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ABSTRACT

Multimodal Large Language Models (MLLMs) have shown impressive capabilities
in image understanding and generation. However, current benchmarks fail to accu-
rately evaluate the chart comprehension of MLLMs due to limited chart types and
inappropriate metrics. To address this, we propose ChartBench, a comprehensive
benchmark designed to assess chart comprehension and data reliability through
complex visual reasoning. ChartBench includes 42 categories, 66.6k charts, and
600k question-answer pairs. Notably, we do not provide data point annotations on
charts explicitly, which requires models to derive values by leveraging inherent
chart elements such as color, legends, and coordinate systems. We also design
an enhanced evaluation metric named Acc++ to evaluate MLLMs without ex-
tensive manual or costly LLM-based evaluations. Furthermore, we propose two
baselines based on the chain of thought and supervised fine-tuning to improve
model performance on unannotated charts. Extensive experimental evaluations
of 18 open-sourced and 3 proprietary MLLMs reveal their limitations in chart
comprehension and offer valuable insights for further research.

1 INTRODUCTION

Given the groundbreaking advancements in Large Language Models (LLMs) Radford et al. (2021);
Brown et al. (2020); Chowdhery et al. (2023); Touvron et al. (2023a), Multimodal Large Language
Models (MLLMs) Li et al. (2023c); Liu et al. (2023e); Zhu et al. (2023) have become the leading
approach in multimodal learning, which exhibit excellent visual semantics understanding perfor-
mance OpenAI (2023); Wang et al. (2023b). However, existing MLLMs face challenges in effectively
reading, comprehending, and summarizing articles that contain embedded charts Masry et al. (2022);
Han et al. (2023); Li & Tajbakhsh (2023). Unlike natural images, which are typically interpreted
based on discernible objects, relative positions, or interactions, charts convey nuanced semantic
meanings through visual-grounded logic, such as trend lines or color-coded legends. They present
detailed and intricate data narratives in visual formats, making it essential to evaluate MLLMs’ chart
comprehension ability and data reliability in understanding these visual representations.

Previous works Masry et al. (2022); Methani et al. (2020); Kantharaj et al. (2022a); Xia et al. (2024);
Chen et al. (2024a) have attempted to address this issue but have encountered some limitations. 1)
They primarily focus on 3 regular chart types (i.e., line, bar, and pie charts), neglecting more intricate
formats such as scatter or combination charts, which are equally prevalent in real-world scenarios.
Robust MLLMs should be able to adeptly handle a diverse range of chart types. 2) They heavily
rely on datapoint annotation on charts or meta table data as textual prompts Masry et al. (2022);
Han et al. (2023); Chen et al. (2024a) to generate content, allowing models to easily obtain candidate
answers while ignoring the charts’ visual-grounded logic. This will cause MLLMs to struggle with
unannotated charts in real-world applications. 3) Current evaluation metrics like judgment or multi-
choice question cannot avoid lucky guesses and thus result in overestimated baseline performance,
which requires refinement to enhance assessment objectivity and precision.

To address these limitations, we introduce ChartBench, which comprehensively evaluates the perfor-
mance of MLLMs on a wider variety of chart types, including both annotated and unannotated charts.
As summarized in Tab. 1, ChartBench includes over 68k charts and more than 600k high-quality
instruction data, covering 9 major categories and 42 subcategories of charts. ChartBench has 5 chart
question-answering tasks to assess the models’ cognitive and perceptual abilities. Each subclass

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparative analysis with the existing benchmarks for chart-related evaluations. Aggregated
charts are derived from consolidating existing datasets. # refers to the corresponding quantity. *
refers to the lack of explicit task-type labeling. Visually Grounded indicates that models are required
to answer queries via interpreting the visual logic of charts without relying on OCR. Please refer to
Appendix A.1 for specific cases.

Benchmark Image Source Type Train Set Test Set Multi-task
Evaluation

Visually
Grounded#Chart #Task #Chart #QA #Chart #QA

ChartQA Masry et al. (2022) Original 3 1* 21.9K 32.7K 1.5K 2.5K ✘ ✘
PlotQA Methani et al. (2020) Original 3 1* 224K 28M 33.7K 33.7K ✘ ✘
Chart-to-text Kantharaj et al. (2022b) Original 6 1* 44K 44K 6.6K 6.6K ✘ ✘
OpenCQA Kantharaj et al. (2022a) Original 5 1* 6.5K 6.5K 1.2K 1.2K ✘ ✘
UniChart Masry et al. (2023) Aggregated 3 3 627K 7M - - ✔ ✘
ChartLlama Han et al. (2023) Original 10 7 11K 160K 2.1K 3.5K ✔ ✘
MMC Liu et al. (2023c) Aggregated 6 9 600K 600K 2K 2K ✔ ✘
ChartX Xia et al. (2024) Original 18 7 - - 6K 6K ✔ ✔–

ChartBench (ours) Original 9 / 42 5 66.6K 599.6K 2.1K 18.9K ✔ ✔

Table 2: ChartBench comprises 3 regular charts and expands to include 6 additional types. ChartBench
emphasizes charts that lack data point annotations, requiring the MLLMs to infer the correct answers
by considering elements such as color, legends, and coordinate systems like humans.

Data Split Annotation Distribution Chart Type Distribution

w/i w/o Line Bar Pie Area Box Radar Scatter Node Combin.

Train Set 15.04% 84.96% 11.75% 36.89% 12.72% 8.42% 6.11% 4.59% 3.07% 5.97% 10.47%
Test Set 23.80% 76.20% 11.90% 31.00% 11.90% 7.10% 7.10% 9.50% 7.10% 4.80% 11.90%

in the test set contains at least 50 table-chart pairs sourced from the real world. Additionally, we
generate more samples with different chart prototypes based on the code rendering to construct the
train set. We implement a hierarchical quality control process, with detailed information available
in Appendix B. Experimental results show a significant performance gap between charts with and
without datapoint annotations (Tab. 6). To enhance model capabilities on unannotated charts, over
80% of the training set in ChartBench are unannotated charts (Tab. 2). The significant performance
improvement on the ChartQA and ChartBench test set achieved through supervised fine-tuning
demonstrates the effectiveness and applicability of the ChartBench train set.

We further improve the Acc+ metric introduced by MME Fu et al. (2023a), where MLLMs can only
score if they correctly answer a query from both affirmative and negative views. The negative query
is typically generated by simply negating the affirmative statement, usually by adding not before
the verb. However, the semantic differences between these two forms are substantial and do not
effectively prevent the model from making lucky guesses. To address this, we propose generating
the negative query by randomly replacing the ground truth value from the same meta table, named
Acc++. This approach generates two views with similar representational and semantic embedding
features, thereby reducing instances of lucky guessing. If the model fails to accurately interpret the
chart’s visual information, it will provide identical responses and fail to get the Acc++ score.

The evaluation of 18 mainstream open-source and 3 closed-source models shows that current MLLMs
cannot effectively understand complex charts, especially those without data annotations, raising
concerns about the reliability of their data interpretation. Detailed examinations on ChartBench reveal
the reasons behind the suboptimal performance of MLLMs on charts, highlighting ChartBench’s
meticulous curation to explore the nuances of chart reasoning. We introduce two simple yet effective
baselines based on the chain of thought (CoT, Fig. 4) and supervised fine-tuning (SFT) to improve
MLLMs’ performance on ChartBench, aiming to inspire more innovative proposals in the future.

Our contributions can be summarized as follows:
a) We introduce ChartBench, a large-scale dataset with over 42 types of charts, 66k charts,

and 600k instructions. It primarily includes charts without data point annotations, assessing
MLLMs’ ability to reason through visual elements instead of OCR.

b) We refine the Acc+ metric and value matching criteria to effectively reduce random guesses
and provide more robust evaluation results of 18 open-sourced and 3 closed-sourced MLLMs.

c) We propose two efficient baselines based on the chain of thought and supervised fine-tuning,
inspiring more methods to enhance MLLMs’ understanding of unannotated charts.

d) Extensive experiments reveal existing MLLMs’ inadequacies in chart comprehension, high-
lighting potential directions for future optimization.
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2 RELATED WORKS

2.1 MULTIMODAL LLMS

Current LLMs (Vaswani et al., 2017; Radford et al., 2018; Brown et al., 2020; Zhang et al., 2022;
Chowdhery et al., 2023; Touvron et al., 2023a;b; Cai et al., 2024) successfully bridge the multimodal
areas via instruction tuning (Ouyang et al., 2022; Li et al., 2023a; Wang et al., 2022). The connectors
are proposed to align visual and text modality to train MLLMs Chen et al. (2022); Alayrac et al.
(2022), e.g., Q-Former (Li et al., 2023c) or MLP Bai et al. (2023b). Mini-GPT4 (Zhu et al., 2023;
Chen et al., 2023a), mPLUG-Owl (Ye et al., 2023b), and InstructBLIP (Dai et al., 2023) extend
language-only instruction tuning to multimodal tasks using Q-Former. LLaVA (Liu et al., 2023e;d)
maps visual features into the LLaMA (Touvron et al., 2023a) embedding space by a linear layer,
while concurrently fine-tuning with LLaMA. The closed-source Baidu ERNIE BaiDu and GPT-
4 (OpenAI, 2023) further show satisfactory image understanding capabilities. Despite the impressive
achievements of existing MLLMs (Ding et al., 2021; Du et al., 2022; Zhang et al., 2023; Bai et al.,
2023b; Chen et al., 2023b; Lin et al., 2023) in common multimodal tasks like VQA (Antol et al., 2015)
and image captioning (Vinyals et al., 2015), their focus tends to be on general image understanding,
neglecting the specialized task of comprehending chart data in domain-specific contexts (Masry et al.,
2022; Li & Tajbakhsh, 2023; Han et al., 2023; Liu et al., 2023c; Xia et al., 2023). Existing research
can be divided into two categories. 1) two-stage methods mainly transform multimodal queries into
text QAs by extracting table information as prompt Lee et al. (2023); Liu et al. (2023b;a); Xia et al.
(2024). 2) end-to-end approaches adopt chart-question pair data to align and supervised fine-tune
the MLLMs Han et al. (2023); Carbune et al. (2024); Meng et al. (2024); Liu et al. (2023c); Ye et al.
(2023a); Liu et al. (2024); Wang et al. (2023a); Zhuowan et al. (2024); Yan et al. (2024); Chen et al.
(2024a); Zhang et al. (2024). Although these efforts have improved the chart understanding ability
of MLLMs, there are still limited benchmarks to properly evaluate their performance on the charts,
especially unannotated ones.

2.2 MULTIMODAL BENCHMARKS

MLLMs have been fully evaluated on numerous traditional benchmarks (Goyal et al., 2017; Hudson
& Manning, 2019; Xu et al., 2023; Ye et al., 2023c; Fu et al., 2023a; Yu et al., 2023; Li et al., 2023b;
Liu et al., 2023f), while largely ignoring the requirement for complex visual chart understanding
and reasoning. HallusionBench (Guan et al., 2023) exposes the susceptibility of formidable models
like GPT-4V (OpenAI, 2023) and LLaVA-1.5 (Liu et al., 2023d) to severe hallucinations when
confronted with complex charts. VisText (Tang et al., 2023) introduces a benchmark to incorporate
multi-level and fine-grained chart labeling, covering aspects such as chart construction, summary
statistics, relations, and complex trends. SciCap (Hsu et al., 2021), Chart2Text (Kantharaj et al.,
2022b), AutoChart (Zhu et al., 2021), and ChartSumm (Rahman et al., 2023) address chart-to-text
summarization tasks. ChartQA Masry et al. (2022) and PlotQA Methani et al. (2020) are currently
mainstream benchmark datasets for evaluating the chart comprehension abilities of MLLMs, which
focus on three commonly encountered chart types. Chartllama Han et al. (2023) and ChartX Xia
et al. (2024) expand the range of available chart types, while ChartY Chen et al. (2024a) significantly
expands the number of regular chart types with LLMs. However, these benchmarks have limited
chart types, and their charts are always accompanied by detailed datapoint annotations, which allow
MLLMs to obtain candidate answers via simple OCR. Comparatively, the advantages of ChartBench
stem from its larger scale, more diverse chart types, richer plot styles, and high proportion of
unannotated charts.

3 CHARTBENCH

3.1 DATA PROCESSING PIPELINE

Fig. 1 illustrates the specific data processing flow of Chartbench. The core idea is to generate
unannotated charts of various types and their corresponding instruction data.

Data Collection. To design charts reflecting real-world scenarios, we gather themes and data suitable
for scientific research from Kaggle, anonymizing all real names and identifiable entities to ensure
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JSONFormat 

Filtering

   Kaggle Regular 
CSV

Anonymize

GPT Extra 
CSV

Examples

JSON ChartBench
Evaluation

Human 
check

Split 50 pairs
Online plot

plt.style
plt.cmap

Pyechart
Matplotlib

GPT-3.5
Generation

Total 200+ 
Templates

Theme: Daily Steps Comparison for Fitness Trackers
X-axis: Day
Y-axis: Number of Steps
Fitness Tracker A: 8000, 8500, 8800, 9000, 9200, 9300, 9100
Fitness Tracker B: 7500, 7800, 8200, 8500, 8300, 8800, 8900
Fitness Tracker C: 7000, 7200, 7600, 7800, 7600, 8000, 8200
Theme: Global Renewable Energy Consumption
X-axis: 2010, 2012, 2014, 2016, 2018, 2020, 2022
Y-axis: Quadrillion BTUs
China: 4, 5, 6, 7, 8, 9, 10
USA: 3, 3.5, 4, 4.5, 5, 5.5, 6
Germany: 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2
India: 2, 2.3, 2.6, 3, 3.3, 3.6, 4
Brazil: 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2

{"title": "Daily Steps Comparison for 
Fitness Trackers", "x_label": "Day", 
"y_label": "Number of Steps", 
"x_name": ["Fitness Tracker A", 
"Fitness Tracker B", "Fitness Tracker 
C"], "y_data": [[8000.0, 8500.0, 
8800.0, 9000.0, 9200.0, 9300.0, 
9100.0], [7500.0, 7800.0, 8200.0, 
8500.0, 8300.0, 8800.0, 8900.0], 
[7000.0, 7200.0, 7600.0, 7800.0, 
7600.0, 8000.0, 8200.0]]}
{"title": "Annual Car Sales", 
"x_label": ["2016", "2017", "2018" ...
 

[{"query": "What is the Number of Unique 
Visitors of Website A at Month 10?", 
"label": "800.0"}, {"query": "At Day 4, 
the Stock Price of Company X is higher 
than Company Z.", "label": "Yes"}, 
{"query": "The Q4 has the highest Revenue 
in Thousands of Dollars 550.0 at 2020.", 
"label": "Yes"}, {"query": "The mean 
Satisfaction Level of Q3 is around 75.0.", 
"label": "No"}, {"query": "What is the 
the mean Satisfaction Level of Q4?", 
"label": "70.0"}, {"query": "The node 
Conservationist A does not point to ...
 

JSON
JSON

JSON
JSON

JSON
Charts

JSON
JSON

JSONInstruction
Data

Design Objectives:
1. More chart types (9 types).
2. Higher proportion (75%+) of 

unlabeled charts.

Evaluation Metrics:
1. Acc++ to avoid blind guessing.
2. GPT to extract numbers.
3. Exclude entities (years, etc) 

that are more susceptible to 
relaxed margins.

Figure 1: Illustration of the overall data collection and annotation pipeline. We adopt desensitized
and GPT-generated data. We employ various charting methods, styles, and color combinations to
ensure chart diversity. We provide over 200 question templates and GPT-generated questions to
ensure question diversity. Each sample in the test set undergoes manual checks to prevent errors.

You are a data analyst, good at dealing with chart data. This graph shows the revenue 
share of brands across thest years. Please determine whether the user's judgments on 
this chart are correct.
The judgments from the User are: 
According to this chart, the percentage of 2020 at Brand Samsung is around 24.46%.

Based on the visual estimation, the red dashed line is drawn at an approximate height 
for Samsung's revenue in 2020, which appears to be near the 80 million mark on the 
y-axis.

This rough estimation is used to assess the user's judgment that Samsung's revenue in 
2020 was 24.46 million. Given that the line is well above the 20 million mark and 
closer to 80 million, it is clear that the user's claim of 24.46 million is not accurate, 
and the actual revenue is significantly higher.

Since we cannot provide an exact value without precise data or successful OCR, we 
cannot confirm the exact revenue for Samsung in 2020, but it is certainly more than 
24.46 million as per the visual approximation. Thus, the judgment is incorrect.

You are a data analyst, good at dealing with chart data. This graph shows the monthly 
revenue by product category. Please determine whether the user's judgments on this 
chart are correct.
The judgments from the User are: 
Based on this chart, which category has higher revenue in the May?

In May, the chart shows that the "Apparel" category had higher revenue than the 
"Home Goods" category. The line in the "Apparel" category (marked with a circle) in 
May is above the line in the "Home Goods" category (marked with a square), which 
indicates that the "Apparel" category has higher revenue.

Please note their position relationship.

Apologies for the previous misinterpretation. According to the chart you provided, in 
the month of May, the category "Home Goods" actually has higher revenue than the 
category "Apparel." The line (marked with squares) representing "Home Goods" is 
positioned higher than the line (marked with circles) representing "Apparel" in the 
chart.

Notice their respective y axes.

Apologies for the misunderstanding. Indeed, while the line (marked with squares) 
representing "Home Goods" appears above the line (marked with circles) representing 
"Apparel" on the chart, we need to consider the corresponding values on the 
respective axes to make an accurate assessment. From the left axis, the revenue for 
"Apparel" in May is approximately 10 million dollars, whereas from the right axis, 
the revenue for "Home Goods" in May is around 8 million dollars. Therefore, despite 
the visual positioning of the "Apparel" line being lower on the chart, the actual 
revenue value for "Apparel" is higher. Hence, in May, the category "Apparel" has 
higher revenue compared to the category "Home Goods."

How much is the approximate revenue around for "Home Goods" in May?

According to the chart, the revenue for "Home Goods" in May is approximately 7 
million dollars.

      Error analyzing

It seems there was an error in attempting to use OCR on the image. The error 
occurred because the image data type was not compatible with the OCR library.

As an alternative, I can manually analyze the chart based on the visible information. 
We need to look at the Samsung bar and identify the segment that represents the year 
2020. We then compare its height visually with the y-axis to estimate the revenue. 
Since the revenue values are cumulative in a stacked bar chart, we need to subtract 
the value of the 2019 segment from the 2020 segment to obtain the revenue for 2020 
alone.

Let me attempt a visual estimation for it. ​​
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Global tourism arrivals by region (M)
Africa Europe

Yes 

This is a line chart.

Yes 

The arrivals of Europe in 2022 is 240M.

Yes 

In 2021, Europe is bigger than Africa. 

Yes 

The biggest arrivals is Europe in 2019. 

No

This is a bar chart.

Yes

The arrivals of Europe in 2022 is 70M.

No

In 2021, Africa is bigger than Europe. 

No

The biggest arrivals is Africa in 2019. 

Responses: Yes/No.  GT: line chart.
The Acc+ answer is correct.

Responses: Yes/Yes.  GT: 240M.
The Acc+ answer is wrong ️.

Responses: Yes/No.  GT: Europe.
The Acc+ answer is correct.

Responses: Yes/No.  GT: Europe in 2019.
The Acc+ answer is correct.

What is the type of query chart? What is the tourism arrivals of 
Europe in 2022?

Which has the bigger tourism 
arrivals in 2021?

Which is the biggest tourism 
arrivals?

Yes/No.  Acc+ = True.

What is the type of query chart?

This is a line chart.

This is a bar chart.

Yes

No

What is the tourism arrivals of 
Europe in 2022?

Yes/Yes.  Acc+ = False.

The arrivals of Europe in 2022 
is 240M.

The arrivals of Europe in 2022 
is 70M.

Yes

Yes

Which has the bigger tourism 
arrivals in 2021?

Which is the biggest tourism 
arrivals?

What is the tourism arrivals of 
Europe in 2019?

Ground truth: 340M.
Answer: 330M.
Margin of error: 5%
Correct.

What is the tourism arrivals of 
Europe in 2019?

It is 330M.

Yes/No.  Acc+ = True.

In 2021, Europe is bigger than 
Africa. 

In 2021, Africa is bigger than 
Europe. 

Yes

No

Yes/No.  Acc+ = True.

The biggest arrivals is Europe 
in 2019. 

The biggest arrivals is Africa in 
2019. 

Yes

No

Query Chart (a) Chart Recognition (b) Value Extraction (c) Value Comparison (d) Global Conception (e) Number QA

Figure 2: Illustration of five proposed tasks. Tasks (a-d) are with Acc++ and (e) with GPT-acc metric.

privacy. To ensure the diversity of chart types, we also use LLMs Radford et al. (2019); Bi et al.
(2024); Bai et al. (2023a) to generate realistic virtual themes and data for additional chart types.

Data Filtering. We establish standard JSON formats for 42 chart types and filter out all table data that
does not conform to these standards to ensure proper code rendering. We further remove insufficiently
differentiated data (such as data with small differences between maximum and minimum values) to
avoid creating confusing charts.

