φg(X)) (9)

As discussed in (Farnia & Tse, 2016), with the universal approximation ability of neural networks, the first term in the above
equation can be expressed byH(Y | Φg(X)) = minωg E(X,y)[ℓ(ωg(Φg(X)), y)] while the second term can be described us-
ing H(Y | Φg(X), E, U) = minω EuEe[ℓ(ω(Φg(X), u, e), y)]. Since the heterogeneous data distributions across federated
clients are independently caused by the variable U and E, we have that Eu[R(f ;Du)] = EuEe[ℓ(f(X), y; e)]. There-
fore, E(X,y)[ℓ(f(X), y)] = Eu[R(f ;Du)] and minω EuEe[ℓ(ω(Φg(X), u, e), y)] = minωa Eu[R(ωa(Φg(X), u);Du)].
To summarize, we can get

I(E,U ;Y | Φg(X)) = H(Y | Φg(X))−H(Y | E,U,Φg(X))

= min
ωg

Eu[R(ωg(Φg);Du)]−min
ωa

Eu[R(ωa(Φg, u);Du)],∀u ∈ [N ].

Proof ends.

B.2. Proof of Theorem 4.3 and Lemma 4.4

Theorem 4.3. Assuming that ∀u ∈ [N ], the data instance (X, y) ∈ Du is randomly taken from the joint distribution
P(X,Y | U = u) which is subject to the SCM in Figure 1(b), then the following two statements are equivalent:

• Φ⋆g(X) depends and only depends on the complete global invariant features ZgC . That is, Φ⋆g(X) is a function of ZgC
alone;

• Φ⋆g is the minimizer of the objective in Eq. (4) with an appropriately chosen hyper-parameter α.

Proof. We firstly prove that the regularization term I(E,U ;Y | Φg(X)) = 0 is equivalent to that Φg(X) depends and only
depends on the complete global invariant features ZgC .

Necessity: When Φg(X) depends and only depends on the complete global invariant features ZgC , we have that [U,E] ⊥
⊥ Y | Φg(X) since [U,E] ⊥⊥ Y | ZgC . We know that I(E,U ;Y | Φg(X)) = 0 is equivalent to [U,E] ⊥⊥ Y | Φg(X),
therefore the necessity is justified.

Sufficiency: Next, we will prove that I(E,U ;Y | Φg(X)) = 0 can guarantee Φg(X) is either a function of ZgC alone or a
constant for all inputs. We will validate the sufficiency by constructing contradiction:

Assuming that there exists a feature extractor Φa such that I(E,U ;Y | Φa(X)) = 0 holds and Φa(X) depends on
some Za ⊆ [ZpC , ZS ] (and is not trivially a constant function). We know I(E,U ;Y | Φa(X)) = 0 is equivalent to
[U,E] ⊥⊥ Y | Φa(X) which indicates that the following equation holds:

P(Y | Φa(X) = z, v) = P(Y | Φa(X) = z, v′),∀z ∈ Z,∀v, v′ ∈ [E,U ]

For simplicity, we define that V ≜ [E,U ]. Since a cause of ZpC is U and E is a cause of ZS , there exists at least one ZgC
and some v ∈ [E,U ] make 0 < P(Za = za | V = v, ZgC = z⋆) < 1 hold. Now consider a set of input SX such that
Φa(X) = h(ZgC = Z⋆, Za) remains true for any X ∈ SX , where h represents a deterministic mapping function. According
to the definition of Za, we have that there always exists two v1 and v2 such that P(Y | Za = za, V = v1) ̸= P(Y |
Za = za, V = v2),∀za. Because h(·) is a deterministic function and ZgC remains unchanged on SX , we can derive that
P(Y | Φa(X), v1) ̸= P(Y | Φa(X), v2) holds for any X ∈ SX . Hence a contradiction with [U,E] ⊥⊥ Y | Φa(X) appears
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and a feature extractor satisfying [U,E] ⊥⊥ Y | Φg(X) cannot depends on any Za ⊆ [ZpC , ZS ] and Φg(X) is a function of
ZgC alone.

In the above part, we demonstrate the theoretical relation between ZgC and the regularization term I(E,U ;Y | Φg(X)) = 0.
Following, we will prove that minimizing the expected risk Eu[R(ωg(Φg);Du)] can guarantee the optimal solution ω⋆u(Φ

⋆
g)

ensures Φ⋆g(X) only depends on ZgC and can maximize accuracy.

Since we adopt cross entropy as loss function ℓ, for any u ∈ [N ] and e ∈ E , we can get minωg R(ω}(⊕⋆}); ⌉,⊓) = E[Y |
Φ⋆g(X), u, e] (Mahajan et al., 2021). On the other hand, we have that [U,E] ⊥⊥ Y | Φ⋆g(X). Therefore, for any u and e,
we can get E[Y | Φ⋆g(X), u, e] = E[Y | Φ⋆g(X)]. Because E ⊥⊥ U and the data instances in Du is randomly sampled
from some environment e, minωg Eu[R(ωg(Φ

⋆
g);Du) = E[Y | Φ⋆g(X)] holds. In other words, for any set of u and training

dataset Du that contains data samples from some environment e, E[Y | Φ⋆g(X)] is the optimal solution that minimizes the
expected loss term Eu[R(ωg(Φg);Du)].

Moreover, minimizing the expected loss, i.e., minωg Eu[R(ωg(Φ
⋆
g);Du) can exclude the exception case where Φ⋆g(X) is a

constant for all input, although this exception case can also make the regularization term I(E,U ;Y | Φg(X)) = 0 hold.

Finally, using a Lagrangian multiplier, with an appropriately chosen value of α, minimizing the objective in Eq. (4) is
equivalent to minimizing the following objective:

Φ⋆g ∈ argmin
Φg,ωg

Eu[R(ωg(Φg);Du)]

s.t. I(E,U ;Y | Φg(X)) = 0.
(10)

Therefore, the two statements in Theorem 4.3 is equivalent to each other.

Proof ends.

Lemma 4.4. For any representation h(X) and h′(X) where h and h′ are two functions, under the SCM in Figure 1(b), it
can be concluded that:

• When h(X) depends only on ZpC and h′(X) depends only on ZS , we can always obtain

I(h(X); Φ⋆g(X) | Y ) > I(h′(X); Φ⋆g(X) | Y ) = 0.

• When h(X) depends only on ZpC and h′(X) depends only on [ZpC , ZS ], we can always obtain

I(h′(X); Φ⋆g(X) | Y ) ≤ max
h

I(h(X); Φ⋆g(X) | Y ).

Proof. We will provide detailed proofs of the two conclusions in this part sequentially.

Proof of the first conclusion: As claimed in Theorem 4.3, we know that Φ⋆g(X) depends and only depends on the global
invariant features ZgC . According to the proved causal signatures in Lemma 4.1, we have that [ZpC , Z

g
C ] ⊥⊥ ZS | Y and

ZpC ⊥̸⊥ ZgC | Y . Since function of independent variables are still independent, we can get h(X) ⊥̸⊥ Φ⋆g(X) | Y and
h′(X) ⊥⊥ Φ⋆g(X) | Y . Because A ⊥⊥ B | C is equivalent to I(A;B | C) = 0 and mutual information is non-negative, we
can write that I(h(X); Φ⋆g(X) | Y ) > I(h′(X); Φ⋆g(X) | Y ) = 0.

Proof of the second conclusion: According to the definition of conditional mutual information, for any function h′ such
that h′(X) depends only on [ZpC , ZS ], we can get

I(h′(X); Φ⋆g(X) | Y ) ≤ I(ZpC , ZS ; Φ
⋆
g | Y )

= H(ZpC , ZS | Y ) +H(Φ⋆g | Y )−H(ZpC , ZS ,Φ
⋆
g | Y )

(11)

Using the d-separate criterion, we have that ZpC ⊥⊥ ZS | Y . Furthermore, we can derive that
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H(ZpC , ZS | Y ) =
∑
y

∑
zpc

∑
zs

p(zpc , zs, y) log
(
p(zpc , zs | y)

)
=
∑
y

∑
zpc

∑
zs

p(zpc , zs, y) log
(
p(zpc | y)p(zs | y)

)
=
∑
y

∑
zpc

∑
zs

p(zpc , zs, y) log
(
p(zpc | y)

)
+
∑
y

∑
zpc

∑
zs

p(zpc , zs, y) log
(
p(zs | y)

)
=
∑
y

∑
zpc

p(zpc , y) log
(
p(zpc | y)

)
+
∑
y

∑
zs

p(zs, y) log
(
p(zs | y)

)
= H(ZpC | Y ) +H(ZS | Y )

Since Φ⋆g(X) is a function of ZgC alone, we have that ZS ⊥⊥ Φ⋆g | Y . Moreover, Using the d-separate criterion in Figure 1(b),
we can have that ZS ⊥⊥ ZpC | [Φ⋆g, Y ]. Thus, we can get that

