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Abstract

This paper addresses the challenge of faithfully001
representing updated information in text—a002
task formalized as the FRUIT problem (Iv et al.,003
2022). Given a source document and a set of004
evidences detailing updates, the goal is to gen-005
erate an updated document that integrates new006
facts while preserving the original coherence007
and context. We first conduct a comprehensive008
analysis of the FRUIT dataset, uncovering key009
structural insights such as the observation that010
updated articles tend to be approximately 100011
tokens longer than their originals, a factor that012
may bias models toward appending information013
rather than editing in place. Our study inves-014
tigates the unsupervised capabilities of LLMs,015
including zero-shot learning, chain-of-thought016
reasoning, self-reflection, and evidence order-017
ing, using both the open-source Llama-3-8b018
and the closed-source GPT-4 models. Our ex-019
periments reveal that a zero-shot setup yields020
the best performance, and that the format of ev-021
idences significantly impacts model outcomes,022
with table-based evidences outperforming un-023
structured text. These findings have important024
implications for domains requiring precise doc-025
ument updates, such as software engineering026
and technical documentation.027

1 Introduction028

Faithfully representing updated information in text029

presents significant challenges, necessitating a nu-030

anced understanding of both existing documents031

and incoming updates. The task of updating doc-032

uments requires human editors to sift through up-033

dated data to identify relevant content for incor-034

poration, demanding a deep understanding of the035

source document and the new information. This036

time-consuming process especially with complex037

documents, emphasizes the need for automated sys-038

tems to ensure accurate and reliable text updates.039

The need for such systems spans multiple domains,040

including software engineering, where requirement041

documents must be continuously updated through- 042

out the software development lifecycle (Bhatia 043

et al., 2020), and technical documentation, such 044

as contracts and product manuals, which require 045

precise updates for clarity and compliance (Ku- 046

mar M et al., 2016). A task of Faithfully Reflecting 047

Updated Information in Text (FRUIT) was intro- 048

duced to tackle this problem (Iv et al., 2022). Given 049

a source document at time t, At, and a set of evi- 050

dences (updates pertaining to the source document) 051

from time t to t′, E t−→t′ = {E1, E2, ...E|E|}, the 052

task is to generate an updated document At′ in- 053

corporating the updates into the source document. 054

This formulation not only requires the integration 055

of new facts but also insists on maintaining the co- 056

herence and integrity of the original document. As 057

such, the FRUIT task encapsulates both the chal- 058

lenge of accurate fact integration and the necessity 059

of preserving contextual continuity. 060

Recent advances in large language models 061

(LLMs) and in-context learning methods have 062

shown promise in various text generation tasks. 063

Studies encapsulate a wide range of text editting 064

tasks like text simplification, paraphrasing, gram- 065

matical error correction along with FRUIT and 066

instruction-tuned LLMs (Dwivedi-Yu et al., 2024; 067

Shu et al., 2024). However, we identify several 068

gaps in the current literature: 069

• There is a lack of in-depth analysis of the 070

FRUIT dataset itself, including the various types of 071

data it encompasses, such as text and tables, as well 072

as the number of evidences utilized for updates. 073

• While the aforementioned studies focus on 074

fine-tuning, there has been insufficient exploration 075

of the unsupervised capabilities of LLMs, like zero- 076

shot and chain-of-thought (CoT) prompting. 077

• Impact of various data types on performance of 078

LLMs in this context remains underexplored, leav- 079

ing a significant gap in understanding how these 080

models interact with diverse data formats. 081
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To this end, the contributions of this paper are:082

