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Abstract

Large language models (LLMs) have become
prevalent in natural language processing, with
researchers increasingly using them as auto-
mated evaluators through the LLM-as-a-judge
paradigm. However, current implementations
primarily rely on proprietary models, raising
concerns about accessibility, costs, and data
privacy. Additionally, existing LLM judges
exhibit various biases that can compromise
evaluation quality. We systematically inves-
tigate whether general-purpose open LLMs,
without specific fine-tuning for evaluation tasks,
can serve as reliable alternatives to proprietary
models. We conduct comprehensive assess-
ments across established benchmarks and ana-
lyze their susceptibility to different biases. Our
findings demonstrate that certain open mod-
els can match or exceed the performance of
proprietary alternatives, providing a systematic
methodology for selecting appropriate open-
source evaluators while maintaining high stan-
dards of assessment quality.

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing with their broad
capabilities, but evaluating their performance
presents significant challenges. Unlike traditional
machine learning models with clear metrics, LLMs
require more nuanced evaluation approaches that
often rely on human feedback. However, human
evaluation introduces substantial drawbacks: it is
expensive, time-consuming, and difficult to scale.
To address these limitations, researchers have
proposed using LL.Ms themselves as evaluators,
known as the LLM-as-a-judge paradigm (Zheng
et al., 2023). While this approach shows promise
in automating evaluations and maintaining align-
ment with human judgment (Chang et al., 2024),
it faces several critical challenges. Current imple-
mentations primarily rely on proprietary models,
raising concerns about accessibility, costs, and data

privacy. Additionally, existing LLM judges exhibit
various biases, including sensitivity to response
length (Dubois et al., 2024), order effects (Zheng
et al., 2023), and preferences (Liu et al., 2023).

In this work, we systematically investigate
whether general-purpose open LLMs, without spe-
cific fine-tuning for evaluation tasks, can serve as
reliable alternatives to proprietary models. We con-
duct comprehensive assessments of leading open
models across established benchmarks, examining
their effectiveness as judges and analyzing their
susceptibility to various biases. While some open
models claim comparable performance to propri-
etary alternatives (Thakur et al., 2024), our study
provides rigorous validation of these claims in an
evaluation context.

Our findings have important implications for the
broader adoption of automated evaluation systems.
Through rigorous assessment of open LLM judges
across multiple dimensions of reliability, we argue
in favor of their viability as cost-effective alterna-
tives to proprietary models. This work also pro-
vides a method for selecting appropriate evaluators,
establishing a foundation for broader adoption of
open models in evaluation tasks.

2 LLM-as-a-Judge

Recent advancements in large language models,
such as GPT-4 (Achiam et al., 2023), have demon-
strated remarkable improvements in instruction fol-
lowing, query understanding, and response gener-
ation (Li et al., 2025). While these capabilities
make evaluating such models increasingly chal-
lenging, they have simultaneously created an op-
portunity: researchers have begun leveraging these
advanced LLMs as scalable automated evaluators,
a paradigm known as LLM-as-a-judge (Zheng et al.,
2023).

This approach has proven particularly promising
due to modern LLMs’ strong alignment with hu-



man preferences, achieved through reinforcement
learning from human feedback (RLHF) (Muruga-
doss et al., 2024). As a result, LLM judges show
high correlation with human judgments even with
minimal evaluation instructions (Li et al., 2025).

Beyond evaluation, LLM-based judges play a
crucial role in model alignment, retrieval, and rea-
soning tasks (Bai et al., 2022; Li and Qiu, 2023;
Liang et al., 2023; Lee et al., 2024; Li et al., 2024;
Zhao et al., 2024), offering a cost-effective solution
for comparing outputs across models. In model
alignment, LLM-based evaluators help guide fine-
tuning processes by identifying discrepancies be-
tween generated responses and human expectations.
In retrieval tasks, they assess the relevance and
quality of retrieved information, ranking results to
improve search quality. For reasoning tasks, LLM
judges validate logical consistency and correctness,
ensuring that models produce factually accurate
and well-structured outputs.