H(ZpC , ZS ,Φ
⋆
g | Y ) =

∑
y

∑
zg

∑
zpc

∑
zs

p(zs, z
p
c , zg, y) log

(p(zs, zpc , zg, y)
p(y)

)
=
∑
y

∑
zg

∑
zpc

∑
zs

p(zs, z
p
c , zg, y) log

(p(zs, zpc | zg, y)p(zg, y)
p(y)

)
=
∑
y

∑
zg

∑
zpc

∑
zs

p(zs, z
p
c , zg, y) log

(p(zs | zg, y)p(zpc | zg, y)p(zg, y)
p(y)

)
=
∑
y

∑
zg

∑
zpc

∑
zs

p(zs, z
p
c , zg, y) log

(p(zs, zg, y)p(zpc , zg, y)
p(y)p(zg, y)

)
=
∑
y

∑
zg

∑
zpc

∑
zs

p(zs, z
p
c , zg, y)

(
log
(
p(zs, zg | y)

)
+ log

(
p(zpc , zg | y)

)
− log

(
p(zg | y)

))
= H(ZS ,Φ

⋆
g | Y ) +H(ZpC ,Φ

⋆
g | Y )−H(Φ⋆g | Y )

= H(ZS | Y ) +H(Φ⋆g | Y ) +H(ZpC ,Φ
⋆
g | Y )−H(Φ⋆g | Y )

= H(ZS | Y ) +H(ZpC ,Φ
⋆
g | Y )

Substituting the above two equations into the inequality (11), we can get

I(h′(X); Φ⋆g(X) | Y ) ≤ H(ZpC | Y ) +H(Φ⋆g | Y )−H(ZpC ,Φ
⋆
g | Y )

= I(ZpC ; Φ
⋆
g(X) | Y ) = max

h
I(h(X); Φ⋆g(X) | Y ).

Proof ends.

B.3. Proof of Theorem 4.5 and Proposition 4.6

Before starting the proof, we firstly provide a useful proposition as follows:

Proposition B.1 (Lemma 2 (Boudiaf et al., 2020)). When we train a classifier conditioned on a feature extractor Φ with
the data distribution D, minimizing the cross-entropy loss R(ω(Φ);D) is equivalent to maximizing the mutual information
I(Y ; Φ(X)) on D.

Theorem 4.5. If f⋆θu = ω⋆u(Φ
⋆
u) is the minimizer of objective (5) with the hyper-parameter λ and γ chosen appropriately,

then f⋆θu is the optimal personalized invariant predictor that satisfies Definition 3.2 for the client u, ∀u ∈ [N ].

Proof. Firstly, we will prove that there exists some positive constant ρ such that the optimal solution of the following
objective cannot depends on any components of ZS :

Φ̂u = min
Φu

−I(Φu(X); Φ⋆g(X) | Y ) + ρH(Φu(X)) (12)
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We justify this claim by constructing contradiction:

Using the d-separate criterion in Figure 1(b), we have that [ZpC , Z
g
C ] ⊥⊥ ZS | Y . For simplicity, we define that ZC ≜

[ZpC , Z
g
C ]. Suppose Φ̂u(X) depends on both ZC and ZS such that it can be expressed as Φ̂u(X) = gz(AZC , BZS) where

A and B are two constant coefficient matrix and gz is a deterministic function.

Suppose B ̸= 0, i.e., Φ̂u(X) depends on both ZC and ZS . For simplicity, we denote that ẐC ≜ AZC and ẐS ≜ BZS .
We know that, for any deterministic function gz , I(gz(ẐC , ẐS); Φ⋆g | Y ) ≤ I(ẐC , ẐS ; Φ

⋆
g | Y ) and H(gz(ẐC , ẐS)) ≤

H(ẐC , ẐS) where equality is achieved if and only if gz is a invertible function. When the balancing weight ρ is appropriately
chosen, there exists an invertible function gz renders that Φ̂u = gz(ẐC , ẐS). In this way, we can derive that

I(Φ̂u(X); Φ⋆g(X) | Y ) = I(ẐC , ẐS ; Φ
⋆
g | Y )

= H(ẐC , ẐS | Y ) +H(Φ⋆g | Y )−H(ẐC , ẐS ,Φ
⋆
g | Y )

Using the d-separate criterion, we have that ẐC ⊥⊥ ẐS | Y , therefore,

H(ẐC , ẐS | Y ) =
∑
y

∑
ẑc

∑
ẑs

p(ẑc, ẑs, y) log
(
p(ẑc, ẑs | y)

)
=
∑
y

∑
ẑc

∑
ẑs

p(ẑc, ẑs, y) log
(
p(ẑc | y)p(ẑs | y)

)
=
∑
y

∑
ẑc

∑
ẑs

p(ẑc, ẑs, y) log
(
p(ẑc | y)

)
+
∑
y

∑
ẑc

∑
ẑs

p(ẑc, ẑs, y) log
(
p(ẑs | y)

)
=
∑
y

∑
ẑc

p(ẑc, y) log
(
p(ẑc | y)

)
+
∑
y

∑
ẑs

p(ẑs, y) log
(
p(ẑs | y)

)
= H(ẐC | Y ) +H(ẐS | Y )

Since Φ⋆g(X) is a function of ZgC alone, we have that ẐS ⊥⊥ Φ⋆g | Y . Moreover, Using the d-separate criterion in Figure 1(b),
we can have that ẐS ⊥⊥ ẐC | [Φ⋆g, Y ]. Thus, we can get that

H(ẐC , ẐS ,Φ
⋆
g | Y ) =

∑
y

∑
zg

∑
ẑc

∑
ẑs

p(ẑs, ẑc, zg, y) log
(p(ẑs, ẑc, zg, y)

p(y)

)
=
∑
y

∑
zg

∑
ẑc

∑
ẑs

p(ẑs, ẑc, zg, y) log
(p(ẑs, ẑc | zg, y)p(zg, y)

p(y)

)
=
∑
y

∑
zg

∑
ẑc

∑
ẑs

p(ẑs, ẑc, zg, y) log
(p(ẑs | zg, y)p(ẑc | zg, y)p(zg, y)

p(y)

)
=
∑
y

∑
zg

∑
ẑc

∑
ẑs

p(ẑs, ẑc, zg, y) log
(p(ẑs, zg, y)p(ẑc, zg, y)

p(y)p(zg, y)

)
=
∑
y

∑
zg

∑
ẑc

∑
ẑs

p(ẑs, ẑc, zg, y)
(
log
(
p(ẑs, zg | y)

)
+ log

(
p(ẑc, zg | y)

)
− log

(
p(zg | y)

))
= H(ẐS ,Φ

⋆
g | Y ) +H(ẐC ,Φ

⋆
g | Y )−H(Φ⋆g | Y )

= H(ẐS | Y ) +H(Φ⋆g | Y ) +H(ẐC ,Φ
⋆
g | Y )−H(Φ⋆g | Y )

= H(ẐS | Y ) +H(ẐC ,Φ
⋆
g | Y )

combining the above two equations, we can get

I(Φ̂u(X); Φ⋆g(X) | Y ) = H(ẐC | Y ) +H(Φ⋆g | Y )−H(ẐC ,Φ
⋆
g | Y )

= I(ẐC ; Φ
⋆
g | Y )

On the other hand, H(Φ̂u) = H(ẐC , ẐS) ≥ H(ẐS) and equality is achieved if and only if B = 0. Therefore, we have that
−I(Φ̂u(X); Φ⋆g(X) | Y ) + ρH(Φ̂u(X)) > −I(ẐC ; Φ⋆g(X) | Y ) + ρH(ẐC) for any positive ρ, which indicates Φ̂u is not
the minimizer of Eq. (12). Contradiction appears. Therefore, B = 0 must hold if Φ̂u is the minimizer of Eq. (12).
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Because Φ̂u(X) cannot depend on any components of ZS , using the d-separate criterion in Figure 1(b), we can get that
Y ⊥⊥ E | Φ̂u which indicates that P(Y |Φ̂u(X) = z, e) = P(Y |Φ̂u(X) = z, e′),∀z ∈ Z,∀e, e′ ∈ Euall.

Meanwhile, according to Proposition B.1, we know that when data instances in Du are randomly sampled from the true data
distribution, minimizing R(ωu(Φu);Du) can guarantee that I(Φu(X);Y ) is maximized.

Finally, we integrate the above theoretical output. Using a Lagrangian multiplier, with an appropriately chosen value of λ
and γ, the minimizer of the objective in Eq. (5) (denoted by Φ⋆u) can guarantee that

• P(Y |Φ⋆u(X) = z, e) = P(Y |Φ⋆u(X) = z, e′),∀z ∈ Z,∀e, e′ ∈ Euall;

• I(Φ⋆u(X);Y ) = max I(Φu(X);Y ).

