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Abstract
Large language models (LLMs) have become001
prevalent in natural language processing, with002
researchers increasingly using them as auto-003
mated evaluators through the LLM-as-a-judge004
paradigm. However, current implementations005
primarily rely on proprietary models, raising006
concerns about accessibility, costs, and data007
privacy. Additionally, existing LLM judges008
exhibit various biases that can compromise009
evaluation quality. We systematically inves-010
tigate whether general-purpose open LLMs,011
without specific fine-tuning for evaluation tasks,012
can serve as reliable alternatives to proprietary013
models. We conduct comprehensive assess-014
ments across established benchmarks and ana-015
lyze their susceptibility to different biases. Our016
findings demonstrate that certain open mod-017
els can match or exceed the performance of018
proprietary alternatives, providing a systematic019
methodology for selecting appropriate open-020
source evaluators while maintaining high stan-021
dards of assessment quality.022

1 Introduction023

Large language models (LLMs) have revolution-024

ized natural language processing with their broad025

capabilities, but evaluating their performance026

presents significant challenges. Unlike traditional027

machine learning models with clear metrics, LLMs028

require more nuanced evaluation approaches that029

often rely on human feedback. However, human030

evaluation introduces substantial drawbacks: it is031

expensive, time-consuming, and difficult to scale.032

To address these limitations, researchers have033

proposed using LLMs themselves as evaluators,034

known as the LLM-as-a-judge paradigm (Zheng035

et al., 2023). While this approach shows promise036

in automating evaluations and maintaining align-037

ment with human judgment (Chang et al., 2024),038

it faces several critical challenges. Current imple-039

mentations primarily rely on proprietary models,040

raising concerns about accessibility, costs, and data041

privacy. Additionally, existing LLM judges exhibit 042

various biases, including sensitivity to response 043

length (Dubois et al., 2024), order effects (Zheng 044

et al., 2023), and preferences (Liu et al., 2023). 045

In this work, we systematically investigate 046

whether general-purpose open LLMs, without spe- 047

cific fine-tuning for evaluation tasks, can serve as 048

reliable alternatives to proprietary models. We con- 049

duct comprehensive assessments of leading open 050

models across established benchmarks, examining 051

their effectiveness as judges and analyzing their 052

susceptibility to various biases. While some open 053

models claim comparable performance to propri- 054

etary alternatives (Thakur et al., 2024), our study 055

provides rigorous validation of these claims in an 056

evaluation context. 057

Our findings have important implications for the 058

broader adoption of automated evaluation systems. 059

Through rigorous assessment of open LLM judges 060

across multiple dimensions of reliability, we argue 061

in favor of their viability as cost-effective alterna- 062

tives to proprietary models. This work also pro- 063

vides a method for selecting appropriate evaluators, 064

establishing a foundation for broader adoption of 065

open models in evaluation tasks. 066

2 LLM-as-a-Judge 067

Recent advancements in large language models, 068

such as GPT-4 (Achiam et al., 2023), have demon- 069

strated remarkable improvements in instruction fol- 070

lowing, query understanding, and response gener- 071

ation (Li et al., 2025). While these capabilities 072

make evaluating such models increasingly chal- 073

lenging, they have simultaneously created an op- 074

portunity: researchers have begun leveraging these 075

advanced LLMs as scalable automated evaluators, 076

a paradigm known as LLM-as-a-judge (Zheng et al., 077

2023). 078

This approach has proven particularly promising 079

due to modern LLMs’ strong alignment with hu- 080
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man preferences, achieved through reinforcement081