Chart Generation. With effective data filtering, we plot various charts using various chart plotting
libraries (such as Matplotlib, etc.). We randomly applied different plotting styles and color schemes
to ensure chart diversity and provide 9 major categories and 42 subcategories of charts (Tab. 2). Refer
to Appendix A & H for detailed descriptions and thumbnail visualizations. Specifically, we designate
a proportion of charts without data point markers, which is a significant feature of ChartBench.

Instructions Generation. We set 5 different tasks for each type of chart and propose Acc++ for
evaluation. Detailed instruction tasks will be explained in Sec. 3.2. The goal is to evaluate the
conception and perception capabilities, especially on the chart with no data-point annotations.

Dataset Splitting. We randomly select 50 samples for each chart type to build the benchmark, with
the specific distribution shown in Tab. 2. Unlike the training set, which uses code generation, we
re-render these charts using online plotting websites to ensure there is no domain gap with real-world
charts. We also employ both automated and manual reviews to ensure the quality and diversity of the
charts. Refer to Appendix B for details.

3.2 AUTOMATIC INSTRUCTIONS GENERATION

ChartBench consists of 5 tasks, encompassing perception and conception Fu et al. (2023a) tasks.
Perception tasks primarily entail perceiving and processing raw data to extract valuable features and
information. Conversely, conception tasks involve processing and comprehending abstract concepts
and higher-level information.

Chart Type Recognition (CR, Fig. 2a) task aims to evaluate the MLLMs’ capability to identify
chart types accurately. Determining the chart type is the simplest but most basic step in the chain of
thought, which determines the steps and logic to analyze the chart elements. The model is required to
choose the correct candidate chart categories from both positive and negative views.

Value Extraction (VE, Fig. 2b) task aims to assess whether MLLMs can correctly extract the relevant
values when confronted with complex visual logic. Without annotated data, MLLMs are required
to rely on legends, axes, and corresponding graphical elements to provide answers. If the extracted
numbers are not accurate, the analysis or summary of the MLLM will be incredible.
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Figure 3: t-SNE Van der Maaten & Hinton (2008) visualisation of CLIP encoding features Radford
et al. (2021). ChartBench (a) covers extensive distribution of charts, particularly with the unannotated
chart; (b) stands apart from other datasets in terms of both topic and table data; (c) maintains
consistent query manners with other datasets.

Value Comparison (VC, Fig. 2c) assesses MLLMs’ visual reasoning by relying solely on visual-
grounded elements to determine comparison answers instead of meta table data. MLLMs are not
required to identify all chart metadata or element layouts. Instead, accurately observing graphic
elements and identifying key components is sufficient for drawing correct conclusions.

Global Conception (GC, Fig. 2d) task assesses the ability to perceive global indicators, such as
maximum values, from a holistic standpoint. This task requires that the model correctly parse all the
information expressed in the charts.

Number QA (NQA, Fig. 2e). Considering the excessive number of negative samples in the VE task,
we employ a tolerance evaluation method similar to ChartQA. Values within a specific error range
are deemed correct. This step requires assistance from LLMs to format the responses from MLLMs
with weak instruction-following ability.

3.3 DATASET ANALYSIS

Considering that ChartBench is primarily based on code rendering and website tool drawing, we
conduct in-depth data analysis with other chart datasets, including real-world ones. Fig. 3 illustrates
the distribution of chart, meta CSV, and query data, respectively. We randomly sample 10,000
data points respectively and extract corresponding features via CLIP (ViT-B/16) encoder. We adopt
t-SNE Van der Maaten & Hinton (2008) for feature dimension reduction for visualizations.

Chart Distribution. As shown in Fig. 3a, ChartBench encompasses the primary range of charts from
previous benchmarks and exhibits similar distribution trends to ChartX Xia et al. (2024). ChartBench
incorporates a wider variety of plot styles (e.g., classic, solarize, mpl, bmh, seaborn, ggplot, etc.) to
enhance stylistic diversity. ChartQA distinctly sets it apart from other datasets for real-world charts.
However, our ChartBench maintains the same data distribution by drawing charts from real websites.

CSV Distribution. As shown in Fig. 3b, the CSVs of each dataset exhibit different distributions,
indicating significant variations in table information. Considering the text truncation length of the
CLIP text encoder, this distribution also reflects the differences between the original data topics, as
the leading data usually includes titles or labels for the x and y axes.

Query Distribution. As shown in Fig. 3c, the query style of ChartBench is generally consistent with
ChartQA Masry et al. (2022) and ChartX Xia et al. (2024). Note that we only display the QA task
features of each dataset. Since the queries in these datasets primarily focus on numerical aspects of
chart elements, their feature distributions are relatively consistent. This consistency facilitates the
comparison and analysis of model performance across different datasets.

3.4 EVALUATION METRICS

From Acc+ to Acc++. As shown in Fig. 2, for a base query Qi on chart c, we expand Qi into correct
(Qr

i ) and incorrect (Qw
i ) assertions using a given query prompt. ChartBench requires the MLLM

M to determine the correctness of the queries, providing boolean outputs Ar
i := M(Qr

i ; c) and
Aw

i := M(Qw
i ; c). Because of the concise outputs, we can use regular expression matching instead

5
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assertment: ( 断言是什么)
chart type: （图片类型是什么）
if bar line scatter...: pay att to cordinate （如果是，注意坐标体系）
query identity: color line dot legend （查询主体是什么，对应什么颜色，
线性，点形？）
relate position or relation （查询主体之间的位置关系）
read value （对应坐标系上的 value）
得到结论

User's Query.

1. What is user's assertion?

2. What are queried entities?

3. What are corosponding color / line style / legend / ...?

6. What is entities ralationship?

5. What is the entities value?

7. Conclusion (yes or no)

4. What is this chart type? (if bar, line, ..., please notice cordinate / ticks ...)

��

Qwen GPT4

LLaVAmPLUG InternX

11.9%

31.0%

11.9%7.1%

7.1%

9.5%

7.1%

4.8% 9.5%

Line Bar Pie
Area Box Radar
Scatter Node Combination

23.8%

76.2%

with annotation
without annotation

Let's answer following qustions one by one:
• What is user's assertion?
• What are queried entities?
• What are corosponding color / line style / legend / ...?
• What is this chart type? 
    if bar / line / ..., please notice cordinate / ticks ...
• What are the entities value?
• What are entities ralationship?
Combined with your answers, your response is:

��

Qwen GPT4

LLaVAmPLUG

MLLMs

Let's answer following qustions one by one:
• What is user's assertion?
• What are queried entities?
• What are corosponding color / line style / legend / ...?
• What is this chart type? 
    if bar / line / ..., please notice cordinate / ticks ...
• What are the entities value?
• What are entities ralationship?
Combined with your answers, your response is:

Qwen GPT4

��
LLaVAmPLUG

MLLMs

Let's answer following qustions one by one:
• What is user's assertion?
• What are queried entities?
• What are corosponding color / line style / legend / ...?
• What is this chart type? 
    if bar / line / ..., please notice cordinate / ticks ...
• What are the entities value?
• What are entities ralationship?
Combined with your answers, your final response is:

�
�

Question

Fixed CoT 
template

Prompt Answer

Carefully examine this chart and answer user's question with a 
single word or phase.
User: what is the percentage of Product X at Quarter Q4?
To answer it, let's think following qustions one by one:
1. What is user's query?
2. What are queried entities?
3. What is this chart type? If it is bar / line / scatter plot, please 
notice its cordinate ...
......
Combine the above considerations and give your final answer.
Your answer:

Answer

Prompted Question

MLLMs

Fixed CoT

ChartPrompted Question

MLLMs

Answer

Chart

You are a data analyst, good at dealing with chart data. Now you 
are required to analyze a chart for the User. You only need to 
answer [yes] or [no].
Here is an example:
User: <image>
User: The figure is a line chart. Please answer yes or no.
You: yes.
Following the example and for this chart:
User: <image>
User: at 2017, the percentage of Singapore is higher than Vietnam.
You:

Answer

Prompted Question

MLLMs

Self CoT

Chart

Carefully examine this chart and answer user's question with a 
single word or phase.
User: what is the percentage of Product X at Quarter Q4?
To answer it, let's think following qustions one by one:
1. Look at the chart data
2. Find the row for the Quarter Q4
3. In that row, locate the Product X column
4. Read the value in that column
5. Return the value read
Combine the above considerations and give your final answer.
Your answer:

Answer

Prompted Question

MLLMs

GPT CoT

Chart

Carefully examine this chart and answer user's question with a 
single word or phase.
User: what is the percentage of Product X at Quarter Q4?
To answer it, let's think following qustions one by one:
1. Identify the variable being asked about, Petabytes per month.
2. Determine the year the user is asking about, which is 2021.
3. Locate the row in the data that corresponds to the year 2021.
4. Find the value in the Petabytes per month column for the 2021.
5. Return the value found in step 4 as the answer.
Combine the above considerations and give your final answer.
Your answer:

�
�

···

··· ··· ···

(a) Base (b) Fixed CoT (c) Self CoT (d) GPT CoT

Figure 4: Illustration of different Chain of Thought. (a) No CoT. (b) All charts utilize the same
CoT template that we provide. (c) The CoT for each chart is generated by its own LLM, given the
prompted question. (d) GPT generates the CoT for each chart based on the prompted question.

of additional LLM judgement Fu et al. (2023b). In previous Acc+, Qw
i is typically formed by adding

negation to Qr
i , resulting in a significant semantic distance between them (completely opposite).

Hence, a model is likely to produce different responses for Qw
i and Qr

i . In Acc++, 1) Qr
i and Qw

i
differ only in the ground truth value, resulting in similar token sequences. 2) Ar

i and Aw
i are derived

from independent inferences. 3) The incorrect value in Qw
i is randomly selected from metadata to

maintain rationality. We formally define the Acc++ metric as follows: Given N base queries in
ChartBench, Acc++ = 1

N

∑N
i=1 1 [M(Qr

i ; c) ∧ ¬M(Qw
i ; c)], where ∧, ¬ and 1[x] are and, not and

indicator function, respectively. The MLLM is considered to understand the query chart only if it
accurately answers both Qr

i and Qw
i simultaneously.

Confusion Rate (CoR). During the evaluation, we find that many MLLMs produce the same output
for both assertions, likely because they fail to utilize the chart information. To assess this failure,
we introduce the CoR metric. Formally, CoR = 1

N

∑N
i=1 1 [M(Qr

i ; c)⊕ ¬M(Qw
i ; c)], where ⊕

denotes the XOR operation. If an MLLM fails to use the visual information from charts, it tends to
generate identical answers, resulting in CoR approaching 100% and Acc++ approaching 0%.

GPT-acc. While Acc++ is an efficient way to evaluate model responses, it falls short for specific
numerical questions, as correctly answering a negative sample doesn’t fully demonstrate the model’s
generalization ability and differs from methods used in datasets like ChartQA. To address this,
we propose an improved error margin evaluation (5%) from ChartQA Masry et al. (2022). Our
improvements include: 1) using LLMs Radford et al. (2019); Bai et al. (2023a); Bi et al. (2024) to
filter responses and extract numerical answers, avoiding pattern-matching errors due to extraneous
text, and 2) restricting NQA task questions to exclude elements like years and months, which could
make the error margin too lenient and the evaluation meaningless.

4 BASELINES

ChartBench primarily evaluates MLLMs’ ability to understand unannotated charts. We propose two
simple yet effective baselines that significantly improve MLLMs’ performance.

ChartCoT. As shown in Fig. 4, we propose effective baselines based on Chain of Thought Wei et al.
(2022) to enhance the visual reasoning capability without model tuning. As shown in Fig. 4b, we
design a series of questions that decompose user inquiries and employ prompts to mimic human visual
reasoning for chart recognition. Additionally, we enable MLLMs to generate their own CoT (Fig. 4c)
or seek assistance from stronger LLMs to generate CoTs (Fig. 4d). This approach significantly aids
MLLMs in understanding charts, particularly in cases where visual logic is more complicated.

Supervised Fine-tuning. We conduct a two-stage supervised fine-tuning (SFT) based on Qwen-
VL-Chat and Internlm-XComposer-v2. In the first stage, we perform alignment training with chart
and CSV pairs to update the connector parameters. In the second stage, we utilize instruction and
chart pairs to fine-tune the LLM branch with LoRA Hu et al. (2021). Considering that charts are
not complex images compared to natural images, we keep the visual encoder frozen during the SFT
process. Please refer to Appendix D for detailed experimental settings.
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Table 3: The zero-shot performance on ChartQA and our proposed ChartBench. We report average
Acc++ for 4 yes-or-no tasks and GPT-acc for NQA task. Regular: line, pie, and bar plots. Extra:
additional chart in Tab. 2. ChartBench is more challenging for more unannotated charts.

Models
ChartBench ChartQA

Regular Type Extra Type Avg. Rank Human Aug. Avg. Rank
Acc++ NQA Avg. Acc++ NQA Avg.

Open source MLLMs
General Purpose Models

VisualGLM Du et al. (2022) 3.46 1.83 3.13 4.22 4.84 4.35 3.68 #21 18.96 6.80 12.88 #15
Shikra Chen et al. (2023b) 8.59 2.35 7.34 7.50 9.05 7.81 7.55 #20 16.24 7.28 11.76 #18
InstructBLIP Dai et al. (2023) 17.96 0.87 14.55 5.50 5.37 5.47 10.43 #18 15.92 7.92 11.92 #17
Internlm-XComposer Zhang et al. (2023) 19.70 1.22 16.01 10.11 5.79 9.25 12.94 #16 13.20 7.84 10.52 #19
CogVLM-Chat Wang et al. (2023b) 14.41 12.96 14.12 11.89 13.68 12.25 13.26 #15 34.24 28.56 31.40 #12
SPHINX Lin et al. (2023) 17.87 6.17 15.54 17.92 12.74 16.89 16.13 #14 21.44 11.20 16.32 #14
BLIP2 Li et al. (2023c) 21.65 0.96 17.53 18.44 4.84 15.74 16.70 #13 13.52 6.00 9.76 #20
DeepSeek-VL-Chat Lu et al. (2024) 15.68 20.00 16.54 18.51 29.73 20.74 18.42 #12 44.88 76.56 60.72 #9
MiniGPT-v2 Chen et al. (2023a) 22.37 2.43 18.40 25.06 5.26 21.11 19.61 #10 15.60 8.48 12.04 #16
LLaVA-v1.5 Liu et al. (2023e) 25.61 8.09 22.12 27.39 15.26 24.97 23.39 #7 22.64 13.04 17.84 #13
Qwen-VL-Chat Bai et al. (2023b) 29.46 23.57 28.28 26.56 21.05 25.46 26.98 #6 42.48 75.20 58.84 #10
Mini-Gemini Li et al. (2024) 39.57 25.57 36.78 31.81 25.79 30.61 33.96 #4 44.32 57.04 50.68 #11
InternVL2 Chen et al. (2024b) 40.91 50.00 42.72 36.12 47.59 38.40 40.73 #3 - - 83.30 #1
Internlm-XComposer-v2 Dong et al. (2024) 57.89 40.96 54.52 41.75 31.58 39.73 47.78 #2 63.12 81.92 72.64 #4
Qwen2-VL Wang et al. (2024) 60.45 50.00 58.37 68.99 53.30 65.87 61.70 #1 - - 83.00 #2

OCR Optimized Models
CogAgent Hong et al. (2023) 20.39 26.61 21.63 14.36 25.79 16.64 19.35 #11 54.08 80.56 67.32 #6
mPLUG-Owl-bloomz Ye et al. (2023b) 27.80 2.35 22.73 25.47 6.21 21.64 22.21 #8 7.84 4.88 6.36 #21
DocOwl-v1.5 Hu et al. (2024) 35.27 37.30 35.67 26.86 29.47 27.38 31.89 #5 48.24 86.72 67.48 #5

Chart Optimized Models
OneChart Chen et al. (2024a) 12.34 2.26 10.33 8.75 3.37 7.68 9.12 #19 85.30 49.10 67.20 #7
ChartVLM Xia et al. (2024) 8.02 43.74 15.24 5.92 18.21 8.37 12.06 #17 42.08 82.48 62.28 #8
ChartLlama Han et al. (2023) 22.02 16.87 21.00 22.56 18.32 21.71 21.30 #9 58.40 93.12 75.76 #3

Closed source MLLMs
ERNIE BaiDu 47.39 25.74 43.08 46.39 33.37 43.82 43.37 #3 - - -
GPT-4V OpenAI (2023) 53.26 33.04 49.23 55.83 40.00 52.68 50.74 #2 - - 78.50 #2
GPT-4O OpenAI (2023) 65.00 40.00 60.02 63.33 41.05 58.89 59.45 #1 - - 85.70 #1

5 EXPERIMENTS

We evaluate 18 open-sourced and 3 closed-sourced MLLMs (shown in Tab. 3) on ChartBench.
Detailed model architectures and configurations are provided in Appendix C.1. Notably, some models
exhibited poor performance in certain areas, which may be due to suboptimal instruction prompts.
We provide a detailed analysis of the model with this anomaly in Appendix C.2.

Results on ChartBench. Tab. 3 compares various MLLMs on the ChartQA and our ChartBench.
Overall, MLLMs show consistent trends across both benchmarks, though individual models vary
notably. Onechart Chen et al. (2024a) performs well on ChartQA but struggles with ChartBench,
extracting incomplete or overly long Python dictionaries, which hampers its LLM (llava-V1.6 Liu
et al. (2023e)) from following instructions effectively. Qwen Bai et al. (2023b) and other top-
ranked MLLMs demonstrate consistent performance across both metrics, indicating accurate chart
comprehension. However, models like BLIP2 and MiniGPT-v2 show significant deviations due
to the broader and less standardized output required by NQA compared to Acc++, leading to
many extraction failures despite filtering by stronger LLMs OpenAI (2023); Bi et al. (2024); Bai
et al. (2023a). Unsurprisingly, models generally perform better on regular charts than on extra
types, especially those with pre-alignment, such as ChartVLM Xia et al. (2024), DocOwl Hu et al.
(2024), and Internlm-XComposer-v2 Dong et al. (2024), since the alignment process primarily uses
regular charts. This indicates that pre-alignment and SFT with chart data effectively enhance chart
comprehension abilities.

Results w.r.t. Task Types. Tab. 4 presents the performance of MLLMs on 5 type tasks, which are
introduced in Sec. 3.2. All MLLMs perform exceptionally well on the easiest CR task, demonstrating
their ability to recognize basic chart types effectively. LLaVA-v1.5 Liu et al. (2023e), mPLUG-
Owl Ye et al. (2023b), and Qwen-VL-Chat Bai et al. (2023b) demonstrate significant advantages in
the VC and GC conception tasks, benefiting from their chart-tuning data. VE is the most challenging
task, which is the key distinction between ChartBench and ChartQA. VE task cannot be resolved
merely through basic OCR and demands a series of visual and textual logical reasoning steps to reach
the ultimate answer. Despite demonstrating strong overall performance, models like BLIP2 Li et al.
(2023c) and ChartLlama Han et al. (2023) struggle with the VE task. This observation suggests that
strong text recognition abilities are insufficient for high chart reasoning capabilities. Closed-source
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Table 4: The zero-shot performance w.r.t. task types, i.e., Chart Recognition (CR), Value Extraction
(VE), Value Comparison (VC), Global Conception (GC), and Number QA (NQA). ↑ / ↓ indicates
that higher/lower is the better, respectively.