LLM-as-a-judge frameworks employ two main
evaluation methodologies to ensure systematic and
consistent assessment: absolute evaluation and
comparative evaluation (Li et al., 2025). In abso-
lute evaluation, responses are graded individually
against predefined criteria. However, this approach
often struggles to capture nuanced differences be-
tween responses and tends to produce unstable re-
sults, as scores can vary significantly when using
different judge models (Zheng et al., 2023). Com-
parative evaluation, which has become the predom-
inant approach, involves directly comparing two or
more responses to determine their relative quality.
Formally, given a judge LLM J, the comparative
assessment process can be expressed as:

R=J(Cy,...,Cy), (1)
where C; represents the ith candidate response be-
ing evaluated, and R denotes the evaluation result.
The process can take two forms: pairwise evalua-
tion (n = 2), where two responses are compared
directly, or list-wise evaluation (n > 2), where mul-
tiple responses are ranked simultaneously (Zheng
et al., 2023; Shen et al., 2024).

3 Can You Trust LLM Judgments?

The reliability of LLM-based judges can be system-
atically evaluated through several dimensions that
collectively determine their trustworthiness: posi-
tion bias assessment measures consistency across
different response orderings, instruction following

capabilities verify accurate interpretation and appli-
cation of evaluation criteria while resisting super-
ficial features, performance on challenging tasks
demonstrates sophisticated reasoning abilities, and
human alignment ensures judgments match expert
evaluations. Together, these comprehensive assess-
ments validate whether an LLM can serve as a
dependable evaluator across diverse applications.

Position bias. A critical challenge in LLM eval-
uation is position bias, where the ordering of re-
sponses influences the model’s judgment indepen-
dently of response quality. An ideal LLM judge
should evaluate responses based solely on their
merit, maintaining consistent assessments regard-
less of presentation order in pairwise comparisons.

To detect position bias, researchers employ
double-blind evaluation protocols where identi-
cal response pairs are presented in different or-
ders (Zheng et al., 2023). A reliable judge should
demonstrate consistent judgments across these per-
mutations. Significant variations in assessments
based on ordering indicate susceptibility to posi-
tional effects, which can compromise evaluation
fairness and reliability.

Instruction following. The ability to accurately
interpret and apply evaluation criteria is fundamen-
tal to a trustworthy LLM judge. Unlike traditional
metrics that rely on fixed scoring rules, LLM judges
must process and adhere to diverse, often complex
instructions while maintaining evaluation consis-
tency. Poor instruction following can lead to mis-
aligned assessments that fail to capture the intended
evaluation criteria.

A particular challenge lies in distinguishing be-
tween responses that satisfy task requirements and
those that merely demonstrate surface-level compe-
tence. For instance, a judge might incorrectly favor
stylistically polished but substantively inadequate
responses. Therefore, evaluating an LLM judge’s
instruction-following capabilities is crucial for en-
suring that assessments reflect meaningful quality
differences rather than superficial features.

Performance in challenging tasks. A robust
LLM judge must excel at evaluating responses in
scenarios that require sophisticated reasoning and
nuanced understanding. Many real-world applica-
tions involve ambiguous or multifaceted problems
where simple right-or-wrong determinations are
insufficient. Judges must demonstrate the ability
to assess subtle quality gradations, identify logical



inconsistencies, and maintain evaluation standards
across diverse contexts.

The performance on challenging tasks serves as
an indicator of an LLM judge’s capability to handle
edge cases and complex scenarios. Without strong
performance in these areas, a judge may default to
oversimplified assessments or fail to capture impor-
tant qualitative differences between responses.

4 Evaluating Open Models

We evaluate open LLMs across three dimensions
to assess their alignment with human expectations:

* Position Bias: Using the Position Bias Ana-
lyzer (Shi et al., 2024), we measure whether
LLM judges exhibit bias based on response
position rather than content quality. The eval-
uation uses datasets from MT-Bench (Zheng
et al., 2023), with performance measured by
the percentage of cases where the model’s
preference remains consistent when prompt
order is changed.

¢ Instruction Following: We apply the LLM-
Bar benchmark (Zeng et al., 2024) containing
419 output pairs to assess how well LLMs fol-
low instructions. The benchmark comprises
two components: the Natural Set for real-
world scenarios, and the Adversarial Set, de-
signed to challenge evaluators with responses
that deviate from instructions while appearing
superficially strong. Performance is measured
through alignment with human annotations.