• We perform a thorough and comprehensive083

analysis of the FRUIT dataset, to uncover its struc-084

ture, content, and the intricacies of the data it con-085

tains. For instance, we observe that the updated086

articles tend to be longer (on average around 100 to-087

kens longer) than the original articles, which could088

bias the models built using the data to append more089

information rather than efficiently editing in-place.090

• We perform extensive experiments that assess091

the unsupervised behavior of LLMs through vari-092

ous methodologies, including zero-shot learning,093

CoT reasoning, self-reflection, and evidence order-094

ing. We use two state-of-the-art LLMs – the open-095

source Llama-3-8b model and the closed-source096

GPT-4 model. To the best of our knowledge this097

is the first work that develop such methods for the098

FRUIT task.099

• We conduct a comprehensive analysis, both100

quantitative and qualitative. We also analyse the101

effects of the different data formats present in the102

dataset. For instance, we find that the models per-103

form better when the evidences/new information is104

present in the form of tables, rather than unstruc-105

tured text.106

• We make the implementations publicly avail-107

able at https://anonymous.4open.science/r/108

faith-update-llm-1381/109

2 Related Work110

Text rewriting is an emerging field of research111

comprising of tasks including, but not limited to,112

text simplification, paraphrasing, style transfer and113

grammatical error correction etc. For each of these114

tasks, there are dedicated datasets – for instance,115

the ASSET corpus (Alva-Manchego et al., 2020)116

for text simplification, the STS benchmark (Cer117

et al., 2017) for text paraphrasing, WNC (Pryzant118

et al., 2020) for text neutralization, FRUIT (Iv et al.,119

2022) for text updation etc. EditEval (Dwivedi-Yu120

et al., 2024) is a benchmark dataset that combines121

all such text rewriting datasets.122

In this work, we specifically look at the task of123

text updation because in many real-world scenarios,124

the goal of text editing extends beyond local correc-125

tions or stylistic changes to the more challenging126

problem of updating outdated information. Mod-127

els that learn where to edit—by detecting editable128

spans and generating targeted revisions—have been129

shown to improve the quality and fluency of the130

final output. For instance, (Kim et al., 2022) pro-131

posed a system that leverages datasets from related 132

revision tasks to more accurately model the itera- 133

tive refinement process. Building on these ideas, in- 134

struction tuning has recently been used to develop 135

specialized text editing models such as CoEdIT 136

(Raheja et al., 2023) and mEdIT (Raheja et al., 137

2024). These models are fine-tuned on dense dis- 138

tributions of text editing examples—ranging from 139

paraphrasing and grammatical corrections to style 140

adjustments—which makes them effective special- 141

ists in transforming input text in a controlled man- 142

ner while using significantly fewer parameters than 143

general-purpose LLMs. 144

In this work we focus on the applicability of 145

LLMs to the FRUIT task and dataset. In (Dwivedi- 146

Yu et al., 2024) the authors demonstrate that while 147

models like InstructGPT and PEER perform well 148

on average, many existing baselines fall short of 149

the supervised state-of-the-art, particularly in tasks 150

involving information neutralization and updates. 151

RewriteLM (Shu et al., 2024) introduces novel 152

strategies that leverage instruction tuning and rein- 153

forcement learning to align models. (Zhang et al., 154

2024) provides explainablity to text editing tasks 155

like simplification, grammar checking, and fact- 156

checking, while addressing lexical, syntactic, se- 157

mantic, and knowledge-intensive editing dimen- 158

sions. To improve interpretability, they integrate 159

LLM-based annotations with human annotations 160

and then instruction finetune for improved results. 161

3 Dataset Analysis 162

In this section, we present the FRUIT dataset statis- 163

tics and format which is sourced from the offi- 164

cial website1. The FRUIT dataset introduced in 165

(Iv et al., 2022) consists of source documents At 166

written at time t and corresponding target docu- 167

ments At′ written at time t′ which are updated ver- 168

sions of the source documents incorporating new 169

information from t to t′ from a set of evidences 170

E t−→t′ = {E1, E2, ...E|E|}. 171

Dataset Format: The dataset consists of train 172

and test sets sourced from the Wikipedia dump. 173

The source documents in the train and test sets 174

are sourced from the Nov. 20, 2019 and Nov. 20, 175

2020 and the target documents are sourced from the 176

November 20, 2020 and June 1, 2021 respectively. 177

The evidence set come from the non-introductory 178

articles of the target by matching newly added enti- 179

1https://github.com/google-research/language/
tree/master/language/fruit
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ties in the target document.180

Figure 1: ediT5 format of the FRUIT dataset.

The data is initially provided in a .jsonl format181

before stylistic updates and evidence filtering, and182

later in a .tfrecord format using the ediT5 model.183

This model is designed to copy unedited sentences184

and reference evidences to generate edited sen-185

tences. The ediT5 input format, shown in Figure 1,186

includes indexed sentences and evidences, sepa-187

rated by a [CONTEXT] token, while the output188

format references original sentences using their in-189

dices when unchanged. For updates, the model190

generates evidence indices from the input before191

creating revised sentences. The final output format192

aligns with the original .jsonl format to produce193

a filtered version of the text without sentence in-194

dices. More insights on the dataset is present in the195

Section 9.196

Dataset Statistics: Table 1, shows the statis-197

tics of the FRUIT dataset. The updated articles198

tend to be longer (on average around 100 tokens199

longer) than the original articles, which could bias200

the models built using the data to append more201

information rather than efficiently edit it in-place.202

The evidences in the dataset are of two types, plain203

text and tabular. In the train set, around 10% of the204

article pairs contain only tabular evidences, 31%205

of the article pairs containing only plain text and206

the remaining article pairs containing plain text and207

tabular evidences both. In the test set around 12%208

of the article pairs contain only tabular evidences,209

32% contain only plain text, and the remaining both210

kind of evidences. In the gold set only around 7%211

article pairs contain only tabular evidences, 15%212

only plain text, and remaining contain both kinds.213

Table 1: Statistics of the FRUIT dataset

Feature Train Test Gold
No. of samples 92388 54729 914
Original Article length 668 690 742
Updated Article length 808 826 902
# Evidences/article 6.2 5.6 8
Ev: Text only 31% 32% 15%
Ev: Table only 10% 12% 7%
Ev: Table+Text 59% 56% 78%
Tabular Ev. # Rows 2 2 2
Tabular Ev. # Columns 5.7 5.5 6
# Entities in Original 9.3 9.8 10.5
# Entities in Updated 11.6 12 13.7