Models CR VE VC GC NQA↑ Avg.↑
Acc++ ↑ CoR↓ Acc++↑ CoR↓ Acc++↑ CoR↓ Acc++↑ CoR↓

Open source MLLMs
General Purpose Models

VisualGLM Du et al. (2022) 16.29 79.19 0.00 99.67 0.00 99.81 0.00 99.71 3.19 3.68
Shikra Chen et al. (2023b) 2.10 93.57 11.90 80.71 10.62 87.71 7.86 82.71 5.38 7.55
InstructBLIP Dai et al. (2023) 49.57 36.67 0.00 100.00 0.05 99.81 0.00 99.90 2.90 10.43
Internlm-XComposer Zhang et al. (2023) 42.29 56.95 6.86 85.14 2.48 96.57 9.67 78.48 3.29 12.94
CogVLM-Chat Wang et al. (2023b) 29.14 69.33 2.81 94.29 14.19 80.71 7.33 90.14 13.29 13.26
SPHINX Lin et al. (2023) 38.48 51.38 10.38 80.67 14.33 77.38 9.62 80.90 9.14 16.13
BLIP2 Li et al. (2023c) 60.05 37.05 4.24 89.29 14.05 78.86 3.86 90.00 2.71 16.70
DeepSeek-VL-Chat Lu et al. (2024) 51.43 58.10 3.81 95.24 5.24 92.38 4.29 95.24 22.86 18.42
MiniGPT-v2 Chen et al. (2023a) 29.05 49.24 22.00 55.14 24.29 53.33 18.10 61.76 3.71 19.35
LLaVA-v1.5 Liu et al. (2023e) 47.86 36.24 15.81 66.24 26.05 56.48 16.52 66.57 11.33 23.39
Qwen-VL-Chat Bai et al. (2023b) 51.67 42.71 11.14 84.57 27.29 63.14 21.71 74.86 22.43 26.98
Mini-Gemini Li et al. (2024) 80.52 17.86 17.62 70.43 26.00 59.38 22.00 71.10 25.67 33.96
InternVL2 Chen et al. (2024b) 48.60 42.99 29.44 56.54 35.68 49.30 30.19 56.60 42.45 40.73
Internlm-XComposer-v2 Dong et al. (2024) 68.29 30.24 36.63 57.71 54.63 27.71 45.80 51.46 36.71 47.78
Qwen2-VL Wang et al. (2024) 81.17 10.31 43.05 55.16 66.67 15.32 55.86 40.54 47.75 61.70

OCR Optimized Models
CogAgent Hong et al. (2023) 62.57 37.10 1.19 94.90 7.33 88.24 1.19 94.76 26.24 19.61
mPLUG-Owl-bloomz Ye et al. (2023b) 32.33 51.24 23.14 76.76 25.33 69.29 26.48 71.00 4.10 22.21
DocOwl-v1.5 Hu et al. (2024) 30.43 65.05 34.48 58.24 31.10 55.19 30.48 63.19 33.76 31.89

Chart Optimized Models
OneChart Chen et al. (2024a) 3.71 94.33 15.48 82.14 17.57 73.71 11.38 85.67 2.76 9.12
ChartVLM Xia et al. (2024) 0.00 100.00 9.05 85.48 10.05 83.81 8.52 86.19 32.19 12.06
ChartLlama Han et al. (2023) 49.86 44.19 8.38 84.14 20.43 69.48 10.67 83.81 17.52 21.30

Closed source MLLMs
ERNIE BaiDu 65.24 19.52 44.76 44.76 32.86 41.43 47.14 47.62 29.24 43.37
GPT-4V OpenAI (2023) 96.19 2.86 30.95 63.33 48.57 34.76 46.19 47.62 36.19 50.74
GPT-4O OpenAI (2023) 97.62 1.43 43.33 44.76 66.19 16.19 53.33 41.43 40.48 59.45

Table 5: The zero-shot CoR (%) performance w.r.t. chart types. Higher CoR means more severe
hallucinations. CoR and Acc++ exhibit a negative correlation.

Models Regular Type Extra Type CoR
Line Bar Pie Avg. Area Box Radar Scatter Node Combin. Avg.

Open source MLLMs
General Purpose Models

VisualGLM Du et al. (2022) 89.20 98.04 99.38 96.27 93.50 90.50 97.50 91.33 80.50 94.62 92.39 94.60
Shikra Chen et al. (2023b) 85.80 82.19 98.25 85.93 84.83 85.00 86.00 84.33 72.00 95.38 85.89 86.18
InstructBLIP Dai et al. (2023) 75.50 82.58 79.50 80.41 88.33 85.50 91.00 86.00 90.50 89.62 88.58 84.10
CogVLM-Chat Wang et al. (2023b) 87.20 83.38 79.38 83.52 85.33 86.67 77.88 84.17 79.50 89.88 84.13 83.62
DeepSeek-VL-Chat Lu et al. (2024) 73.00 88.46 83.75 84.09 88.33 86.67 66.25 86.67 72.50 90.00 79.73 82.74
Internlm-XComposer Zhang et al. (2023) 79.40 73.92 68.62 74.20 93.33 79.83 77.00 84.17 91.00 92.25 85.84 79.29
BLIP2 Li et al. (2023c) 66.40 79.96 72.75 75.57 92.50 85.83 78.12 73.17 16.00 66.88 71.92 73.80
SPHINX Lin et al. (2023) 73.80 75.73 58.00 72.07 82.00 86.17 71.00 73.17 63.50 65.25 73.47 72.58
Qwen-VL-Chat Bai et al. (2023b) 56.00 73.62 57.50 66.68 68.67 66.67 57.25 74.50 74.00 66.25 66.92 66.32
LLaVA-v1.5 Liu et al. (2023e) 51.20 59.69 54.87 56.89 61.67 58.50 60.00 59.17 29.00 56.00 55.79 56.38
MiniGPT-v2 Chen et al. (2023a) 52.20 57.35 56.75 56.07 57.17 56.00 52.75 51.50 47.00 54.25 53.47 54.87
Mini-Gemini Li et al. (2024) 55.70 53.92 51.25 53.84 53.50 62.67 57.75 50.83 61.00 57.88 56.92 54.69
InternVL2 Chen et al. (2024b) 49.00 42.31 52.50 45.68 56.16 70.00 58.75 58.33 40.00 60.00 53.25 51.35
Internlm-XComposer-v2 Dong et al. (2024) 27.40 44.65 32.50 38.52 55.33 58.33 47.88 43.17 29.00 39.75 47.22 41.78
Qwen2-VL Wang et al. (2024) 25.00 34.62 23.75 30.45 33.64 55.00 35.00 11.67 10.00 25.00 25.57 30.34

OCR Optimized Models
CogAgent Hong et al. (2023) 81.40 76.00 89.00 79.59 84.33 82.67 90.12 87.50 7.00 84.00 81.50 78.75
mPLUG-Owl-bloomz Ye et al. (2023b) 69.20 79.54 76.12 76.57 82.50 78.50 80.00 77.83 70.00 77.50 78.24 77.35
DocOwl-v1.5 Hu et al. (2024) 47.10 63.69 63.62 59.91 80.50 61.33 64.62 59.67 53.00 52.00 62.44 60.42

Chart Optimized Models
ChartVLM Xia et al. (2024) 85.80 87.46 92.25 87.95 88.00 90.33 89.88 91.17 91.00 89.50 89.83 88.87
OneChart Chen et al. (2024a) 80.10 84.46 89.38 84.36 89.83 87.33 93.62 90.17 33.50 89.38 87.08 83.96
ChartLlama Han et al. (2023) 65.60 74.27 74.50 72.34 81.50 78.83 72.62 66.00 28.50 68.62 68.47 70.40

Closed source MLLMs
ERNIE BaiDu 34.00 41.15 27.50 37.05 46.67 45.00 51.25 33.33 25.00 33.75 40.26 38.33
GPT-4V OpenAI (2023) 21.00 52.69 37.50 42.73 58.33 38.33 23.75 25.00 0.00 33.75 31.32 37.14
GPT-4O OpenAI (2023) 9.00 37.31 20.00 27.73 50.00 28.33 20.00 16.67 0.00 28.75 25.26 25.95

models outperform open-source models, partly due to their larger size and broader data coverage.
Additionally, they utilize supplementary recognition tools instead of relying solely on end-to-end
inference, as further detailed in Appendix E.6.

Error Analysis. Tab. 5 presents the results on CoR, which reflects the MLLM’s failure to utilize chart
information. We find that existing MLLMs tend to give identical answers to similar questions about
charts. Internlm-XComposer-v2 Dong et al. (2024) shows the lowest CoR (41.78%), which means
nearly half of the responses fail to distinguish between positive and negative questions. This indicates
that random guessing without the chart is common among open-source models due to their inability
to utilize chart information. CoR generally shows a negative correlation with performance, although
there are exceptions. Qwen Bai et al. (2023b) demonstrates better Acc++ compared to MiniGPT-
v2 Chen et al. (2023a) with higher CoR. For closed-source MLLMs, although GPT-4V OpenAI
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Table 6: The performance on with and without annotation charts. w/i and w/o indicate with and
without annotation, respectively. †: Acc++. ‡: GPT-acc. MLLMs are better with annotated charts.

Models CR† VE† VC† GC† NQA‡ Avg.

w/i w/o w/i w/o w/i w/o w/i w/o w/i w/o w/i w/o ∆

Open source MLLMs
General Purpose Models

Internlm-XComposer Zhang et al. (2023) 30.50 53.00 8.00 7.50 1.00 2.75 10.00 8.50 10.60 1.75 12.02 14.70 -2.68
Shikra Chen et al. (2023b) 1.25 1.00 6.00 10.25 2.25 6.50 5.00 8.50 15.80 1.50 6.06 5.55 +0.51
MiniGPT-v2 Chen et al. (2023a) 31.25 31.00 24.50 22.25 27.25 26.50 16.50 19.75 7.80 2.75 21.46 20.45 +1.01
InstructBLIP Dai et al. (2023) 59.50 54.75 0.00 0.00 0.25 0.00 0.00 0.00 10.40 1.00 14.03 11.15 +2.88
BLIP2 Li et al. (2023c) 78.25 69.00 4.00 5.00 26.50 21.50 5.00 7.50 6.80 1.75 24.11 20.95 +3.16
VisualGLM Du et al. (2022) 24.75 16.25 0.00 0.00 0.00 0.00 0.00 0.00 9.20 0.75 6.79 3.40 +3.39
SPHINX Lin et al. (2023) 43.75 41.00 11.75 12.25 18.50 17.00 15.00 8.75 23.00 5.25 22.40 16.85 +5.55
LLaVA-v1.5 Liu et al. (2023e) 55.25 43.50 17.75 16.00 28.50 31.50 15.50 16.25 31.80 5.50 29.76 22.55 +7.21
CogVLM-Chat Wang et al. (2023b) 31.25 27.00 3.50 2.00 22.75 19.25 14.00 9.00 37.40 5.75 21.78 12.60 +9.18
Mini-Gemini Li et al. (2024) 79.33 74.00 20.00 16.75 32.89 33.75 30.89 22.00 59.20 14.75 44.46 32.25 +12.21
DeepSeek-VL-Chat Lu et al. (2024) 68.00 46.25 10.00 1.88 18.00 1.25 10.00 2.50 48.00 15.00 26.50 13.25 +13.25
InternVL2 Chen et al. (2024b) 56.00 46.34 46.00 24.39 52.00 30.67 38.00 27.78 76.00 34.65 48.00 33.46 +14.54
Qwen-VL-Chat Bai et al. (2023b) 68.00 53.50 26.50 7.50 47.75 35.00 31.50 33.50 54.80 14.00 45.71 28.70 +17.01
Internlm-XComposer-v2 Dong et al. (2024) 83.00 64.25 75.25 39.75 70.00 66.00 67.75 66.25 69.80 37.75 73.16 54.80 +18.36
Qwen2-VL Wang et al. (2024) 96.00 76.88 74.00 34.10 76.00 63.95 76.00 50.00 70.00 43.30 80.50 59.06 +21.44

OCR Optimized Models
mPLUG-Owl-bloomz Ye et al. (2023b) 37.50 41.50 22.50 27.50 27.25 30.25 27.50 29.25 9.40 3.75 24.83 26.45 -1.62
DocOwl-v1.5 Hu et al. (2024) 47.11 49.25 60.89 42.25 43.11 41.50 38.22 43.75 61.60 40.75 50.19 43.50 +6.69
CogAgent Hong et al. (2023) 64.67 64.75 2.89 0.00 16.00 13.25 2.44 0.25 61.60 11.50 29.52 17.95 +11.57

Chart Optimized Models
ChartVLM Xia et al. (2024) 0.00 0.00 12.22 10.00 9.33 11.00 12.44 10.25 57.00 46.50 18.20 15.55 +2.65
OneChart Chen et al. (2024a) 4.00 3.50 36.67 14.50 21.78 16.00 25.11 9.25 4.40 2.25 18.39 9.10 +9.29
ChartLlama Han et al. (2023) 57.00 53.50 15.75 7.00 33.00 24.25 20.00 13.00 42.20 12.75 33.59 22.10 +11.49

Closed source MLLMs
ERNIE BaiDu 67.50 72.50 32.50 45.00 42.50 37.50 52.50 52.50 52.20 7.25 49.44 42.95 +6.49
GPT-4O OpenAI (2023) 95.00 95.00 87.50 37.50 72.50 80.00 87.50 60.00 74.00 32.50 83.30 61.00 +22.30
GPT-4V OpenAI (2023) 92.50 97.50 72.50 7.50 67.50 57.50 72.50 37.50 82.00 15.00 77.40 43.00 +34.40

Table 7: Performance gain of chart chain of thought on various MLLMs. CoTs have proven to be
simple and effective ways to improve ChartBench’s performance. †: Acc++. ‡: GPT-acc.

Models Method w/i w/o ∆ CR† VE† VC† GC† NQA‡ Avg.

MiniGPT-v2

Base 21.46 20.45 1.01 29.02 22.29 24.59 18.29 3.71 19.58
CoT-fix 25.25+3.79 21.33+0.88 3.92+2.91 36.76+7.74 29.22+6.93 25.14+0.55 26.37+8.08 5.20+1.49 24.54+4.96

CoT-self 22.44+0.98 20.12-0.33 2.32+1.31 34.52+5.50 27.83+5.54 26.02+1.43 24.44+6.15 4.40+0.69 23.44+3.86

CoT-GPT 26.66+5.20 21.52+1.07 5.14+4.13 37.72+8.70 29.31+7.02 26.66+2.07 27.62+9.33 5.55+1.84 25.37+5.79

Qwen-VL-Chat

Base 45.71 28.70 17.01 52.54 10.78 27.46 21.95 22.43 27.03
CoT-fix 50.12+4.42 29.80+1.10 20.32+3.31 64.54+12.00 15.85+5.07 28.44+0.98 29.22+7.27 24.98+2.55 32.61+5.58

CoT-self 47.77+2.07 26.74-1.96 21.03+4.02 56.52+3.98 11.24+0.46 26.42-1.04 24.33+2.38 22.64+0.21 28.23+1.20

CoT-GPT 51.22+5.52 30.02+1.32 21.20+4.19 66.64+14.10 16.02+5.24 29.33+1.87 28.82+6.87 26.72+4.29 33.51+6.48

Internlm-XComposer-v2

Base 73.16 54.80 18.36 68.29 36.63 54.63 45.80 36.71 48.41
CoT-fix 75.22+2.06 55.74+0.94 19.48+1.12 69.22+0.93 36.76+0.13 58.23+3.60 46.11+0.31 36.52-0.19 49.37+0.96

CoT-self 73.54+0.38 54.62-0.18 18.92+0.56 69.92+1.63 35.32-1.31 55.21+0.58 46.02+0.22 36.32-0.39 48.56+0.15

CoT-GPT 76.23+3.07 55.12+0.32 21.11+2.75 70.92+2.63 37.33+0.70 58.82+4.19 47.46+1.66 37.22+0.51 50.35+1.94

(2023) outperforms ERNIE BaiDu in terms of Acc++, their CoR are similar. More granular analysis
reveals that ERNIE performs better on challenging VE tasks, which is the weakest area for GPT-4V.

Results w.r.t. Data-point Annotations. Tab. 6 presents the MLLMs’ performance on annotated and
unannotated charts. We report only the comparison results between the w/i and w/o chart versions
from the same table to ensure fair comparisons. Almost all models perform better on annotated charts.
As MLLM capabilities increase, the performance gap between annotated and unannotated charts
widens significantly, such as Internlm-XComposer-v2 (+18.36%) and GPT-4V (+34.40%). This is
because OCR on annotated charts is an easier task for advanced MLLMs, while their performance on
unannotated charts is limited. To further enhance MLLM capabilities, more unannotated charts are
needed to highlight the importance of our ChartBench.

CoT Performance. Tab. 7 shows the performance of the CoT-based baseline, which generally
improves performance without parameter updates. Because many models encounter difficulties
in following instructions, we show the results on MiniGPT-v2, Qwen-VL-Chat, and Internlm-
XComposer-v2. The fixed prompt ameliorates all tasks, especially for weaker models like MiniGPT-
v2 and Qwen-VL-Chat. CoT-self is less effective because the quality and length of the self-generated
CoT are uncontrollable, which hinders models from following instructions. CoT-GPT ensures CoT
quality and is customized for each question type and thus performs the best. See chain of thought
examples in Fig. 4.

SFT Performance. Tab. 8 shows the performance of the SFT-based baseline. Each model undergoes
2 epochs of alignment and 1 epoch of SFT with a learning rate of 1e− 5. Due to the commonality of
chart images, we freeze the visual encoder and update only the connector and LLM branch using
LoRA Hu et al. (2021). We balance NQA and Acc++ instructions to avoid predictive bias. The
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Table 8: Performance gain of supervised fine-tuning on Qwen-VL-Chat and Internlm-XComposer-v2.

Models w/i w/o ∆
Regular Extra Avg.

Acc++ NQA Avg. Acc++ NQA Avg.

Qwen-VL-Chat 45.71 28.70 17.01 29.46 23.57 28.28 26.56 21.05 25.46 26.98
Qwen-VL-Chat+SFT 60.00+14.29 43.65+14.95 16.35-0.66 46.39+16.93 25.65+2.08 42.26+13.98 40.18+13.62 25.89+4.84 37.33+11.87 39.99+13.01

Internlm-XComposer-v2 73.16 54.80 18.36 57.89 40.96 54.52 41.75 31.58 39.73 47.78
Internlm-XComposer-v2+SFT 87.16+14.00 68.20+13.40 18.96+0.60 72.66+14.77 43.81+2.85 66.91+12.39 62.74+21.00 45.37+13.79 59.28+19.55 63.40+15.65

improvement in Acc++ is particularly notable. SFT significantly boosts performance on ChartBench
(Qwen-VL-Chat +13.01%, Internlm-XComposer-v2 +15.62%) and shows gains on ChartQA as
well. Notably, Internlm-XComposer-v2 is the best open-source model on ChartBench and achieves
performance on par with the SOTA GPT-4o after alignment and SFT. Furthermore, the model does
not lose its general visual recognition capabilities (Tab. 16) and even shows improved performance
on other chart benchmarks (Tab. 17). This demonstrates the effectiveness of the ChartBench dataset.

6 DISCUSSION

Instruction Following. Some models encounter difficulties in following instructions. For instance,
mPLUG Ye et al. (2023b) provides overly detailed responses to explain its decision. LLaVA-v1.6 has
difficulty accurately understanding the instructions when the dictionaries extracted by OneChart Chen
et al. (2024a) are too lengthy. Models like Shikra Chen et al. (2023b) often simply reiterate the
original question. Meanwhile, models like CogVLM Wang et al. (2023b) produce hallucinatory
responses unrelated to the query. Therefore, instruction design greatly impacts the performance of
models because the same model can yield vastly different results with different prompt templates.

MLLM Performance. MLLMs exhibit several common deficiencies in chart comprehension. 1)
Since MLLMs are typically trained on images and descriptive statements, they prioritize giving
descriptive responses to charts over numbers. This is the opposite of human graph recognition, where
specific elements are identified first, followed by the final answer. 2) Some MLLMs fail to effectively
follow complex instructions, which hinders their application of intricate CoT strategies. 3) Data
hallucinations that occurred in VE and NQA tasks show that the data extracted by models is not yet
entirely reliable, leading to errors when answers involve specific numbers.

CoT v.s. SFT. Both CoT and SFT effectively improve MLLMs’ capabilities, but their impacts vary.
CoT shows greater improvement for weaker MLLMs (e.g., 6.48% for Qwen-VL-Chat v.s. 1.94% for
Internlm-XComposer-v2 in Tab. 7). The main improvement of CoT comes from unannotated charts,
and Qwen-VL-Chat benefits more than Internlm-XComposer-v2. As a result, CoT provides limited
improvement for MLLMs that already exhibit high performance on annotated charts. Enhancing
performance on unannotated charts through CoT remains a challenging task. In contrast, as shown
in Tab. 8, SFT provides more significant improvements for the more powerful model Internlm-
XComposer-v2 compared to Qwen-VL-Chat (Avg. gain 15.65% v.s. 13.01%, respectively). The
improvements are comparable for both annotated and unannotated charts (∆ -0.66% v.s. +0.60%,
respectively). This indicates that existing models are required to enhance the fundamental ability to
understand unannotated charts, and researchers should prioritize such data during MLLM training.

Limitations. 1) ChartBench is required to evaluate more models, and we will continue to follow
the rapidly evolving area. 2) Models are highly sensitive to prompt templates, and thus the best
prompt template for each model is required to be explored further. 3) The training methods and
model architectures for chart perception and reasoning are worth further exploration.

7 CONCLUSION

In this paper, we introduce ChartBench to evaluate the chart comprehension abilities of MLLMs.
ChartBench significantly expands chart types and requires MLLMs to infer numbers using visual
cues like color or legends. We propose improved Acc+ for accurate, automated assessments, avoiding
manual effort or costly LLM evaluations. We further offer two effective baselines to show how
the chain of thought and supervised fine-tuning ameliorate MLLMs on charts. Our evaluation of
21 mainstream MLLMs reveals their limitations in chart interpretation and provides some insights
for further directions. We aim to highlight the MLLM’s ability to understand charts without data
annotations. ChartBench and its code will be publicly available for research.
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A CHARTBENCH STATISTICS

A.1 EXPLANATION OF Visually Grounded IN TABLE 1

Prompt:
Please evaluate the following chart and query pair, and assign scores based on the criteria listed below. For each criterion, provide 
a score (1 to 5) and a brief justification for your rating. The score descriptions are as follows:
- 1: Very mismatched or unreasonable
- 2: Noticeably mismatched or unreasonable
- 3: Mostly matched, but with some minor issues
- 4: Well-matched, generally reasonable
- 5: Perfectly matched, very reasonable

Evaluation Criteria:
1. Visual Content Relevance: How closely do the main elements in the chart relate to the content of the query?
2. Contextual Consistency: Are the chart and the query consistent? Are the chart and the meta table consistent?
3. Informational Richness: Does the chart provide enough information to answer the query, or does it help guide toward an 
answer?
4. Multimodal Synergy: Do the chart and query effectively complement each other, providing a complete understanding? 
5. Ambiguity: Is there any potential for misunderstanding or ambiguity between the chart and the query? Is chart flawed? A higher 
score indicates lower ambiguity.