Proof ends.

Proposition 4.6. When the local batch on client u isBu and Ψ⋆u = minΨu,ωψu R(ωψu(Ψu);Du), ∀u ∈ [N ], the following
inequality holds:

− λI(Φu(X); Φ⋆g(X) | Y ) + γH(Φu(X)) ≤ λLBcon(Φu; Φ⋆g,Ψ⋆u) + γV ar(Φu(X))− λ log(|Bu|+ 1) (13)

where V ar(Φu(X)) represents the variance of Φu(X) and |Bu| is the batch size. LBcon(Φu; Φ⋆g,Ψ⋆) is a contrastive loss
defined by

− E
X∈Du

[
log

esim(Φu(X),Φ⋆g(X))/τ

esim(Φu(X),Φ⋆g(X))/τ +
∑
X∈Bu e

sim(Φu(X),Ψ⋆u(X))/τ

]
where sim(z, z′) = z⊤z′

∥z∥∥z′∥ is the cosine similarity and τ denotes a temperature parameter. They are commonly used in the
design of contrastive loss (Chen et al., 2020).

Proof. In each local batch Bu, the contrastive loss is constructed via regarding Φ⋆u(X) and Φu(X) as positive pair while
adopting Ψ⋆u(X), X ∈ Bu as negative samples. Therefore, the number of negative samples in the devised contrastive
loss is |Bu|. Using the results proved in Proposition 1 in (Sordoni et al., 2021), we can get that the conditional mutual
information satisfies I(Φu(X); Φ⋆g(X) | Y ) ≥ log(|Bu| + 1) − LBcon(Φu; Φ⋆g,Ψ⋆u). On the other hand, according to
the proof of Proposition 4 in (Kirsch et al., 2020), we know that H(Φu(X)) ≤ V ar(Φu(X)). Therefore, the proposed
information-theoretic regularization term can be upper bounded as follows, for any non-negative constant λ and γ:

−λI(Φu(X); Φ⋆g(X) | Y ) + γH(Φu(X)) ≤ λLBcon(Φu; Φ⋆g,Ψ⋆u) + γV ar(Φu(X))− λ log(|Bu|+ 1)

Proof ends.

C. Generalization Error Bound
In practice, the available training data samples on each client are limited, that is the size of Du,∀u ∈ [N ] is finite. We will
use Du and DT

u to denote the true training and test data distributions that the training and test data instances are taken from,
respectively. Besides, we denote the empirical probability distribution described by the training dataset Du by p̂u and the
true probability distribution on DT

u by pu, ∀u ∈ [N ].

Proposition C.1 (Lemma 11 (Shamir et al., 2010)). Let p be a distribution vector of arbitrary (possible countably infinite)
cardinality, and p̂ be an empirical estimation of p based on a dataset of size m. Then with a probability of at least 1− δ
over the samples, the following inquality holds:

∥p− p̂∥ ≤
2 +

√
2 log(1/δ)√
m

(14)
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Theorem 4.7. In general, suppose the training and test data distributions on each client u are denoted by PS(X,Y | U = u)
and PT (X,Y | U = u), respectively. If the size of training dataset Du is mu, there exists a constant C that makes the
following inequality hold with a probability at least 1− δ:∣∣ÎS(Y ; Φu(X))− IT (Y ; Φu(X))

∣∣
≤

√
C log(|Y|/δ)

(
|X | log(mu) + |Y|Ĥ(Φu(X))

)
+ 2

e |X |
√
mu︸ ︷︷ ︸

IND generalization term

+ J (Φu) +
√
C|Y|J (Φu)︸ ︷︷ ︸

OOD generalization term

, ∀u ∈ [N ],

where mu ≥ C
4 log(|Y|/δ)|X |e2 and Ĥ(Φu(X)) denotes the estimation of the entropy H(Φu(X)) on training dataset Du.

‘IND’ and ‘OOD’ represents ‘in-distribution’ and ‘out-of-distribution’ respectively. J (Φu) denotes the Jeffrey’s divergence
defined by

J (Φu) ≜ KL
(
PT (Y | Φu(X))∥PS(Y | Φu(X))

)
+KL

(
PS(Y | Φu(X))∥PT (Y | Φu(X))

)
where KL(·∥·) denotes the Kullback–Leibler divergence between two probability distributions.

Proof. For simplicity, we denote the empirical values of the statistical metrics by symbols with a hat while the true values of
the statistical metrics by symbols without a hat (e.g., the empirical distribution p̂ and the true distribution p). The values of
the statistical metrics on the training data are represented by symbols with a subscript S while the values of the statistical
metrics on the test data are represented by symbols with a subscript T . For example, we denote the mutual information
between X and Y which is computed on data distribution p̂S , p̂T , pS and pT by ÎS(Y ;X), ÎT (Y ;X), IS(Y ;X) and
IT (Y ;X), respectively.

Before starting the process of proof, we define a useful real-valued function ξ as follows:

ξ(x) =


0, x = 0

x log( 1x ), 0 < x ≤ 1
e

1
e , x > 1

e

. (15)

It is noted that ξ(x) is a continuous, monotonically increasing and concave real-valued function.

In general, we consider a deterministic personalized feature extractor denoted by Φu. To enhance conciseness in written
expression, we will use Φu to represent Φu(X) in this proof. Thus, we can write that

|ÎS(Y ; Φu(X))− IT (Y ; Φu(X))| ≜ |ÎS(Y ; Φu)− IT (Y ; Φu)|
= |ÎS(Y ; Φu)− IS(Y ; Φu) + IS(Y ; Φu)− IT (Y ; Φu)|
≤ |ÎS(Y ; Φu)− IS(Y ; Φu)|︸ ︷︷ ︸

A1

+ |IS(Y ; Φu)− IT (Y ; Φu)|︸ ︷︷ ︸
A2

(16)

We know that the mutual information I(Y ; Φ) is defined by:

I(Y ; Φ) ≜ H(Φ)−H(Φ | Y ) (17)

where H(·) represents the Shannon information entropy. We firstly deal with the first term in the above inequality:

A1 =
∣∣ĤS(Φu)−HS(Φu) +HS(Φu | Y )− ĤS(Φu | Y )

∣∣
≤
∣∣HS(Φu | Y )− ĤS(Φu | Y )

∣∣+ ∣∣ĤS(Φu)−HS(Φu)
∣∣ (18)

For the first term on the right side of Eq. 18, we can write that

|HS(Φu | Y )− ĤS(Φu | Y )| =
∣∣∣∑
y

(
pS(y)HS(Φu | y)− p̂S(y)ĤS(Φu | y)

)∣∣∣
=
∣∣∣∑
y

(
pS(y)HS(Φu | y)− pS(y)ĤS(Φu | y) + pS(y)ĤS(Φu | y)− p̂S(y)ĤS(Φu | y)

)∣∣∣
≤
∣∣∣∑
y

pS(y)
(
HS(Φu | y)− ĤS(Φu | y)

)∣∣∣+ ∣∣∣∑
y

(
pS(y)− p̂S(y))ĤS(Φu | y)

∣∣∣
19
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The first term on the right side of the above inequality can be bounded by∣∣∣∑
y

pS(y)
(
HS(Φu | y)− ĤS(Φu | y)

)∣∣∣ ≤ ∣∣∣∑
y

pS(y)
∑
ϕu

(
pS(ϕu|y) log(pS(ϕu|y))− p̂S(ϕu|y) log(p̂S(ϕu|y))

)∣∣∣
≤
∑
y

pS(y)
∑
ϕu

ξ
(∣∣pS(ϕu|y)− p̂S(ϕu|y)

∣∣)
=
∑
y

pS(y)
∑
ϕu

ξ
(∣∣∣∑

x

pS(ϕu|x)
(
pS(x|y)− p̂S(x|y)

)∣∣∣)
=
∑
y

pS(y)
∑
ϕu

ξ
(∣∣∣∑

x

(
pS(ϕu|x)−A

)(
pS(x|y)− p̂S(x|y)

)∣∣∣)
≤
∑
y

pS(y)
∑
ϕu

ξ
(∥∥pS(X|y)− p̂S(X|y)

∥∥∥∥pS(ϕu|X)−A
∥∥)

where A can be any constant. When we set A ≜ 1
|X|
∑
x pS(ϕu|x), we can get∣∣∣∑

y

pS(y)
(
HS(Φu | y)− ĤS(Φu | y)

)∣∣∣ ≤∑
y

pS(y)
∑
ϕu

ξ
(∥∥pS(X|y)− p̂S(X|y)

∥∥ ·√V (pS(ϕu|X))
)