An article on average consists of 6 evidences in the 214

train and test set and 8 in the gold set, of which 2 215

are tabular in the train and test and 3 in the gold set. 216

Interestingly, all the tables contain atmost 2 rows, 217

of which 1 is a header row. The tables on average 218

contain 5 columns. 219

There are on average 2 extra entity mentions 220

in the updated article. We find that each edited 221

sentence is influenced by, on average, 1 evidence 222

indicating potential of the dataset to be used in a 223

streaming setting where evidences are streamed 224

in batches and the article is updated as they are 225

received. 226

4 Approaches 227

In this section, we detail the different approaches 228

for the task on the FRUIT dataset. 229

4.1 Baseline methods 230

Here, we briefly discuss the methods introduced in 231

the work Iv et al. (2022). 232

• Copy Source: This method generates a copy 233

of the source article without any modifications. 234

• Copy Source + Evidence: This approach con- 235

catenates the source article with the new evidence 236

and outputs the combined text. 237

• T5 Fine-Tuning: The T5 model is fine-tuned 238

using only the source article as input (T5) and also 239

with both the source article and the new evidence 240

as inputs (T5+Evidence Inputs) 241

• EdiT5: EdiT5, a variant of T5 proposed by 242

(Iv et al., 2022), enhances text updating tasks by 243

using a compressed output format that reduces the 244

need to generate the entire text from scratch. It fea- 245

tures Diff-Formatted Output, which replaces copied 246

sentences with a copy token, and Reference and 247

Control Tokens that guide the model on whether 248
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to add, edit, or delete content, promoting effective249