learning from human feedback (RLHF) (Muruga-082

doss et al., 2024). As a result, LLM judges show083

high correlation with human judgments even with084

minimal evaluation instructions (Li et al., 2025).085

Beyond evaluation, LLM-based judges play a086

crucial role in model alignment, retrieval, and rea-087

soning tasks (Bai et al., 2022; Li and Qiu, 2023;088

Liang et al., 2023; Lee et al., 2024; Li et al., 2024;089

Zhao et al., 2024), offering a cost-effective solution090

for comparing outputs across models. In model091

alignment, LLM-based evaluators help guide fine-092

tuning processes by identifying discrepancies be-093

tween generated responses and human expectations.094

In retrieval tasks, they assess the relevance and095

quality of retrieved information, ranking results to096

improve search quality. For reasoning tasks, LLM097

judges validate logical consistency and correctness,098

ensuring that models produce factually accurate099

and well-structured outputs.100

LLM-as-a-judge frameworks employ two main101

evaluation methodologies to ensure systematic and102

consistent assessment: absolute evaluation and103

comparative evaluation (Li et al., 2025). In abso-104

lute evaluation, responses are graded individually105

against predefined criteria. However, this approach106

often struggles to capture nuanced differences be-107

tween responses and tends to produce unstable re-108

sults, as scores can vary significantly when using109

different judge models (Zheng et al., 2023). Com-110

parative evaluation, which has become the predom-111

inant approach, involves directly comparing two or112

more responses to determine their relative quality.113

Formally, given a judge LLM J , the comparative114

assessment process can be expressed as:115

R = J(C1, . . . , Cn), (1)116

where Ci represents the ith candidate response be-117

ing evaluated, and R denotes the evaluation result.118

The process can take two forms: pairwise evalua-119

tion (n = 2), where two responses are compared120

directly, or list-wise evaluation (n > 2), where mul-121

tiple responses are ranked simultaneously (Zheng122

et al., 2023; Shen et al., 2024).123

3 Can You Trust LLM Judgments?124

The reliability of LLM-based judges can be system-125

atically evaluated through several dimensions that126

collectively determine their trustworthiness: posi-127

tion bias assessment measures consistency across128

different response orderings, instruction following129

capabilities verify accurate interpretation and appli- 130

cation of evaluation criteria while resisting super- 131

ficial features, performance on challenging tasks 132

demonstrates sophisticated reasoning abilities, and 133

human alignment ensures judgments match expert 134

evaluations. Together, these comprehensive assess- 135

ments validate whether an LLM can serve as a 136

dependable evaluator across diverse applications. 137

Position bias. A critical challenge in LLM eval- 138

uation is position bias, where the ordering of re- 139

sponses influences the model’s judgment indepen- 140

dently of response quality. An ideal LLM judge 141

should evaluate responses based solely on their 142

merit, maintaining consistent assessments regard- 143

less of presentation order in pairwise comparisons. 144

To detect position bias, researchers employ 145

double-blind evaluation protocols where identi- 146

cal response pairs are presented in different or- 147

ders (Zheng et al., 2023). A reliable judge should 148

demonstrate consistent judgments across these per- 149

mutations. Significant variations in assessments 150

based on ordering indicate susceptibility to posi- 151

tional effects, which can compromise evaluation 152

fairness and reliability. 153

Instruction following. The ability to accurately 154

interpret and apply evaluation criteria is fundamen- 155

tal to a trustworthy LLM judge. Unlike traditional 156

metrics that rely on fixed scoring rules, LLM judges 157

must process and adhere to diverse, often complex 158

instructions while maintaining evaluation consis- 159

tency. Poor instruction following can lead to mis- 160

aligned assessments that fail to capture the intended 161

evaluation criteria. 162

A particular challenge lies in distinguishing be- 163

tween responses that satisfy task requirements and 164

those that merely demonstrate surface-level compe- 165

tence. For instance, a judge might incorrectly favor 166

stylistically polished but substantively inadequate 167

responses. Therefore, evaluating an LLM judge’s 168

instruction-following capabilities is crucial for en- 169

suring that assessments reflect meaningful quality 170

differences rather than superficial features. 171

Performance in challenging tasks. A robust 172

LLM judge must excel at evaluating responses in 173

scenarios that require sophisticated reasoning and 174

nuanced understanding. Many real-world applica- 175

tions involve ambiguous or multifaceted problems 176

where simple right-or-wrong determinations are 177

insufficient. Judges must demonstrate the ability 178

to assess subtle quality gradations, identify logical 179
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inconsistencies, and maintain evaluation standards180