(19)

where 1
|X|V (pS(ϕu|X)) describes the variance of the vector pS(ϕu|X). It is known that ĤS(Φu) ≥ ĤS(Φu | y) for any y,

since conditioning cannot increase entropy (Shamir et al., 2010). Therefore,∣∣∣∑
y

(
pS(y)− p̂S(y))ĤS(Φu | y)

∣∣∣ ≤ ∥∥pS(Y )− p̂S(Y )
∥∥∣∣∣∑

y

ĤS(Φu)
∣∣∣ = ∥∥pS(Y )− p̂S(Y )

∥∥(|Y |ĤS(Φu)
)

(20)

Combining Eq. (19) and Eq. (20), we can get

HS(Φu | Y )− ĤS(Φu | Y )| ≤
∑
y

pS(y)
∑
ϕu

ξ
(∥∥pS(X|y)− p̂S(X|y)

∥∥ ·√V (pS(ϕu|X))
)

+
(
|Y | · ĤS(Φu)

)
·
∥∥pS(Y )− p̂S(Y )

∥∥ (21)

On the other hand, we have∣∣HS(Φu)− ĤS(Φu)
∣∣ = ∣∣∣∑

ϕu

(
pS(ϕu) log(pS(ϕu))− p̂S(ϕu) log(p̂S(ϕu))

)∣∣∣
≤
∑
ϕu

ξ
(∣∣pS(ϕu)− p̂S(ϕu)

∣∣)
=
∑
ϕu

ξ
(∣∣∣∑

x

pS(ϕu|x)
(
pS(x)− p̂S(x)

)∣∣∣)
=
∑
ϕu

ξ
(∣∣∣∑

x

(
pS(ϕu|x)−A

)(
pS(x)− p̂S(x)

)∣∣∣)
≤
∑
ϕu

ξ
(∥∥pS(X)− p̂S(X)

∥∥ ·√V (pS(ϕu|X))
)

(22)

where the constant A is chosen as A ≜ 1
|X|
∑
x pS(ϕu|x). Plugging Eq. (21) and Eq. (22) into Eq. (18), we can get

A1 ≤
∑
y

pS(y)
∑
ϕu

ξ
(∥∥pS(X|y)− p̂S(X|y)

∥∥ ·√V (pS(ϕu|X))
)
+
(
|Y | · ĤS(Φu)

)
·
∥∥pS(Y )− p̂S(Y )

∥∥
+
∑
ϕu

ξ
(∥∥pS(X)− p̂S(X)

∥∥ ·√V (pS(ϕu|X))
) (23)

Subsequently, we can apply the concentration bound given in Proposition C.1 to
∥∥pS(X|y)− ŷS(X|y)

∥∥,
∥∥pS(X)− p̂S(X)

∥∥
and

∥∥pS(Y )− p̂S(Y )
∥∥ for any y in Eq. (23). To make sure the bounds hold simultaneously over these |Y ∥+ 2 quantities,
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we replace δ in Eq. (14) by δ/(|Y |+ 2) as in the proof of Theorem 3 in (Shamir et al., 2010). Hence, with a probability at
least 1− δ we have

A1 ≤ 2
∑
ϕu

ξ

((
2 +

√
2 log((|Y |+ 2)/δ)

)√V
(
pS(ϕu|X)

)
m

)
+

2 +
√

2 log
(
(|Y |+ 2)/δ

)
√
m

·
(
|Y |ĤS(Φu)

)
(24)

There exists a small constant C that makes the following inequality hold:

2 +
√
2 log((|Y |+ 2)/δ) ≤

√
C log(|Y |/δ)

In addition, we know that the variance of any random variable that takes value in the range [0, 1] is at most 1
4 . Since

1
|X|
∑
x V
(
pS(ϕu|X)

)
is the variance of the distribution vector pS(ϕu|X), we have that V

(
pS(ϕu|X)

)
≤ |X|/4, ∀ϕu.

Suppose that the size of training dataset (i.e., m = |Du|) satisfying that

m ≥ C

4
log(|Y |/δ)|X|e2 (25)

Then, we can get √
C log(|Y |/δ)V (pS(ϕu|X))

m
≤
√
C log(|Y |/δ)|X|

4m
≤ 1

e

We define that V(ϕu) ≜ C log(|Y |/δ)V (pS(ϕu|X)), then we have that

∑
ϕu

ξ
(√V(ϕu)

m

)
=
∑
ϕu

√
V(ϕu)
m

log
(√V(ϕu)

m

)
=
∑
ϕu

√
V(ϕu)
m

log(
√
m) +

√
1

m

√
V(ϕu) log

( 1√
V(ϕu)

)

≤
∑
ϕu

(√
V(ϕu)
m

log(
√
m) +

1√
me

)

Using the results proved in the proof of Theorem 3 in (Shamir et al., 2010), we can have that
∑
ϕu

√
V(ϕu) ≤

√
|X||Φu|.

Therefore, we can write that

∑
ϕu

ξ

(√
C log(|Y |/δ)V (pS(ϕu|X))

m

)
≤
√
C log(|Y |/δ)|X||Φu| log(m) + 2

e |Φu|
2
√
m

(26)

where |Φu| denote the size of the feature space from which ϕu takes value. Recalling that Φu is used to represent Φu(X)
where Φu itself is a deterministic feature extractor, we can conclude that |Φu| ≤ |X|. Thus, we can get

A1 ≤
√
C log(|Y |/δ)|X| log(m) + 2

e |X|
√
m

+

√
C log(|Y |/δ)|Y |ĤS(Φu)√

m

=

√
C log(|Y |/δ)

(
|X| log(m) + |Y |ĤS(Φu)

)
+ 2

e |X|
√
m

(27)

As regard to the second term in Eq. (16), we can write that

A2 = |IT (Y ; Φu)− IS(Y ; Φu)|

=
∣∣∣∑
y

∑
ϕu

pT (y, ϕu) log
( pT (y, ϕu)

pT (y)pT (ϕu)

)
− pS(y, ϕu) log

( pS(y, ϕu)

pS(y)pS(ϕu)

)∣∣∣
=
∣∣∣∑
y

∑
ϕu

(
pT (y, ϕu) log

(
pT (y|ϕu)

)
− pS(y, ϕu) log

(
pS(y|ϕu)

))
+HT (Y )−HS(Y )

∣∣∣
(28)
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As shown in Figure 1, target variable Y is a exogenous node in the SCMs, which indicates that pS(Y ) = pT (Y ). Therefore,
we have that

∣∣HS(Y )−HT (Y )
∣∣ = 0. Thus, we can write that

A2 ≤
∣∣∣∑
y

∑
ϕu

(
pT (y, ϕu) log

(
pT (y|ϕu)

)
− pS(y, ϕu) log

(
pS(y|ϕu)

))∣∣∣
=
∣∣∣∑
y

∑
ϕu

(
pT (y, ϕu) log

(
pT (y|ϕu)

)
− pT (y, ϕu) log

(
pS(y|ϕu)

)
+ pT (y, ϕu) log

(
pS(y|ϕu)

)
− pS(y, ϕu) log

(
pS(y|ϕu)

))∣∣∣
≤
∣∣∣∑
y

∑
ϕu

pT (y, ϕu) log
(pT (y|ϕu)
pS(y|ϕu)

)∣∣∣+ ∣∣∣∑
y

∑
ϕu

(
pT (y, ϕu)− pS(y, ϕu)

)
log
(
pS(y|ϕu)

)∣∣∣
= KL

(
pT (Y | Φu)

∥∥pS(Y | Φu)
)
+
∣∣∣∑
y

∑
ϕu

(
pT (y, ϕu)− pS(y, ϕu)

)
log
(
pS(y|ϕu)

)∣∣∣︸ ︷︷ ︸
B

According to the above equation, we have that

B2 =
∥∥∥∑

y

∑
ϕu

(
pT (y, ϕu)− pS(y, ϕu)

)
log
(
pS(y|ϕu)

)∥∥∥2
Using the Jensen’s inequality, we can get

B2 ≤ |Y |
∑
y

∥∥∥∑
ϕu

(
pT (y, ϕu)− pS(y, ϕu)

)
log
(
pS(y|ϕu)

)∥∥∥2
≤ |Y |

∑
y

∑
ϕu

p(ϕu)
∥∥∥(pT (y|ϕu)− pS(y|ϕu)

)
log
(
pS(y|ϕu)

)∥∥∥2
≤ |Y |C2

S

∑
y

∑
ϕu

p(ϕu)
∥∥pT (y|ϕu)− pS(y|ϕu)

∥∥2
,

where CS denotes a constant satisfying that CS = max(ϕu,y)∈(Φu,Y )

∣∣ log (pS(y|ϕu))∣∣. We know that log(·) is a concave
function, therefore we can get

B2 ≤ |Y |C2
S

∑
y

∑
ϕu

p(ϕu)
∥∥pT (y|ϕu)− pS(y|ϕu)

∥∥∥∥ log (pT (y|ϕu))− log
(
pS(y|ϕu)

)∥∥
= |Y |C2

S

∑
y

∑
ϕu

p(ϕu)
(
pT (y|ϕu)− pS(y|ϕu)

)(
log
(
pT (y|ϕu)

)
− log

(
pS(y|ϕu)

))

= |Y |C2
S

∑
y

∑
ϕu

p(ϕu)

(
pT (y|ϕu) log

(pT (y|ϕu)
pS(y|ϕu)

)
− pS(y|ϕu) log

(pT (y|ϕu)
pS(y|ϕu)

))

= |Y |C2
S

(
KL
(
pT (Y | Φu)∥pS(Y | Φu)

)
+KL

(
pS(Y | Φu)∥pT (Y | Φu)

))
.