content planning.250

In the next sections we describe our LLM-based251

methods for text updation task on the FRUIT252

dataset and prompts used are provided in Section 9.253

4.2 Base Prompting254

• Zero-shot: In this approach, we provide the255

model with carefully crafted prompts, along with256

the sources and the updates.257

• Chain-of-Thought: Motivated by the discovered258

reasoning capabilities of LLMs and their ability to259

reason better given multiple reasoning steps (Wei260

et al., 2023), a multi-step prompt was developed261

that uses the multi-step reasoning capabilities. The262

model is first prompted to find discrepancies be-263

tween the evidences and the original article, and264

then it is prompted to update the original article to265

fix the discrepancies found.266

4.3 Reflect and Refine267

This is a two step approach, in which the model is268

first asked to generate an updated article. This up-269

dated article is then reflected upon, i.e., evaluated270

on different aspects. Based on the evaluation, it re-271

fines its original output and regenerates an updated272

article. This is motivated by (Madaan et al., 2023)273

and LLM-as-a-Judge (Gu et al., 2024) based ap-274

proaches. In this family of methods, we experiment275

with different settings, as follows:276

• Self Reflection: In this setting, we ask the277

same LLM to evaluate its answer generated in the278

previous step and then based on the mistakes it279

made, the LLM regenerates the output.280

• External Evaluators: It has been shown281

by (Laskar et al., 2024; Panickssery et al., 2024)282

that LLMs tend to exhibit a self-preference bias,283

scoring their own outputs higher than those pro-284

duced by other models or humans, even when hu-285

man evaluators consider them of equal quality. This286

bias suggests that employing the same LLM for287

both generation and evaluation can lead to skewed288

assessments, thereby supporting the recommenda-289

tion to use a different LLM for evaluation purposes.290

We therefore use external open-source LLMs291

such as TIGERScore (Jiang et al., 2024) and292

Prometheus (Kim et al., 2024) that have been fine-293

tuned for acting as evaluators. These models eval-294

uate the initial model output based on instructions295

given in the prompts (e.g. rubrics for Prometheus).296

They generate a detailed report listing the errors,297

an absolute score etc. as a .json format. This report,298

along with the initial output is then passed to the 299

LLM that regenerates the output (updated article). 300

4.4 Evidence Ordering 301

In this approach, we focus on the evidences present 302

and hypothesize that if their number can be brought 303

down and if the model is shown more relevant 304

evidences before less irrelevant ones, we can ex- 305

pect greater performance from the model. Also, 306

for models that have a limitation on input con- 307

text length, filtering, ordering and streaming of 308

evidences can reduce the context length, since the 309

number of evidences being passed are lesser. 310

Inorder to assess relevancy, we hypothesise 311

that evidences that are more inconsistent with the 312

source are more important in updating it as they 313

provide new information that is not already present 314

in the source. To estimate inconsistency, we use: 315

• Semantic similarity: We use an embedding- 316

based similarity estimation model. We encode the 317

source and evidences and use cosine similarity to 318

determine how similar the evidences are to the 319

source (hug). 320

• Hallucination: We use a detection model (Bao 321

et al., 2024) that detects hallucinations in a pair of 322

texts by checking for factual consistency. 323

Both the metrics take an input the source 324

article and the list of evidences, compute the 325

(in)consistency scores and rank the evidences based 326

on how important they are for updating the source 327

article, i.e., the more inconsistent an evidence is, 328

the more important it is and therefore ranked higher. 329

This ranking is then used in the follow ways: 330

• Filter + Rank using a similarity model: We 331

use the semantic similarity metric above to filter out 332

very similar evidences as they may provide no new 333

information the source, and also very dissimilar 334

evidences, as they have no relation to the source 335

article. We rank the remaining evidences and feed 336

it to the LLM along with the source article. 337

• Filter+Rank using a hallucination model: 338

We use the hallucination metric above, to first filter 339

out the factually consistent ones. We use the re- 340

maining evidences, ranked, and give it to the LLM 341

along with the source article. 342

• Streaming of Evidences: In this setting, we 343

stream the evidence in a batch of k = 3. The idea 344

is to first generate an updated article based on the 345

most important evidences. The updated article in 346

the each step is then passed to subsequent batches 347

for further updation. 348
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• Random shuffling evidences: We also ran-349

domly shuffle and rank the evidences in order to350

obtain a better baseline this family of methods.351

4.5 Few-Shot Prompting352

Motivated by the in-context learning capabilities353

of LLMs (Brown et al., 2020), we experiment with354

few-shot prompting strategies. We select examples355

from the training dataset as follows:356

• Fixed example: Here, we provide a fixed ex-357

ample from the training set to all samples.358

• Similar examples: Here we dynamically re-359

trieve examples from the train set that are closely360

related to the article that is to be updated. We fo-361

cus on retrieving examples where the articles have362

similar length, have similar number of evidences363

and tabular evidences.364

4.6 LoRa and QLoRa Finetuning365

We also evaluate low-rank adaptation techniques366

that fine-tune models in a parameter-efficient way367

(Hu et al., 2021; Dettmers et al., 2023). We fine-368

tune Llama-3-8B using LoRa and QLoRa to ef-369

ficiently adapt the model for text updates in the370

FRUIT task, using a sample of the training set, by371

training it to generate updated articles based on the372

source article and evidence, using Cross Entropy373

Loss. LoRa updates only adapter layers, while374

QLoRa further reduces memory usage via 4-bit375

quantization.376

5 Experimental Setup377

We evaluate various models and approaches on the378

FRUIT dataset to assess their ability to faithfully379

update text. Our evaluation focuses on both quanti-380

tative and qualitative measures to capture the accu-381

racy, coherence, and faithfulness of the generated382

updates.383

5.1 Evaluation Metrics384

To systematically analyze model performance, we385

use the following automatic evaluation metrics:386

• UpdateROUGE: It is a variant of ROUGE387

proposed in (Iv et al., 2022) to evaluate the updated388

source, given a reference by just applying ROUGE389

on the updated sentences. This metric has also390

been used in recent works (Shu et al., 2024; Zhang391

et al., 2024). We use the original implementation392

from https://github.com/google-research/393

language/tree/master/language/fruit.394

• Faithfulness Metrics Evaluating faithfulness395

is an active area of research and prior work Iv et al.396

(2022) propose to evaluate faithfulness based on 397

the entities via: 398

(i) Precision, Recall, F1 Score: This measures 399

the overlap between entities from the source and 400

the updated article. 401

(ii) Unsupported Entities: This is measured as 402

the average number of entity tokens appearing in 403

generated updates that do not appear in the source 404

article or evidence. Higher values for this metric 405

indicate less faithfulness. 406

The prior work do not provide an implementa- 407

tion of these metrics. We use a BERT-based NER 408

model finetuned on the CoNLL-2003 shared task 409

for detecting the entities (BERT-NER, 2018). 410

5.2 Large Language Models 411

For the updation task, we experiment using two 412

state-of-the-art LLMs – the open-source model 413

(Llama-3, 2024) LLlama-3 and a proprietary model, 414

GPT-4o-2 (GPT-4, 2024). We set the temperature 415

to 0 for all the experiments for reporoducibility. 416

For the external evaluators in Section 4.3, 417

we use TigerScore (TigerScore-7B, 2024), 418

Prometheus (Prometheus, 2024). For the 419

hallucination model used to rank evidences 420

(Sec. 4.4) we use (Vecatara, 2024). Fine- 421

tuning was conducted using axolotl (https: 422

//axolotl-ai-cloud.github.io/axolotl/) 423

on an NVIDIA A100 GPU. We monitored perfor- 424

mance on the evaluation set and halted training 425

just before overfitting occurred—typically within a 426

single epoch—to ensure optimal generalization. 427

6 Results 428

In this section we discuss the performance of the 429

various approaches. The baseline results from the 430

original paper (Iv et al., 2022) are in Table 2 for 431

reference. We present the results of our experi- 432

ments on the above mentioned approaches using 433

two LLMs: Llama-3-8b-Instruct and GPT-4o on 434

the gold set, in Table 3. 435

6.1 Quantitative Analysis 436

Base Prompts: When compared with the baseline 437

results in Table 2, we find that zero-shot prompting 438

(in Table 3) achieves comparable performance as 439

the fine-tuned model EdiT5-3B. The UpdateRouge 440

scores for Llama-3 and GPT are comparable 441

but the faithfulness in the GPT predictions are 442

much higher than Llama. The Chain-of-Thought 443

prompting brings to notable change as compared to 444
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Table 2: Baseline results from (Iv et al., 2022)