* Complex Reasoning: Using JudgeBench
(Tan et al., 2024), we evaluate LLMs’ abil-
ity to assess responses requiring advanced rea-
soning and factual accuracy across knowledge,
reasoning, mathematics, and coding domains.
The benchmark includes carefully crafted re-
sponse pairs containing subtle logical errors to
test discrimination capabilities. Performance
is measured by the accuracy in identifying
logically valid responses.

For instruction following and challenging task
evaluations, we employ the swapping operation
technique (Zheng et al., 2023) to control positional
bias. This involves evaluating each response pair
twice with reversed ordering and averaging the re-
sults. When a model’s preference changes after
swapping positions, we consider this a “tie” indi-
cating uncertainty in the model’s ability to differ-
entiate between responses. This approach helps

isolating the model’s true evaluation capabilities
from any potential position-based preferences.

For each benchmark, we utilized the prompting
strategies proposed in their respective works. In the
instruction following evaluation, we employed the
Metrics+Reference+Rules prompt from Zeng et al.
(2024), which demonstrated superior performance
in their analysis by establishing explicit evaluation
rules, self-defined quality metrics, and reference
solution generation to improve their assessment ca-
pabilities. For the challenging task assessment, we
implemented the arena-hard judge format from Tan
et al. (2024), which directs the model to first gen-
erate its own reference solution before analyzing
candidate responses.

The evaluation focuses on assessing the inherent
capabilities of general-purpose models rather than
fine-tuned models specifically trained as evaluators.
The assessed models include leading families from
official providers. These models were accessed
via TogetherAPI' due to hardware constraints. Se-
lection was based on the top-performing models
listed on the Open LLM Leaderboard (Fourrier
et al., 2024), ensuring that only officially released
versions from their respective providers were con-
sidered. All benchmarks were evaluated using their
original implementations, sourced from the respec-
tive repositories. 2 3 4

Table 1 presents a summary of the evaluation re-
sults, with additional details and results provided in
Appendix A. The results demonstrate a substantial
performance gap between large and small mod-
els across all evaluation criteria. Large models
(>27B parameters) consistently outperform their
smaller counterparts, with the disparity being par-
ticularly pronounced in challenging tasks where
large models achieve scores ranging from 40.3%
to 56.6%, while smaller models generally perform
below 40%, with some scoring as low as 3.14%.
Notably, Llama3.3:70B emerges as the strongest
performer among open models, matching or ex-
ceeding GPT-4’s performance across multiple met-
rics, including position bias resistance (88.8% vs
81.5%) and instruction following in both natural
(95.5%) and adversarial (83.3%) settings.

Our analysis reveals a strong correlation be-
tween performance on adversarial instruction fol-

"https://api. together.xyz/

https://github.com/Slimshilin/
Position-Bias-Analyzer/tree/main

3https: //github.com/princeton-nlp/LLMBar

*https://github.com/ScalerLab/JudgeBench
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Position Instruction Challenging
Bias Following Task
Natural Adversarial

GPT-4* / GPT-40%** 81.5%* 96.0%* 83.3%* 56.6%**
Llama3:70B 83.8% 90.0% 76.8% 46.9%
Llama3.1:70B 83.1% 95.5% 82.6% 52.3%
Llama3.3:70B 88.8% 95.5% 83.3% 56.6 %
Gemma2:27B 71.9% 88.0% 75.2% 41.7%
Qwen2:72B 79.4% 93.5% 73.5% 40.3%
Qwen2.5:72B 84.4% 94.5% 73.5% 55.1%
Mixtral:8x7B 76.2% 82.5% 58.5% 46.6%
Llama3:8B 62.5% 81.0% 56.0% 40.3%
Llama3.1:8B 73.1% 83.0% 55.2% 40.9%
Gemma2:9B 71.2% 90.0% 74.5% 42.9%
Qwen2:7B 39.9% 83.5% 54.8% 26.3%
Qwen2.5:7B 38.5% 89.5% 65.9 % 41.7%
Mistral:7B 58.1% 68.5% 47.4% 17.1%
Granite-3.1:8B 40.5% 79.5% 56.5% 12.3%
Phi-3-small 56.9% 89.5% 61.3% 38.0%
Falcon3:7B 53.5% 83.5% 51.8% 37.1%
Internlm?2.5:7b 57.1% 82.0% 57.3% 3.14%