across diverse contexts.181

The performance on challenging tasks serves as182

an indicator of an LLM judge’s capability to handle183

edge cases and complex scenarios. Without strong184

performance in these areas, a judge may default to185

oversimplified assessments or fail to capture impor-186

tant qualitative differences between responses.187

4 Evaluating Open Models188

We evaluate open LLMs across three dimensions189

to assess their alignment with human expectations:190

• Position Bias: Using the Position Bias Ana-191

lyzer (Shi et al., 2024), we measure whether192

LLM judges exhibit bias based on response193

position rather than content quality. The eval-194

uation uses datasets from MT-Bench (Zheng195

et al., 2023), with performance measured by196

the percentage of cases where the model’s197

preference remains consistent when prompt198

order is changed.199

• Instruction Following: We apply the LLM-200

Bar benchmark (Zeng et al., 2024) containing201

419 output pairs to assess how well LLMs fol-202

low instructions. The benchmark comprises203

two components: the Natural Set for real-204

world scenarios, and the Adversarial Set, de-205

signed to challenge evaluators with responses206

that deviate from instructions while appearing207

superficially strong. Performance is measured208

through alignment with human annotations.209

• Complex Reasoning: Using JudgeBench210

(Tan et al., 2024), we evaluate LLMs’ abil-211

ity to assess responses requiring advanced rea-212

soning and factual accuracy across knowledge,213

reasoning, mathematics, and coding domains.214

The benchmark includes carefully crafted re-215

sponse pairs containing subtle logical errors to216

test discrimination capabilities. Performance217

is measured by the accuracy in identifying218

logically valid responses.219

For instruction following and challenging task220

evaluations, we employ the swapping operation221

technique (Zheng et al., 2023) to control positional222

bias. This involves evaluating each response pair223

twice with reversed ordering and averaging the re-224

sults. When a model’s preference changes after225

swapping positions, we consider this a “tie” indi-226

cating uncertainty in the model’s ability to differ-227

entiate between responses. This approach helps228

isolating the model’s true evaluation capabilities 229

from any potential position-based preferences. 230

For each benchmark, we utilized the prompting 231

strategies proposed in their respective works. In the 232

instruction following evaluation, we employed the 233

Metrics+Reference+Rules prompt from Zeng et al. 234

(2024), which demonstrated superior performance 235

in their analysis by establishing explicit evaluation 236

rules, self-defined quality metrics, and reference 237

solution generation to improve their assessment ca- 238

pabilities. For the challenging task assessment, we 239

implemented the arena-hard judge format from Tan 240

et al. (2024), which directs the model to first gen- 241

erate its own reference solution before analyzing 242

candidate responses. 243

The evaluation focuses on assessing the inherent 244

capabilities of general-purpose models rather than 245

fine-tuned models specifically trained as evaluators. 246

The assessed models include leading families from 247

official providers. These models were accessed 248

via TogetherAPI1 due to hardware constraints. Se- 249

lection was based on the top-performing models 250

listed on the Open LLM Leaderboard (Fourrier 251

et al., 2024), ensuring that only officially released 252

versions from their respective providers were con- 253

sidered. All benchmarks were evaluated using their 254

original implementations, sourced from the respec- 255

tive repositories. 2 3 4 256

Table 1 presents a summary of the evaluation re- 257

sults, with additional details and results provided in 258

Appendix A. The results demonstrate a substantial 259

performance gap between large and small mod- 260

els across all evaluation criteria. Large models 261

(>27B parameters) consistently outperform their 262

smaller counterparts, with the disparity being par- 263

ticularly pronounced in challenging tasks where 264

large models achieve scores ranging from 40.3% 265

to 56.6%, while smaller models generally perform 266