UpdateROUGE Entities
R1 R2 RL Pr R F1 Unsupp

Copy Source 0 0 0 0 0 0 0
+ All Evidence 18.8 6.9 12 37.9 64.9 47.85 0

T5-Large 31.1 18.4 24.4 52.7 44.9 48.49 2.67
+ Evidence Input 44.3 29.4 36.8 62.2 50.7 55.86 2.34

EdiT5-Small 41.2 27.3 35.3 62.4 44.9 52.22 1.71
EdiT5-Base 47 32.1 39.7 62.2 54.9 58.32 2.28
EdiT5-Large 46.3 32.4 39.6 67.2 53.1 59.32 1.54

EdiT5-3B 47.4 34 41.1 69.9 52.2 59.77 1.58

zero shot. We also note that GPT-4o performs only445

slightly better than Llama-3-8b despite having a446

greater parameter count.447

448

The Reflect and Refine techniques show mixed449

effectiveness, with TigerScore-based refinement450

achieving the best F1 (69.6) among reflection451

techniques, and the self reflection achieves overall452

highest recall for the model.453

454

Evidence Ordering shows no improvement455

over zero shot, with random shuffling performing456

same as the other evidence orders. With the default457

evidence order performing noticably better, we458

deduce that since the dataset in sourced from459

Wikiepdia, the temporal/semantic ordering already460

exists and is the optimal ordering. Streaming461

Evidences degrades performance likely due to the462

incomplete context in incremental updates.463

464

Few Shot Prompting performs significantly465

better than zero shot prompting, in both the LLMs,466

especially with lower hallucination measured using467

unsupported entities, demonstrating the impact468

of in-context learning. We find a noticeable drop469

in terms of unsupported entities. This highlights470

the fact that the model’s behavior is sensitive to471

what example we provide in the context. We also472

find that when given examples where there are no473

updates, the model tends to not update any new474

articles, or varies the length of updates to that in475

the example.476

477

Fine Tuning Techniques: To this end, we ob-478

serve that none of the prompting strategies could479

perform better than zero-shot. We observe that480

when the Llama model is finetuned with LoRA and481

QLoRA techniques, the performance in the faith-482

fullness aspect shows significant increase. How-483

ever, the UpdateROUGE scores remain lower. Re-484

cent studies in faithful updation (Zhang et al., 2024; 485

Shu et al., 2024) perform finetuing with enhanced 486

RL capabilities. 487

6.2 Qualitative Observations 488

In this section we present our qualitative findings 489

for the zero-shot approach, the best performing 490

method, on both Llama-3-8b and GPT-4. 491

Copy Cases: We notice that for the zero shot 492

method, in around 2.6% of the cases the model 493

copies the original article as is, ignoring the 494

instructions to update. Out of these, only 1 case 495

is a case where the copying is warranted by the 496

reference updated article. This lowers to around 497

0.5% when using chain-of-thought prompting. 498

499

Effect of the number of evidences: It is 500

observed from Figure 3 that the performance tends 501

to decrease as more evidences are considered. We 502

observe that for Llama-3-8b the optimal number of 503

evidences is around 1 or 2 for the best performance. 504

For GPT-4 we see that evidences from 3 to 13 505

provide a consistent performance and there is 506

significant drop after 13 evidences. 507

508

Effect of number of edits: We also analyse the 509

scenario of performance where the model has to 510

make large number of edits to the source. Required 511

edit length is measured as the difference between 512

the lengths of the updated article and the source 513

article. Figure 2 shows that both the LLMs are bad 514

at making large edits to the source. We find that 515

performance diminishes as the length of required 516

edits increases. 517

It is on observing the above patterns in the 518

zero-shot performance that we hypothesized 519

the use of evidence ordering and streaming in 520

Section 4.6. With streaming, the model would not 521

have to make large edits at once. At the same time 522

there would be lesser number of evidences the 523

model would have to deal with. 524

525

Effect of Tabular Evidences: As noticed in Ta- 526

ble 1, there are 7% samples in the gold data that 527

contain only evidences in the form of tables and 528

78% where evidence contains both plain text and 529

tables. We analyse the if having a structured for- 530

mat for evidences in the form of tables, as com- 531

pared to plain text, shows any effect in perfor- 532

mance. The trend is shown in Figure 4. We find 533

for Llama-3 that the model performs considerably 534

better when presented with tabular evidences. We 535
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Table 3: Evaluation results of the different approaches over two LLMs – Llama-3-8b, an open source model and
GPT-4-o2, a proprietary model. Best results are in bold.