Consequently, we can get that

A2 ≤ KL
(
pT (Y | Φu)

∥∥pS(Y | Φu)
)
+

√
|Y |C2

S

(
KL
(
pT (Y | Φu)∥pS(Y | Φu)

)
+KL

(
pS(Y | Φu)∥pT (Y | Φu)

))
≤ J

(
pT (Y | Φu), pS(Y | Φu)

)
+
√
|Y |C2

SJ
(
pT (Y | Φu), pS(Y | Φu)

)
(29)

where J (p, q) denotes the Jeffrey’s divergence between probability p and q which is defined by

J
(
pT (Y | Φu), pS(Y | Φu)

)
≜ KL

(
pT (Y | Φu)∥pS(Y | Φu)

)
+KL

(
pS(Y | Φu)∥pT (Y | Φu)

)
With Eq. (27) and l (29), we can conclude that

|ÎS(Y ; Φu(X))− IT (Y ; Φu(X))| ≤

√
C log(|Y |/δ)

(
|X| log(m) + |Y |ĤS(Φu)

)
+ 2

e |X|
√
m

+ J
(
pT (Y | Φu), pS(Y | Φu)

)
+
√
|Y |C2

SJ
(
pT (Y | Φu), pS(Y | Φu)

) (30)
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Thus, we complete the proof of Theorem 4.7.

D. Convergence Analysis
In this section, we give the detailed proof for the convergence rate of the proposed algorithm FedPIN. We start from the
convergence analysis on the global models. For simplicity, we denotes the global model by θg ≜ {Φg, ωg, ωa} and define
that Lg(θg) ≜ Lglob(Φg, ωg, ωa) and Lug (θg) ≜ Lug (Φg, ωg, ωa).

During each communication round t, the participating client u (u ∈ St) firstly initializes the model with θt,0g,u = θtg.
Then, it conducts local gradient update for R iterations. At each local iteration r, the client u update the global model by
θt,r+1
g,u = θt,rg,u − β∇Lug (θt,rg,u) using its local dataset Du. After finishing local update for R iterations, client u (u ∈ St)

uploads the local approximate model θt,Rg,u to the server which will aggregate the received local update {θt,Rg,u |u ∈ St} by
θt+1
g = 1

M

∑
u∈St θ

t,R
g,u . With the obtained θt+1

g , server can starts the next communication round.

Lemma D.1 (Aggregation variance). When assumption 4.8 holds and the number of selected clients at each communication
round is M = |St|, the gradient bias caused by random client selection is upper-bounded by

ESt
[∥∥∥ 1

M

∑
u∈St

∇Lug (θtg)−∇Lg(θtg)
∥∥∥2] ≤ N/M − 1

N − 1
δ2L. (31)

Proof. We can write that

ESt
[∥∥∥ 1

M

∑
u∈St

∇Lug (θtg)−∇Lg(θtg)
∥∥∥2]

= ESt
[∥∥∥ 1

M

∑
u∈St

(
∇Lug (θtg)−∇Lg(θtg)

)∥∥∥2]
=

1

M2
ESt
[∥∥∥ ∑

u∈St

(
∇Lug (θtg)−∇Lg(θtg)

)∥∥∥2]
=

1

M2
ESt
[ ∑
u∈St

∥∥∥∇Lug (θtg)−∇Lg(θtg)
∥∥∥2 + ∑

u∈St

∑
v ̸=u
v∈St

〈
∇Lug (θtg)−∇Lg(θtg),∇Lvg(θtg)−∇Lg(θtg)

〉]

=
1

M2
ESt
[ N∑
u=1

Iu∈St

∥∥∥∇Lug (θtg)−∇Lg(θtg)
∥∥∥2 + ∑

u∈[N ]
v ̸=u

Iu∈StIv∈St
〈
∇Lug (θtg)−∇Lg(θtg),∇Lvg(θtg)−∇Lg(θtg)

〉]
,

where Iu∈St = 1 if u ∈ St; Iu∈St = 0 otherwise. Since every client u ∈ [N ] is randomly sampled with identical probability
at each communication round t, we have ESt [Iu∈St ] = p(u ∈ St) =

M
N and ESt [Iu∈StIv∈St ] = p(u, v ∈ St and u ̸= v) =

M(M−1)
N(N−1) . According to the definition of Lg(θg), we know

∥∥∥ 1

N

N∑
u=1

∇Lug (θg)−∇Lg(θg)
∥∥∥2

=
1

N2

∥∥∥ N∑
u=1

(
∇Lug (θg)−∇Lg(θg)

)∥∥∥2
=

1

N2

N∑
u=1

∥∥∇Lug (θ)−∇Lg(θg)
∥∥2 + 1

N2

N∑
u=1

∑
v ̸=u

〈
∇Lug (θg)−∇Lg(θg),∇Lvg(θg)−∇Lg(θg)

〉
= 0
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Thus, we can write that

ESt
[ ∑
u∈[N ]
v ̸=u

Iu∈StIv∈St
〈
∇Lug (θg)−∇Lg(θg),∇Lvg(θg)−∇Lg(θg)

〉]

=
∑
u∈[N ]
v ̸=u

ESt [Iu∈StIv∈St ]
〈
∇Lug (θg)−∇Lg(θg),∇Lvg(θ)−∇Lg(θg)

〉

=
∑
u∈[N ]
v ̸=u

M(M − 1)

N(N − 1)

〈
∇Lug (θg)−∇Lg(θg),∇Lvg(θg)−∇Lg(θg)

〉

= −M(M − 1)

N(N − 1)

N∑
u=1

∥∥∇Lug (θg)−∇Lg(θg)
∥∥2

Therefore, we can derive that

ESt
[∥∥∥ 1

M

∑
u∈St

∇Lug (θtg)−∇Lg(θtg)
∥∥∥2]

=
1

M2

{ N∑
u=1

ESt [Iu∈St ]
∥∥∇Lug (θtg)−∇Lg(θtg)

∥∥2 − M(M − 1)

N(N − 1)

N∑
u=1

∥∥∇Lug (θtg)−∇Lg(θtg)
∥∥2}

=
( 1

M2
· M
N

− 1

M2
· M(M − 1)

N(N − 1)

) N∑
u=1

∥∥∇Lug (θtg)−∇Lg(θtg)
∥∥2

=
N/M − 1

N − 1
· 1

N

N∑
u=1

∥∥∇Lug (θtu)−∇Lg(θtg)
∥∥2

≤ N/M − 1

N − 1
δ2L.

Lemma D.2 (Local update). When Lug (θg),∀u ∈ [N ] is L-smooth and the learning rate β ≤ 1√
2RL

, if we denote the local
approximate update of the global model parameter at local iteration r on client u by θt,rg,u and θt,r=0

g,u is initialized as θtg , the
following inequality holds for any u ∈ [N ]:

1

R

R−1∑
r=0

∥∥θt,rg,u − θtg
∥∥2 ≤ 8R2β2∥∇Lug (θtg)∥2. (32)

Proof. We know θt,rg,u = θt,r−1
g,u − β∇Lug (θt,r−1

g,u ),∀r ≥ 1. Therefore, we can write∥∥θt,rg,u − θtg
∥∥2

=
∥∥θt,r−1
g,u − β∇Lug (θt,r−1

g,u )− θtg
∥∥2

=
∥∥θt,r−1
g,u − β∇Lug (θt,r−1

g,u ) + β∇Lug (θtg)− β∇Lug (θtg)− θtg
∥∥2

≤ (1 +
1

R
)
∥∥θt,r−1
g,u − θtg − β∇Lug (θtg)

∥∥2 + (1 +R)
∥∥β∇Lug (θtg)− β∇Lug (θg,ut, r − 1)

∥∥2
≤ (1 +

1

R
)
{
(1 +

1

2R
)
∥∥θt,r−1
g,u − θtg

∥∥2 + (1 + 2R)
∥∥β∇Lug (θtg)

∥∥2}+ (1 +R)β2L2
∥∥θt,r−1
g,u − θtg

∥∥2
= (1 +

1

R
)(1 +

1

2R
+Rβ2L2)

∥∥θt,r−1
g,u − θtg

∥∥2 + (1 +
1

R
)(1 + 2R)β2

∥∥∇Lug (θtg)
∥∥2.