below 40%, with some scoring as low as 3.14%. 267

Notably, Llama3.3:70B emerges as the strongest 268

performer among open models, matching or ex- 269

ceeding GPT-4’s performance across multiple met- 270

rics, including position bias resistance (88.8% vs 271

81.5%) and instruction following in both natural 272

(95.5%) and adversarial (83.3%) settings. 273

Our analysis reveals a strong correlation be- 274

tween performance on adversarial instruction fol- 275

1https://api.together.xyz/
2https://github.com/Slimshilin/

Position-Bias-Analyzer/tree/main
3https://github.com/princeton-nlp/LLMBar
4https://github.com/ScalerLab/JudgeBench
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Position
Bias

Instruction
Following

Challenging
Task

Natural Adversarial
GPT-4* / GPT-4o** 81.5%* 96.0%* 83.3%* 56.6%**
Llama3:70B 83.8% 90.0% 76.8% 46.9%
Llama3.1:70B 83.1% 95.5% 82.6% 52.3%
Llama3.3:70B 88.8% 95.5% 83.3% 56.6%
Gemma2:27B 71.9% 88.0% 75.2% 41.7%
Qwen2:72B 79.4% 93.5% 73.5% 40.3%
Qwen2.5:72B 84.4% 94.5% 73.5% 55.1%
Mixtral:8x7B 76.2% 82.5% 58.5% 46.6%

Llama3:8B 62.5% 81.0% 56.0% 40.3%
Llama3.1:8B 73.1% 83.0% 55.2% 40.9%
Gemma2:9B 71.2% 90.0% 74.5% 42.9%
Qwen2:7B 39.9% 83.5% 54.8% 26.3%
Qwen2.5:7B 38.5% 89.5% 65.9% 41.7%
Mistral:7B 58.1% 68.5% 47.4% 17.1%
Granite-3.1:8B 40.5% 79.5% 56.5% 12.3%
Phi-3-small 56.9% 89.5% 61.3% 38.0%
Falcon3:7B 53.5% 83.5% 51.8% 37.1%
Internlm2.5:7b 57.1% 82.0% 57.3% 3.14%

Table 1: Results of various language models on benchmark tasks. Results demonstrate that larger models (>27B
parameters) consistently outperform smaller models across all evaluation criteria, with Llama3.3:70B matching
or exceeding GPT-4’s performance in several metrics. At the top, we present large models, while smaller models
are listed at the bottom. The best results in each category (large and small models) are highlighted in bold. *For
position bias and instruction following we respectively source GPT-4-0613 results from Shi et al. (2024) and Zeng
et al. (2024), and **for the challenging task we source GPT-4o results from Tan et al. (2024).

lowing and complex reasoning tasks. Models that276

excel at maintaining robust instruction adherence277

under adversarial conditions tend to perform bet-278

ter on complex reasoning tasks. This relation-279

ship is exemplified by Llama3.3:70B and GPT-4,280

which achieve the highest scores in both adver-281

sarial instruction following (83.3%) and complex282

reasoning (56.6%). The particularly low perfor-283

mance of smaller models on complex reasoning284

tasks (e.g., Mistral:7B at 17.1%, Granite-3.1:8B285

at 12.3%, and Internlm2.5:7b at 3.14%) may be286

partially attributed to the evaluation methodology287

itself. Since the JudgeBench protocol requires mod-288

els to first generate their own reference solution289

before evaluating responses, models that struggle290

with the underlying tasks may produce poor ref-291

erence solutions, further compromising their abil-292

ity to make accurate judgments. However, even293

the best-performing models achieve only moderate294

success rates on complex reasoning tasks, indicat-295

ing significant room for improvement in achieving296

highly reliable complex evaluations. 297

5 Conclusion 298

In this study, we evaluate the performance of lead- 299

ing open language models on benchmark tasks, 300

focusing on position bias, instruction following, 301

and performance on challenging tasks. Our results 302

indicate that larger models consistently outperform 303

smaller ones, particularly in complex reasoning 304

tasks. Notably, Llama3.3:70B demonstrated supe- 305

rior performance, matching or exceeding GPT-4 in 306

several metrics, establishing itself as a viable open 307

alternative to the widely used but closed-source 308

GPT-4. This is particularly significant for academic 309

labs that can now run state-of-the-art models locally 310

for research purposes. The correlation between ad- 311

versarial instruction following and challenging task 312

performance suggests that robust instruction adher- 313

ence is crucial for complex evaluations. However, 314

even the best models show room for improvement 315

across all dimensions. 316
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Ethical Implications. The superior perfor-317