Evaluation:
Please score the following input and provide ratings 
and justifications for each criterion:
- Chart: "path/to/chart"
- Query: "question and answer"
- Meta Table: "table in CSV format"

Scoring Template:
- Visual Content Relevance: X/5, \[Justification\]
- Contextual Consistency: X/5, \[Justification\]
- Informational Richness: X/5, \[Justification\]
- Multimodal Synergy: X/5, \[Justification\]
- Ambiguity: X/5, \[Justification\]
- Overall: X/5, \[Justification\]

Your Answer:

(a) Which country has higher 
coffee consumption as 2014?

(b) What is the percentage 
of Asia?

(c) How many people die because of 
low physical activity? 

(d) What is the percentage of 
Prosecuting drug users?

(a) Which country has higher 
coffee consumption as 2014?

(b) What is the percentage 
of Asia?

(c) How many people die because of 
low physical activity? 

(d) What is the percentage of 
Prosecuting drug users?

Figure 5: Examples to illustrate the concept of Visually Grounded described in Paper Tab. 1: (a)
Visually Grounded: The model must understand legends, colors, and dual-coordinate systems to
answer the question correctly. Relying solely on spatial relationships is insufficient. (b) Visually
Grounded: The model needs to count both the number of blue dots and the total number of dots to
calculate the proportion representing Asia. (c) Not Visually Grounded: The model could perform
OCR and find the number closest to the keyword. (d) Not Visually Grounded: The model only needs
to extract the corresponding text via OCR without visual clues.

A.2 DESIGN PRINCIPLE

ChartBench has two fundamental design principles. 1) Wider range of chart types. ChartBench expands the
3 common chart types (line, bar, and pie) Masry et al. (2022); Methani et al. (2020); Chen et al. (2024a) to
representative 9 chart types in the real world (see Tab. 2 and thumbnails in Appendix H). In the train and test
sets, conventional charts account for 61.4% and 54.8%, respectively, while the newly added charts account
for 38.6% and 45.2%. ChartBench further divides 9 major categories into 42 subcategories, allowing for a
more detailed analysis of MLLM performance. 2) More intuitive visual logic. Unlike existing benchmarks,
ChartBench primarily focuses on perception and visual logical reasoning. It emphasizes evaluating the ability to
extract value from unlabeled charts rather than simple OCR or localization tasks. We assess MLLMs’ core visual
reasoning skills directly without converting charts into textual descriptions for further textual reasoning. Previous
benchmarks mainly provided annotated charts, which led to some approaches extracting tables first and then
transforming the problem into purely text-based logic. In contrast, ChartBench includes a larger proportion of
unlabeled charts, accounting for 84.96% and 76.20% in train and test splits, respectively, in Tab. 2. MLLMs must
accurately extract values based on color or line shape to identify categories and their corresponding coordinate
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Table 9: ChartBench training set detailed statistics. We provide statistics based on chart types and
more granular image types. Each image will have two kinds of questions: Acc+ and Number QA.

Data Split #Image
Number Chart Type #Image

Number Image Type Number

#Image #Acc+ QA #NQA

Regular 40,887

Line 7,830

multi-line plot 1,744 13,952 1,744
multi-line plot (w/i anno) 1,744 13,952 1,744

single line plot 1,744 13,952 1,744
single line plot (w/i anno) 1,744 13,952 1,744

line with error plot 854 6,832 854

Bar 24,580

horizontal single bar plot 1,891 15,128 1,891
horizontal single bar plot (w/i anno) 1,891 15,128 1,891

horizontal multi-bar plot 1,891 15,128 1,891
horizontal stacked bar plot 1,891 15,128 1,891

horizontal stacked bar in percentage plot 1,890 15,120 1,890
vertical single bar plot 1,891 15,128 1,891

vertical single bar plot (w/i anno) 1,891 15,128 1,891
vertical multi-bar plot 1,891 15,128 1,891

vertical stacked bar plot 1,891 15,128 1,891
vertical stacked bar in percentage plot 1,890 15,120 1,890

3D multi-bar plot 1,891 15,128 1,891
3D stacked bar plot 1,891 15,128 1,891

3D stacked bar in percentage plot 1,890 15,120 1,890

Pie 8,477

ring plot 1,989 15,912 1,989
ring plot (w/i anno) 1,989 15,912 1,989

inter sun plot 521 4,168 521
sector plot 1,989 15,912 1,989

pie plot 1,989 15,912 1,989

Extra 25,737

Area 5,613
area plot 1,871 14,968 1,871

area in percentage plot 1,871 14,968 1,871
stacked area plot 1,871 14,968 1,871

Box 4,068
stock plot 1,356 10,848 1,356

vertical box plot 1,356 10,848 1,356
horizontal box plot 1,356 10,848 1,356

Radar 3,056

single radar plot 764 6,112 764
single radar plot (w/i anno) 764 6,112 764

multi-radar plot 764 6,112 764
multi-radar with fill plot 764 6,112 764

Scatter 2,046
2D scatter plot 784 6,272 784

2D scatter smooth plot 784 6,272 784
3D scatter 478 3,824 478

Node 3,978 undirected node plot 1,989 15,912 1,989
directed node plot 1,989 15,912 1,989

Combination 6,976

line & line plot (dual coordinate) 1,744 13,952 1,744
bar & line plot (dual coordinate) 1,744 13,952 1,744

pie & bar combinated plot 1,744 13,952 1,744
pie & pie combinated plot 1,744 13,952 1,744

Total 66,624 Total 66,624 Total 66,624 532,992 66,624

systems, rather than relying on OCR for answer candidates, which offers a more realistic assessment of MLLMs’
visual reasoning abilities of charts.

A.3 CHART TAXONOMY

ChartBench primarily focuses on the following evaluation aspects: 1) Bar charts are the most common and
have been the focus of ChartQA and ChartLLaMA. ChartBench includes basic variations such as horizontal
and vertical bar orientations, data complexity (single and multiple groups of data), and different representations
(regular, percentage, stacked, and 3D bar charts). 2) Line charts are commonly used chart types to reflect
data trends. ChartBench includes error line charts as well as regular single or multiple groups, with or without
annotations line charts. 3) Pie charts primarily show the data proportional distribution. ChartBench includes
single, nested, doughnut pie charts, and irregular sector charts. 4) Radar charts have a straightforward
distribution structure and are used to represent multiple attributes of an entity. ChartBench incorporates diverse
data complexities (single or multiple groups) and representations (with or without fillings). 5) Box charts
primarily depict the statistical distribution of a substantial volume of data points. ChartBench collects horizontal
and vertical box plots, as well as authentic candlestick charts depicting real stock prices. 6) Scatter charts mainly
depict the distribution of discrete data. ChartBench includes simple single or multi-group scatter plots, 3D
bubble plots, and scatter plots with interpolated smoothing lines. 7) Area charts employ color fillings to visually
convey the magnitude and distribution of data. ChartBench encompasses single or multiple groups area plots,
stacked and percentage stacked area charts. 8) Node charts primarily illustrate the logical relationships between
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Table 10: ChartBench test set detailed statistics. We provide statistics based on chart types and more
granular image types. Each image will have two kinds of questions: Acc+ and Number QA.

Data Split #Image
Number Chart Type #Image

Number Image Type Number

#Image #Acc+ QA #NQA

Regular 1,150

Line 250

multi-line plot 50 400 50
multi-line plot (w/i anno) 50 400 50

single line plot 50 400 50
single line plot (w/i anno) 50 400 50

line with error plot 50 400 50

Bar 650

horizontal single bar plot 50 400 50
horizontal single bar plot (w/i anno) 50 400 50

horizontal multi-bar plot 50 400 50
horizontal stacked bar plot 50 400 50

horizontal stacked bar in percentage plot 50 400 50
vertical single bar plot 50 400 50

vertical single bar plot (w/i anno) 50 400 50
vertical multi-bar plot 50 400 50

vertical stacked bar plot 50 400 50
vertical stacked bar in percentage plot 50 400 50

3D multi-bar plot 50 400 50
3D stacked bar plot 50 400 50

3D stacked bar in percentage plot 50 400 50

Pie 250

ring plot 50 400 50
ring plot (w/i anno) 50 400 50

inter sun plot 50 400 50
sector plot 50 400 50

pie plot 50 400 50

Extra 950

Area 150
area plot 50 400 50

area in percentage plot 50 400 50
stacked area plot 50 400 50

Box 150
stock plot 50 400 50

vertical box plot 50 400 50
horizontal box plot 50 400 50

Radar 200

single radar plot 50 400 50
single radar plot (w/i anno) 50 400 50

multi-radar plot 50 400 50
multi-radar with fill plot 50 400 50

Scatter 150
2D scatter plot 50 400 50

2D scatter smooth plot 50 400 50
3D scatter 50 400 50

Node 100 undirected node plot 50 400 50
directed node plot 50 400 50

Combination 200

line & line plot (dual coordinate) 50 400 50
bar & line plot (dual coordinate) 50 400 50

pie & bar combinated plot 50 400 50
pie & pie combinated plot 50 400 50

Total 2,100 Total 2,100 Total 2,100 16,800 2,100

nodes. ChartBench includes directed and undirected graphs, as well as simple and complex node-link diagrams.
9) Combination charts combine the above-mentioned chart types. ChartBench includes dual coordinate system
charts (e.g. line and bar charts), multi-level pie charts, and combinations between bar and pie charts.

A.4 DATA SPLITTING

Tab. 9 and Tab. 10 show the hierarchical relationship and quantity of each type of chart in detail. The distribution
of the train and test set is slightly different because we guarantee that each subclass in the test split has 50 data
points. The charts in the test set are all redrawn using real-world plotting websites to ensure they accurately
reflect real-world scenarios as much as possible. For each chart, we generate questions on 5 different tasks to
evaluate MLLMs’ basic performance on perception and cognition. Notice that some categories have two variants,
i.e., w/i and w/o annotations. Although the dataset mainly consists of unannotated charts, we only report the
results of comparisons between the w/i and w/o chart versions derived from the same table in our experiments to
ensure fair comparisons.
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B QUALITY INSPECTION

In this section, we discuss the quality control of ChartBench through rule-based, manual, and GPT-powered
automated inspections.

B.1 RULE-BASED INSPECTION

We begin with rule-based checks and filtering. For all charts in ChartBench that are rendered through code
execution, we filter out cases with compilation failures or warnings. To ensure image quality, we conduct both
manual inspection and automatic checks using GPT. For the instructions, we generate both positive and negative
sample queries for each chart based on templates, with the only difference being the ground truth (GT). For
different chart types, we establish a set of rules to evaluate the reasonableness of the generated instructions, such
as percentage calculations in distribution charts. It’s worth noting that the GT for negative samples is randomly
sampled from the same meta table, which might result in values that are identical or very similar to the positive
one. Therefore, we further filter and adjust it based on the relative differences between the two GTs.

B.2 GPT-BASED INSPECTION

The rule-based checks can only filter out the potential errors that we have anticipated in advance, so we also use
GPT to correct some rigid errors or grammatical issues in the template-generated text. As shown in Fig. 6, we
provide the prompt template for refining the query. To conserve API resources, we group the generated questions
into batches of 10 and use the following prompt to correct any grammatical errors.

Figure 6: The prompt to polish queries generated by templates.

Prompt:
Please evaluate the following chart and query pair, and assign scores based on the criteria listed below. For each criterion, provide a score (1 to 5) and a brief 
justification for your rating. The score descriptions are as follows:
- 1: Very mismatched or unreasonable
- 2: Noticeably mismatched or unreasonable
- 3: Mostly matched, but with some minor issues
- 4: Well-matched, generally reasonable
- 5: Perfectly matched, very reasonable

Evaluation Criteria:
1. Visual Content Relevance: How closely do the main elements in the chart relate to the content of the query?
2. Contextual Consistency: Are the chart and the query consistent? Are the chart and the meta table consistent?
3. Informational Richness: Does the chart provide enough information to answer the query, or does it help guide toward an answer?
4. Multimodal Synergy: Do the chart and query effectively complement each other, providing a complete understanding? 
5. Ambiguity: Is there any potential for misunderstanding or ambiguity between the chart and the query? Is chart flawed? A higher score indicates lower ambiguity.

Evaluation:
Please score the following input and provide ratings and justifications for each criterion:
- Chart: "path/to/chart"
- Query: "question and answer"
- Meta Table: "table in CSV format"

Scoring Template:
- Visual Content Relevance: X/5, \[Justification\]
- Contextual Consistency: X/5, \[Justification\]
- Informational Richness: X/5, \[Justification\]
- Multimodal Synergy: X/5, \[Justification\]
- Ambiguity: X/5, \[Justification\]
- Overall: X/5, \[Justification\]

Your Answer:

Prompt:
Please fix the grammatical and semantic errors in the following 10 questions:
1. Questions are generated based on templates, please be careful not to modify proper nouns;
2. Make as few changes as possible to avoid changing the original intention of the question;
3. If the content of the question is not understandable, return "FAILED".

Please read the following example:
Question 1: According to this node_link_dir chart, the node Beijing points to node New York.
Question 2: According to this bar chart, the LA has the highest sales volume (in percentage) 62 at month Aug.

Your answer:
According to this directed node link chart, the node Beijing points to node New York.
According to this bar chart, the LA has the highest percentage of sales volume 62% at August.

User Questions:
{}

Your Answer:

With the generated chart and query, we further judge the generated quality and its correlation. We randomly
sample a toy subset from the ChartBench and use GPT-4O to evaluate the samples on aspects such as relevance,
consistency, information richness, multimodal synergy, ambiguity, and overall quality. The prompt used for
scoring is shown in Fig. 7. Each aspect is rated on a scale of 1 to 5, with a particular focus on samples where
GPT gives an overall rating below 3. The statistical results of this evaluation are presented in Tab. 11. The results
show that approximately 5% of the samples can be considered flawed when we define flaws as scores below 3.
Upon manual review, we found that the primary issues are label occlusion or overly dense elements, which do
not affect the accuracy of proposed queries.

Notice that GPT-4O fails to achieve perfect performance on ChartBench. However, we chose it as the evaluation
model because we provide it with meta tables as additional supplementary information. When evaluating
ChartBench, GPT-4O only received the question and the chart as input and was required to provide specific
numerical answers. Due to its difficulty in providing precise numerical values, GPT-4O’s performance on
ChartBench is not perfect. During the quality assessment, GPT-4O was given the chart, the table used to generate
the chart, the question, and the answer. In practice, GPT-4O tends to struggle with precise numerical extraction
on unannotated charts but performs well in understanding visual markers.

B.3 MANUAL INSPECTION

The 2,100 charts in the test split have been reviewed by at least three researchers to ensure that they filter
out drawing errors, severe label occlusion, mismatches with the questions, etc., which is also confirmed by
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Figure 7: The prompt to evaluate the chart, query, and processed meta table with GPT-4O API.
Prompt:
Please evaluate the following chart and query pair, and assign scores based on the criteria listed below. For each criterion, provide a score (1 to 5) and a brief 
justification for your rating. The score descriptions are as follows:
- 1: Very mismatched or unreasonable
- 2: Noticeably mismatched or unreasonable
- 3: Mostly matched, but with some minor issues
- 4: Well-matched, generally reasonable
- 5: Perfectly matched, very reasonable

Evaluation Criteria:
1. Visual Content Relevance: How closely do the main elements in the chart relate to the content of the query?
2. Contextual Consistency: Are the chart and the query consistent? Are the chart and the meta table consistent?
3. Informational Richness: Does the chart provide enough information to answer the query, or does it help guide toward an answer?
4. Multimodal Synergy: Do the chart and query effectively complement each other, providing a complete understanding? 
5. Ambiguity: Is there any potential for misunderstanding or ambiguity between the chart and the query? Is chart flawed? A higher score indicates lower ambiguity.

Evaluation:
Please score the following input and provide ratings and justifications for each criterion:
- Chart: "path/to/chart"
- Query: "question and answer"
- Meta Table: "table in CSV format"

Scoring Template:
- Visual Content Relevance: X/5, \[Justification\]
- Contextual Consistency: X/5, \[Justification\]
- Informational Richness: X/5, \[Justification\]
- Multimodal Synergy: X/5, \[Justification\]
- Ambiguity: X/5, \[Justification\]
- Overall: X/5, \[Justification\]

Your Answer:

Table 11: Statistical results of GPT automatically evaluation. The Flowed Case means < 3 points.
Criteria Relevance Consistency Richness Synergy Ambiguity Overall

Flowed Case 2/200 5/200 0/200 2/200 9/200 11/200
Average Score 4.47 4.16 4.74 4.44 4.12 4.56

the automated review result from GPT-4O. Furthermore, ChartBench undergoes human testing (results in
Appendix E), during which we collect user feedback and have already made adjustments to it.

ChartBench consists of 42 categories, including samples generated from online charting websites and code-based
templates. During the manual inspection, we do not modify the charts from the online websites but make proper
adjustments to the plotting code for 10 chart categories. The specific modifications are as follows.

Online website generated charts:

1. Resolution Concerns: The images from the online websites have high resolution, making the text difficult
to read on smaller user mobile screens during the human surveys. This issue doesn’t appear on larger
monitors.

2. Lack of Data Point Labels: Some comparative questions involving charts without data point labels rely
solely on the length of bars for comparison. When the values are close, users find it difficult to make
accurate judgments. We believe the model should handle this since the input charts are lossless, allowing
the model to determine the absolute size of the bars.

Code generated charts:

1. Percentage Accumulation Charts: Some themes are not intuitive, like a percentage distribution chart for
temperatures from January to December. Users may misinterpret 12% as 12°C. This issue affects four
subsets (50*4). We add percentage information in the titles and along the y-axis to clarify.

2. Label Obstruction: Sometimes, label text is obstructed due to length or other factors. This issue appears
in four subsets (50*4). We adjust the padding to ensure all text is positioned away from the chart to avoid
obstruction.

3. Dual Axis Charts: We use color to convey the correspondence between data points and their respective
axes. However, in some cases, the contrast is insufficient, making it hard for users to distinguish between
them. This issue affects two subsets (50*2). We update the color map, removing low-contrast styles such
as civitas, Greys, and YlGn.
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C PARTICIPATING MLLMS

C.1 ARCHITECTURE

Table 12: Open-sourced model architecture. Note that we classify connector components such as
QFormer (Li et al., 2023c) as the visual branch for brevity. Mem.: the maximum GPU memory
usage during inference. Time: the average inference time per QA. Due to the multiple visual
encoders in SPHINX Lin et al. (2023), which extract more robust visual representations, mixed refers
to QFormer (Li et al., 2023c), OpenCLIP ViT-L/14 (Ilharco et al., 2021), OpenCLIP ConvNeXt-
XXL (Ilharco et al., 2021; Cherti et al., 2023), DINOv2-ViT-g/14 (Oquab et al., 2023) and MLP.