When β ≤ 1
8RL , we have Rβ2L2 ≤ 1

2R . Furthermore, we can get∥∥θt,rg,u − θtg
∥∥2 ≤ (1 +

1

R
)2
∥∥θt,r−1
g,u − θtg

∥∥2 + (1 +
1

R
)(1 + 2R)β2

∥∥∇Lug (θtg)
∥∥2.
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Since θt,0g,u = θtg , we can derive the following inequality for any r ≥ 1:

∥∥θt,rg,u − θtg
∥∥2 ≤

r−1∑
s=0

(1 +
1

R
)2s(1 +

1

R
)(1 + 2R)β2

∥∥∇Lug (θtg)
∥∥2

= (1 +
1

R
)(1 + 2R)β2

∥∥∇Lug (θtg)
∥∥2 (1 + 1

R )
2r − 1

(1 + 1
R )

2 − 1

≤ (1 +
1

R
)(1 + 2R)β2

∥∥∇Lug (θtg)
∥∥2 (1 + 1

R )
2r

( 2
R + 1

R2 )

= R2(1 +
1

R
)(1 + 2R)β2

∥∥∇Lug (θtg)
∥∥2 (1 + 1

R )
2r

2R+ 1

= R(1 +R)β2
∥∥∇Lug (θtg)

∥∥2(1 + 1

R
)2r.

Therefore, based on the above inequality we can write that

1

R

R−1∑
r=0

∥∥θt,rg,u − θtg
∥∥2 ≤ R(1 +R)β2

∥∥∇Lug (θtg)
∥∥2 1
R

R−1∑
r=0

(1 +
1

R
)2r

= (1 +R)β2
∥∥∇Lug (θtg)

∥∥2 (1 + 1
R )

2R − 1

(1 + 1
R )

2 − 1

≤ (1 +R)β2
∥∥∇Lug (θtg)

∥∥2 (1 + 1
R )

2R

2
R + 1

R2

=
R2(1 +R)

1 + 2R
β2
∥∥∇Lug (θtg)

∥∥2(1 + 1

R
)2R

≤ 1

2
R(1 +R)β2

∥∥∇Lug (θtg)
∥∥2(1 + 1

R
)2R.

We know that (1 + 1
R )

R ≤ limR→∞(1 + 1
R )

R = e and e2 < 8. Thus, we can get that

1

R

R−1∑
r=0

∥∥θg,ut, r − θtg
∥∥2 ≤ 1

2
R(1 +R)β2

∥∥∇Lug (θtg)
∥∥2e2 ≤ e2R2β2

∥∥∇Lug (θtg)
∥∥2 < 8R2β2

∥∥∇Lug (θtg)
∥∥2,∀R ≥ 1.

Proof ends.

Theorem 4.9. Suppose loss function Lug (Φg, ωg, ωa), ∀u ∈ [N ] is L-smooth and assumption 4.8 holds The number of the
selected clients at each communication round is M . When the learning rate β satisfies that β < 1

8RL , then the convergence
rate of the global model is described by

E[∥∇Lglob(Φt
⋆

g , ω
t⋆

g , ω
t⋆

a )∥2] ≤ G(T ) ≜ O

(
∆l

βRT
+

∆
3
4

l L
3
4 δ

1
2

L

T
3
4

+
∆

2
3

l L
2
3 δ

2
3

L

T
2
3

+

√
(N −M)∆lLδ2L
M(N − 1)T

)

where ∆l ≜ E[Lglob(Φ0
g, ω

0
g , ω

0
a)− Lglob(ΦTg , ωTg , ωTa )] and t⋆ is uniformly sampled from the set {0, 1, ..., T − 1}.

Proof. Since the local approximate model parameters are updated by θt,r+1
g,u = θt,rg,u − β∇Lug (θt,rg,u),∀u, r, we can get∑R−1

r=0 βLug (θt,rg,u) = θt,0g,u − θt,Rg,u . That is,

θt,Rg,u = θtg − β

R−1∑
r=0

∇Lug (θt,rg,u)
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After the global aggregation, we can get the updated global model at communication round t+ 1 as

θt+1
g =

1

M

∑
u∈St

θt,Rg,u =
1

M

∑
u∈St

{
θtg − β

R−1∑
r=0

∇Lug (θt,rg,u)
}

= θtg −
1

M
β
∑
u∈St

R−1∑
r=0

∇Lug (θt,rg,u)

= θtg − βR︸︷︷︸
:=β̂

1

MR

∑
u∈St

R−1∑
r=0

∇Lug (θt,rg,u)︸ ︷︷ ︸
:=ψt

.

Since loss function Lug (θg),∀u ∈ [N ] is L-smooth, we can derive the following inequality:

∥∇Lg(θg)−∇Lg(θ′g)∥ =
∥∥∥ 1

N

N∑
u=1

∇Lug (θg)−
1

N

N∑
u=1

∇Lug (θ′g)
∥∥∥

=
1

N

∥∥∥ N∑
u=1

{
∇Lug (θg)−∇Lug (θ′g)

}∥∥∥
≤ 1

N

N∑
u=1

∥∇Lug (θg)−∇Lug (θ′g)∥

≤ L∥θg − θ′g∥,∀θg, θ′g,

which means that the global loss function Lg(θg) is also L-smooth. Therefore, we can write

ESt [Lg(θt+1
g )− Lg(θtg)]

≤ ESt [⟨∇Lg(θtg), θt+1
g − θtg⟩] +

L

2
ESt [∥θt+1

g − θtg∥2]

= ESt [⟨∇Lg(θtg),−β̂ψt⟩] +
L

2
ESt [∥β̂ψt∥2]

= β̂ESt [⟨∇Lg(Pθtg),∇Lg(θtg)− ψt −∇Lg(θtg)⟩] +
β̂2L

2
ESt [∥ψt∥2]

= −β̂ESt [∥∇Lg(θtg)∥2]− β̂ESt [⟨∇Lg(θtg), ψt −∇Lg(θtg)⟩] +
β̂2L

2
ESt [∥ψt∥2]

≤ −β̂ESt [∥∇Lg(θtg)∥2] +
β̂

2
ESt [∥∇Lg(θtg)∥2] +

β̂2L

2
ESt [∥ψt∥2]

+
β̂

2
ESt
[∥∥∥ 1

NR

N∑
u=1

R−1∑
r=0

∇Lug (θt,rg,u)−
1

N

N∑
u=1

∇Lug (θtg)
∥∥∥2]

≤ − β̂
2
ESt [∥∇Lg(θtg)∥2] +

β̂2L

2
ESt [∥ψt∥2] +

β̂

2
ESt
[ 1

NR

N∑
u=1

R−1∑
r=0

∥∇Lug (θt,rg,u)−∇Lug (θtg)∥2
]

≤ − β̂
2
ESt [∥∇Lg(θtg)∥2] +

β̂2L

2
ESt [∥ψt∥2] +

β̂L2

2
ESt
[ 1

NR

N∑
u=1

R−1∑
r=0

∥θt,rg,u − θtg∥2
]

≤ − β̂
2
ESt [∥∇Lg(θtg)∥2] +

β̂2L

2
ESt [∥ψt∥2] + 4β̂3L2ESt

[ 1
N

N∑
u=1

∥∇Lug (θtg)∥2
]

= − β̂
2
ESt [∥∇Lg(θtg)∥2] +

β̂2L

2
ESt [∥ψt −∇Lg(θtg) +∇Lg(θtg)∥2]

+ 4β̂3L2ESt
[ 1
N

N∑
u=1

∥∇Lug (θtg)−∇Lg(θtg) +∇Lg(θtg)∥2
]
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≤ − β̂
2
ESt [∥∇Lg(θtg)∥2] + β̂2LESt [∥ψt −∇Lg(θtg)∥2] + β̂2LESt [∥∇Lg(θtg)∥2] + 8β̂3L2{δ2L + ESt [∥∇Lg(θtg)∥2]}

= − β̂
2
{1− 2β̂L− 16β̂2L2}ESt [∥∇Lg(θtg)∥2] + 8β̂3L2δ2L + β̂2LESt [∥ψt −∇Lg(θtg)∥2].