Model Approach Type Approach UpdateROUGE Entities
R1 R2 RL Pr R F1 Unsupp

Llama-3-8b

Base Prompts
Zero Shot 47.02 30.29 36.84 64.4 76.8 70.05 2.52

CoT 44.96 28.36 34.78 62.2 76.2 68.49 2.48

Reflect & Refine
Self Reflection 45.03 28.42 34.62 60.1 77.4 67.66 3.07

Tiger Score based 46.8 29.9 36.49 64.2 76 69.6 2.47
Prometheus score based 44.6 27.82 33.91 58.5 77.2 66.56 3.13

Evidence Ordering

Filter+Rank: Similarity 45.47 28.77 35.27 62.5 77.2 69.07 2.62
Filter+Rank: Hallucination 45.58 28.75 35.36 62.8 76.9 69.13 2.62

Rank: Random 45.82 29.21 35.59 63.2 76.8 69.33 2.59
Stream Evidences (k=3) 41.85 25.5 31.68 74.6 53.4 62.24 3.67

Few Shot
Fixed 45.17 31.78 38.59 79.6 64.9 71.5 0.75

Similar 43.61 30.22 36.88 78.4 67.4 72.48 0.9

Finetuning
LoRa 36.57 26.2 31.79 80 71.1 75.28 1.01

QLoRa 44.8 32.9 39.5 79.5 70.1 74.5 1.12

GPT-4-o2

Base Prompts
Zero Shot 46.88 32.45 39.2 76.7 77.2 76.95 1.32

CoT 43.22 25.86 31.92 59.8 79.7 68.33 3.04

Reflect & Refine
Self Reflection 45.62 28.13 34.5 61.4 80.05 69.5 3.02

Tiger Score based 44.07 26.7 30.8 60.4 79.1 68.5 3.06
Prometheus score based 42.4 24.25 29.74 58.82 77.55 66.9 3.1

Evidence Ordering

Filter+Rank: Similarity 45.12 31.04 37.63 76.4 75 75.69 1.37
Filter+Rank: Hallucination 44.67 32.15 37.24 75.92 74.78 75.35 1.38

Rank: Random 45.2 30.96 37.58 76.2 75.18 75.69 1.38
Stream Evidences (k=3) 46.16 29.18 36.7 64 77.3 70.02 2.57

Few Shot
Fixed 46.04 33.81 39.4 77.45 78.36 77.9 0.34

Similar 45.97 34.12 39.75 76.57 77.92 77.24 0.52

Figure 2: Performance (as measured by Rouge-L) vs Required Edit Length. Performance diminishes as the length
of required edits increases.

notice this for all approaches that we have experi-536

mented with. For the zero shot approach we notice537

that cases with only tabular evidences have an av-538

erage UpdateROUGE-LSum score of 45, and the539

cases with plain text evidences have an average540

UpdateROUGE-LSum score of 33. However, we541

do not find any such trend in GPT-4. This shows542

that smaller models, when presented with struc-543

tured information tend to perform better.544

Choice of external Evaluators: We inspect the 545

Llama-3, GPT-4, TigerScore and Prometheus eval- 546

uations and find that these models are very poor at 547

evaluating this task. We observe low correlation 548

of these metrics and the UpdateROUGE metrics, 549

showing that these models are not good evaluators 550

of the faithful updation task. 551

Source Appends: The task of updation is not 552

just appending the evidences to the source, but mak- 553

7



Figure 3: Performance (as measured by Rouge-L) vs Evidence Counts for Llama-3-8b and GPT-4. Performance
drops with increasing number of evidences.

Figure 4: Tabular Evidence vs Performance (as measured by Rouge-L) vs % of Tabular Evidences. Performance
increases slightly with more tabular evidences.