mance of larger models raises important ethical318

considerations regarding computational resource319

allocation and environmental impact. The signifi-320

cant computational requirements for training and321

running these models could exacerbate existing322

inequalities in access to AI technologies. Addition-323

ally, as these models become more capable of com-324

plex reasoning and evaluation tasks, their poten-325

tial influence on decision-making processes across326

various domains increases, necessitating careful327

consideration of fairness, accountability, and trans-328

parency in their deployment.329

Limitations. Our evaluation criteria relate to330

other generally desirable LLM properties, such as331

helpfulness. This paper emphasizes helpfulness but332

largely neglects safety. Honesty and harmlessness333

are crucial for a chat assistant as well. Additionally,334

within helpfulness, there are multiple dimensions335

like accuracy, relevance, and creativity, but they336

are all combined into a single metric in this study.337

Finally, even though our evaluation procedure can338

be extended to newer models, the rapid pace of339

advancements in the field could render the specific340

findings presented in this work outdated.341
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A Additional Results440

The LLMBar(Zeng et al., 2024) benchmark com-441

pares model responses to human-annotated datasets442

across two primary sets. The Natural dataset con-443

sists of real-world scenarios that evaluate models444

on typical instructions and responses. These ex-445

amples are curated to ensure one response is ob-446

jectively better, offering a reliable measure of the447

model’s ability to follow instructions. This dataset448

reflects the model’s performance on unmodified,449

naturally occurring prompts.450

Conversely, the Adversarial dataset is designed451

to challenge LLM evaluators. It presents prompts452

where one response deviates from the instructions453

but may appear more appealing due to superficial454

qualities, such as tone or formatting. This dataset455

tests a model’s robustness in adhering to instruc-456

tions under more challenging conditions.457

To enhance LLM evaluations within LLMBar,458

various prompting strategies are employed:459

• Vanilla: The model is asked to select the bet-460

ter output based on the instruction, serving as461

a baseline strategy.462

• Chain-of-Thought (CoT): The model gener-463

ates reasoning before making a decision, en-464

couraging a deeper evaluation process.465

• Self-Generated Reference (Reference): The466

model first generates its own response, which467

is then used as a reference to evaluate other468

outputs.469

• Rules: Explicit rules are provided to guide470

the model in prioritizing faithfulness to the471

instructions, improving performance across472

diverse contexts.473

• Metrics: The model defines its own metrics 474

for evaluating the quality of outputs, helping 475

it focus on relevant aspects during assessment. 476

• Swap and Synthesize (Swap): The model 477

evaluates the outputs in both possible orders 478

and synthesizes the results to mitigate posi- 479

tional bias. 480