We firstly deal with the third term on the right side of above inequality as follows:

ESt [∥ψt −∇Lg(θtg)∥2]

= ESt
[∥∥∥ 1

MR

∑
u∈St

R−1∑
r=0

∇Lug (θt,rg,u)−
1

N

N∑
u=1

∇Lug (θtg)
∥∥∥2]

= ESt
[∥∥∥ 1

MR

∑
u∈St

R−1∑
r=0

∇Lug (θt,rg,u)−
1

MR

∑
u∈St

R−1∑
r=0

∇Lug (θtg) +
1

MR

∑
u∈St

R−1∑
r=0

∇Lug (θtu)−
1

N

N∑
u=1

∇Lug (θtg)
∥∥∥2]

≤ 2ESt
[∥∥∥ 1

MR

∑
u∈St

R−1∑
r=0

∇Lug (θt,rg,u)−
1

MR

∑
u∈St

R−1∑
r=0

∇Lug (θtg)
∥∥∥2]

+ 2ESt
[∥∥∥ 1

MR

∑
u∈St

R−1∑
r=0

∇Lug (θtg)−
1

N

N∑
u=1

∇Lug (θtg)
∥∥∥2]

= 2ESt
[∥∥∥ 1

MR

∑
u∈St

R−1∑
r=0

(
∇Lug (θt,rg,u)−∇Lug (θtg)

)∥∥∥2]+ 2ESt
[∥∥∥ 1

M

∑
u∈St

∇Lug (θtg)−
1

N

N∑
u=1

∇Lug (θtg)
∥∥∥2]

≤ 2ESt
[ 1

MR

∑
u∈St

R−1∑
r=0

∥∥∇Lug (θt,rg,u)−∇Lug (θtg)
∥∥2]+ 2ESt

[∥∥∥ 1

M

∑
u∈St

∇Lug (θtg)−
1

N

N∑
u=1

∇Lug (θtg)
∥∥∥2]

≤ 2ESt
[ 1

M

∑
u∈St

1

R

R−1∑
r=0

L2
∥∥θt,rg,u − θtg

∥∥2]+ 2ESt
[∥∥∥ 1

M

∑
u∈St

∇Lug (θtg)−∇Lg(θtg)
∥∥∥2].

Using the inequalities in Lemma D.1 and Lemma D.2, we can get

ESt [∥ψt −∇Lg(θtg)∥2]

≤ 16R2β2L2ESt
[ 1

M

∑
u∈St

∥∇Lug (θtg)∥2
]
+

2(N/M − 1)

N − 1
δ2L

≤ 16R2β2L2ESt
[ 1

M

∑
u∈St

∥∇Lug (θtg)−∇Lg(θtg) +∇Lg(θtg)∥2
]
+

2(N/M − 1)

N − 1
δ2L

≤ 32R2β2L2ESt
[ 1

M

∑
u∈St

∥∇Lug (θtg)−∇Lg(θtg)∥2
]
+ 32R2β2L2ESt

[ 1

M

∑
u∈St

∥∇Lg(θtg)∥2
]
+

2(N/M − 1)

N − 1
δ2L

= 32R2β2L2 1

M
ESt
[ N∑
u=1

Iu∈St∥∇Lug (θtg)−∇Lg(θtg)∥2
]
+ 32R2β2L2ESt [∥∇Lg(θtg)∥2] +

2(N/M − 1)

N − 1
δ2L

= 32R2β2L2 1

M

N∑
u=1

ESt [Iu∈St ]∥∇Lug (θtg)−∇Lg(θtg)∥2 + 32R2β2L2ESt [∥∇Lg(θtg)∥2] +
2(N/M − 1)

N − 1
δ2L

≤ 32R2β2L2δ2L + 32R2β2L2ESt [∥∇Lg(θtg)∥2] +
2(N/M − 1)

N − 1
δ2L

= 32R2β2L2ESt [∥∇Lg(θtg)∥2] +
(
32R2β2L2 +

2(N/M − 1)

N − 1

)
δ2L

= 32β̂2L2ESt [∥∇Lg(θtg)∥2] +
(
32β̂2L2 +

2(N/M − 1)

N − 1

)
δ2L

27



Causally Motivated Personalized Federated Invariant Learning with Shortcut-Averse Information-Theoretic Regularization

Finally, we can get

ESt [Lg(θt+1
g )− Lg(θtg)]

≤ − β̂
2
(1− 2β̂L− 16β̂2L2 − 64β̂3L3)ESt [∥∇Lg(θtg)∥2] + 8β̂3L2δ2L + 32β̂4L3δ2L +

2(N/M − 1)β̂2Lδ2L
N − 1

.

When β ≤ 1
8RL , we have

1− 2β̂L− 16β̂2L2 − 64β̂3L3 ≥ 1− 1

4
− 1

4
− 1

8
>

1

4
,∀R ≥ 1.

Thus, we can derive that

ESt [Lg(θt+1
g )− Lg(θtg)] ≤ − β̂

8
ESt [∥∇Lg(θtg)∥2] + 32β̂4L3δ2L + 8β̂3L2δ2L +

2(N −M)β̂2Lδ2L
M(N − 1)

.

In other words, we have

1

2T

T−1∑
t=0

ESt [∥∇Lg(θtg)∥2] ≤
4ESt [Lg(θ0g)− Lg(θTg )]

β̂T
+ 128β̂3L3δ2L + 32β̂2L2δ2L +

8(N −M)β̂Lδ2L
M(N − 1)

.

For simplicity, we define that β0 = 1
8RL , C1 = 4ESt [Lg(θ0g) − Lg(θTg )], C2 = 128L3δ2L, C3 = 32L2δ2L and C4 =

8(N−M)Lδ2L
M(N−1) . Thus, we have

1

2T

T−1∑
t=0

ESt [∥∇Lg(θtg)∥2] ≤
C1

RβT
+ C2R

3β3 + C3R
2β2 + C4Rβ.

Using the schemes adopted in (Karimireddy et al., 2020; T Dinh et al., 2020; Tang et al., 2022), we consider the following
two cases:

• When β0 ≤ min
{(

C1

C2R4T

) 1
4 ,
(

C1

C3R3T

) 1
3 ,
(

C1

C4R2T

) 1
2
}

, we choose β = β0. Then, we have

1

2T

T−1∑
t=0

ESt [∥∇Lg(θtg)∥2] ≤
C1

β0RT
+
C

3
4
1 C

1
4
2

T
3
4

+
C

2
3
1 C

1
3
3

T
2
3

+
C

1
2
1 C

1
2
4

T
1
2

.

• When β0 ≥ min
{(

C1

C2R4T

) 1
4 ,
(

C1

C3R3T

) 1
3 ,
(

C1

C4R2T

) 1
2
}

, we choose β = min
{(

C1

C2R4T

) 1
4 ,
(

C1

C3R3T

) 1
3 ,
(

C1

C4R2T

) 1
2
}

.
Then, we have

1

2T

T−1∑
t=0

ESt [∥∇Lg(θtg)∥2] ≤
2C

3
4
1 C

1
4
2

T
3
4

+
2C

2
3
1 C

1
3
3

T
2
3

+
2C

1
2
1 C

1
2
4

T
1
2

.

Combining these two cases, we can get

1

T

T−1∑
t=0

E[∥∇Lg(θtg)∥2] ≤ O
( C1

β0RT
+

3C
3
4
1 C

1
4
2

T
3
4

+
3C

2
3
1 C

1
3
3

T
2
3

+
3C

1
2
1 C

1
2
4

T
1
2

)

= O
(

∆l

βRT
+

∆
3
4

l L
3
4 δ

1
2

L

T
3
4

+
∆

2
3

l L
2
3 δ

2
3

L

T
2
3

+

√
(N −M)∆lLδ2L
M(N − 1)T

)
where ∆l := E[Lg(θ0g)− Lg(θTg )] and the learning rate β must satisfy β ≤ 1

8RL .
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Corollary 4.10 Assuming that local loss function Luloc(ωu(Φu); Φ⋆g,Ψ⋆u) is L-smooth and µl-strongly convex,
and its gradient is upper bounded by a finite constant, ∀u ∈ [N ]. If we define fθu ≜ ωu(Φu), f⋆θu =

argminωu,Φu L
u
loc(ωu(Φu); Φ

⋆
g,Ψ

⋆
u), and the output of Algorithm 1 after communication round T is fTθu , the conver-

gence rate of personalized model is given by

E[∥fTθu − f⋆θu∥
2] ≤ CG(T ) + ϵ2K ,∀u ∈ [N ]

where both C and ϵK are finite constants and ϵ2K → 0 as the personalization epochs K → ∞.