Table 1: Results of various language models on benchmark tasks. Results demonstrate that larger models (>27B
parameters) consistently outperform smaller models across all evaluation criteria, with Llama3.3:70B matching
or exceeding GPT-4’s performance in several metrics. At the top, we present large models, while smaller models
are listed at the bottom. The best results in each category (large and small models) are highlighted in bold. *For
position bias and instruction following we respectively source GPT-4-0613 results from Shi et al. (2024) and Zeng
et al. (2024), and **for the challenging task we source GPT-4o0 results from Tan et al. (2024).

lowing and complex reasoning tasks. Models that
excel at maintaining robust instruction adherence
under adversarial conditions tend to perform bet-
ter on complex reasoning tasks. This relation-
ship is exemplified by Llama3.3:70B and GPT-4,
which achieve the highest scores in both adver-
sarial instruction following (83.3%) and complex
reasoning (56.6%). The particularly low perfor-
mance of smaller models on complex reasoning
tasks (e.g., Mistral:7B at 17.1%, Granite-3.1:8B
at 12.3%, and Internlm2.5:7b at 3.14%) may be
partially attributed to the evaluation methodology
itself. Since the JudgeBench protocol requires mod-
els to first generate their own reference solution
before evaluating responses, models that struggle
with the underlying tasks may produce poor ref-
erence solutions, further compromising their abil-
ity to make accurate judgments. However, even
the best-performing models achieve only moderate
success rates on complex reasoning tasks, indicat-
ing significant room for improvement in achieving

highly reliable complex evaluations.

5 Conclusion

In this study, we evaluate the performance of lead-
ing open language models on benchmark tasks,
focusing on position bias, instruction following,
and performance on challenging tasks. Our results
indicate that larger models consistently outperform
smaller ones, particularly in complex reasoning
tasks. Notably, Llama3.3:70B demonstrated supe-
rior performance, matching or exceeding GPT-4 in
several metrics, establishing itself as a viable open
alternative to the widely used but closed-source
GPT-4. This is particularly significant for academic
labs that can now run state-of-the-art models locally
for research purposes. The correlation between ad-
versarial instruction following and challenging task
performance suggests that robust instruction adher-
ence is crucial for complex evaluations. However,
even the best models show room for improvement
across all dimensions.



Ethical Implications. The superior perfor-
mance of larger models raises important ethical
considerations regarding computational resource
allocation and environmental impact. The signifi-
cant computational requirements for training and
running these models could exacerbate existing
inequalities in access to Al technologies. Addition-
ally, as these models become more capable of com-
plex reasoning and evaluation tasks, their poten-
tial influence on decision-making processes across
various domains increases, necessitating careful
consideration of fairness, accountability, and trans-
parency in their deployment.

Limitations. Our evaluation criteria relate to
other generally desirable LLM properties, such as
helpfulness. This paper emphasizes helpfulness but
largely neglects safety. Honesty and harmlessness
are crucial for a chat assistant as well. Additionally,
within helpfulness, there are multiple dimensions
like accuracy, relevance, and creativity, but they
are all combined into a single metric in this study.
Finally, even though our evaluation procedure can
be extended to newer models, the rapid pace of
advancements in the field could render the specific
findings presented in this work outdated.
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A Additional Results

The LLMBar(Zeng et al., 2024) benchmark com-
pares model responses to human-annotated datasets
across two primary sets. The Natural dataset con-
sists of real-world scenarios that evaluate models
on typical instructions and responses. These ex-
amples are curated to ensure one response is ob-
jectively better, offering a reliable measure of the
model’s ability to follow instructions. This dataset
reflects the model’s performance on unmodified,
naturally occurring prompts.

Conversely, the Adversarial dataset is designed
to challenge LLLM evaluators. It presents prompts
where one response deviates from the instructions
but may appear more appealing due to superficial
qualities, such as tone or formatting. This dataset
tests a model’s robustness in adhering to instruc-
tions under more challenging conditions.

To enhance LLM evaluations within LLMBar,
various prompting strategies are employed:

* Vanilla: The model is asked to select the bet-
ter output based on the instruction, serving as
a baseline strategy.

* Chain-of-Thought (CoT): The model gener-
ates reasoning before making a decision, en-
couraging a deeper evaluation process.

¢ Self-Generated Reference (Reference): The
model first generates its own response, which
is then used as a reference to evaluate other
outputs.