Each strategy addresses specific challenges in 481

LLM evaluation, with certain combinations often 482

leading to improved performance. 483

The results in Table 2 demonstrate a clear perfor- 484

mance gap between large and small models. Larger 485

models consistently achieve higher accuracy, partic- 486

ularly in the more challenging adversarial dataset. 487

Among smaller models, Gemma2:9B stands out 488

with surprisingly strong performance, achieving 489

scores comparable to larger models across both nat- 490

ural and adversarial tasks. The Metrics+Reference 491

strategy generally yields the best results, suggest- 492

ing that having models generate their own reference 493

solutions improves evaluation quality. 494

The Position Bias Analyzer (Shi et al., 2024) 495

assesses models’ susceptibility to positional bias 496

using datasets from MT-Bench (Zheng et al., 2023). 497

Like LLMBar, this benchmark reverses the prompt 498

order to evaluate how consistently models respond 499

to varying prompt positions. Key metrics include 500

Positional Agreement, which measures consistency 501

before and after prompt reversal, and Extraction 502

Success Rate, which evaluates the model’s effec- 503

tiveness in extracting relevant information. The 504

benchmark also introduces the Positional Prefer- 505

ence Score, ranging from -1 to 1, indicating the 506

model’s bias: a score of 0 denotes no bias, 1 in- 507

dicates recency bias (favoring the first response), 508

and -1 indicates primacy bias (favoring the last 509

response). 510

The results show that larger models generally 511

achieve better positional consistency and extrac- 512

tion success rates. Notably, Llama3.3:70B demon- 513

strates the highest positional consistency (88.8%) 514

among large models, while Qwen2.5:72B shows 515

the most stable consistency with the lowest stan- 516

dard deviation (8.6). Most models exhibit rela- 517

tively small positional biases, with scores close to 518

0, though some smaller models like Granite-3.1:8B 519

show stronger primacy bias (-0.456). Gemma2:9B 520

again performs remarkably well for its size, achiev- 521

ing perfect extraction rates and leading positional 522

consistency among smaller models. 523
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LLMBar - Natural and Adversarial
Natural Adversarial

Vanilla Metrics+Reference Swap Swap+CoT Vanilla Metrics+Reference Swap Swap+CoT
Model Acc PA Acc PA Acc PA Acc PA Acc PA Acc PA Acc PA Acc PA
GPT4* 95.5% 95.0% 96.0% 96.0% 94.5% 97.0% 94.0% 100.0% 80.4% 91.5% 83.3% 89.5% 79.6% 96.2% 79.9% 97.3%
Llama3:70B 87.5% 85.0% 90.0% 88.0% 90.0% 94.0% 90.5% 93.0% 70.9% 82.4% 76.8% 84.0% 76.6% 90.1% 76.4% 91.6%
Llama3.1:70B 90.5% 91.0% 95.5% 93.0% 95.0% 98.0% 92.0% 96.0% 79.9% 82.1% 82.6% 84.9% 84.7% 92.1% 83.2% 93.1%
Llama3.3:70B 95.5% 95.0% 83.3% 87.1%
Gemma2:27B 88.5% 93.0% 88.0% 90.0% 87.5% 93.0% 90.0% 96.0% 70.9% 81.5% 75.2% 81.1% 72.6% 95.1% 73.1% 94.6%
Qwen2:72B 91.5% 91.0% 93.5% 91.0% 92.5% 95.0% 93.0% 96.0% 70.1% 88.6% 73.5% 89.1% 72.6% 95.0% 72.2% 93.1%
Qwen2.5:72B 91.5% 93.0% 94.5% 93.0% 91.0% 92.0% 91.5% 93.0% 67.7% 82.3% 73.5% 86.4% 73.9% 89.6% 74.6% 87.5%
Mixtral:8x7B 82.5% 81.0% 82.5% 79.0% 85.0% 86.0% 82.0% 90.0% 57.3% 66.5% 58.7% 66.5% 55.3% 79.0% 58.9% 87.1%