Models Total Size LLM Branch LLM Size Visual Branch Visual Size Peak Memory (G) Inference Time (s)

BLIP2 Li et al. (2023c) 12.1B FlanT5-XXL 11B EVA-CLIP-g/14 1B 39.60 0.176
CogVLM-Chat Wang et al. (2023b) 17B Vicuna-7B 7B EVA-02-CLIP-E/14 4.4B 39.60 1.455

InstructBLIP Dai et al. (2023) 8.2B Vicuna-7B 7B EVA-CLIP-g/14 1B 36.50 0.895
Internlm-XComposer Zhang et al. (2023) 8.2B InternLM-Chat-7B 7B EVA-CLIP-g/14 1B 22.20 0.707

LLaVA-v1.5 Liu et al. (2023e) 13.4B Vicuna-13B 13B CLIP ViT-L/14@336px 304M 16.50 0.534
MiniGPT-v2 Chen et al. (2023a) 8.1B LLaMA2-Chat-7B 7B EVA-ViT-g/14 1B 17.20 0.236

mPLUG-Owl-bloomz Ye et al. (2023b) 7.4B Bloomz-7B 7B CLIP ViT-L/14 304M 16.00 0.284
Qwen-VL-Chat Bai et al. (2023b) 9.6B Qwen-7B 7.7B OpenCLIP ViT-G/14 1.9B 21.00 0.269

Shikra Chen et al. (2023b) 7.4B Vicuna-7B 7B CLIP ViT-L/14 304M 15.60 0.561
SPHINX Lin et al. (2023) 15.7B LLaMA-13B 13B Mixed 2.7B 29.6 * 2 0.581

VisualGLM Du et al. (2022) 7.8B ChatGLM-6B 6.2B EVA-CLIP-g/14 1B 16.00 0.201
ChartLlama Han et al. (2023) 13.4B Vicuna-13B 13B CLIP ViT-L/14@336px 304M 29.00 0.593
DocOwl-v1.5 Hu et al. (2024) 8.1B Bloomz-7B 7B CLIP ViT-L/14 304M 37.5 0.483
Mini-Gemini Li et al. (2024) 14B Vicuna-13B 13B ConvNext-L + CLIP ViT-L/14 502M 32.45 3.951

Internlm-XComposer-v2 Dong et al. (2024) 8B InternLM2-7B 7B CLIP ViT-L/14 304M 23.72 0.945
OneChart Chen et al. (2024a) 13.4B Vicuna-13B 13B SAM-base ViT 304M 37.62 2.201
ChartVLM Xia et al. (2024) 7.4B Vicuna-7B 7B Pix2Struct-base 304M 17.83 2.831
CogAgent Hong et al. (2023) 7.4B Vicuna-7B 7B EVA2-CLIP-L 304M 18.82 2.548

We evaluate 18 main-stream open-sourced and 3 closed-sourced MLLMs on ChartBench. The open-source
models include BLIP2 Li et al. (2023c), CogVLM-Chat Wang et al. (2023b), InstructBLIP Dai et al. (2023),
InternLM-XComposer (Zhang et al., 2023), LLaVA-v1.5 Liu et al. (2023d), MiniGPT-v2 Chen et al. (2023a),
mPLUG-Owl-bloomz Ye et al. (2023b), Qwen-VL-Chat Bai et al. (2023b), Shikra Chen et al. (2023b),
SPHINX Lin et al. (2023), VisualGLM (Du et al., 2022; Ding et al., 2021), ChartLlama Han et al. (2023),
DocOwl-v1.5 Hu et al. (2024), Mini-Gemini Li et al. (2024), Internlm-XComposer-v2 Dong et al. (2024),
OneChart Chen et al. (2024a), ChartVLM Xia et al. (2024), CogAgent Hong et al. (2023), while the closed-
source models contain Baidu ERNIE BaiDu, GPT-4V / GPT-4O OpenAI (2023). Some close-sourced models
do not provide efficient APIs, so we randomly sample a subset for evaluations. Tab. 12 summarizes the visual
and LLM branch architecture, along with memory costs and inference latency on NVIDIA A100-40G GPUs.

BLIP2 (Li et al., 2023c) proposes a lightweight Query Transformer to leverage off-the-shelf frozen image
encoders and LLMs, which is pre-trained via a two-stage strategy. We test BLIP-2 ViT-g FlanT5-xxl (Fang et al.,
2023; Chung et al., 2022).

CogVLM-Chat (Wang et al., 2023b) bridges the gap between the frozen vision encoder and LLM by integrating
a visual expert module in the transformer block. We test the version CogVLM-Chat-17B, which leverages
Vicuna-7B finetuned from LLaMA2 (Touvron et al., 2023b) and EVA-02-CLIP-E/14 (Sun et al., 2023) as
unimodal encoders.

InstructBLIP (Dai et al., 2023) extends the framework of instruction tuning to the BLIP2, and demonstrates its
appealing ability of generalization. We carry out evaluations on version IntructBLIP-7B, which uses EVA-CLIP-
g/14 as vision encoder and Vicuna-7B as text encoder.

InternLM-XComposer (Zhang et al., 2023) is an instruction-tuned MLLM based on InternLM (Team, 2023). It
is empowered by tuning on extensive multimodal multilingual concepts with carefully crafted strategies. We test
the released version of InternLM-XComposer-7B with InternLM-Chat-7B (Team, 2023) and EVA-CLIP-g/14.

LLaVA-v1.5 (Liu et al., 2023d) is a variant of LLaVA (Liu et al., 2023e) with exquisite modifications, such as
curated datasets, larger input resolution, modality connector and prompt engineering. We test the version of
LLaVA-v1.5-13B with Vicuna-13B and CLIP ViT-L/14@336px (Radford et al., 2021).

MiniGPT-v2 (Chen et al., 2023a) proposes a three-stage training paradigm and uses unique identifiers for
different tasks, building a unified interface for multiple vision-language tasks. We test MiniGPT-v2-7B version,
leveraging LLaMA2-Chat-7B and EVA-ViT-g/14 as unimodal encoders.

mPLUG-Owl-bloomz (Ye et al., 2023b) equips LLM with visual abilities by modularized learning of LLM,
visual knowledge module, and visual abstractor module. We conduct evaluations on mPLUG-Owl-bloomz-7B
version with Bloomz-7B (Muennighoff et al., 2022) and CLIP ViT-L/14.

Qwen-VL-Chat (Bai et al., 2023b) is trained with alignment techniques, which support more flexible interaction,
such as multiple image inputs, multi-round question answering and creative capability. We test the version of
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Qwen-VL-Chat-7B with Qwen-7B (Bai et al., 2023a) and OpenCLIP ViT-G/14 (Ilharco et al., 2021; Cherti et al.,
2023).

Shikra (Chen et al., 2023b) proposes to tackle spatial coordinate inputs and outputs in natural language without
extra plug-in models or vocabularies. We test the version Shikra-7B which uses Vicuna-7B and CLIP ViT-L/14.

SPHINX (Lin et al., 2023) showcases the superior capability of multi-modal understanding with a joint mixing
of model weights, tuning tasks, visual embeddings, and sub-images of different scales. We conduct the test
on version SPHINX-13B, whose visual branch (note as mixed in Tab. 12) is a mixture of QFormer, OpenCLIP
ViT-L/14, OpenCLIP ConvNeXt-XXL and DINOv2-ViT-g/14 (Oquab et al., 2023) and LLM branch is LLaMA-
13B (Touvron et al., 2023a).

VisualGLM (Du et al., 2022; Ding et al., 2021) is an open-source, multi-modal dialogue language model. We
test VisualGLM-6B based on ChatGLM-6B (Du et al., 2022) and EVA-CLIP-g/14.

ChartLlama (Han et al., 2023) proposes to endow LLaVA-v1.5 with the capability of chart understanding and
generation. We evaluate ChartLlama-13B, which uses Vicuna-13B and CLIP ViT-L/14@336px.

DocOwl-v1.5 (Hu et al., 2024) propose to merge visual tokens horizontally to handle high-resolution images
and align all data with markdown. We evaluate the DocOwl-Omni version in our experiments, which is good at
document/webpage parsing and VQA with concise answers.

Mini-Gemini (Li et al., 2024) adopt two visual encoders to handle low and high-resolution images. This approach
is applicable to a variety of LLMs, and we select the Mini-Gemini-Vicuna-13B for evaluation.

Internlm-XComposer-v2 Dong et al. (2024) introduces a Partial LoRA approach, applying additional LoRA
parameters only to image tokens. This preserves the integrity of the model’s pre-trained language knowledge
while enabling precise vision understanding and literary-level text composition. Compared to the first version,
the performance of Internlm-XComposer-v2 has been significantly improved.

OneChart Chen et al. (2024a) introduces an auxiliary token placed at the beginning of the token sequence, along
with an additional decoder. This decoder will provide a Python dictionary about chart metadata. OneChart needs
to be used in conjunction with other MLLMS, so we choose LLaVA-v1.6, which is the best model in the paper.

ChartVLM Xia et al. (2024) extracts metadata of chart based on Pix2Struct Lee et al. (2023). It employs an
instruction adapter to dynamically select tasks based on user instructions and provides two decoders for the base
and complex queries. ChartVLM has two variants and we select ChartVLM-Base-7.3B for evaluations.

CogAgent Hong et al. (2023) is a visual-linguistic model specialized in GUI understanding and planning while
retaining strong capabilities across general cross-modal tasks. By leveraging both low and high-resolution image
encoders, CogAgent supports input at 1120× 1120 resolution, enabling it to recognize even tiny page elements
and text.

C.2 MODEL PERFORMANCE EXPLAINATION

OneChart (Chen et al., 2024a) is a hierarchical architecture model. It trains a decoder to convert charts to CSV
tables as a prompt for LLaVA-V1.6 to inference. OneChart’s performance on ChartBench is abnormal and
inconsistent with its performance on ChartQA. Unlike ChartQA, the metadata in ChartBench is longer, and the
charts do not have data point annotations. In this case, the Python dictionary extracted by OneChart is inaccurate
and results in generally longer table prompts. After analyzing specific cases, we find that OneChart always fails
to follow instructions on the cases with longer prompts, even for simple yes-or-no binary outputs.

ChartVLM Xia et al. (2024) is a multi-decoder structure. The router selects the corresponding decoder according
to the difficulty of the current query. However, ChartVLM shows the opposite performance on Acc++ and NQA
tasks (Tab. 3 8.02% v.s. 43.74% in regular charts and 5.92% v.s. 18.21% in extra charts). Case studies show
that ChartVLM tends to generate numbers or phrases, ignoring various yes/no prompt constraints. As a result,
the current metric cannot parse the output of ChartVLM. However, it is worth noting that although some of
ChartVLM’s outputs are not strictly yes or no, they are consistent with the correct answers. While LLMs can be
used to correct this bias, we have retained the original results for a fair comparison.

ChartLlama Han et al. (2023) is a supervised fine-tuning model with LoRA Hu et al. (2021) based on LLaVA-
v1.5 Liu et al. (2023e) with a large number of generated chart instruction data. As shown in Tab. 3, ChartLlama
is the best-performing model on ChartQA, but it fails to catch up with LLaVA-v1.5 on ChartBench. Notice
that ChartLlama is still better than LLaVA-v1.5 on NQA tasks but performs poorly on Acc++ tasks that mainly
require yes/no answers. This indicates that ChartLlama’s ability to extract values is relatively good, but SFT may
reduce the model’s ability to follow instructions, causing it to consistently provide numerical answers instead of
yes/no responses.
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mPLUG-Owl-bloomz Ye et al. (2023b) performs well on the ChartBench generally. However, when asked to
provide a concise answer consisting of only one word or phrase, it becomes difficult to control the length of the
output. It tends to generate descriptive statements, which explains its poor performance on the NQA tasks of
ChartBench and ChartQA. Even if we apply LLMs to extract the key information from its output statements, the
results are still unsatisfactory. Considering the model’s impressive performance on Acc++ tasks, we believe that
mPLUG-Owl-bloomz shares a similar issue with ChartVLM. The excessive emphasis on descriptive summaries
during the supervised fine-tuning process hinders the model’s ability to generate short and concise content. This
limitation arises from the training procedure, which prioritizes detailed and elaborate explanations rather than
producing succinct answers. As a result, when tasked with generating brief responses, the model struggles to
control the length of its output and tends to generate lengthy and descriptive statements instead. This issue
adversely affects its performance on tasks that require concise answers, such as the ChartQA and NQA tasks in
ChartBench.

D EXPERIMENTAL SETTINGS

D.1 EVALUATION IMPLEMENTATION

We locally deploy 18 open-source MLLMs and conduct evaluations on A100-40G GPUs. To maintain consistency,
we strictly utilize a single GPU to evaluate the Chat version of each MLLM with the corresponding system
prompt. We employ the zero-shot evaluation manner to avoid any potential data leakage and guarantee fair
comparisons. It is to highlight that the choice of prompts remarkably influences the MLLMs’ response. Hence,
we extensively conduct experiments with several prompts and select the one yielding the best performance (see
detail in Tab. 13). For NQA task, all models adopt the same constraints as ChartQA, i.e.,

user\nAnswer the question using a single word or phrase. {}\nassistant:

Although this prompt is clear enough, some models will not be generated efficiently, so we have made some
adjustments to this instruction to guide the output style of models.

D.2 ZERO-SHOT PROMPT

Table 13: The mapping between the template and the MLLMs is displayed. Different prompt
templates can greatly affect the performance. The values we report are the best results in each
template. ICL: in-context learning style. Green: system prompt. Pink: Acc+ instruction. Blue: the
judgement based on the corresponding chart. The ground truth in the judgment has been bolded.

Prompt Style Model Prompt Example

BLIP2 style

BLIP2 Li et al. (2023c)
CogVLM Wang et al. (2023b)

MiniGPT-v2 Chen et al. (2023a)
Internlm-Xcomposer Zhang et al. (2023)

ChartVLM Xia et al. (2024)
CogAgent Hong et al. (2023)
DocOwl-v1.5 Hu et al. (2024)

Internlm-Xcomposer-v2 Dong et al. (2024)

Question: According to this chart, the Rainfall in Millimeters of Months Jul
is around 100.0. Please answer yes or no. Answer:

LLaVA style
LLaVA-v1.5 Liu et al. (2023d)
ChartLlama Han et al. (2023)
Mini-Gemini Li et al. (2024)

You are a data analyst, good at dealing with chart data. Please determine whether the
user’s judgments on this chart are correct. You only need to answer [yes] or [no].
The judgment from the User is: According to this chart, the Rainfall in Millimeters of
Months Jul is around 100.0.
Please answer yes or no.
Your Answer:

LLaVA style
no or yes

Qwen-VL-Chat Bai et al. (2023b)
SPHINX Lin et al. (2023)

OneChart Chen et al. (2024a)

You are a data analyst, good at dealing with chart data. Please determine whether the
user’s judgments on this chart are correct. You only need to answer [no] or [yes].
The judgment from the User is: According to this chart, the Rainfall in Millimeters of
Months Jul is around 100.0.
Please answer no or yes.
Your Answer:

LLaVA style ICL

InstructBLIP Dai et al. (2023)
mPLUG-Owl-bloomz Ye et al. (2023b)

Shikra Chen et al. (2023b)
VisualGLM Du et al. (2022)

You are a data analyst, good at dealing with chart data. Please determine whether the
user’s judgments on this chart are correct. You only need to answer [yes] or [no].
Here is an example:
User: <image>
User: The figure is a line chart.
You: yes.

Following the above example:
The query from the User is: According to this chart, the Rainfall in Millimeters of
Months Jul is around 100.0.
Your Answer:

During the evaluation on ChartBench, we observe that the zero-shot performance of MLLMs is heavily influenced
by the prompt templates, which indirectly reflects the current lack of robustness in MLLMs. To ensure fairness,
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we select the most appropriate templates used by each MLLM’s official implementation for testing. In Tab. 13,
we provide the corresponding mappings between the MLLMs and the prompt templates that yield the best Acc++
metric. We also test more than 10 other prompt templates, but fail to produce the best Acc++, which thus are not
summarized in the table.

It is worth noting that the MLLMs tend to randomly answer the judgment questions in ChartBench if they cannot
accurately comprehend the chart. Specifically, we observe a tendency for these models to favor the first option
(e.g., yes in a yes-or-no scenario). Therefore, we provide two sets of LLaVA-style prompt templates, differing
only in the order of the yes-or-no options. We have performed similar operations on other templates as well, but
none of the MLLMs exhibited optimal performance on these prompt templates. Therefore, we did not include
specific details about them in Tab. 13.

ICL stands for In Context Learning. We only adopt the template format as shown in Tab. 13 to standardize the
output of MLLMs. We do not conduct actually ICL for our evaluations. In other words, for LLaVA-style ICL, we
just adopt a single-turn dialogue, and only the queried chart is provided as the image input.

D.3 SUPERVISED FINE-TUNING IMPLEMENTATION

Using the ChartBench data, we propose an SFT baseline. Here, we introduce the basic setup of our training
process. Considering the imbalance between the Acc++ and NQA content in the instruction data, we manually
balance these two types of data to prevent the model from developing a prediction bias.

Qwen-VL-Chat. We perform SFT for 3 epochs using instructions. We keep the parameters of the vision
encoder frozen and use LoRA to update only the LLM branch. Training is conducted with DeepSpeed’s Zero2
configuration in half-precision bf16, with a weight decay of 0.05. The optimizer is AdamW with adam_beta2
set to 0.98. The input image resolution is 448× 448, the batch size is 1, and the learning rate is 2e− 5. The
entire training process consumes 12 A100 GPU days. We do not perform alignment training for the connector
because Qwen-VL’s connector is small and can be updated along with the LLM parameters.

Internlm-XComposer-v2. We use the chart-CSV pair for alignment training over 2 epochs, freezing the
parameters of the ViT Encoder and LLM, and only updating the connector. Then, we perform 1 epoch of
supervised fine-tuning using the chart instruction data, updating both the connector and the LLM branch with
LoRA. We set a learning rate of 1e − 5 and the AdamW optimizer (adam_beta2=0.95). DeepSpeed’s Zero2
configuration is employed, with half-precision bf16 for parameter updates. The input image resolution is
490× 490, and the batch size is set to 1. This experiment approximately requires 15 A100-GPU days.

E ADDITIONAL RESULTS

In this section, we 1) expand the discussion to include the model’s Acc++ (Tab. 14) and NQA (Tab. 15)
performance on each chart type, details of FixedCoT (Fig. 8), and the relationship between model performance
and image resolution (Fig. 9); 2) provide results using accuracy as a metric (Tab. 18 & 19); 3) show evaluation
results on ChartQA by image type (Tab. 20 & 21); 4) present human evaluation results on ChartBench (Tab. 22);
5) offer specific evaluation samples (Fig. 10 & 11); and 6) provide sample analyses of SOTA, i.e., GPT-4
(Fig. 12).

E.1 FURTHER STUDY

Results w.r.t. Chart Types. Tab. 14 & 15 illustrate the performance of Acc++ and GPT-acc w.r.t. chart types.
In general, the current MLLMs demonstrate limited proficiency in chart recognition and encounter significant
challenges. For certain chart types (e.g., radar or combination chart), some MLLMs achieve close to 0% Acc++,
indicating their inability to extract key information from charts and insensitivity to both positive and negative
interrogations. Note that the Acc++ metric approaches 0% under random guessing, as discussed in Sec. 3.4. We
also provide results of the vanilla accuracy metric in Appendix E.2, where the baseline should be 50%.

Specifically, some MLLMs like Qwen-VL-Chat and mPLUG-Owl demonstrate satisfying chart recognition
capabilities, which may be attributed to their instruction tuning on chart data. The corresponding performance is
lower than their reported results in ChartQA (Masry et al., 2022; Han et al., 2023), primarily because their chart
recognition depends on OCR capability rather than robust visual logical reasoning. In ChartBench, the proportion
of annotated charts is notably low (about 20% in Tab. 2). The majority of queries demand MLLMs to employ
visual, logical reasoning, which is quite challenging for these models. VisualGLM and Shikra perform poorly,
possibly due to their smaller LLM sizes and weaker visual encoding branches. MLLMs exhibit satisfactory
performance on regular charts, but there is still substantial potential for improvement when it comes to handling
more intricate graphics.
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Table 14: The zero-shot Acc++ (%) performance w.r.t. chart types.

Models Regular Type Extra Type Acc++
Line Bar Pie Avg. Area Box Radar Scatter Node Combin. Avg.

Open source MLLMs
VisualGLM Du et al. (2022) 10.80 1.96 0.00 3.46 1.17 8.50 0.25 3.33 15.50 5.13 4.22 3.79
ChartVLM Xia et al. (2024) 10.70 8.04 4.62 8.02 7.67 6.67 5.25 5.50 0.00 6.50 5.92 6.90
Shikra Chen et al. (2023b) 7.40 10.62 4.50 8.59 6.00 11.33 11.88 4.17 8.50 3.63 7.50 8.11
OneChart Chen et al. (2024a) 15.10 12.27 9.12 12.34 7.00 7.33 2.75 6.33 53.50 7.75 8.75 12.04
InstructBLIP Dai et al. (2023) 24.40 15.04 19.10 17.96 4.33 7.33 2.00 12.50 9.00 2.38 5.50 12.49
CogVLM Wang et al. (2023b) 10.50 14.58 17.90 14.41 12.50 9.67 16.00 14.33 16.00 6.13 11.89 13.30
Internlm-XComposer Zhang et al. (2023) 16.00 20.42 21.50 19.70 4.50 14.50 15.00 12.00 8.50 5.13 10.11 15.49
SPHINX Lin et al. (2023) 18.40 15.54 23.40 17.87 12.00 8.17 19.00 17.17 31.00 25.88 17.92 17.89
CogAgent Hong et al. (2023) 18.60 23.96 11.00 20.39 15.67 16.50 9.38 11.67 27.50 15.50 14.36 18.07
BLIP2 Li et al. (2023c) 29.60 17.35 24.90 21.65 6.17 10.67 17.63 22.00 33.00 28.00 18.44 20.24
ChartLlama Han et al. (2023) 28.90 19.35 22.10 22.02 16.50 13.33 25.00 28.50 25.50 26.38 22.56 22.26
MiniGPT-v2 Chen et al. (2023a) 26.70 21.54 20.20 22.37 21.67 24.67 25.88 28.17 15.50 27.13 25.06 23.55
LLaVA-v1.5 Liu et al. (2023e) 34.40 24.73 19.10 25.61 26.83 25.67 28.63 26.00 33.50 27.38 27.39 26.39
mPLUG-Owl-bloomz Ye et al. (2023b) 37.50 24.73 26.10 27.80 21.33 25.83 26.50 24.17 28.50 27.50 25.47 26.78
Qwen-VL-Chat Bai et al. (2023b) 41.00 20.96 40.00 29.46 28.83 24.17 35.00 19.50 18.50 25.50 26.56 28.18
DocOwl-v1.5 Hu et al. (2024) 49.10 31.08 31.62 35.27 12.17 24.00 20.50 35.33 26.00 40.25 26.86 31.62
Mini-Gemini Li et al. (2024) 37.60 40.19 40.00 39.57 36.83 26.50 30.00 37.17 43.00 27.00 31.81 36.54
Internlm-XComposer-v2 Dong et al. (2024) 70.60 51.50 62.75 57.89 30.17 31.33 43.50 52.00 52.50 46.12 41.75 51.34

Closed source MLLMs
ERNIE BaiDu 44.00 45.00 57.00 47.39 45.00 30.00 40.00 51.67 70.00 56.25 46.39 46.95
GPT-4V OpenAI (2023) 74.00 41.54 63.00 53.26 33.30 46.67 57.50 70.00 100.00 56.25 55.83 54.39
GPT-4O OpenAI (2023) 86.00 51.92 78.00 65.00 36.67 63.33 57.50 83.33 100.00 65.00 63.33 64.27

Table 15: The zero-shot NQA (%) performance w.r.t. chart types.