* Rules: Explicit rules are provided to guide
the model in prioritizing faithfulness to the
instructions, improving performance across
diverse contexts.

* Metrics: The model defines its own metrics
for evaluating the quality of outputs, helping
it focus on relevant aspects during assessment.

* Swap and Synthesize (Swap): The model
evaluates the outputs in both possible orders
and synthesizes the results to mitigate posi-
tional bias.

Each strategy addresses specific challenges in
LLM evaluation, with certain combinations often
leading to improved performance.

The results in Table 2 demonstrate a clear perfor-
mance gap between large and small models. Larger
models consistently achieve higher accuracy, partic-
ularly in the more challenging adversarial dataset.
Among smaller models, Gemma2:9B stands out
with surprisingly strong performance, achieving
scores comparable to larger models across both nat-
ural and adversarial tasks. The Metrics+Reference
strategy generally yields the best results, suggest-
ing that having models generate their own reference
solutions improves evaluation quality.

The Position Bias Analyzer (Shi et al., 2024)
assesses models’ susceptibility to positional bias
using datasets from MT-Bench (Zheng et al., 2023).
Like LLMBar, this benchmark reverses the prompt
order to evaluate how consistently models respond
to varying prompt positions. Key metrics include
Positional Agreement, which measures consistency
before and after prompt reversal, and Extraction
Success Rate, which evaluates the model’s effec-
tiveness in extracting relevant information. The
benchmark also introduces the Positional Prefer-
ence Score, ranging from -1 to 1, indicating the
model’s bias: a score of O denotes no bias, 1 in-
dicates recency bias (favoring the first response),
and -1 indicates primacy bias (favoring the last
response).

The results show that larger models generally
achieve better positional consistency and extrac-
tion success rates. Notably, Llama3.3:70B demon-
strates the highest positional consistency (88.8%)
among large models, while Qwen2.5:72B shows
the most stable consistency with the lowest stan-
dard deviation (8.6). Most models exhibit rela-
tively small positional biases, with scores close to
0, though some smaller models like Granite-3.1:8B
show stronger primacy bias (-0.456). Gemma2:9B
again performs remarkably well for its size, achiev-
ing perfect extraction rates and leading positional
consistency among smaller models.
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LLMBar - Natural and Adversarial

Natural Adversarial
Vanilla Metrics+Reference Swap Swap+CoT Vanilla Metrics+Reference Swap Swap+CoT

Model Acc PA Acc PA Acc PA Acc PA Acc PA Acc PA Acc PA Acc PA
GPT4* 95.5% 95.0% 96.0%  96.0%  94.5% 97.0% 94.0% 100.0% 80.4% 91.5% 83.3% 89.5%  79.6% 962% 199% 91.3%
Llama3:70B 87.5% 85.0% 90.0%  88.0%  90.0% 94.0% 90.5% 93.0% 709% 82.4% 76.8% 84.0%  76.6% 90.1% 76.4% 91.6%
Llama3.1:70B 90.5% 91.0% 955%  93.0% 95.0% 98.0% 92.0% 96.0% 79.9% 82.1% 82.6% 84.9%  847% 92.1% 83.2% 93.1%
Llama3.3:70B 95.5%  95.0% 833% 87.1%