ing edits at specific positions to incorporate new554

information. We evaluate cases where the model,555

instead of editing the source in place, appends new556

information at the end of the text unsupported by557

how the reference updated article performs the up-558

date. We notice that in the zero shot approach,559

15.6% and 18.2% for Llama-3 and GPT-4, of the560

cases are such kinds of appends.561

7 Conclusion and Future Work562

This work evaluate the ability of LLMs to perform563

faithful text updates. Our analysis highlights that564

while LLMs can integrate new evidence effectively,565

their performance varies significantly depending on566

the prompting strategy, evidence structure, and task567

formulation. Notably, structured evidence plays a568

crucial role in improving update accuracy, suggest-569

ing that explicit representation of updates can en- 570

hance model reliability. However, even strong mod- 571

els like GPT-4o and Llama-3-8b struggle with chal- 572

lenges such as handling multiple evidence pieces, 573

preventing hallucinations, and maintaining docu- 574

ment coherence. 575

Future work can explore ways to better adapt ex- 576

isting LLMs by utilizing structured evidences and 577

repurposing control code structures within prompt- 578

based paradigms to guide LLMs more effectively. 579

Additionally, evaluating models under streaming 580

evidence conditions and studying how different 581

ranking and filtering strategies affect performance 582

could provide deeper insights into optimizing LLM- 583

based text updating. The approaches developed 584

here could be extended to specific domains like up- 585

dating software requirements, technical manuals. 586

8



8 Limitations and Ethics Statement587

Despite conducting a series of experiments utiliz-588

ing unsupervised prompting strategies, we find that589

none of the methods surpass the performance of590

the zero-shot approach. One possible explanation591

for this is that state-of-the-art large language mod-592

els (LLMs) already possess the updated informa-593

tion within their parametric knowledge. As noted,594

the FRUIT dataset comprises Wikipedia articles595

from 2020-2021, while the LLMs have knowledge596

cut-offs in October and December 2023 (for GPT-597

4o-2 and Llama-3-8b, respectively). This raises598

concerns about potential information leakage. To599

address this issue, the FRUIT dataset should be600

updated to include information beyond 2024, or601

the LLMs used for evaluation should be limited to602

those trained before 2023. This situation presents603

a trade-off between utilizing powerful models and604

the risk of data leakage. Nonetheless, previous stud-605

ies (Shu et al., 2024; Dwivedi-Yu et al., 2024) have606

employed advanced LLMs such as Alapaca and607

InstructGPT, which are also expected to contain608

knowledge from the FRUIT dataset.609

We show a example below from the FRUIT610

dataset on Jaylen Guy Twyman. Source Article in611

the FRUIT dataset612

Jaylen Guy Twyman (born July 19, 1999) is an613

American football defensive tackle for the Pitts-614

burgh Panthers.615

Target Article in the FRUIT dataset616

Jaylen Guy Twyman (born July 19, 1999) is an617

American football defensive tackle for the Min-618

nesota Vikings of the National Football League619

(NFL). He played college football at Pittsburgh and620

was drafted by the Vikings in the sixth round of the621

2021 NFL Draft.622

GPT-4 knowledge about Jaylen Guy Twyman623

Jaylen Guy Twyman is an American professional624

football player who plays on the defensive line.625

Born on July 19, 1999, in Washington, D.C., he626

starred at H. D. Woodson High School before play-627

ing college football at the University of Pittsburgh.628

At Pitt, he earned significant recognition—racking629

up impressive sack totals and earning first-team630

All-ACC honors—mirroring the legacy of notable631

defensive players like Aaron Donald. Drafted by632

the Minnesota Vikings in the sixth round of the633

2021 NFL Draft, Twyman has since spent time634

with several NFL teams (including the Miami Dol-635

phins and New York Jets) and alternative football636

leagues. Off the field, he has overcome serious637

challenges, notably recovering from being shot four 638

times in 2021. Standing 6’2" and weighing around 639

285–290 pounds, Twyman’s physicality and perfor- 640

mance continue to define his career in professional 641

football. 642

Llama-3-8b knowledge about Jaylen Guy 643

Twyman 644

Jaylen Guy Twyman is an American football 645

defensive tackle who played college football at the 646

University of Pittsburgh. He gained attention for 647

his impressive performance during his time at Pitt, 648

particularly in the 2019 season when he recorded 649

10.5 sacks. Twyman declared for the NFL Draft 650

and was selected by the Minnesota Vikings in the 651

sixth round of the 2021 NFL Draft. His career 652

faced a significant challenge when he was shot four 653

times while visiting family in Washington, D.C., in 654

June 2021, but he survived and has been working 655

towards making a return to football. 656

Table 4: Table showing the overlap between the target
article in the FRUIT dataset and the parametric knowl-
edge of the LLMs about the main entity, on a random
sample 20 examples.

Model UpdateROUGE Entities
R1 R2 RL Pr R F1 Unsupp

Llama-3-8b 15.92 6.2 12.34 47.43 43.82 45.55 7.31
GPT-4-o 18.8 6.9 13.58 49.13 45.6 47.3 6.54

Table 4 shows the UpdateROUGE and Entity 657

based overlap between the target article in the 658

FRUIT dataset and the parametric knowledge of the 659

LLMs about the main entity on which the article 660

is based on (e.g. Jaylen Guy Twyman). Since the 661

main entity/topic was not directly available in the 662

dataset, we had to extract the topic manually and 663

ask the LLM what it knows about the entity/topic. 664

The lesser scores are attributed to the fact that the 665

LLMs have more updated knowledge since it had 666

access to more recent public sources while training. 667

The FRUIT dataset on the other hand has outdated 668

knowledge (and therefore lesser information and 669

entities). 670
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9 Appendix818