Models Regular Type Extra Type NQA
Line Bar Pie Avg. Area Box Radar Scatter Node Combin. Avg.

Open source MLLMs
BLIP2 Li et al. (2023c) 0.80 1.38 0.00 0.96 0.00 0.67 4.00 2.67 31.00 1.00 4.84 2.71
OneChart Chen et al. (2024a) 1.20 2.31 3.20 2.26 0.00 1.33 0.50 10.67 6.00 3.50 3.37 2.76
InstructBLIP Dai et al. (2023) 0.40 1.23 0.40 0.87 1.33 0.67 0.50 0.00 46.00 0.50 5.37 2.90
VisualGLM Du et al. (2022) 1.20 2.77 0.00 1.83 0.00 0.67 0.50 2.67 38.00 1.00 4.84 3.19
Internlm-XComposer Zhang et al. (2023) 0.80 1.54 0.80 1.22 2.67 0.00 2.00 1.33 43.00 1.00 5.79 3.29
MiniGPT-v2 Chen et al. (2023a) 2.80 1.85 3.60 2.43 2.00 0.67 3.00 3.33 30.00 2.50 5.26 3.71
mPLUG-Owl-bloomz Ye et al. (2023b) 0.40 2.77 3.20 2.35 0.00 0.67 11.00 0.67 33.00 1.00 6.21 4.10
Shikra Chen et al. (2023b) 2.40 1.85 3.60 2.35 2.00 2.00 8.50 2.67 52.00 3.50 9.05 5.38
SPHINX Lin et al. (2023) 4.80 6.31 7.20 6.17 2.00 0.67 15.00 13.33 53.00 7.00 12.74 9.14
LLaVA-v1.5 Liu et al. (2023e) 8.00 7.38 10.00 8.09 1.33 2.00 23.00 13.33 50.00 12.00 15.26 11.33
CogVLM Wang et al. (2023b) 9.60 12.46 17.60 12.96 3.33 1.33 26.00 14.67 23.00 13.00 13.68 13.29
ChartLlama Han et al. (2023) 18.40 16.77 15.60 16.87 5.33 6.67 21.50 24.67 29.00 23.50 18.32 17.52
Qwen-VL-Chat Bai et al. (2023b) 26.00 19.69 31.20 23.57 6.00 7.33 26.00 29.33 23.00 30.50 21.05 22.43
Mini-Gemini Li et al. (2024) 24.00 19.85 42.00 25.57 8.67 10.67 33.00 27.33 46.00 31.50 25.79 25.67
CogAgent Hong et al. (2023) 39.20 18.92 34.00 26.61 3.33 11.33 27.50 50.67 21.00 35.50 25.79 26.24
ChartVLM Xia et al. (2024) 66.80 38.62 34.00 43.74 6.67 12.67 19.00 17.33 27.00 26.50 18.21 32.19
DocOwl-v1.5 Hu et al. (2024) 51.60 34.15 31.20 37.30 12.67 20.67 30.50 39.33 44.00 33.00 29.47 33.76
Internlm-XComposer-v2 Dong et al. (2024) 58.40 37.69 32.00 40.96 16.67 1.33 26.50 56.67 42.00 46.50 31.58 36.71

Closed source MLLMs
ERNIE BaiDu 36.00 19.23 32.42 25.74 5.32 13.33 20.00 60.00 100.00 30.00 33.47 29.24
GPT-4V OpenAI (2023) 48.00 24.62 40.00 33.04 6.67 26.67 25.00 66.67 80.00 50.00 40.00 36.19
GPT-4O OpenAI (2023) 72.00 29.00 36.00 40.00 7.00 47.00 35.00 73.00 20.00 60.00 41.05 40.48

Fixed Chart CoT. In Fig. 4, we mention using a fixed template for CoT, with detailed content shown in Fig. 8.
Thanks to the expanded chart types, we can summarize some common approaches to understanding each type of
chart. For example, we can identify the main subject of the question and the objects being queried, then guide
the model to focus on the locations and spatial relationships of these objects. Although we cannot specify the
exact logical relationships between these elements (as they depend on the specific content of each chart), guiding
the model to prioritize commonly occurring logic can still enhance overall performance.

Chart Resolution. The visual branch of MLLMs typically scales images to a fixed pixel size, e.g., Qwen-VL-
Chat is 448px, and LLaVA-v1.5 is 336px by default. To investigate the impact of resolution, we select a part
of annotated regular charts from ChartBench and adjust them to 5-level resolutions using Matplotlib while
keeping the font size unchanged. We ensure that each resolution is clear and legible for humans. Fig. 9 illustrates
the performance of Qwen-VL-Chat and LLaVA-v1.5 at different resolutions. As the resolution increases, the
scaled annotations gradually become unreadable for OCR, resulting in a decline in MLLMs’ performance.
Qwen-VL-Chat exhibits larger performance drops than LLaVA-v1.5, indicating a greater reliance on OCR.

Performance of Supervised Fine-tuned Models on General Question Answering. The results in Tab. 8
demonstrate that supervised fine-tuning of existing MLLMs with a small amount of chart data labeled without
data points can significantly enhance their performance on ChartBench. To further illustrate the scalability,
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Figure 8: The proposed FixedCoT. Blue and
red color questions indicate textual and visual
reasoning, respectively.
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Figure 9: The zero-shot Acc++ (%) w.r.t. query
chart resolution.

Table 16: Performance on general tasks. Results of InternLM-XC-v2+SFT (supervised fine-tuning
with the ChartBench trainset split) on 6 public benchmarks. Data comes from the arxiv paper of
InternLM-XC-v2. Evaluations are conducted using the scripts provided by InternLM-XC-v2’s code
repository. We only present results for benchmarks that could be evaluated locally due to time
constraints. We adopt the DeepSeek-v2 API to replace the GPT4 for benchmarks that require LLM
evaluation. Given the similarity in evaluation manners, the SFT version significantly improves
the baseline on benchmarks like MME. Besides, the SFT version does not show any noticeable
degradation in performance for descriptive evaluations like LLaVAW .

Method LLM MMEP MMEC MMB SEEDI LLaVAW QBenchT

BLIP-2 FLAN-T5 1,293.8 290.0 - 46.4 38.1 -
InstructBLIP Vicuna-7B - - 36.0 53.4 60.9 55.9
IDEFICS-80B LLaMA-65B - - 54.5 52.0 56.9 -
Qwen-VL-Chat Qwen-7B 1,487.5 360.7 60.6 58.2 67.7 61.7
LLaVA Vicuna-7B 807.0 247.9 34.1 25.5 63.0 54.7
LLaVA-1.5 Vicuna-13B 1,531.3 295.4 67.7 68.2 70.7 61.4
ShareGPT4V Vicuna-7B 1,567.4 376.4 68.8 69.7 72.6 -
CogVLM-17B Vicuna-7B - - 65.8 68.8 73.9 -
LLaVA-XTuner InernLM2-20B - - 75.1 70.2 63.7 -
Monkey-10B Qwen-7B 1,522.4 401.4 72.4 68.9 33.5 -
InternLM-XC InernLM-7B 1,528.4 391.1 74.4 66.1 53.8 64.4

InternLM-XC-v2 InernLM2-7B 1,712.0 530.7 79.6 75.9 81.8 72.5
InternLM-XC-v2+SFT InernLM2-7B 1,743.0 533.6 79.4 76.6 82.4 73.2
Performance Gain – +31.0 +2.9 -0.2 +0.7 +0.6 +0.7

applicability, and effectiveness of the proposed data, Tab. 16 presents the performance of SFT models on general
capability benchmarks. Notably, the fine-tuning results in minimal general capability loss, while achieving
significant performance improvements on ChartBench with around only 30K fine-tuning data points.

Performance of Proposed Methods on Other Chart Tasks. In Tab. 7 & 8, we provide how the CoT and
SFT ameliorate model performance on ChartBench. In Tab. 17, we further provide the model performance of
proposed methods on ChartQA. As illustrated in this table, Internlm-XC-v2 achieves remarkable improvements
with our proposals. The Internlm-XC-v2 SFT version achieved a 3.1% overall increase and a 5.44% boost on the
augmented part. This demonstrates the effectiveness of the ChartBench training set.

Table 17: Performance on other chart tasks. Results on ChartQA&ChartX for our proposals, i.e.,
CoT strategies and InternLM-XC-v2+SFT, supervised fine-tuning with the ChartBench trainset.
Note that none of the methods use ChartQA’s train set. The SFT improves the performance of the
InternLM-XC-v2 by 3.1%, especially the Augmented part, which increased significantly by 5.44%.
This demonstrates the versatility of ChartBench in improving MLLM chart understanding.
Dataset InternLM-XC-v2 CoT-fix ∆ CoT-self ∆ CoT-GPT ∆ InternLM-XC-v2+SFT ∆

ChartQAHuman 62.72 63.12 +0.40 61.06 -1.66 63.33 +0.61 63.48 +0.76

ChartQAAugmented 81.28 83.14 +1.86 81.44 +0.16 84.52 +3.24 86.72 +5.44

ChartQAAverage 72.00 73.13 +1.13 71.25 -0.75 73.93 +1.93 75.10 +3.10

ChartXQA 42.18 - - - - - - 53.35 +11.17
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Table 18: The zero-shot Accuracy (%) performance w.r.t. chart types in ChartBench. We report the
results of the best-performing prompt for each MLLM.

Models Regular Type Extra Type Avg.
Line Bar Pie Avg. Area Box Radar Scatter Node Combin. Avg.

Open source MLLMs
mPLUG-Owl-bloomz Ye et al. (2023b) 56.55 49.87 49.19 51.26 46.75 48.50 50.44 47.58 47.25 49.06 48.47 49.94
Shikra Chen et al. (2023b) 50.35 50.75 50.00 50.52 51.33 50.17 49.94 47.17 47.75 49.94 49.53 50.05
MiniGPT-v2 Chen et al. (2023a) 52.80 50.21 48.88 50.56 50.25 52.67 52.25 53.92 39.00 54.25 51.29 50.79
ChartVLM Xia et al. (2024) 53.60 51.77 50.75 52.00 51.67 51.83 50.19 51.08 45.50 51.25 50.83 51.34
VisualGLM Du et al. (2022) 55.40 50.98 49.69 51.75 47.92 53.75 49.00 49.00 55.75 52.44 51.01 51.37
OneChart Chen et al. (2024a) 55.15 54.50 53.81 54.52 51.92 51.00 49.56 51.42 70.25 52.44 52.29 54.02
InstructBLIP Dai et al. (2023) 62.15 56.33 59.13 58.16 48.50 50.08 47.50 55.50 54.25 47.19 49.97 54.45
SPHINX Lin et al. (2023) 55.40 53.40 52.25 53.65 53.00 51.25 54.50 53.75 62.75 58.50 55.34 54.51
LLaVA-v1.5 Liu et al. (2023d) 60.00 54.58 47.06 54.44 57.67 54.92 58.63 55.58 48.00 55.38 55.61 54.75
Internlm-XComposer Zhang et al. (2023) 55.70 57.38 55.31 56.62 51.17 54.42 53.50 54.08 54.00 51.25 52.95 54.96
CogVLM Wang et al. (2023b) 54.40 56.27 56.50 55.89 55.50 53.08 55.25 56.42 55.25 51.19 54.28 55.26
BLIP2 Li et al. (2023c) 62.80 57.33 60.38 59.13 52.42 53.58 56.69 58.58 41.00 61.44 55.17 57.45
CogAgent Hong et al. (2023) 59.30 61.96 55.50 60.18 57.83 57.83 54.44 55.42 31.00 57.50 55.11 57.45
ChartLlama Han et al. (2023) 61.70 56.48 57.50 57.85 57.25 52.75 61.31 61.50 39.75 60.69 56.95 57.54
Qwen-VL-Chat Bai et al. (2023b) 69.00 57.77 66.50 61.91 63.17 57.50 63.62 56.75 55.50 58.63 59.59 61.11
DocOwl-v1.5 Hu et al. (2024) 72.65 62.92 63.44 65.23 52.42 54.67 52.81 65.17 52.50 66.25 58.08 61.83
Mini-Gemini Li et al. (2024) 65.15 65.42 66.12 65.49 62.75 57.33 58.38 61.67 66.25 55.81 59.35 62.86
Internlm-XComposer-v2 Dong et al. (2024) 84.30 73.83 79.00 77.15 57.83 60.50 67.44 73.58 67.00 66.00 65.36 72.23

Closed source MLLMs
ERNIE BaiDu 61.00 65.58 71.25 65.57 68.33 52.50 65.62 68.33 82.50 73.12 67.76 66.67
GPT-4V OpenAI (2023) 84.50 68.08 78.75 73.75 62.50 65.83 69.38 82.50 100.00 73.12 73.82 74.11
GPT-4O OpenAI (2023) 90.50 70.58 82.50 77.27 61.67 77.50 67.50 91.67 100.00 79.38 77.89 78.10

Table 19: The zero-shot Accuracy (%) performance w.r.t. chart tasks in ChartBench. We report the
results of the best-performing prompt for each MLLM.

Models Task Type Avg.
CR VE VC GC NQA

Open source MLLMs
mPLUG-Owl-bloomz Ye et al. (2023b) 50.43 50.05 49.83 49.45 4.10 40.77
Shikra Chen et al. (2023b) 49.98 50.31 50.14 49.79 5.38 41.12
MiniGPT-v2 Chen et al. (2023a) 53.67 49.57 50.95 48.98 3.71 41.38
VisualGLM Du et al. (2022) 55.88 49.83 49.90 49.86 3.19 41.73
OneChart Chen et al. (2024a) 50.88 56.55 54.43 54.21 2.76 43.77
InstructBLIP Dai et al. (2023) 67.90 50.00 49.95 49.95 2.90 44.14
Internlm-XComposer Zhang et al. (2023) 70.76 49.43 50.76 48.90 3.29 44.63
SPHINX Lin et al. (2023) 64.21 50.71 53.02 50.07 9.14 45.43
LLaVA-v1.5 Liu et al. (2023d) 65.98 48.93 54.29 49.81 11.33 46.07
BLIP2 Li et al. (2023c) 78.57 48.88 53.48 48.86 2.71 46.50
CogVLM Wang et al. (2023b) 64.07 49.98 54.57 52.40 13.29 46.86
ChartVLM Xia et al. (2024) 50.00 51.79 51.95 51.62 32.19 47.51
ChartLlama Han et al. (2023) 71.95 50.45 55.17 52.57 17.52 49.53
CogAgent Hong et al. (2023) 81.12 48.64 51.45 48.57 26.24 51.20
Qwen-VL-Chat Bai et al. (2023b) 73.02 53.43 58.86 59.14 22.43 53.38
Mini-Gemini Li et al. (2024) 88.95 52.17 55.48 54.83 25.67 55.42
DocOwl-v1.5 Hu et al. (2024) 62.95 63.60 58.69 62.07 33.76 56.21
Internlm-XComposer-v2 Dong et al. (2024) 83.41 65.49 68.49 71.54 36.71 65.13

Closed source MLLMs
ERNIE BaiDu 75.00 67.14 53.57 70.95 16.19 56.57
GPT-4V OpenAI (2023) 97.62 62.86 65.95 70.00 36.19 66.52
GPT-4O OpenAI (2023) 98.33 65.71 74.29 74.05 40.48 70.57

E.2 RESULTS OF ACCURACY METRIC

Accuracy is the most widely used evaluation criterion for true/false or multiple-choice questions, but it has
inherent limitations. Firstly, for difficult questions, accuracy struggles to distinguish between genuine answers
and random guesses, both of which can yield performance close to the baseline (e.g., 50% for true/false questions,
25% for four-choice questions). Secondly, accuracy places high demands on data scale. In the case of the
accuracy metric, if the test sample approaches infinity, the performance of random guessing would converge to
the baseline. Conversely, with a small data scale, random guessing might produce results significantly higher than
the baseline. Although ChartBench provides 16.8K judgment QA pairs (consisting of 8.4K original questions
and their counterparts), this quantity still cannot completely eliminate the occurrence of the situations above
(e.g., the accuracy of MiniGPT-v2 on Node chart in Tab. 18).

In Tab. 18 and Tab. 19, we present the results using Accuracy (abbreviated as Acc.) as the metric. Overall,
Internlm-Xcomposer-v2 continues to demonstrate the best performance, consistent with the trend shown by
Acc++ in Tab. 3. However, there are differences between accuracy and Acc++ in terms of specific details.
InternLM-Xcomposer achieves 55.70% accuracy in Tab 18, while its Acc++ performance is just 15.49% (Tab. 3),
indicating that a significant portion of its correct answers are the result of random guessing. This is further
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confirmed by the CoR metric in Tab. 5. From Tab. 19, it can be observed that accuracy does not effectively
differentiate between tasks of varying difficulty, as it shows results close to the baseline of 50% across all 5 tasks.
Compared with Tab. 4, it is evident that the VE and GC tasks are notably more challenging, as they require
MLLMs to rely on more visual cues for reasoning. The above analysis demonstrates that the improved Acc++
metric enables more robust evaluations.

Our improved metric, Acc++, effectively addresses the two limitations of accuracy mentioned above. The Acc++
metric requires MLLMs to provide accurate judgments for both positive and negative perspectives regarding the
base assertions. This innovative metric offers two distinct advantages. Firstly, it ensures consistency between
positive and negative queries, with the only difference being the Ground Truth value. This precautionary
approach reduces the chance of lucky guesses resulting from random choices, as MLLMs may produce identical
responses for both query types if they fail to comprehend the chart. Secondly, the GT values for negative queries
are derived from other data within the same chart, eliminating unrealistic scenarios and enhancing the validity
of the evaluation process. Generally, the expected probability of random guessing is 25% for vanilla Acc++.
However, for the MLLM that has insufficient chart recognition capabilities, the CoR tends to be 100%, and thus
the Acc++ tends to be 0% instead of 25% baseline. This characteristic enables Acc++ to accurately reflect the
model’s chart comprehension ability even when the dataset is small in size.

E.3 RESULTS OF CHARTQA

Table 20: The zero-shot Acc (%) performance w.r.t. chart types in ChartQA. For bar chart, We report
the average score of horizontal and vertical bars in ChartQA.

Models Human Augmented Acc.
Line Bar Pie Avg. Line Bar Pie Avg.

BLIP2 Li et al. (2023c) 14.34 9.69 7.24 10.40 6.20 5.18 0.00 5.20 7.80
mPLUG-Owl-bloomz Ye et al. (2023b) 22.79 10.53 6.58 12.72 7.75 5.72 5.00 5.92 9.32
Shikra Chen et al. (2023b) 25.00 13.68 13.82 16.16 8.53 7.27 0.00 7.28 11.72
InstructBLIP Dai et al. (2023) 29.78 11.86 10.53 15.60 10.08 9.81 10.00 9.84 12.72
VisualGLM Du et al. (2022) 32.35 14.89 7.24 17.76 9.30 7.81 5.00 7.92 12.84
Internlm-XComposer Zhang et al. (2023) 31.99 13.20 9.21 16.80 9.30 9.17 20.00 9.36 13.08
MiniGPT-v2 Chen et al. (2023a) 33.09 16.22 11.18 19.28 9.30 10.99 10.00 10.80 15.04
SPHINX Lin et al. (2023) 35.66 17.68 16.45 21.44 10.08 11.35 10.00 11.20 16.32
LLaVA-v1.5 Liu et al. (2023d) 39.71 19.01 16.45 23.20 9.30 14.26 15.00 13.76 18.48
CogVLM Wang et al. (2023b) 48.90 29.41 34.21 34.24 17.83 29.88 25.00 28.56 31.40
Mini-Gemini Li et al. (2024) 55.88 40.68 43.42 44.32 43.41 58.31 75.00 57.04 50.68
Qwen-VL-Chat Bai et al. (2023b) 54.41 38.38 43.42 42.48 55.04 77.48 80.00 75.20 58.84
ChartVLM Xia et al. (2024) 48.90 39.59 43.42 42.08 69.77 83.92 85.00 82.48 62.28
OneChart Chen et al. (2024a) - - - 85.30 - - - 49.10 67.20
CogAgent Hong et al. (2023) 65.44 49.88 56.58 54.08 62.02 82.74 80.00 80.56 67.32
DocOwl-v1.5 Hu et al. (2024) 57.72 44.79 50.00 48.24 68.22 88.92 85.00 86.72 67.48
Internlm-XComposer-v2 Dong et al. (2024) 65.81 61.38 67.76 63.12 78.29 82.11 95.00 81.92 72.64
ChartLlama Han et al. (2023) 68.75 53.63 65.79 58.40 79.84 94.55 100.00 93.12 75.76

Table 21: The zero-shot Acc++ (%) and Acc (%) performance in ChartBench and ChartQA respec-
tively w.r.t regular chart types. We report the results of the best-performing prompt for each MLLM.