Llama3:8B 75.5% 77.0% 81.0% 78.0% 77.5% 86.0% 78.5% 96.0% 41.8% 61.5% 56.1% 64.5% 45.0% 70.8% 46.4% 82.5%
Llama3.1:8B 81.0% 83.0% 80.0% 85.5% 83.0% 84.0% 94.0% 94.0% 45.1% 64.2% 55.2% 66.8% 55.9% 73.5% 56.2% 79.1%
Gemma2:9B 87.5% 91.0% 90.0% 90.0% 90.5% 93.0% 92.0% 92.0% 71.1% 83.7% 74.5% 80.5% 66.2% 84.2% 66.7% 84.2%
Qwen2:7B 83.0% 82.0% 83.5% 79.0% 80.5% 87.0% 80.0% 88.0% 47.2% 61.6% 54.8% 55.7% 41.5% 78.9% 40.0% 79.0%
Qwen2.5:7B 88.5% 85.0% 89.5% 87.0% 85.5% 93.0% 88.0% 94.0% 63.4% 66.5% 65.9% 74.5% 60.3% 82.9% 59.7% 88.3%
Mistral:7B 67.5% 37.0% 68.5% 41.0% 78.0% 67.0% 79.5% 77.0% 44.8% 28.3% 47.4% 28.6% 43.5% 59.0% 49.0% 63.2%
Granite-3.1:8B 82.0% 78.0% 79.5% 77.0% 89.0% 90.0% 85.5% 92.0% 51.3% 61.1% 56.5% 59.1% 51.3% 61.1% 51.3% 61.1%
Phi-3-small 86.0% 84.0% 89.5% 87.0% 87.0% 94.0% 88.5% 93.0% 53.8% 72.4% 61.3% 74.5% 53.8% 72.4% 53.8% 72.4%
Falcon3:7B 81.5% 75.0% 83.5% 81.0% 84.5% 93.0% 78.0% 88.0% 45.1% 76.6% 51.8% 73.9% 45.1% 76.6% 45.1% 76.6%
Internlm2.5:7b 81.0% 71.0% 82.0% 75.0% 80.0% 76.0% 83.0% 85.0% 50.6% 60.5% 57.3% 65.6% 50.6% 60.5% 50.6% 60.5%

Table 2: Performance comparison of language models on the LLMBar benchmark across Natural and Adversarial
datasets. Results show accuracy (Acc) and positional agreement (PA) scores for different evaluation strategies:
Vanilla, Metrics+Reference, Swap, and Swap+CoT. Models are grouped by size, with larger models (>20B
parameters) shown above the line and smaller models below. Bold values indicate top performance within each
group. *We source GPT-4-0613 results from (Zeng et al., 2024).
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Position Bias Analyzer - MT-Bench
Extraction

Successful Rate
Positional

Consistency
Positional

Consistency Std
Positional

Preference Score

GPT4* 100.0% 81.5% 14.9 0.020
Llama3:70B 100.0% 83.8% 11.1 -0.025
Llama3.1:70B 100.0% 83.1% 15.3 0.006
Llama3.3:70B 100.0% 88.8% 12.2 -0.075
Gemma2:27B 100.0% 71.9% 18.1 0.044
Qwen2:72B 100.0% 79.4% 15.2 -0.131
Qwen2.5:72B 100.0% 84.4% 8.6 -0.056
Mixtral:8x7B 95.8% 76.2% 11.8 0.019

Llama3:8B 84.8% 62.5% 18.8 -0.131
Llama3.1:8B 98.7% 73.1% 13.5 -0.125
Gemma2:9B 100.0% 71.2% 11.1 0.175
Qwen2:7B 98.7% 46.8% 17.8 0.069
Qwen2.5:7B 98.7% 38.5% 15.9 -0.188
Mistral:7B 100.0% 58.1% 19.4 -0.256
Granite-3.1:8B 97.8% 40.5% 18.2 -0.456
Phi-3-small 97.8% 56.9% 21.8 -0.188
Falcon3:7B 99.7% 53.5% 17.0 -0.150
Internlm2.5:7b 51.0% 57.1% 30.9 0.056

Table 3: Results from the Position Bias Analyzer benchmark on MT-Bench data. Models are evaluated on their
ability to extract information (Extraction Success Rate), maintain consistent responses across prompt reversals
(Positional Consistency), the standard deviation of consistency (Positional Consistency Std), and their positional
bias tendency (Positional Preference Score). Models are grouped by size, with larger models (>20B parameters)
above the line and smaller models below. Bold values indicate top performance within each group. *We respectively
source GPT-4-0613 results from (Shi et al., 2024).
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