9.1 Dataset Preparation Details819

Figure 5: Data Processing Pipeline

Text from Wikiepedia dump is stripped of820

markup, normalised, and has its tables serialized.821

Then stylistic updates containing no new informa-822

tion is removed by detecting updates with no new823

entities. The test set was further sampled and manu-824

ally annotated to filter updates and evidences by hu-825

man annotators to produce a gold set. The pipeline826

is shown in Figure 5. We use the gold set in our827

experiments.828

The data before removal of stylistic updates and829

evidence filtering comes in a .jsonl format, and830

the data after the stylistic updates removed and the831

evidences filtered comes is present in a .tfrecord 832

format. This is in the ediT5 input-output format. 833

EdiT5 (Iv et al., 2022) is a t5-model which was 834

trained to copy sentences that are unedited and to 835

refer to the evidences before using them to generate 836

a new edited sentence. 837

The ediT5 input format (for example, see Fig- 838

ure 1) consists of indexed sentences (using square 839

brackets) and indexed evidences (using parenthe- 840

ses) both separated with a [CONTEXT] token. 841

The tables consist of the heading, a caption, and 842

a header delimited using [COL], [ROW], and 843

[HEADER] tokens. 844

The ediT5 output format (for example, see Fig- 845

ure 1) consists of references to the original article’s 846

sentences using the sentence index whenever the 847

model wishes to use the sentence from the original 848

article as is without any changes. For any updates 849

that the model does make, it first grounds its gen- 850

eration by generating evidence indices from the 851

input and then generates the updated sentence. The 852

training data for this was generated by matching 853

updated sentences with evidences by matching en- 854

tities. 855

This output format was matched with the origi- 856

nal .jsonl format to obtain the filtered original ver- 857

sion of the text without any sentence indices. 858

9.2 Prompts over the different approaches 859

System Prompt 860

We use the following system prompt for all our 861

experiments. 862

You are a knowledgeable, efficient, and direct
AI assistant. Provide concise answers, focus-
ing on the key information needed. Engage in
productive collaboration with the user.

863

Zero Shot Prompt 864

We use this prompt after the system prompt, and 865

provide it with the user role. 866
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Given a source article and evidence documents,
edit the source article to incorporate new infor-
mation from the evidence documents. Prefer
substitutions and editing sentences over adding
new ones. Just generate the updated article and
not the evidences.
Source Article: $source
Evidence 1:
Title: $title_1
Section: $section_1
$content_1
Evidence 2: . . .

867

COT Prompt868

We use a two step prompt where the model first869

lists discrepancies then uses that chain of thought870

to answer.871

Given a source article and evidence documents,
find cases where information given in the evi-
dences does not agree with the source article
or where the source article does not contain
information it should from the evidences. Gen-
erate the evidence number and the disagree-
ment/missing information in the source article.
Source Article: $source $evidences

872

Now, given the above source article, evidence
documents and the disagreements / missing in-
formation, edit the source article to incorporate
new information by updating or adding from
the evidence documents to correct the disagree-
ments or add the missing information. Prefer
substitutions and editing sentences over adding
new ones. Just generate the updated article and
not the evidences

873

Self Reflection Prompt874

We use a three step prompt to generate an ini-875

tial article, then critique it using the model itself,876

TigerScore, and Prometheus 2, and then using the877

critique refine the answer. The initial generation878

prompt is same as in zero shot.879

Model Evaluation Prompt:880

Now, evaluate the generated updated article.
Find cases where the updated article does not
agree or contains missing information when
compared with the supplied evidences. List
out all such discrepancies with the evidence
number and the reason.

881

Prometheus Rubric: 882

Criteria: Is the model proficient in updating
articles based on new evidence, making correct
and precise edits in place wherever possible?
Score 1: The model neglects to identify or in-
corporate new evidence into the article, result-
ing in outdated and inaccurate information.
Score 2: The model intermittently acknowl-
edges new evidence but often fails to make
correct and precise edits in place, leading to
incomplete or inaccurate updates.
Score 3: The model typically identifies new evi-
dence and attempts to make correct and precise
edits in place, yet the updates might sometimes
miss important details or lack precision.
Score 4: The model consistently identifies and
incorporates new evidence into the article, mak-
ing correct and precise edits in place. Nonethe-
less, there may still be sporadic oversights or
deficiencies in the accuracy and precision of
the updates.
Score 5: The model excels in identifying and
incorporating new evidence into the article, per-
sistently making correct and precise edits in
place that demonstrate a thorough understand-
ing of the subject matter. The updates are ac-
curate, precise, and comprehensive, leaving no
room for inaccuracies or incomplete informa-
tion.

883

Refine Prompt: 884

Now, given the evaluation and the previously
updated article, fix the discrepancies and gener-
ate a new updated article. Prefer substitutions
and editing sentences over adding new ones.

885

One Shot Prompt 886

We use the chat history to provide in context ex- 887

amples, autocompleting the assistant role with the 888

reference output. 889
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