Gemma2:27B  88.5% 93.0% 88.0%  90.0% 87.5% 93.0% 90.0% 96.0% 70.9% 81.5% 75.2% 81.1%  72.6% 951% 73.1% 94.6%
Qwen2:72B 91.5% 91.0% 93.5%  91.0%  925% 95.0% 93.0% 96.0% 70.1% 88.6% 73.5% 89.1%  72.6% 95.0% 722% 93.1%
Qwen2.5:72B  91.5% 93.0% 94.5%  93.0%  91.0% 920% 91.5% 93.0% 67.7% 823% 73.5% 86.4%  139% 89.6% 14.6% 81.5%
Mixtral:8x7B 82.5% 81.0% 82.5%  79.0% 85.0% 86.0% 82.0% 90.0% 573% 66.5% 58.7% 66.5%  553% 79.0% 589% 87.1%
Llama3:8B 755% 77.0% 81.0%  78.0%  77.5% 86.0% 7185% 96.0% 418% 61.5% 56.1% 64.5%  45.0% 70.8% 46.4% 82.5%
Llama3.1:8B 81.0% 83.0% 80.0% 855% 83.0% 84.0% 94.0% 94.0% 45.1% 642% 552% 66.8%  559% 13.5% 562% 79.1%
Gemma2:9B 87.5% 91.0% 90.0% 90.0% 90.5% 93.0% 92.0% 920% 7T1.1% 83.7% 745% 80.5% 662% 84.2% 66.7% 84.2%
Qwen2:7B 83.0% 82.0% 835%  79.0% 80.5% 87.0% 80.0% 88.0% 472% 61.6% 54.8% 557%  415% 789% 40.0% 79.0%
Qwen2.5:7B 88.5% 85.0% 89.5%  87.0% 855% 93.0% 88.0% 94.0% 634% 66.5% 659%  14.5%  603% 829% 59.7% 88.3%
Mistral:7B 67.5% 37.0% 68.5%  41.0%  78.0% 67.0% 79.5% 77.0% 448% 283% 47.4% 286%  435% 59.0% 49.0% 63.2%
Granite-3.1:8B  82.0% 78.0% 79.5%  71.0% 89.0% 90.0% 855% 92.0% 513% 61.1% 56.5% 59.1%  513% 61.1% 513% 61.1%
Phi-3-small 86.0% 84.0% 89.5%  87.0% 87.0% 94.0% 885% 93.0% 53.8% 724% 613% 145%  538% 12.4% 538% 72.4%
Falcon3:7B 815% 75.0% 835%  81.0% 845% 93.0% 78.0% 88.0% 45.1% 76.6% 51.8%  13.9%  451% 16.6% 45.1% 76.6%
Internlm2.5:7b  81.0% 71.0% 82.0%  75.0% 80.0% 76.0% 83.0% 850% 50.6% 60.5% 57.3% 65.6%  50.6% 60.5% 50.6% 60.5%

Table 2: Performance comparison of language models on the LLMBar benchmark across Natural and Adversarial
datasets. Results show accuracy (Acc) and positional agreement (PA) scores for different evaluation strategies:
Vanilla, Metrics+Reference, Swap, and Swap+CoT. Models are grouped by size, with larger models (>20B
parameters) shown above the line and smaller models below. Bold values indicate top performance within each
group. ¥We source GPT-4-0613 results from (Zeng et al., 2024).



Position Bias Analyzer - MT-Bench
Extraction Positional Positional Positional
Successful Rate  Consistency Consistency Std  Preference Score

GPT4* 100.0% 81.5% 14.9 0.020
Llama3:70B 100.0% 83.8% 11.1 -0.025
Llama3.1:70B 100.0% 83.1% 15.3 0.006
Llama3.3:70B 100.0% 88.8% 12.2 -0.075
Gemma2:27B 100.0% 71.9% 18.1 0.044
Qwen2:72B 100.0% 79.4% 15.2 -0.131
Qwen2.5:72B 100.0% 84.4% 8.6 -0.056
Mixtral:8x7B 95.8% 76.2% 11.8 0.019
Llama3:8B 84.8% 62.5% 18.8 -0.131
Llama3.1:8B 98.7% 73.1% 13.5 -0.125
Gemma2:9B 100.0 % 71.2% 11.1 0.175
Qwen2:7B 98.7% 46.8% 17.8 0.069
Qwen2.5:7B 98.7% 38.5% 15.9 -0.188
Mistral:7B 100.0% 58.1% 19.4 -0.256
Granite-3.1:8B 97.8% 40.5% 18.2 -0.456
Phi-3-small 97.8% 56.9% 21.8 -0.188
Falcon3:7B 99.7% 53.5% 17.0 -0.150
Internlm?2.5:7b 51.0% 57.1% 30.9 0.056

Table 3: Results from the Position Bias Analyzer benchmark on MT-Bench data. Models are evaluated on their
ability to extract information (Extraction Success Rate), maintain consistent responses across prompt reversals
(Positional Consistency), the standard deviation of consistency (Positional Consistency Std), and their positional
bias tendency (Positional Preference Score). Models are grouped by size, with larger models (>20B parameters)
above the line and smaller models below. Bold values indicate top performance within each group. *We respectively
source GPT-4-0613 results from (Shi et al., 2024).
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