Models Line Bar Pie Avg.

ChartBench ChartQA ChartBench ChartQA ChartBench ChartQA ChartBench ChartQA

Shikra Chen et al. (2023b) 7.40 22.19 10.62 9.81 4.50 9.30 7.51 13.77
MiniGPT-v2 Chen et al. (2023a) 26.70 21.70 21.54 10.33 20.20 8.72 22.81 13.58
VisualGLM Du et al. (2022) 10.80 23.44 1.96 10.90 0.00 10.47 4.25 14.94
SPHINX Lin et al. (2023) 18.40 27.43 15.54 14.06 23.40 15.70 19.11 19.06
InstructBLIP Dai et al. (2023) 24.40 22.44 15.04 9.81 19.10 11.05 19.51 14.43
LLaVA-v1.5 Liu et al. (2023d) 34.40 29.68 24.73 15.31 19.10 18.60 26.08 21.20
ChartLlama Han et al. (2023) 28.90 72.32 19.35 77.01 22.10 69.77 23.45 73.03
CogVLM Wang et al. (2023b) 10.50 38.90 14.58 29.68 17.90 33.14 14.33 33.91
Internlm-XComposer Zhang et al. (2023) 16.00 16.96 20.42 9.24 21.50 9.89 19.30 12.03
BLIP2 Li et al. (2023c) 29.60 18.20 17.35 8.35 24.90 5.81 23.95 10.79
mPLUG-Owl-bloomz Ye et al. (2023b) 37.50 10.47 24.73 5.81 26.10 2.91 29.44 6.40
Qwen-VL-Chat Bai et al. (2023b) 41.00 54.61 20.96 60.72 40.00 47.67 33.99 54.33
Mini-Gemini Li et al. (2024) 37.60 51.87 40.19 50.75 40.00 47.09 39.57 49.90
ChartVLM Xia et al. (2024) 10.70 55.61 8.04 64.92 4.62 48.26 8.02 56.26
DocOwl-v1.5 Hu et al. (2024) 49.10 61.10 31.08 70.01 31.62 54.07 35.27 61.73
Internlm-XComposer-v2 Dong et al. (2024) 70.60 69.83 51.50 73.22 62.75 70.93 57.89 71.33

ChartQA Masry et al. (2022) is a canonical benchmark utilized in prior research to appraise the competency of
multimodal models to comprehend chart data. It comprises two subsets, namely Human and Augmented, and
encompasses solely three chart types, viz., line, bar, and pie. To ascertain the indispensability of ChartBench and
the rationality of our benchmark design and evaluation, we initially scrutinize the vanilla accuracy (Acc.) on
ChartQA. We employ the test-split in ChartQA for evaluation, circumventing the prompt engineering process,
and directly utilizing the original query without any modification as the prompt input to MLLMs. Thereafter,
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we evaluate the correctness of the results utilizing rule-based and regular expression matching. For numerical
questions, we employ the relax accuracy metric akin to ChartQA, signifying that the difference between the
model’s answer and the ground truth is within 5% to be regarded as correct. As tabulated in Tab. 20, we report
the zero-shot Acc regarding chart types and dataset split. Conspicuously, for bar charts, we report the average
accuracy of MLLMs on horizontal and vertical bars.

Tab. 20 evinces that despite the relatively simple chart understanding task with specific data point annotations in
ChartQA, most of the MLLMs remain woefully deficient in this regard. However, it is evident that incorporating
chart data in training augments the ability of MLLMs to comprehend charts, as demonstrated by the relatively
superior performance of ChartLlama and Qwen-VL-Chat in Tab. 20. In contrast to the results in Tab. 18, which
show a specific baseline, Tab. 20 does not converge to a baseline despite using basic accuracy as the evaluation
metric. It is attributable to the question-answer pairs’ design in ChartQA, which employs annotated metadata
and open-ended answers instead of the binary yes/no format. While this design ostensibly appears to appraise the
model’s ability to comprehend charts, we contend that it is fraught with several inconveniences. 1) open-ended
answers render the verification of MLLM’s correctness excessively laborious, sometimes necessitating third-
party (human or GPT) intervention. However, the ChartBench design we propose only necessitates the model to
answer yes/no, streamlining the judgment process while enhancing efficiency and accuracy. 2) the chart data in
ChartQA entail specific numerical annotations, which may prompt MLLMs to rely solely on OCR-based visual
judgments instead of utilizing other implicit information in the chart (e.g., color coordinates and legends) for
logical inference. This inevitably reduces the complexity of tasks. The performance of ChartLlama in Tab. 18
& 20 clearly illustrates ChartQA’s predisposition to MLLMs that rely heavily on OCR. 3) ChartQA’s design
constraints necessitate the utilization of less-convincing metrics such as vanilla accuracy and BLEU score to
assess MLLMs’ ability to comprehend charts.

E.4 RESULTS OF HUMAN EVALUATION

Table 22: Human evaluation results on the ChartBench via random questionnaire. We provide the
performance of Qwen-VL-Chat (open-sourced) and GPT-4V (closed-sourced) for easy comparisons.

Models Regular Type Extra Type Acc++
Line Bar Pie Area Box Radar Scatter Node Combin.

Internlm-XComposer-v2 70.60 51.50 62.75 30.17 31.33 43.50 52.00 52.50 46.12 51.34
GPT-4V 74.00 41.54 63.00 33.30 46.67 57.50 70.00 100.00 56.25 54.39
Human Evaluation 90.63 88.69 87.86 86.61 84.56 89.86 89.29 88.75 85.64 88.46

Models Task Type (Acc++) Task Type (CoR)

CR VE VC GC ALL CR VE VC GC ALL

Internlm-XComposer-v2 68.29 36.63 54.63 45.80 51.34 30.24 57.71 27.71 51.46 41.78
GPT-4V 96.10 29.27 47.32 44.88 54.39 2.93 64.88 35.61 48.78 38.05
Human Evaluation 93.68 84.56 88.68 86.91 88.46 1.34 5.82 4.72 3.52 3.85

The motivation behind ChartBench is to evaluate the understanding capability of MLLMs regarding charts. While
MLLMs have exhibited high performance on previous benchmarks, they still encounter significant hallucination
issues in practical applications due to the unreliable nature of the data they extract from charts. ChartBench aims
to truly reflect MLLM’s ability to interpret visual data and approach or even surpass human-level performance.
Therefore, we have provided evaluation results of human performance on ChartBench.

To ensure a fair and objective evaluation, we conduct an online survey, which consists of 10 randomly selected
subcategories from ChartBench for each questionnaire. 1 chart and 4 assertions are selected from each sub-
category for respondents to assess their accuracy. To obtain reliable evaluation results, the survey participants
mainly consist of undergraduate and graduate students with chart reading ability, as well as other researchers
in the campus and company. We encourage participants to use large-screen devices for better chart display
and kindly request their patient and diligent responses. On average, it takes approximately 15 minutes and 17
seconds to complete each survey. To avoid cases of random guessing, we still employ the Acc++ evaluation
metric. Incomplete responses are discarded, and we ensure that each subcategory has valid answers. In total, we
have collected 68 valid surveys.

Tab. 22 presents the results of human evaluations, revealing some insightful observations. Firstly, the VE task
appears to be more challenging compared to other tasks. The human eye faces challenges in determining the
values of unmarked data points. While the coordinate system offers potential inference, excessively fine granu-
larity can diminish respondents’ confidence. Secondly, there is not a significant variation in human performance
across different chart types. Once individuals grasp the correct interpretation methods for charts, they can
demonstrate similar proficiency across each chart category. Thirdly, even in some relatively straightforward
tasks, such as identifying chart types, humans are unable to achieve 100% accuracy. This limitation could be
attributed to constraints within our survey methodology. For instance, certain descriptions may have confused
the respondents, or the length of the test might have led to hastily completed surveys.
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E.5 CASE STUDY OF CHARTBENCH

     750

       Not provide        26.1℃  

Question: What is the temperature of Tokyo at Aug? 

Label: 26.1  

Question: What is the percentage of Mumbai at Sep? 

      26.1  Label: 8.5        The percentage of Mumbai at Sep is 90%.        8%

     660       Medium  

Question: what is the medium number of September? 

Label: 659        875.0        2 

Question: What is the frequency of Hiking for A? 

Label: 2        The answer is unknown.       2.0 

     27.0      27 Millions      27.0 

Question: How many passengers were in Mexico in 2019? 

Label: 27.0       27       2015      4.6%       4.6 

Question: What is the percentage of 2015? 

Label: 27.0       20.7%  
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Question: What is the percentage of Mumbai at Sep? 

      26.1  Label: 8.5        The percentage of Mumbai at Sep is 90%.        8%

     660       Medium  

Question: what is the medium number of September? 

Label: 659        875.0        2 

Question: What is the frequency of Hiking for A? 

Label: 2        The answer is unknown.       2.0 

     27.0      27 Millions      27.0 

Question: How many passengers were in Mexico in 2019? 

Label: 27.0       27       2015      4.6%       4.6 

Question: What is the percentage of 2015? 

Label: 27.0       20.7%  

Figure 10: NQA cases with unannotated charts from the ChartBench Test Split. Red indicates
incorrect answers, and green indicates correct answers.

     750

       Not provide        26.1℃  

Question: What is the temperature of Tokyo at Aug? 

Label: 26.1  

Question: What is the percentage of Mumbai at Sep? 

      26.1  Label: 8.5        The percentage of Mumbai at Sep is 90%.        8%

     660       Medium  

Question: what is the medium number of September? 

Label: 659        875.0        2 

Question: What is the frequency of Hiking for A? 

Label: 2        The answer is unknown.       2.0 

     27.0      27 Millions      27.0 

Question: How many passengers were in Mexico in 2019? 

Label: 27.0       27       2015      4.6%       4.6 

Question: What is the percentage of 2015? 

Label: 27.0       20.7%  

Figure 11: NQA cases with annotated charts from the ChartBench Test Split. Red indicates incorrect
answers, and green indicates correct answers.

Fig. 10 & 11 visualize some NQA task examples with/without annotations from the ChartBench test split. We
adopt ChartQA’s relaxed matching and correct it from two perspectives: 1) Considering the robustness issue
of string matching, we only ask questions about numbers. 2) To account for a 5% margin of error, we avoid
questions about entities like years or months. Considering the varying instruction-following capabilities of
different models, we use LLMs to extract numerical values from the model responses.
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E.6 CASE STUDY OF GPT-4

You are a data analyst, good at dealing with chart data. This graph shows the revenue 
share of brands across thest years. Please determine whether the user's judgments on 
this chart are correct.
The judgments from the User are: 
According to this chart, the percentage of 2020 at Brand Samsung is around 24.46%.

Based on the visual estimation, the red dashed line is drawn at an approximate height 
for Samsung's revenue in 2020, which appears to be near the 80 million mark on the 
y-axis.

This rough estimation is used to assess the user's judgment that Samsung's revenue in 
2020 was 24.46 million. Given that the line is well above the 20 million mark and 
closer to 80 million, it is clear that the user's claim of 24.46 million is not accurate, 
and the actual revenue is significantly higher.

Since we cannot provide an exact value without precise data or successful OCR, we 
cannot confirm the exact revenue for Samsung in 2020, but it is certainly more than 
24.46 million as per the visual approximation. Thus, the judgment is incorrect.

You are a data analyst, good at dealing with chart data. This graph shows the monthly 
revenue by product category. Please determine whether the user's judgments on this 
chart are correct.
The judgments from the User are: 
Based on this chart, which category has higher revenue in the May?

In May, the chart shows that the "Apparel" category had higher revenue than the 
"Home Goods" category. The line in the "Apparel" category (marked with a circle) in 
May is above the line in the "Home Goods" category (marked with a square), which 
indicates that the "Apparel" category has higher revenue.

Please note their position relationship.

Apologies for the previous misinterpretation. According to the chart you provided, in 
the month of May, the category "Home Goods" actually has higher revenue than the 
category "Apparel." The line (marked with squares) representing "Home Goods" is 
positioned higher than the line (marked with circles) representing "Apparel" in the 
chart.

Notice their respective y axes.

Apologies for the misunderstanding. Indeed, while the line (marked with squares) 
representing "Home Goods" appears above the line (marked with circles) representing 
"Apparel" on the chart, we need to consider the corresponding values on the 
respective axes to make an accurate assessment. From the left axis, the revenue for 
"Apparel" in May is approximately 10 million dollars, whereas from the right axis, 
the revenue for "Home Goods" in May is around 8 million dollars. Therefore, despite 
the visual positioning of the "Apparel" line being lower on the chart, the actual 
revenue value for "Apparel" is higher. Hence, in May, the category "Apparel" has 
higher revenue compared to the category "Home Goods."

How much is the approximate revenue around for "Home Goods" in May?

According to the chart, the revenue for "Home Goods" in May is approximately 7 
million dollars.

      Error analyzing

It seems there was an error in attempting to use OCR on the image. The error 
occurred because the image data type was not compatible with the OCR library.

As an alternative, I can manually analyze the chart based on the visible information. 
We need to look at the Samsung bar and identify the segment that represents the year 
2020. We then compare its height visually with the y-axis to estimate the revenue. 
Since the revenue values are cumulative in a stacked bar chart, we need to subtract 
the value of the 2019 segment from the 2020 segment to obtain the revenue for 2020 
alone.

Let me attempt a visual estimation for it. ​​

Revenue (in million) Percentage from 2016 to 2022

Revenue
(percentage)

(a) GPT-4V combines several APIs (e.g., OCR), for
chart understanding but fails on unannotated charts.

You are a data analyst, good at dealing with chart data. This graph shows the revenue 
share of brands across thest years. Please determine whether the user's judgments on 
this chart are correct.
The judgments from the User are: 
According to this chart, the percentage of 2020 at Brand Samsung is around 24.46%.

Based on the visual estimation, the red dashed line is drawn at an approximate height 
for Samsung's revenue in 2020, which appears to be near the 80 million mark on the 
y-axis.

This rough estimation is used to assess the user's judgment that Samsung's revenue in 
2020 was 24.46 million. Given that the line is well above the 20 million mark and 
closer to 80 million, it is clear that the user's claim of 24.46 million is not accurate, 
and the actual revenue is significantly higher.

Since we cannot provide an exact value without precise data or successful OCR, we 
cannot confirm the exact revenue for Samsung in 2020, but it is certainly more than 
24.46 million as per the visual approximation. Thus, the judgment is incorrect.

You are a data analyst, good at dealing with chart data. This graph shows the monthly 
revenue by product category. Please determine whether the user's judgments on this 
chart are correct.
The judgments from the User are: 
Based on this chart, which category has higher revenue in the May?

In May, the chart shows that the "Apparel" category had higher revenue than the 
"Home Goods" category. The line in the "Apparel" category (marked with a circle) in 
May is above the line in the "Home Goods" category (marked with a square), which 
indicates that the "Apparel" category has higher revenue.

Please note their position relationship.

Apologies for the previous misinterpretation. According to the chart you provided, in 
the month of May, the category "Home Goods" actually has higher revenue than the 
category "Apparel." The line (marked with squares) representing "Home Goods" is 
positioned higher than the line (marked with circles) representing "Apparel" in the 
chart.

Notice their respective y axes.

Apologies for the misunderstanding. Indeed, while the line (marked with squares) 
representing "Home Goods" appears above the line (marked with circles) representing 
"Apparel" on the chart, we need to consider the corresponding values on the 
respective axes to make an accurate assessment. From the left axis, the revenue for 
"Apparel" in May is approximately 10 million dollars, whereas from the right axis, 
the revenue for "Home Goods" in May is around 8 million dollars. Therefore, despite 
the visual positioning of the "Apparel" line being lower on the chart, the actual 
revenue value for "Apparel" is higher. Hence, in May, the category "Apparel" has 
higher revenue compared to the category "Home Goods."

How much is the approximate revenue around for "Home Goods" in May?

According to the chart, the revenue for "Home Goods" in May is approximately 7 
million dollars.

      Error analyzing

It seems there was an error in attempting to use OCR on the image. The error 
occurred because the image data type was not compatible with the OCR library.

As an alternative, I can manually analyze the chart based on the visible information. 
We need to look at the Samsung bar and identify the segment that represents the year 
2020. We then compare its height visually with the y-axis to estimate the revenue. 
Since the revenue values are cumulative in a stacked bar chart, we need to subtract 
the value of the 2019 segment from the 2020 segment to obtain the revenue for 2020 
alone.

Let me attempt a visual estimation for it. ​​

(b) The GPT-4V requires multiple manual instructions
to achieve the correct answer for unannotated charts.

Figure 12: Specific examples of GPT-4V in chart comprehension. Pink: user requirement. Blue: user
assertion. Orange: GPT-4V ensembles APIs to assist chart comprehension. Green: the correct visual
clues. Red: the misperceptions or misjudgments.

As the top-performing proprietary model, Fig. 12 showcases some characteristics of GPT-4V in chart compre-
hension. Firstly, GPT-4V goes beyond a single end-to-end MLLM by integrating multiple APIs to aid in chart
cognition (highlight orange in Fig. 12a). The performance of GPT-4V is inherently influenced by the output of
these APIs, thereby imposing limitations. For instance, when OCR results are unavailable, its ability to interpret
visual information significantly declines. Secondly, GPT-4V can proactively acknowledge its limitations, such as
recognizing its inability to determine specific values solely based on visual information. Thirdly, while GPT-4V
possesses strong chart comprehension capabilities, it requires multi-step guidance from humans (Fig. 12b). This
accounts for its shortcomings in zero-shot performance on ChartBench.
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G LEADERBOARDS

In this section, we devise several leaderboards to evaluate the performance of diverse MLLMs across multiple
task types to obtain a more nuanced insight into their perceptual capacities in the context of varied chart
categories.

In Tab. 23 & 24 & 25 & 26, we present the leaderboards of MLLMs on ChartBench, which includes 3 regular
types of charts and 6 extra types of charts, utilizing the Acc++ metric. Additionally, we showcase the Acc++
and CoR leaderboards of MLLMs for 4 chart comprehension tasks while also displaying their rankings on w/i
and w/o annotation data.

G.1 LEADERBOARDS ON CHART TYPE

Tab. 23 presents an overview of MLLMs’ performance across various chart types, along with the overall Acc++
metric. Generally, the current MLLMs exhibit a constrained ability in chart recognition, encountering notable
challenges. For specific chart types, such as radar or combination charts, certain MLLMs achieve close to
0% in Acc++, signaling their difficulty in extracting crucial information from charts and their insensitivity
to both positive and negative queries. It’s essential to highlight that the Acc++ metric tends toward 0% in
situations of random guessing, as elaborated in Sec. 3.4. Particularly, Qwen-VL-Chat and mPLUG-Owl-bloomz
showcase commendable proficiency in recognizing charts, a capability likely attributed to their precise tuning
with chart data. However, their performance in this aspect falls below what has been reported in ChartQA. This
discrepancy can be traced back to their reliance on OCR skills rather than robust visual logical reasoning. In the
context of ChartBench, where the proportion of annotated charts is notably low, these models face a significant
challenge. The majority of queries in ChartBench necessitate MLLMs to employ visual logical reasoning, a
task that proves quite demanding for models like Qwen-VL-Chat and mPLUG-Owl-bloomz. On the other hand,
VisualGLM and Shikra exhibit subpar performance, potentially due to their smaller LLM size and less robust
visual encoding branch. While MLLMs generally demonstrate satisfactory performance on regular charts, there
remains considerable room for improvement, particularly in handling more intricate graphics.

G.2 LEADERBOARDS ON TASK TYPE

Tab. 24 outlines the performance of MLLMs on perception and conception tasks introduced in Sec. 3.2. Most
MLLMs exhibit notable success in the CR task, showcasing their proficiency in recognizing fundamental chart
types. Notably, LLaVA-v1.5, mPLUG-Owl-bloomz, and Qwen-VL-Chat demonstrate substantial advantages
in the VC and GC conception tasks, leveraging their chart-tuned data. The most challenging task, VE, serves
as a key distinction between ChartBench and ChartQA. Unlike basic OCR, the VE task requires a series of
visual and textual logical reasoning steps to arrive at the correct answer. Despite strong overall performance,
models such as BLIP2 and ChartLlama face difficulties in the VE task. This underscores the importance
of prioritizing and enhancing the visual logical reasoning capabilities of these MLLMs. In terms of model
comparison, closed-source models outperform their open-source counterparts, partly attributed to their larger
model size and broader data coverage.