Proof. We demonstrate this claim by induction. Firstly, when the constant C ≥ E[∥f0
θu

−f⋆θu∥
2]

G(0) , we have E[∥f0θu − f⋆θu∥
2] ≤

CG(0) + ϵ2K . Suppose E[∥f tθu − f⋆θu∥
2] ≤ CG(t) + ϵ2K , for t+ 1, we can write

E[∥f t+1
θu

− f⋆θu∥
2] = E[∥f tθu − ηIt∇Luloc(f tθu)− f⋆θu∥

2]

= E[∥f tθu − f⋆θu∥
2] + η2E[∥It∇Luloc(f tθu)∥

2] + 2ηE[⟨It∇Luloc(f tθu), f
⋆
θu − f tθu⟩]

where It indicates whether client u is selected by server at communication round t. That is It = 1 when client u is selected
by server at communication round t; and It = 0 otherwise. Hence, E[It] = M

N . Because the local loss function Luloc(fθu) is
L-smooth and µl-strongly convex, ∀u ∈ [N ], we have

E[⟨∇Luloc(f tθu), f
⋆
θu − f tθu⟩] ≤ (Luloc(f⋆θu)− Luloc(f tθu))−

1

2L
∥∇Luloc(f⋆θu)−∇Luloc(f tθu)∥

2

≤ (Luloc(f⋆θu)− Luloc(f tθu))−
µ2
l

2L
∥f⋆θu − f tθu∥

2

Besides, the gradient of Luloc(fθu),∀u ∈ [N ] is bounded by a finite constant. That is, there exists a finite constant Gu
satisfying that E[∥∇Luloc(fθu)∥2] ≤ G2

u, forallu ∈ [N ]. Therefore, we can write

E[∥f t+1
θu

− f⋆θu∥
2] = E[∥f tθu − ηIt∇Luloc(f tθu)− f⋆θu∥

2]

≤ E[∥f tθu − f⋆θu∥
2] +

Mη2

N
E[∥∇Luloc(f tθu)∥

2] +
2Mη

N
(Luloc(f⋆θu)− Luloc(f tθu))−

Mµ2
l η

NL
∥f⋆θu − f tθu∥

2

= (1− Mµ2
l η

NL
)E[∥f tθu − f⋆θu∥

2] +
Mη2

N
E[∥∇Luloc(f tθu)∥

2] +
2Mη

N
(Luloc(f⋆θu)− Luloc(f tθu))

Using the similar scheme adopted during the proof of Theorem 10 in (Li et al., 2021), we can suppose there exists a constant

A such that G(t+1)
G(t) ≥ 1− G(t)

A and the constant C satisfies that C ≥ max{E[∥f0
θu

−f⋆θu∥
2]

G(0) ,
4NL2G2

u

AMµ4
l
}. When we define that

Luloc(f⋆θu)− Luloc(f tθu) ≜
µ2
l

2Lϵ
2
K , with a personalized learning rate η = 2NLG(t)

AMµ2
l

, we can derive that

E[∥f t+1
θu

− f⋆θu∥
2] ≤ (1− Mµ2

l η

NL
)E[∥f tθu − f⋆θu∥

2] +
Mη2

N
G2
u +

Mµ2
l η

NL
ϵ2K

≤ (1− Mµ2
l η

NL
)(CG(t) + ϵ2K) +

Mη2

N
G2
u +

Mµ2
l η

NL
ϵ2K

= (1− Mµ2
l η

NL
)CG(t) + 4NL2G2

u

A2Mµ4
l

G(t)2 + ϵ2K

≤
(
1− 2

A
G(t)

)
CG(t) + C

A
G(t)2 + ϵ2K

=
(
1− G(t)

A

)
CG(t) + ϵ2K

≤ CG(t+ 1) + ϵ2K

Since Luloc(f tθu) − Luloc(f⋆θu) = Luloc(f tθu ; Φ
t
u) − Luloc(f⋆θu ; Φ

t
u) → 0 as K → ∞, we know that limK→∞ ϵ2K → 0. Thus,

we complete the proof.

E. More Details about Experiments
In this section, we will include more detailed setups and discussions on the evaluation part.
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E.1. Non-IID data partition

For CMNIST and CFMNIST datasets, we provide two training environments (petr = 0.90 and 0.80) as Etr and every
local client only has one training environment which is randomly sampled from the training environment set Etr. To
assess the model performance on different test distributions, the test environment on each client varies across pete =
0.00, 0.10, ..., 0.90, 1.00. Considering the heterogeneous data generating process across local clients, the data instances
used for constructing the training/test environments on each client are randomly sampled from only two digit sub-classes (1
separated and 1 overlapped) labeled 0 and two digit sub-classes (1 separated and 1 overlapped) labeled 1 without replacement.
Specifically, we totally simulate eight local clients and one server in the federated learning system. For example, the data
instances on client 1 are randomly sampled from digit 0, 1, 5, 6; the data instances on client 2 are randomly sampled from
digit 1, 2, 6, 7; the data instances on client 3 are randomly sampled from digit 2, 3, 7, 8; and the data instances on client 8
are randomly sampled from digit 3, 4, 8, 9.

As regard to WaterBird, we distribute 15 (10 separated and 5 overlapped) waterbird species and 51 (34 separated and
17 overlapped) landbird species to each local client. Both the training and test data instances are constructed using bird
photographs randomly sampled from the corresponding bird species in the bird dataset and background photographs
randomly selected from the background dataset without replacement. Similarly, we totally simulate eight local clients and
one server in the federated learning system.

PACS consists of 7 classes (i.e., dog, elephant, giraffe, guitar, horse, house, and person) distributed across 4 do-
mains/environments (i.e., Art Painting, Cartoon, Photo and Sketch). We adopt the ”leave-one-domain-out” strategy
to evaluate the out-of-distribution (OOD) generalization performance. For example, when we evaluate the performance on
Art Painting domain, we use the remaining three domains (i.e., Cartoon, Photo and Sketch) as training environments. Taking
personalization into consideration, we split each training domain into two subsets according to classes (i.e., one subset
consists of dog, elephant and giraffe and another subset consists of guitar, horse, house, and person), and then distribute
these two subsets onto two clients respectively. The training and test datasets on each client come from different domains
but consist of the same classes.

E.2. Implementation

Besides, the experiments are implemented in PyTorch. We simulate a set of clients and a centralized server on one deep
learning workstation (Intel(R) Core(TM) i9-12900K CPU @ 3.20GHz with one NVIDIA GeForce RTX 3090 GPU).

E.3. Hyper-parameters

The hyper-parameters of the competitors and our algorithm are tuned to make the accuracy on the validation environment
(i.e., peval = 0.10 for CMNIST, CFMNIST and WaterBird; validation split in PACS) as high as possible. Specifically, the
mainly used hyper-parameters in the evaluation part are listed as follows:

• CMNIST: Global communication round: T = 600, Local iterations: R = 10, Personalized epochs to update the
personalized invariant predictors: K = 10, Local batch size: B = 200, Global learning rate: β = 0.0001, Personalized
learning rate: η = 0.0001, Balancing weight: α = 1.0e5, Balancing weight: λ = 10.0, Balancing weight: γ = 6.0e−6,
Optimizer: Adam.

• CFMNIST: Global communication round: T = 600, Local iterations: R = 10, Personalized epochs to update the
personalized invariant predictors: K = 10, Local batch size: B = 200, Global learning rate: β = 0.0001, Personalized
learning rate: η = 0.0001, Balancing weight: α = 1.0e5, Balancing weight: λ = 10.0, Balancing weight: γ = 6.0e−6,
Optimizer: Adam.

• WaterBird: Global communication round: T = 100, Local iterations: R = 10, Personalized epochs to update the
personalized invariant predictors: K = 10, Local batch size: B = 50, Global learning rate: β = 0.0001, Personalized
learning rate: η = 0.0001, Balancing weight: α = 3.0e4, Balancing weight: λ = 9.0, Balancing weight: γ = 4.0e− 6,
Optimizer: Adam.

• PACS: Global communication round: T = 600, Local iterations: R = 10, Personalized epochs to update the
personalized invariant predictors: K = 10, Local batch size: B = 100, Global learning rate: β = 0.01, Personalized
learning rate: η = 0.01, Balancing weight: α = 1.0e4, Balancing weight: λ = 3.0, Balancing weight: γ = 1.0e− 5,
Optimizer: Adam.
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E.4. Additional Experiments

In order to evaluate the computation cost empirically, we record the running time that each algorithm consumes to achieve
the reported performance in Table 1 on WaterBird dataset (with the client sampling rate set as 0.1). The detailed results are
listed as follows:

Table 4. Empirical evaluation on computation cost of various algorithms.
Algorithm FedAvg DRFA FedSR FedIIR FTFA pFedMe Ditto FedRep FedRoD FedPAC FedSDR FedPIN

Running Time (s) 473 488 501 492 865 1490 1571 981 1379 1542 1565 1733

Combining the results in Table 4 and Table 1, we can find that our method FedPIN can achieve around 8% higher worst-case
accuracy on WaterBird dataset than the second best baseline, with comparable computation cost over many state-of-the-art
personalized federated learning approaches (e.g., pFedMe, Ditto, FedPAC and FedSDR).
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