G.3 LEADERBOARDS ON CoR METRIC

Tab. 25 showcases the CoR metric, which signifies the portion of the chart that the MLLM fails to comprehend
entirely. Qwen-VL-Chat exhibits the highest Acc++, albeit with a lower CoR compared to models like MiniGPT-
v2. The top-performing MiniGPT-v2 demonstrates a CoR of 55.06%, underscoring the prevalence of random
guessing cases for open-source models due to their challenges in accurately understanding charts. In the case of
closed-source MLLMs, although GPT-4V outperforms ERNIE in terms of Acc++, their CoR values are similar.
A more detailed examination reveals that ERNIE excels in challenging VE tasks, which happen to be the weaker
area for GPT-4V.

G.4 LEADERBOARDS ON WITH/WITHOUT ANNOTATED CHARTS

The rationale behind ChartBench is to assess the comprehension of unlabeled charts by MLLMs. In Tab. 26,
the performance of all MLLMs on both annotated and unannotated charts is presented. It is important to note
that: 1) Virtually all models exhibit significantly superior performance on annotated charts when compared
to unannotated ones. This discrepancy arises because MLLMs heavily depend on OCR to acquire answer
candidates, thereby enhancing answer accuracy—an advantage not applicable to unannotated charts. 2) The
larger the performance gap between models, such as Qwen-VL-Chat (+16.00%) and GPT-4V (+31.39%), the
more favorable their overall performance. This suggests that the Acc++ of MLLMs is primarily elevated by
annotated charts, while unannotated charts notably intensify the challenge presented by ChartBench.
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No. Model Acc++
1 GPT-4O 86.00
2 GPT-4V 74.00
3 InternLM-v2 70.60
4 DocOwl-v1.5 49.10
5 ERNIE 44.00
6 Qwen-VL 41.00
7 Mini-Gemini 37.60
8 mPLUG-Owl 37.50
9 LLaVA-v1.5 34.40

10 BLIP2 29.60
11 ChartLlama 28.90
12 MiniGPT-v2 26.70
13 InstructBLIP 24.40
14 CogAgent 18.60
15 SPHINX 18.40
16 InternLM 16.00
17 OneChart 15.10
18 VisualGLM 10.80
19 ChartVLM 10.70
20 CogVLM 10.50
21 Shikra 7.40

(a) Line Chart

No. Model Acc++
1 GPT-4O 51.92
2 InternLM-v2 51.50
3 ERNIE 45.00
4 GPT-4V 41.54
5 Mini-Gemini 40.19
6 DocOwl-v1.5 31.08
7 LLaVA-v1.5 24.73
8 mPLUG-Owl 24.73
9 CogAgent 23.96

10 MiniGPT-v2 21.54
11 Qwen-VL 20.96
12 InternLM 20.42
13 ChartLlama 19.35
14 BLIP2 17.35
15 SPHINX 15.54
16 InstructBLIP 15.04
17 CogVLM 14.58
18 OneChart 12.27
19 Shikra 10.62
20 ChartVLM 8.04
21 VisualGLM 1.96

(b) Bar Chart

No. Model Acc++
1 GPT-4O 78.00
2 GPT-4V 63.00
3 InternLM-v2 62.75
4 ERNIE 57.00
5 Qwen-VL 40.00
6 Mini-Gemini 40.00
7 DocOwl-v1.5 31.62
8 mPLUG-Owl 26.10
9 BLIP2 24.90
10 SPHINX 23.40
11 ChartLlama 22.10
12 InternLM 21.50
13 MiniGPT-v2 20.20
14 InstructBLIP 19.10
15 LLaVA-v1.5 19.10
16 CogVLM 17.90
17 CogAgent 11.00
18 OneChart 9.12
19 ChartVLM 4.62
20 Shikra 4.50
21 VisualGLM 0.00

(c) Pie Chart

No. Model Acc++
1 ERNIE 45.00
2 Mini-Gemini 36.83
3 GPT-4O 36.67
4 GPT-4V 33.30
5 InternLM-v2 30.17
6 Qwen-VL 28.83
7 LLaVA-v1.5 26.83
8 MiniGPT-v2 21.67
9 mPLUG-Owl 21.33

10 ChartLlama 16.50
11 CogAgent 15.67
12 CogVLM 12.50
13 DocOwl-v1.5 12.17
14 SPHINX 12.00
15 ChartVLM 7.67
16 OneChart 7.00
17 BLIP2 6.17
18 Shikra 6.00
19 InternLM 4.50
20 InstructBLIP 4.33
21 VisualGLM 1.17

(d) Area Chart
No. Model Acc++
1 GPT-4O 63.33
2 GPT-4V 46.67
3 InternLM-v2 31.33
4 ERNIE 30.00
5 Mini-Gemini 26.50
6 mPLUG-Owl 25.83
7 LLaVA-v1.5 25.67
8 MiniGPT-v2 24.67
9 Qwen-VL 24.17

10 DocOwl-v1.5 24.00
11 CogAgent 16.50
12 InternLM 14.50
13 ChartLlama 13.33
14 Shikra 11.33
15 BLIP2 10.67
16 CogVLM 9.67
17 VisualGLM 8.50
18 SPHINX 8.17
19 OneChart 7.33
20 InstructBLIP 7.33
21 ChartVLM 6.67

(e) Box Chart

No. Model Acc++
1 GPT-4V 57.50
2 GPT-4O 57.50
3 InternLM-v2 43.50
4 ERNIE 40.00
5 Qwen-VL 35.00
6 Mini-Gemini 30.00
7 LLaVA-v1.5 28.63
8 mPLUG-Owl 26.50
9 MiniGPT-v2 25.88

10 ChartLlama 25.00
11 DocOwl-v1.5 20.50
12 SPHINX 19.00
13 BLIP2 17.63
14 CogVLM 16.00
15 InternLM 15.00
16 Shikra 11.88
17 CogAgent 9.38
18 ChartVLM 5.25
19 OneChart 2.75
20 InstructBLIP 2.00
21 VisualGLM 0.25

(f) Radar Chart

No. Model Acc++
1 GPT-4O 83.33
2 GPT-4V 70.00
3 InternLM-v2 52.00
4 ERNIE 51.67
5 Mini-Gemini 37.17
6 DocOwl-v1.5 35.33
7 ChartLlama 28.50
8 MiniGPT-v2 28.17
9 LLaVA-v1.5 26.00

10 mPLUG-Owl 24.17
11 BLIP2 22.00
12 Qwen-VL 19.50
13 SPHINX 17.17
14 CogVLM 14.33
15 InstructBLIP 12.50
16 InternLM 12.00
17 CogAgent 11.67
18 OneChart 6.33
19 ChartVLM 5.50
20 Shikra 4.17
21 VisualGLM 3.33

(g) Scatter Chart

No. Model Acc++
1 GPT-4V 100.0
2 GPT-4O 100.0
3 ERNIE 70.00
4 OneChart 53.50
5 InternLM-v2 52.50
6 Mini-Gemini 43.00
7 LLaVA-v1.5 33.50
8 BLIP2 33.00
9 SPHINX 31.00
10 mPLUG-Owl 28.50
11 CogAgent 27.50
12 DocOwl1.5 26.00
13 ChartLlama 25.50
14 Qwen-VL 18.50
15 CogVLM 16.00
16 VisualGLM 15.50
17 MiniGPT-v2 15.50
18 InstructBLIP 9.00
19 Shikra 8.50
20 InternLM 8.50
21 ChartVLM 0.00

(h) Node Chart
No. Model Acc++
1 GPT-4O 65.00
2 ERNIE 56.25
3 GPT-4V 56.25
4 InternLM-v2 46.12
5 DocOwl-v1.5 40.25
6 BLIP2 28.00
7 mPLUG-Owl 27.50
8 LLaVA-v1.5 27.38
9 MiniGPT-v2 27.13

10 Mini-Gemini 27.00
11 ChartLlama 26.38
12 SPHINX 25.88
13 Qwen-VL 25.50
14 CogAgent 15.50
15 OneChart 7.75
16 ChartVLM 6.50
17 CogVLM 6.13
18 VisualGLM 5.13
19 InternLM 5.13
20 Shikra 3.63
21 InstructBLIP 2.38

(i) Combination Chart

No. Model Acc++
1 GPT-4O 65.00
2 InternLM-v2 57.89
3 GPT-4V 53.26
4 ERNIE 47.39
5 Mini-Gemini 39.57
6 DocOwl-v1.5 35.27
7 Qwen-VL 29.46
8 mPLUG-Owl 27.80
9 LLaVA-v1.5 25.61

10 MiniGPT-v2 22.37
11 ChartLlama 22.02
12 BLIP2 21.65
13 CogAgent 20.39
14 InternLM 19.70
15 InstructBLIP 17.96
16 SPHINX 17.87
17 CogVLM 14.41
18 OneChart 12.34
19 Shikra 8.59
20 ChartVLM 8.02
21 VisualGLM 3.46

(j) Regular Type

No. Model Acc++
1 GPT-4O 63.33
2 GPT-4V 55.83
3 ERNIE 46.39
4 InternLM-v2 41.75
5 Mini-Gemini 31.81
6 LLaVA-v1.5 27.39
7 DocOwl-v1.5 26.86
8 Qwen-VL 26.56
9 mPLUG-Owl 25.47
10 MiniGPT-v2 25.06
11 ChartLlama 22.56
12 BLIP2 18.44
13 SPHINX 17.92
14 CogAgent 14.36
15 CogVLM 11.89
16 InternLM 10.11
17 OneChart 8.75
18 Shikra 7.50
19 ChartVLM 5.92
20 InstructBLIP 5.50
21 VisualGLM 4.22

(k) Extra Type

No. Model Acc++
1 GPT-4O 64.27
2 GPT-4V 54.39
3 InternLM-v2 51.34
4 ERNIE 46.95
5 Mini-Gemini 36.54
6 DocOwl-v1.5 31.62
7 Qwen-VL 28.18
8 mPLUG-Owl 26.78
9 LLaVA-v1.5 26.39

10 MiniGPT-v2 23.55
11 ChartLlama 22.26
12 BLIP2 20.24
13 CogAgent 18.07
14 SPHINX 17.89
15 InternLM 15.49
16 CogVLM 13.30
17 InstructBLIP 12.49
18 OneChart 12.04
19 Shikra 8.11
20 ChartVLM 6.90
21 VisualGLM 3.79

(l) Average

Table 23: Leaderboards of tasks, dataset splits and average Acc++ (%) performance on ChartBench.
We report the results of the best-performing prompt for each MLLM.
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No. Model Acc++
1 GPT-4O 97.62
2 GPT-4V 96.19
3 Mini-Gemini 80.52
4 InternLM-v2 68.29
5 ERNIE 65.24
6 ChartLlama 62.57
7 CogAgent 60.05
8 Qwen-VL 51.67
9 MiniGPT-v2 49.86

10 OneChart 49.57
11 mPLUG-Owl 47.86
12 InstructBLIP 42.29
13 Internlm 38.48
14 LLaVA-v1.5 32.33
15 DocOwl1.5 30.43
16 CogVLM 29.14
17 BLIP2 29.05
18 VisualGLM 16.29
19 Shikra 3.71
20 ChartVLM 2.10
21 SPHINX 0.00

(a) CR.

No. Model Acc++
1 ERNIE 44.76
2 GPT-4O 43.33
3 InternLM-v2 36.63
4 DocOwl1.5 34.48
5 GPT-4V 30.95
6 LLaVA-v1.5 23.14
7 BLIP2 22.00
8 Mini-Gemini 17.62
9 mPLUG-Owl 15.81

10 Shikra 15.48
11 ChartVLM 11.90
12 Qwen-VL 11.14
13 Internlm 10.38
14 SPHINX 9.05
15 MiniGPT-v2 8.38
16 InstructBLIP 6.86
17 CogAgent 4.24
18 CogVLM 2.81
19 ChartLlama 1.19
20 VisualGLM 0.00
21 OneChart 0.00

(b) VE.

No. Model Acc++
1 GPT-4O 66.19
2 InternLM-v2 54.63
3 GPT-4V 48.57
4 ERNIE 32.86
5 DocOwl1.5 31.10
6 Qwen-VL 27.29
7 mPLUG-Owl 26.05
8 Mini-Gemini 26.00
9 LLaVA-v1.5 25.33

10 BLIP2 24.29
11 MiniGPT-v2 20.43
12 Shikra 17.57
13 Internlm 14.33
14 CogVLM 14.19
15 CogAgent 14.05
16 ChartVLM 10.62
17 SPHINX 10.05
18 ChartLlama 7.33
19 InstructBLIP 2.48
20 OneChart 0.05
21 VisualGLM 0.00

(c) VC.

No. Model Acc++
1 GPT-4O 53.33
2 ERNIE 47.14
3 GPT-4V 46.19
4 InternLM-v2 45.80
5 DocOwl1.5 30.48
6 LLaVA-v1.5 26.48
7 Mini-Gemini 22.00
8 Qwen-VL 21.71
9 BLIP2 18.10
10 mPLUG-Owl 16.52
11 Shikra 11.38
12 MiniGPT-v2 10.67
13 InstructBLIP 9.67
14 Internlm 9.62
15 SPHINX 8.52
16 ChartVLM 7.86
17 CogVLM 7.33
18 CogAgent 3.86
19 ChartLlama 1.19
20 VisualGLM 0.00
21 OneChart 0.00

(d) GC.

No. Model Acc++
1 GPT-4O 40.48
2 InternLM-v2 36.71
3 GPT-4V 36.19
4 DocOwl1.5 33.76
5 SPHINX 32.19
6 ERNIE 29.24
7 ChartLlama 26.24
8 Mini-Gemini 25.67
9 Qwen-VL 22.43

10 MiniGPT-v2 17.52
11 CogVLM 13.29
12 mPLUG-Owl 11.33
13 Internlm 9.14
14 ChartVLM 5.38
15 LLaVA-v1.5 4.10
16 BLIP2 3.71
17 InstructBLIP 3.29
18 VisualGLM 3.19
19 OneChart 2.90
20 Shikra 2.76
21 CogAgent 2.71

(e) Number QA.

Table 24: Leaderboards of different chart tasks on ChartBench. We report zero-shot Acc++ (%)
performance of the best-performing prompt for each MLLM.

No. Model CoR
1 GPT-4O 1.43
2 GPT-4V 2.86
3 Mini-Gemini 17.86
4 ERNIE 19.52
5 InternLM-v2 30.24
6 mPLUG-Owl 36.24
7 OneChart 36.67
8 CogAgent 37.05
9 ChartLlama 37.10

10 Qwen-VL 42.71
11 MiniGPT-v2 44.19
12 BLIP2 49.24
13 LLaVA-v1.5 51.24
14 Internlm 51.38
15 InstructBLIP 56.95
16 DocOwl1.5 65.05
17 CogVLM 69.33
18 VisualGLM 79.19
19 ChartVLM 93.57
20 Shikra 94.33
21 SPHINX 100.0

(a) Chart Recognition.

No. Model CoR
1 ERNIE 44.76
2 GPT-4O 44.76
3 BLIP2 55.14
4 InternLM-v2 57.71
5 DocOwl1.5 58.24
6 GPT-4V 63.33
7 mPLUG-Owl 66.24
8 Mini-Gemini 70.43
9 LLaVA-v1.5 76.76
10 Internlm 80.67
11 ChartVLM 80.71
12 Shikra 82.14
13 MiniGPT-v2 84.14
14 Qwen-VL 84.57
15 InstructBLIP 85.14
16 SPHINX 85.48
17 CogAgent 89.29
18 CogVLM 94.29
19 ChartLlama 94.90
20 VisualGLM 99.67
21 OneChart 100.0

(b) Value Extraction.

No. Model CoR
1 GPT-4O 16.19
2 InternLM-v2 27.71
3 GPT-4V 34.76
4 ERNIE 41.43
5 BLIP2 53.33
6 DocOwl1.5 55.19
7 mPLUG-Owl 56.48
8 Mini-Gemini 59.38
9 Qwen-VL 63.14
10 LLaVA-v1.5 69.29
11 MiniGPT-v2 69.48
12 Shikra 73.71
13 Internlm 77.38
14 CogAgent 78.86
15 CogVLM 80.71
16 SPHINX 83.81
17 ChartVLM 87.71
18 ChartLlama 88.24
19 InstructBLIP 96.57
20 VisualGLM 99.81
21 OneChart 99.81

(c) Value Comparison.

No. Model CoR
1 GPT-4O 41.43
2 ERNIE 47.62
3 GPT-4V 47.62
4 InternLM-v2 51.46
5 BLIP2 61.76
6 DocOwl1.5 63.19
7 mPLUG-Owl 66.57
8 LLaVA-v1.5 71.00
9 Mini-Gemini 71.10

10 Qwen-VL 74.86
11 InstructBLIP 78.48
12 Internlm 80.90
13 ChartVLM 82.71
14 MiniGPT-v2 83.81
15 Shikra 85.67
16 SPHINX 86.19
17 CogAgent 90.00
18 CogVLM 90.14
19 ChartLlama 94.76
20 VisualGLM 99.71
21 OneChart 100.0

(d) Global Conception.

Table 25: Leaderboards of different chart tasks on ChartBench. We report zero-shot CoR (%)
performance of the best-performing prompt for each MLLM.

No. Model Acc++
1 GPT-4O 83.30
2 GPT-4V 77.40
3 InternLM-v2 73.16
4 DocOwl-v1.5 50.19
5 ERNIE 49.44
6 Qwen-VL 45.71
7 Mini-Gemini 44.46
8 ChartLlama 33.59
9 LLaVA-v1.5 29.76

10 CogAgent 29.52
11 mPLUG-Owl 24.83
12 BLIP2 24.11
13 SPHINX 22.40
14 CogVLM 21.78
15 MiniGPT-v2 21.46
16 OneChart 18.39
17 ChartVLM 18.20
18 InstructBLIP 14.03
19 InternLM 12.02
20 VisualGLM 6.79
21 Shikra 6.06

(a) With Annotations.

No. Model Acc++
1 GPT-4O 61.00
2 InternLM-v2 54.80
3 DocOwl-v1.5 43.50
4 GPT-4V 43.00
5 ERNIE 42.95
6 Mini-Gemini 32.25
7 Qwen-VL 28.70
8 mPLUG-Owl 26.45
9 LLaVA-v1.5 22.55
10 ChartLlama 22.10
11 BLIP2 20.95
12 MiniGPT-v2 20.45
13 CogAgent 17.95
14 SPHINX 16.85
15 ChartVLM 15.55
16 InternLM 14.70
17 CogVLM 12.60
18 InstructBLIP 11.15
19 OneChart 9.10
20 Shikra 5.55
21 VisualGLM 3.40

(b) Without Annotations.

No. Model CoR
1 GPT-4O 10.62
2 GPT-4V 18.75
3 InternLM-v2 20.88
4 ERNIE 35.00
5 DocOwl-v1.5 44.50
6 Qwen-VL 51.00
7 Mini-Gemini 51.94
8 MiniGPT-v2 53.37
9 LLaVA-v1.5 54.81
10 ChartLlama 63.31
11 mPLUG-Owl 65.44
12 BLIP2 66.00
13 SPHINX 67.31
14 CogAgent 71.06
15 OneChart 73.94
16 CogVLM 78.00
17 InstructBLIP 81.06
18 InternLM 82.62
19 ChartVLM 88.50
20 VisualGLM 93.31
21 Shikra 95.25

(c) With Annotations.

No. Model CoR
1 GPT-4O 23.75
2 InternLM-v2 33.69
3 ERNIE 35.62
4 GPT-4V 41.25
5 DocOwl-v1.5 50.12
6 Mini-Gemini 52.56
7 MiniGPT-v2 54.31
8 LLaVA-v1.5 58.06
9 Qwen-VL 62.31

10 mPLUG-Owl 63.19
11 BLIP2 69.56
12 ChartLlama 71.00
13 SPHINX 71.12
14 InternLM 76.38
15 CogAgent 80.06
16 CogVLM 82.25
17 InstructBLIP 82.81
18 OneChart 86.44
19 ChartVLM 87.31
20 Shikra 91.75
21 VisualGLM 95.44

(d) Without Annotations.

Table 26: Leaderboards w.r.t. data annotations of Acc++ (%) and CoR (%) performance on Chart-
Bench.
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H CHART TYPE THUMBNAILS

Previous benchmarks Masry et al. (2022); Methani et al. (2020); Kantharaj et al. (2022a;b); Chen et al. (2024a)
mainly focus on the line, bar, and pie charts. To enlarge chart diversity, ChartBench provides 9 major categories
and 42 subcategories of charts, including regular and specialized ones. We provide thumbnails of all chart types
for visualizations in Fig. 13 & 14.
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Figure 13: The categories and thumbnail examples of ChartBench (Part 1). We strive to avoid direct
labeling of chart data to encourage MLLMs to understand charts using human-like visual reasoning
and ensure the credibility of the data. The example charts are provided as thumbnail representations
of the corresponding chart features.
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Figure 14: The categories and thumbnail examples of ChartBench (Part 2). We strive to avoid direct
labeling of chart data to encourage MLLMs to understand charts using human-like visual reasoning
and ensure the credibility of the data. The example charts are provided as thumbnail representations
of the corresponding chart features.
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